1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"@(#)merge.c	1.13	06/05/03 SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#include <stdio.h>
115#include <strings.h>
116#include <assert.h>
117#include <pthread.h>
118
119#include "ctf_headers.h"
120#include "ctftools.h"
121#include "list.h"
122#include "alist.h"
123#include "memory.h"
124#include "traverse.h"
125
126typedef struct equiv_data equiv_data_t;
127typedef struct merge_cb_data merge_cb_data_t;
128
129/*
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework.  We have our
132 * own traversal mechanism and ops vector here for those two cases.
133 */
134typedef struct tdesc_ops {
135	char *name;
136	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138} tdesc_ops_t;
139extern tdesc_ops_t tdesc_ops[];
140
141/*
142 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
144 */
145struct merge_cb_data {
146	tdata_t *md_parent;
147	tdata_t *md_tgt;
148	alist_t *md_ta;		/* Type Association */
149	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153	int md_flags;
154}; /* merge_cb_data_t */
155
156/*
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
162 */
163#define	MCD_F_SELFUNIQUIFY	0x1
164
165/*
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix).  If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t.  It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
172 */
173#define	MCD_F_REFMERGE	0x2
174
175/*
176 * Mapping of child type IDs to parent type IDs
177 */
178
179static void
180add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181{
182	debug(3, "Adding mapping %u => %u\n", srcid, tgtid);
183
184	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185	assert(srcid != 0 && tgtid != 0);
186
187	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188}
189
190static tid_t
191get_mapping(alist_t *ta, int srcid)
192{
193	long ltgtid;
194
195	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)(uintptr_t)&ltgtid))
196		return ((int)ltgtid);
197	else
198		return (0);
199}
200
201/*
202 * Determining equivalence of tdesc_t subgraphs
203 */
204
205struct equiv_data {
206	alist_t *ed_ta;
207	tdesc_t *ed_node;
208	tdesc_t *ed_tgt;
209
210	int ed_clear_mark;
211	int ed_cur_mark;
212	int ed_selfuniquify;
213}; /* equiv_data_t */
214
215static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217/*ARGSUSED2*/
218static int
219equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
220{
221	intr_t *si = stdp->t_intr;
222	intr_t *ti = ttdp->t_intr;
223
224	if (si->intr_type != ti->intr_type ||
225	    si->intr_signed != ti->intr_signed ||
226	    si->intr_offset != ti->intr_offset ||
227	    si->intr_nbits != ti->intr_nbits)
228		return (0);
229
230	if (si->intr_type == INTR_INT &&
231	    si->intr_iformat != ti->intr_iformat)
232		return (0);
233	else if (si->intr_type == INTR_REAL &&
234	    si->intr_fformat != ti->intr_fformat)
235		return (0);
236
237	return (1);
238}
239
240static int
241equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242{
243	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244}
245
246static int
247equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248{
249	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250	int i;
251
252	if (fn1->fn_nargs != fn2->fn_nargs ||
253	    fn1->fn_vargs != fn2->fn_vargs)
254		return (0);
255
256	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257		return (0);
258
259	for (i = 0; i < fn1->fn_nargs; i++) {
260		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261			return (0);
262	}
263
264	return (1);
265}
266
267static int
268equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269{
270	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274		return (0);
275
276	if (ar1->ad_nelems != ar2->ad_nelems)
277		return (0);
278
279	return (1);
280}
281
282static int
283equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284{
285	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286	mlist_t *olm1 = NULL;
287
288	while (ml1 && ml2) {
289		if (ml1->ml_offset != ml2->ml_offset ||
290		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
291			return (0);
292
293		/*
294		 * Don't do the recursive equivalency checking more than
295		 * we have to.
296		 */
297		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
298			if (ml1->ml_size != ml2->ml_size ||
299			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
300				return (0);
301		}
302
303		olm1 = ml1;
304		ml1 = ml1->ml_next;
305		ml2 = ml2->ml_next;
306	}
307
308	if (ml1 || ml2)
309		return (0);
310
311	return (1);
312}
313
314/*ARGSUSED2*/
315static int
316equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
317{
318	elist_t *el1 = stdp->t_emem;
319	elist_t *el2 = ttdp->t_emem;
320
321	while (el1 && el2) {
322		if (el1->el_number != el2->el_number ||
323		    strcmp(el1->el_name, el2->el_name) != 0)
324			return (0);
325
326		el1 = el1->el_next;
327		el2 = el2->el_next;
328	}
329
330	if (el1 || el2)
331		return (0);
332
333	return (1);
334}
335
336/*ARGSUSED*/
337static int
338equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
339{
340	/* foul, evil, and very bad - this is a "shouldn't happen" */
341	assert(1 == 0);
342
343	return (0);
344}
345
346static int
347fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
348{
349	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
350
351	return (defn->t_type == STRUCT || defn->t_type == UNION);
352}
353
354static int
355equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
356{
357	int (*equiv)();
358	int mapping;
359
360	if (ctdp->t_emark > ed->ed_clear_mark ||
361	    mtdp->t_emark > ed->ed_clear_mark)
362		return (ctdp->t_emark == mtdp->t_emark);
363
364	/*
365	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
366	 * checking on a subgraph that has already been checked.  If a mapping
367	 * has already been established for a given child node, we can simply
368	 * compare the mapping for the child node with the ID of the parent
369	 * node.  If we are in self-uniquify mode, then we're comparing two
370	 * subgraphs within the child graph, and thus need to ignore any
371	 * type mappings that have been created, as they are only valid into the
372	 * parent.
373	 */
374	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
375	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
376		return (1);
377
378	if (!streq(ctdp->t_name, mtdp->t_name))
379		return (0);
380
381	if (ctdp->t_type != mtdp->t_type) {
382		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
383			return (fwd_equiv(ctdp, mtdp));
384		else
385			return (0);
386	}
387
388	ctdp->t_emark = ed->ed_cur_mark;
389	mtdp->t_emark = ed->ed_cur_mark;
390	ed->ed_cur_mark++;
391
392	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
393		return (equiv(ctdp, mtdp, ed));
394
395	return (1);
396}
397
398/*
399 * We perform an equivalency check on two subgraphs by traversing through them
400 * in lockstep.  If a given node is equivalent in both the parent and the child,
401 * we mark it in both subgraphs, using the t_emark field, with a monotonically
402 * increasing number.  If, in the course of the traversal, we reach a node that
403 * we have visited and numbered during this equivalency check, we have a cycle.
404 * If the previously-visited nodes don't have the same emark, then the edges
405 * that brought us to these nodes are not equivalent, and so the check ends.
406 * If the emarks are the same, the edges are equivalent.  We then backtrack and
407 * continue the traversal.  If we have exhausted all edges in the subgraph, and
408 * have not found any inequivalent nodes, then the subgraphs are equivalent.
409 */
410static int
411equiv_cb(void *bucket, void *arg)
412{
413	equiv_data_t *ed = arg;
414	tdesc_t *mtdp = bucket;
415	tdesc_t *ctdp = ed->ed_node;
416
417	ed->ed_clear_mark = ed->ed_cur_mark + 1;
418	ed->ed_cur_mark = ed->ed_clear_mark + 1;
419
420	if (equiv_node(ctdp, mtdp, ed)) {
421		debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id);
422		ed->ed_tgt = mtdp;
423		/* matched.  stop looking */
424		return (-1);
425	}
426
427	return (0);
428}
429
430/*ARGSUSED1*/
431static int
432map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
433{
434	merge_cb_data_t *mcd = private;
435
436	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
437		return (0);
438
439	return (1);
440}
441
442/*ARGSUSED1*/
443static int
444map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
445{
446	merge_cb_data_t *mcd = private;
447	equiv_data_t ed;
448
449	ed.ed_ta = mcd->md_ta;
450	ed.ed_clear_mark = mcd->md_parent->td_curemark;
451	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
452	ed.ed_node = ctdp;
453	ed.ed_selfuniquify = 0;
454
455	debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id, tdesc_name(ctdp));
456
457	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
458	    equiv_cb, &ed) < 0) {
459		/* We found an equivalent node */
460		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
461			int id = mcd->md_tgt->td_nextid++;
462
463			debug(3, "Creating new defn type %d\n", id);
464			add_mapping(mcd->md_ta, ctdp->t_id, id);
465			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
466			    (void *)(ulong_t)id);
467			hash_add(mcd->md_tdtba, ctdp);
468		} else
469			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
470
471	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
472	    equiv_cb, &ed) < 0) {
473		/*
474		 * We didn't find an equivalent node by looking through the
475		 * layout hash, but we somehow found it by performing an
476		 * exhaustive search through the entire graph.  This usually
477		 * means that the "name" hash function is broken.
478		 */
479		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
480		    tdesc_name(ctdp), ed.ed_tgt->t_id);
481	} else {
482		int id = mcd->md_tgt->td_nextid++;
483
484		debug(3, "Creating new type %d\n", id);
485		add_mapping(mcd->md_ta, ctdp->t_id, id);
486		hash_add(mcd->md_tdtba, ctdp);
487	}
488
489	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
490
491	return (1);
492}
493
494/*ARGSUSED1*/
495static int
496map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
497{
498	merge_cb_data_t *mcd = private;
499	equiv_data_t ed;
500
501	ed.ed_ta = mcd->md_ta;
502	ed.ed_clear_mark = mcd->md_parent->td_curemark;
503	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
504	ed.ed_node = ctdp;
505	ed.ed_selfuniquify = 1;
506	ed.ed_tgt = NULL;
507
508	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
509		debug(3, "Self check found %d in %d\n", ctdp->t_id,
510		    ed.ed_tgt->t_id);
511		add_mapping(mcd->md_ta, ctdp->t_id,
512		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
513	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
514	    equiv_cb, &ed) < 0) {
515		/*
516		 * We didn't find an equivalent node using the quick way (going
517		 * through the hash normally), but we did find it by iterating
518		 * through the entire hash.  This usually means that the hash
519		 * function is broken.
520		 */
521		aborterr("Self-unique second pass for %d (%s) == %d\n",
522		    ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id);
523	} else {
524		int id = mcd->md_tgt->td_nextid++;
525
526		debug(3, "Creating new type %d\n", id);
527		add_mapping(mcd->md_ta, ctdp->t_id, id);
528		hash_add(mcd->md_tdtba, ctdp);
529	}
530
531	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
532
533	return (1);
534}
535
536static tdtrav_cb_f map_pre[] = {
537	NULL,
538	map_td_tree_pre,	/* intrinsic */
539	map_td_tree_pre,	/* pointer */
540	map_td_tree_pre,	/* array */
541	map_td_tree_pre,	/* function */
542	map_td_tree_pre,	/* struct */
543	map_td_tree_pre,	/* union */
544	map_td_tree_pre,	/* enum */
545	map_td_tree_pre,	/* forward */
546	map_td_tree_pre,	/* typedef */
547	tdtrav_assert,		/* typedef_unres */
548	map_td_tree_pre,	/* volatile */
549	map_td_tree_pre,	/* const */
550	map_td_tree_pre		/* restrict */
551};
552
553static tdtrav_cb_f map_post[] = {
554	NULL,
555	map_td_tree_post,	/* intrinsic */
556	map_td_tree_post,	/* pointer */
557	map_td_tree_post,	/* array */
558	map_td_tree_post,	/* function */
559	map_td_tree_post,	/* struct */
560	map_td_tree_post,	/* union */
561	map_td_tree_post,	/* enum */
562	map_td_tree_post,	/* forward */
563	map_td_tree_post,	/* typedef */
564	tdtrav_assert,		/* typedef_unres */
565	map_td_tree_post,	/* volatile */
566	map_td_tree_post,	/* const */
567	map_td_tree_post	/* restrict */
568};
569
570static tdtrav_cb_f map_self_post[] = {
571	NULL,
572	map_td_tree_self_post,	/* intrinsic */
573	map_td_tree_self_post,	/* pointer */
574	map_td_tree_self_post,	/* array */
575	map_td_tree_self_post,	/* function */
576	map_td_tree_self_post,	/* struct */
577	map_td_tree_self_post,	/* union */
578	map_td_tree_self_post,	/* enum */
579	map_td_tree_self_post,	/* forward */
580	map_td_tree_self_post,	/* typedef */
581	tdtrav_assert,		/* typedef_unres */
582	map_td_tree_self_post,	/* volatile */
583	map_td_tree_self_post,	/* const */
584	map_td_tree_self_post	/* restrict */
585};
586
587/*
588 * Determining equivalence of iidesc_t nodes
589 */
590
591typedef struct iifind_data {
592	iidesc_t *iif_template;
593	alist_t *iif_ta;
594	int iif_newidx;
595	int iif_refmerge;
596} iifind_data_t;
597
598/*
599 * Check to see if this iidesc_t (node) - the current one on the list we're
600 * iterating through - matches the target one (iif->iif_template).  Return -1
601 * if it matches, to stop the iteration.
602 */
603static int
604iidesc_match(void *data, void *arg)
605{
606	iidesc_t *node = data;
607	iifind_data_t *iif = arg;
608	int i;
609
610	if (node->ii_type != iif->iif_template->ii_type ||
611	    !streq(node->ii_name, iif->iif_template->ii_name) ||
612	    node->ii_dtype->t_id != iif->iif_newidx)
613		return (0);
614
615	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
616	    !streq(node->ii_owner, iif->iif_template->ii_owner))
617		return (0);
618
619	if (node->ii_nargs != iif->iif_template->ii_nargs)
620		return (0);
621
622	for (i = 0; i < node->ii_nargs; i++) {
623		if (get_mapping(iif->iif_ta,
624		    iif->iif_template->ii_args[i]->t_id) !=
625		    node->ii_args[i]->t_id)
626			return (0);
627	}
628
629	if (iif->iif_refmerge) {
630		switch (iif->iif_template->ii_type) {
631		case II_GFUN:
632		case II_SFUN:
633		case II_GVAR:
634		case II_SVAR:
635			debug(3, "suppressing duping of %d %s from %s\n",
636			    iif->iif_template->ii_type,
637			    iif->iif_template->ii_name,
638			    (iif->iif_template->ii_owner ?
639			    iif->iif_template->ii_owner : "NULL"));
640			return (0);
641		case II_NOT:
642		case II_PSYM:
643		case II_SOU:
644		case II_TYPE:
645			break;
646		}
647	}
648
649	return (-1);
650}
651
652static int
653merge_type_cb(void *data, void *arg)
654{
655	iidesc_t *sii = data;
656	merge_cb_data_t *mcd = arg;
657	iifind_data_t iif;
658	tdtrav_cb_f *post;
659
660	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
661
662	/* Map the tdesc nodes */
663	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
664	    mcd);
665
666	/* Map the iidesc nodes */
667	iif.iif_template = sii;
668	iif.iif_ta = mcd->md_ta;
669	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
670	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
671
672	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
673	    &iif) == 1)
674		/* successfully mapped */
675		return (1);
676
677	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
678	    sii->ii_type);
679
680	list_add(mcd->md_iitba, sii);
681
682	return (0);
683}
684
685static int
686remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
687    merge_cb_data_t *mcd)
688{
689	tdesc_t *tgt = NULL;
690	tdesc_t template;
691	int oldid = oldtgt->t_id;
692
693	if (oldid == selftid) {
694		*tgtp = newself;
695		return (1);
696	}
697
698	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
699		aborterr("failed to get mapping for tid %d\n", oldid);
700
701	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
702	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
703	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
704	    (void *)&tgt))) {
705		debug(3, "Remap couldn't find %d (from %d)\n", template.t_id,
706		    oldid);
707		*tgtp = oldtgt;
708		list_add(mcd->md_tdtbr, tgtp);
709		return (0);
710	}
711
712	*tgtp = tgt;
713	return (1);
714}
715
716static tdesc_t *
717conjure_template(tdesc_t *old, int newselfid)
718{
719	tdesc_t *new = xcalloc(sizeof (tdesc_t));
720
721	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
722	new->t_type = old->t_type;
723	new->t_size = old->t_size;
724	new->t_id = newselfid;
725	new->t_flags = old->t_flags;
726
727	return (new);
728}
729
730/*ARGSUSED2*/
731static tdesc_t *
732conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
733{
734	tdesc_t *new = conjure_template(old, newselfid);
735
736	new->t_intr = xmalloc(sizeof (intr_t));
737	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
738
739	return (new);
740}
741
742static tdesc_t *
743conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
744{
745	tdesc_t *new = conjure_template(old, newselfid);
746
747	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
748
749	return (new);
750}
751
752static tdesc_t *
753conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
754{
755	tdesc_t *new = conjure_template(old, newselfid);
756	fndef_t *nfn = xmalloc(sizeof (fndef_t));
757	fndef_t *ofn = old->t_fndef;
758	int i;
759
760	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
761
762	nfn->fn_nargs = ofn->fn_nargs;
763	nfn->fn_vargs = ofn->fn_vargs;
764
765	if (nfn->fn_nargs > 0)
766		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
767
768	for (i = 0; i < ofn->fn_nargs; i++) {
769		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
770		    new, mcd);
771	}
772
773	new->t_fndef = nfn;
774
775	return (new);
776}
777
778static tdesc_t *
779conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
780{
781	tdesc_t *new = conjure_template(old, newselfid);
782	ardef_t *nar = xmalloc(sizeof (ardef_t));
783	ardef_t *oar = old->t_ardef;
784
785	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
786	    mcd);
787	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
788	    mcd);
789
790	nar->ad_nelems = oar->ad_nelems;
791
792	new->t_ardef = nar;
793
794	return (new);
795}
796
797static tdesc_t *
798conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
799{
800	tdesc_t *new = conjure_template(old, newselfid);
801	mlist_t *omem, **nmemp;
802
803	for (omem = old->t_members, nmemp = &new->t_members;
804	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
805		*nmemp = xmalloc(sizeof (mlist_t));
806		(*nmemp)->ml_offset = omem->ml_offset;
807		(*nmemp)->ml_size = omem->ml_size;
808		(*nmemp)->ml_name = xstrdup(omem->ml_name);
809		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
810		    old->t_id, new, mcd);
811	}
812	*nmemp = NULL;
813
814	return (new);
815}
816
817/*ARGSUSED2*/
818static tdesc_t *
819conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
820{
821	tdesc_t *new = conjure_template(old, newselfid);
822	elist_t *oel, **nelp;
823
824	for (oel = old->t_emem, nelp = &new->t_emem;
825	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
826		*nelp = xmalloc(sizeof (elist_t));
827		(*nelp)->el_name = xstrdup(oel->el_name);
828		(*nelp)->el_number = oel->el_number;
829	}
830	*nelp = NULL;
831
832	return (new);
833}
834
835/*ARGSUSED2*/
836static tdesc_t *
837conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
838{
839	tdesc_t *new = conjure_template(old, newselfid);
840
841	list_add(&mcd->md_tgt->td_fwdlist, new);
842
843	return (new);
844}
845
846/*ARGSUSED*/
847static tdesc_t *
848conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
849{
850	assert(1 == 0);
851	return (NULL);
852}
853
854static iidesc_t *
855conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
856{
857	iidesc_t *new = iidesc_dup(old);
858	int i;
859
860	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
861	for (i = 0; i < new->ii_nargs; i++) {
862		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
863		    mcd);
864	}
865
866	return (new);
867}
868
869static int
870fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
871{
872	alist_t *map = private;
873	tdesc_t *defn;
874
875	if (!alist_find(map, (void *)fwd, (void **)&defn))
876		return (0);
877
878	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
879
880	*fwdp = defn;
881
882	return (1);
883}
884
885static tdtrav_cb_f fwd_redir_cbs[] = {
886	NULL,
887	NULL,			/* intrinsic */
888	NULL,			/* pointer */
889	NULL,			/* array */
890	NULL,			/* function */
891	NULL,			/* struct */
892	NULL,			/* union */
893	NULL,			/* enum */
894	fwd_redir,		/* forward */
895	NULL,			/* typedef */
896	tdtrav_assert,		/* typedef_unres */
897	NULL,			/* volatile */
898	NULL,			/* const */
899	NULL			/* restrict */
900};
901
902typedef struct redir_mstr_data {
903	tdata_t *rmd_tgt;
904	alist_t *rmd_map;
905} redir_mstr_data_t;
906
907static int
908redir_mstr_fwd_cb(void *name, void *value, void *arg)
909{
910	tdesc_t *fwd = name;
911	int defnid = (int)value;
912	redir_mstr_data_t *rmd = arg;
913	tdesc_t template;
914	tdesc_t *defn;
915
916	template.t_id = defnid;
917
918	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
919	    (void *)&defn)) {
920		aborterr("Couldn't unforward %d (%s)\n", defnid,
921		    tdesc_name(defn));
922	}
923
924	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
925
926	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
927
928	return (1);
929}
930
931static void
932redir_mstr_fwds(merge_cb_data_t *mcd)
933{
934	redir_mstr_data_t rmd;
935	alist_t *map = alist_new(NULL, NULL);
936
937	rmd.rmd_tgt = mcd->md_tgt;
938	rmd.rmd_map = map;
939
940	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
941		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
942		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
943	}
944
945	alist_free(map);
946}
947
948static int
949add_iitba_cb(void *data, void *private)
950{
951	merge_cb_data_t *mcd = private;
952	iidesc_t *tba = data;
953	iidesc_t *new;
954	iifind_data_t iif;
955	int newidx;
956
957	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
958	assert(newidx != -1);
959
960	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
961
962	iif.iif_template = tba;
963	iif.iif_ta = mcd->md_ta;
964	iif.iif_newidx = newidx;
965	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
966
967	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
968	    &iif) == 1) {
969		debug(3, "iidesc_t %s already exists\n",
970		    (tba->ii_name ? tba->ii_name : "(anon)"));
971		return (1);
972	}
973
974	new = conjure_iidesc(tba, mcd);
975	hash_add(mcd->md_tgt->td_iihash, new);
976
977	return (1);
978}
979
980static int
981add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
982{
983	tdesc_t *newtdp;
984	tdesc_t template;
985
986	template.t_id = newid;
987	assert(hash_find(mcd->md_parent->td_idhash,
988	    (void *)&template, NULL) == 0);
989
990	debug(3, "trying to conjure %d %s (%d) as %d\n",
991	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, newid);
992
993	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
994	    mcd)) == NULL)
995		/* couldn't map everything */
996		return (0);
997
998	debug(3, "succeeded\n");
999
1000	hash_add(mcd->md_tgt->td_idhash, newtdp);
1001	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1002
1003	return (1);
1004}
1005
1006static int
1007add_tdtba_cb(void *data, void *arg)
1008{
1009	tdesc_t *tdp = data;
1010	merge_cb_data_t *mcd = arg;
1011	int newid;
1012	int rc;
1013
1014	newid = get_mapping(mcd->md_ta, tdp->t_id);
1015	assert(newid != -1);
1016
1017	if ((rc = add_tdesc(tdp, newid, mcd)))
1018		hash_remove(mcd->md_tdtba, (void *)tdp);
1019
1020	return (rc);
1021}
1022
1023static int
1024add_tdtbr_cb(void *data, void *arg)
1025{
1026	tdesc_t **tdpp = data;
1027	merge_cb_data_t *mcd = arg;
1028
1029	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1030
1031	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1032		return (0);
1033
1034	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1035	return (1);
1036}
1037
1038static void
1039merge_types(hash_t *src, merge_cb_data_t *mcd)
1040{
1041	list_t *iitba = NULL;
1042	list_t *tdtbr = NULL;
1043	int iirc, tdrc;
1044
1045	mcd->md_iitba = &iitba;
1046	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1047	    tdesc_layoutcmp);
1048	mcd->md_tdtbr = &tdtbr;
1049
1050	(void) hash_iter(src, merge_type_cb, mcd);
1051
1052	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd);
1053	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1054
1055	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd);
1056	debug(3, "add_iitba_cb added %d items\n", iirc);
1057
1058	assert(list_count(*mcd->md_iitba) == 0 &&
1059	    hash_count(mcd->md_tdtba) == 0);
1060
1061	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd);
1062	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1063
1064	if (list_count(*mcd->md_tdtbr) != 0)
1065		aborterr("Couldn't remap all nodes\n");
1066
1067	/*
1068	 * We now have an alist of master forwards and the ids of the new master
1069	 * definitions for those forwards in mcd->md_fdida.  By this point,
1070	 * we're guaranteed that all of the master definitions referenced in
1071	 * fdida have been added to the master tree.  We now traverse through
1072	 * the master tree, redirecting all edges inbound to forwards that have
1073	 * definitions to those definitions.
1074	 */
1075	if (mcd->md_parent == mcd->md_tgt) {
1076		redir_mstr_fwds(mcd);
1077	}
1078}
1079
1080void
1081merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1082{
1083	merge_cb_data_t mcd;
1084
1085	cur->td_ref++;
1086	mstr->td_ref++;
1087	if (tgt)
1088		tgt->td_ref++;
1089
1090	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1091	    (tgt == NULL || tgt->td_ref == 1));
1092
1093	mcd.md_parent = mstr;
1094	mcd.md_tgt = (tgt ? tgt : mstr);
1095	mcd.md_ta = alist_new(NULL, NULL);
1096	mcd.md_fdida = alist_new(NULL, NULL);
1097	mcd.md_flags = 0;
1098
1099	if (selfuniquify)
1100		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1101	if (tgt)
1102		mcd.md_flags |= MCD_F_REFMERGE;
1103
1104	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1105	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1106
1107	merge_types(cur->td_iihash, &mcd);
1108
1109	if (debug_level >= 3) {
1110		debug(3, "Type association stats\n");
1111		alist_stats(mcd.md_ta, 0);
1112		debug(3, "Layout hash stats\n");
1113		hash_stats(mcd.md_tgt->td_layouthash, 1);
1114	}
1115
1116	alist_free(mcd.md_fdida);
1117	alist_free(mcd.md_ta);
1118
1119	cur->td_ref--;
1120	mstr->td_ref--;
1121	if (tgt)
1122		tgt->td_ref--;
1123}
1124
1125tdesc_ops_t tdesc_ops[] = {
1126	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1127	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1128	{ "pointer", 		equiv_plain,		conjure_plain },
1129	{ "array", 		equiv_array,		conjure_array },
1130	{ "function", 		equiv_function,		conjure_function },
1131	{ "struct",		equiv_su,		conjure_su },
1132	{ "union",		equiv_su,		conjure_su },
1133	{ "enum",		equiv_enum,		conjure_enum },
1134	{ "forward",		NULL,			conjure_forward },
1135	{ "typedef",		equiv_plain,		conjure_plain },
1136	{ "typedef_unres",	equiv_assert,		conjure_assert },
1137	{ "volatile",		equiv_plain,		conjure_plain },
1138	{ "const", 		equiv_plain,		conjure_plain },
1139	{ "restrict",		equiv_plain,		conjure_plain }
1140};
1141