1/* ELF linking support for BFD.
2   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3   2005, 2006 Free Software Foundation, Inc.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
27#include "safe-ctype.h"
28#include "libiberty.h"
29#include "objalloc.h"
30
31/* Define a symbol in a dynamic linkage section.  */
32
33struct elf_link_hash_entry *
34_bfd_elf_define_linkage_sym (bfd *abfd,
35			     struct bfd_link_info *info,
36			     asection *sec,
37			     const char *name)
38{
39  struct elf_link_hash_entry *h;
40  struct bfd_link_hash_entry *bh;
41  const struct elf_backend_data *bed;
42
43  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
44  if (h != NULL)
45    {
46      /* Zap symbol defined in an as-needed lib that wasn't linked.
47	 This is a symptom of a larger problem:  Absolute symbols
48	 defined in shared libraries can't be overridden, because we
49	 lose the link to the bfd which is via the symbol section.  */
50      h->root.type = bfd_link_hash_new;
51    }
52
53  bh = &h->root;
54  if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
55					 sec, 0, NULL, FALSE,
56					 get_elf_backend_data (abfd)->collect,
57					 &bh))
58    return NULL;
59  h = (struct elf_link_hash_entry *) bh;
60  h->def_regular = 1;
61  h->type = STT_OBJECT;
62  h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
63
64  bed = get_elf_backend_data (abfd);
65  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
66  return h;
67}
68
69bfd_boolean
70_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
71{
72  flagword flags;
73  asection *s;
74  struct elf_link_hash_entry *h;
75  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
76  int ptralign;
77
78  /* This function may be called more than once.  */
79  s = bfd_get_section_by_name (abfd, ".got");
80  if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
81    return TRUE;
82
83  switch (bed->s->arch_size)
84    {
85    case 32:
86      ptralign = 2;
87      break;
88
89    case 64:
90      ptralign = 3;
91      break;
92
93    default:
94      bfd_set_error (bfd_error_bad_value);
95      return FALSE;
96    }
97
98  flags = bed->dynamic_sec_flags;
99
100  s = bfd_make_section_with_flags (abfd, ".got", flags);
101  if (s == NULL
102      || !bfd_set_section_alignment (abfd, s, ptralign))
103    return FALSE;
104
105  if (bed->want_got_plt)
106    {
107      s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
108      if (s == NULL
109	  || !bfd_set_section_alignment (abfd, s, ptralign))
110	return FALSE;
111    }
112
113  if (bed->want_got_sym)
114    {
115      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
116	 (or .got.plt) section.  We don't do this in the linker script
117	 because we don't want to define the symbol if we are not creating
118	 a global offset table.  */
119      h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
120      elf_hash_table (info)->hgot = h;
121      if (h == NULL)
122	return FALSE;
123    }
124
125  /* The first bit of the global offset table is the header.  */
126  s->size += bed->got_header_size;
127
128  return TRUE;
129}
130
131/* Create a strtab to hold the dynamic symbol names.  */
132static bfd_boolean
133_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
134{
135  struct elf_link_hash_table *hash_table;
136
137  hash_table = elf_hash_table (info);
138  if (hash_table->dynobj == NULL)
139    hash_table->dynobj = abfd;
140
141  if (hash_table->dynstr == NULL)
142    {
143      hash_table->dynstr = _bfd_elf_strtab_init ();
144      if (hash_table->dynstr == NULL)
145	return FALSE;
146    }
147  return TRUE;
148}
149
150/* Create some sections which will be filled in with dynamic linking
151   information.  ABFD is an input file which requires dynamic sections
152   to be created.  The dynamic sections take up virtual memory space
153   when the final executable is run, so we need to create them before
154   addresses are assigned to the output sections.  We work out the
155   actual contents and size of these sections later.  */
156
157bfd_boolean
158_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
159{
160  flagword flags;
161  register asection *s;
162  const struct elf_backend_data *bed;
163
164  if (! is_elf_hash_table (info->hash))
165    return FALSE;
166
167  if (elf_hash_table (info)->dynamic_sections_created)
168    return TRUE;
169
170  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
171    return FALSE;
172
173  abfd = elf_hash_table (info)->dynobj;
174  bed = get_elf_backend_data (abfd);
175
176  flags = bed->dynamic_sec_flags;
177
178  /* A dynamically linked executable has a .interp section, but a
179     shared library does not.  */
180  if (info->executable)
181    {
182      s = bfd_make_section_with_flags (abfd, ".interp",
183				       flags | SEC_READONLY);
184      if (s == NULL)
185	return FALSE;
186    }
187
188  /* Create sections to hold version informations.  These are removed
189     if they are not needed.  */
190  s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
191				   flags | SEC_READONLY);
192  if (s == NULL
193      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
194    return FALSE;
195
196  s = bfd_make_section_with_flags (abfd, ".gnu.version",
197				   flags | SEC_READONLY);
198  if (s == NULL
199      || ! bfd_set_section_alignment (abfd, s, 1))
200    return FALSE;
201
202  s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
203				   flags | SEC_READONLY);
204  if (s == NULL
205      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
206    return FALSE;
207
208  s = bfd_make_section_with_flags (abfd, ".dynsym",
209				   flags | SEC_READONLY);
210  if (s == NULL
211      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
212    return FALSE;
213
214  s = bfd_make_section_with_flags (abfd, ".dynstr",
215				   flags | SEC_READONLY);
216  if (s == NULL)
217    return FALSE;
218
219  s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
220  if (s == NULL
221      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222    return FALSE;
223
224  /* The special symbol _DYNAMIC is always set to the start of the
225     .dynamic section.  We could set _DYNAMIC in a linker script, but we
226     only want to define it if we are, in fact, creating a .dynamic
227     section.  We don't want to define it if there is no .dynamic
228     section, since on some ELF platforms the start up code examines it
229     to decide how to initialize the process.  */
230  if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
231    return FALSE;
232
233  if (info->emit_hash)
234    {
235      s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
236      if (s == NULL
237	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
238	return FALSE;
239      elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
240    }
241
242  if (info->emit_gnu_hash)
243    {
244      s = bfd_make_section_with_flags (abfd, ".gnu.hash",
245				       flags | SEC_READONLY);
246      if (s == NULL
247	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
248	return FALSE;
249      /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
250	 4 32-bit words followed by variable count of 64-bit words, then
251	 variable count of 32-bit words.  */
252      if (bed->s->arch_size == 64)
253	elf_section_data (s)->this_hdr.sh_entsize = 0;
254      else
255	elf_section_data (s)->this_hdr.sh_entsize = 4;
256    }
257
258  /* Let the backend create the rest of the sections.  This lets the
259     backend set the right flags.  The backend will normally create
260     the .got and .plt sections.  */
261  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
262    return FALSE;
263
264  elf_hash_table (info)->dynamic_sections_created = TRUE;
265
266  return TRUE;
267}
268
269/* Create dynamic sections when linking against a dynamic object.  */
270
271bfd_boolean
272_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
273{
274  flagword flags, pltflags;
275  struct elf_link_hash_entry *h;
276  asection *s;
277  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
278
279  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
280     .rel[a].bss sections.  */
281  flags = bed->dynamic_sec_flags;
282
283  pltflags = flags;
284  if (bed->plt_not_loaded)
285    /* We do not clear SEC_ALLOC here because we still want the OS to
286       allocate space for the section; it's just that there's nothing
287       to read in from the object file.  */
288    pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
289  else
290    pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
291  if (bed->plt_readonly)
292    pltflags |= SEC_READONLY;
293
294  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
295  if (s == NULL
296      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
297    return FALSE;
298
299  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
300     .plt section.  */
301  if (bed->want_plt_sym)
302    {
303      h = _bfd_elf_define_linkage_sym (abfd, info, s,
304				       "_PROCEDURE_LINKAGE_TABLE_");
305      elf_hash_table (info)->hplt = h;
306      if (h == NULL)
307	return FALSE;
308    }
309
310  s = bfd_make_section_with_flags (abfd,
311				   (bed->default_use_rela_p
312				    ? ".rela.plt" : ".rel.plt"),
313				   flags | SEC_READONLY);
314  if (s == NULL
315      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
316    return FALSE;
317
318  if (! _bfd_elf_create_got_section (abfd, info))
319    return FALSE;
320
321  if (bed->want_dynbss)
322    {
323      /* The .dynbss section is a place to put symbols which are defined
324	 by dynamic objects, are referenced by regular objects, and are
325	 not functions.  We must allocate space for them in the process
326	 image and use a R_*_COPY reloc to tell the dynamic linker to
327	 initialize them at run time.  The linker script puts the .dynbss
328	 section into the .bss section of the final image.  */
329      s = bfd_make_section_with_flags (abfd, ".dynbss",
330				       (SEC_ALLOC
331					| SEC_LINKER_CREATED));
332      if (s == NULL)
333	return FALSE;
334
335      /* The .rel[a].bss section holds copy relocs.  This section is not
336	 normally needed.  We need to create it here, though, so that the
337	 linker will map it to an output section.  We can't just create it
338	 only if we need it, because we will not know whether we need it
339	 until we have seen all the input files, and the first time the
340	 main linker code calls BFD after examining all the input files
341	 (size_dynamic_sections) the input sections have already been
342	 mapped to the output sections.  If the section turns out not to
343	 be needed, we can discard it later.  We will never need this
344	 section when generating a shared object, since they do not use
345	 copy relocs.  */
346      if (! info->shared)
347	{
348	  s = bfd_make_section_with_flags (abfd,
349					   (bed->default_use_rela_p
350					    ? ".rela.bss" : ".rel.bss"),
351					   flags | SEC_READONLY);
352	  if (s == NULL
353	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
354	    return FALSE;
355	}
356    }
357
358  return TRUE;
359}
360
361/* Record a new dynamic symbol.  We record the dynamic symbols as we
362   read the input files, since we need to have a list of all of them
363   before we can determine the final sizes of the output sections.
364   Note that we may actually call this function even though we are not
365   going to output any dynamic symbols; in some cases we know that a
366   symbol should be in the dynamic symbol table, but only if there is
367   one.  */
368
369bfd_boolean
370bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
371				    struct elf_link_hash_entry *h)
372{
373  if (h->dynindx == -1)
374    {
375      struct elf_strtab_hash *dynstr;
376      char *p;
377      const char *name;
378      bfd_size_type indx;
379
380      /* XXX: The ABI draft says the linker must turn hidden and
381	 internal symbols into STB_LOCAL symbols when producing the
382	 DSO. However, if ld.so honors st_other in the dynamic table,
383	 this would not be necessary.  */
384      switch (ELF_ST_VISIBILITY (h->other))
385	{
386	case STV_INTERNAL:
387	case STV_HIDDEN:
388	  if (h->root.type != bfd_link_hash_undefined
389	      && h->root.type != bfd_link_hash_undefweak)
390	    {
391	      h->forced_local = 1;
392	      if (!elf_hash_table (info)->is_relocatable_executable)
393		return TRUE;
394	    }
395
396	default:
397	  break;
398	}
399
400      h->dynindx = elf_hash_table (info)->dynsymcount;
401      ++elf_hash_table (info)->dynsymcount;
402
403      dynstr = elf_hash_table (info)->dynstr;
404      if (dynstr == NULL)
405	{
406	  /* Create a strtab to hold the dynamic symbol names.  */
407	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
408	  if (dynstr == NULL)
409	    return FALSE;
410	}
411
412      /* We don't put any version information in the dynamic string
413	 table.  */
414      name = h->root.root.string;
415      p = strchr (name, ELF_VER_CHR);
416      if (p != NULL)
417	/* We know that the p points into writable memory.  In fact,
418	   there are only a few symbols that have read-only names, being
419	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
420	   by the backends.  Most symbols will have names pointing into
421	   an ELF string table read from a file, or to objalloc memory.  */
422	*p = 0;
423
424      indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
425
426      if (p != NULL)
427	*p = ELF_VER_CHR;
428
429      if (indx == (bfd_size_type) -1)
430	return FALSE;
431      h->dynstr_index = indx;
432    }
433
434  return TRUE;
435}
436
437/* Mark a symbol dynamic.  */
438
439void
440bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
441				  struct elf_link_hash_entry *h,
442				  Elf_Internal_Sym *sym)
443{
444  struct bfd_elf_dynamic_list *d = info->dynamic_list;
445
446  /* It may be called more than once on the same H.  */
447  if(h->dynamic || info->relocatable)
448    return;
449
450  if ((info->dynamic_data
451       && (h->type == STT_OBJECT
452	   || (sym != NULL
453	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
454      || (d != NULL
455	  && h->root.type == bfd_link_hash_new
456	  && (*d->match) (&d->head, NULL, h->root.root.string)))
457    h->dynamic = 1;
458}
459
460/* Record an assignment to a symbol made by a linker script.  We need
461   this in case some dynamic object refers to this symbol.  */
462
463bfd_boolean
464bfd_elf_record_link_assignment (bfd *output_bfd,
465				struct bfd_link_info *info,
466				const char *name,
467				bfd_boolean provide,
468				bfd_boolean hidden)
469{
470  struct elf_link_hash_entry *h;
471  struct elf_link_hash_table *htab;
472
473  if (!is_elf_hash_table (info->hash))
474    return TRUE;
475
476  htab = elf_hash_table (info);
477  h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
478  if (h == NULL)
479    return provide;
480
481  /* Since we're defining the symbol, don't let it seem to have not
482     been defined.  record_dynamic_symbol and size_dynamic_sections
483     may depend on this.  */
484  if (h->root.type == bfd_link_hash_undefweak
485      || h->root.type == bfd_link_hash_undefined)
486    {
487      h->root.type = bfd_link_hash_new;
488      if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
489	bfd_link_repair_undef_list (&htab->root);
490    }
491
492  if (h->root.type == bfd_link_hash_new)
493    {
494      bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
495      h->non_elf = 0;
496    }
497
498  /* If this symbol is being provided by the linker script, and it is
499     currently defined by a dynamic object, but not by a regular
500     object, then mark it as undefined so that the generic linker will
501     force the correct value.  */
502  if (provide
503      && h->def_dynamic
504      && !h->def_regular)
505    h->root.type = bfd_link_hash_undefined;
506
507  /* If this symbol is not being provided by the linker script, and it is
508     currently defined by a dynamic object, but not by a regular object,
509     then clear out any version information because the symbol will not be
510     associated with the dynamic object any more.  */
511  if (!provide
512      && h->def_dynamic
513      && !h->def_regular)
514    h->verinfo.verdef = NULL;
515
516  h->def_regular = 1;
517
518  if (provide && hidden)
519    {
520      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
521
522      h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
523      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
524    }
525
526  /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
527     and executables.  */
528  if (!info->relocatable
529      && h->dynindx != -1
530      && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
531	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
532    h->forced_local = 1;
533
534  if ((h->def_dynamic
535       || h->ref_dynamic
536       || info->shared
537       || (info->executable && elf_hash_table (info)->is_relocatable_executable))
538      && h->dynindx == -1)
539    {
540      if (! bfd_elf_link_record_dynamic_symbol (info, h))
541	return FALSE;
542
543      /* If this is a weak defined symbol, and we know a corresponding
544	 real symbol from the same dynamic object, make sure the real
545	 symbol is also made into a dynamic symbol.  */
546      if (h->u.weakdef != NULL
547	  && h->u.weakdef->dynindx == -1)
548	{
549	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
550	    return FALSE;
551	}
552    }
553
554  return TRUE;
555}
556
557/* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
558   success, and 2 on a failure caused by attempting to record a symbol
559   in a discarded section, eg. a discarded link-once section symbol.  */
560
561int
562bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
563					  bfd *input_bfd,
564					  long input_indx)
565{
566  bfd_size_type amt;
567  struct elf_link_local_dynamic_entry *entry;
568  struct elf_link_hash_table *eht;
569  struct elf_strtab_hash *dynstr;
570  unsigned long dynstr_index;
571  char *name;
572  Elf_External_Sym_Shndx eshndx;
573  char esym[sizeof (Elf64_External_Sym)];
574
575  if (! is_elf_hash_table (info->hash))
576    return 0;
577
578  /* See if the entry exists already.  */
579  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
580    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
581      return 1;
582
583  amt = sizeof (*entry);
584  entry = bfd_alloc (input_bfd, amt);
585  if (entry == NULL)
586    return 0;
587
588  /* Go find the symbol, so that we can find it's name.  */
589  if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
590			     1, input_indx, &entry->isym, esym, &eshndx))
591    {
592      bfd_release (input_bfd, entry);
593      return 0;
594    }
595
596  if (entry->isym.st_shndx != SHN_UNDEF
597      && (entry->isym.st_shndx < SHN_LORESERVE
598	  || entry->isym.st_shndx > SHN_HIRESERVE))
599    {
600      asection *s;
601
602      s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
603      if (s == NULL || bfd_is_abs_section (s->output_section))
604	{
605	  /* We can still bfd_release here as nothing has done another
606	     bfd_alloc.  We can't do this later in this function.  */
607	  bfd_release (input_bfd, entry);
608	  return 2;
609	}
610    }
611
612  name = (bfd_elf_string_from_elf_section
613	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
614	   entry->isym.st_name));
615
616  dynstr = elf_hash_table (info)->dynstr;
617  if (dynstr == NULL)
618    {
619      /* Create a strtab to hold the dynamic symbol names.  */
620      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
621      if (dynstr == NULL)
622	return 0;
623    }
624
625  dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
626  if (dynstr_index == (unsigned long) -1)
627    return 0;
628  entry->isym.st_name = dynstr_index;
629
630  eht = elf_hash_table (info);
631
632  entry->next = eht->dynlocal;
633  eht->dynlocal = entry;
634  entry->input_bfd = input_bfd;
635  entry->input_indx = input_indx;
636  eht->dynsymcount++;
637
638  /* Whatever binding the symbol had before, it's now local.  */
639  entry->isym.st_info
640    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
641
642  /* The dynindx will be set at the end of size_dynamic_sections.  */
643
644  return 1;
645}
646
647/* Return the dynindex of a local dynamic symbol.  */
648
649long
650_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
651				    bfd *input_bfd,
652				    long input_indx)
653{
654  struct elf_link_local_dynamic_entry *e;
655
656  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
657    if (e->input_bfd == input_bfd && e->input_indx == input_indx)
658      return e->dynindx;
659  return -1;
660}
661
662/* This function is used to renumber the dynamic symbols, if some of
663   them are removed because they are marked as local.  This is called
664   via elf_link_hash_traverse.  */
665
666static bfd_boolean
667elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
668				      void *data)
669{
670  size_t *count = data;
671
672  if (h->root.type == bfd_link_hash_warning)
673    h = (struct elf_link_hash_entry *) h->root.u.i.link;
674
675  if (h->forced_local)
676    return TRUE;
677
678  if (h->dynindx != -1)
679    h->dynindx = ++(*count);
680
681  return TRUE;
682}
683
684
685/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
686   STB_LOCAL binding.  */
687
688static bfd_boolean
689elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
690					    void *data)
691{
692  size_t *count = data;
693
694  if (h->root.type == bfd_link_hash_warning)
695    h = (struct elf_link_hash_entry *) h->root.u.i.link;
696
697  if (!h->forced_local)
698    return TRUE;
699
700  if (h->dynindx != -1)
701    h->dynindx = ++(*count);
702
703  return TRUE;
704}
705
706/* Return true if the dynamic symbol for a given section should be
707   omitted when creating a shared library.  */
708bfd_boolean
709_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
710				   struct bfd_link_info *info,
711				   asection *p)
712{
713  struct elf_link_hash_table *htab;
714
715  switch (elf_section_data (p)->this_hdr.sh_type)
716    {
717    case SHT_PROGBITS:
718    case SHT_NOBITS:
719      /* If sh_type is yet undecided, assume it could be
720	 SHT_PROGBITS/SHT_NOBITS.  */
721    case SHT_NULL:
722      htab = elf_hash_table (info);
723      if (p == htab->tls_sec)
724	return FALSE;
725
726      if (htab->text_index_section != NULL)
727	return p != htab->text_index_section && p != htab->data_index_section;
728
729      if (strcmp (p->name, ".got") == 0
730	  || strcmp (p->name, ".got.plt") == 0
731	  || strcmp (p->name, ".plt") == 0)
732	{
733	  asection *ip;
734
735	  if (htab->dynobj != NULL
736	      && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
737	      && (ip->flags & SEC_LINKER_CREATED)
738	      && ip->output_section == p)
739	    return TRUE;
740	}
741      return FALSE;
742
743      /* There shouldn't be section relative relocations
744	 against any other section.  */
745    default:
746      return TRUE;
747    }
748}
749
750/* Assign dynsym indices.  In a shared library we generate a section
751   symbol for each output section, which come first.  Next come symbols
752   which have been forced to local binding.  Then all of the back-end
753   allocated local dynamic syms, followed by the rest of the global
754   symbols.  */
755
756static unsigned long
757_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
758				struct bfd_link_info *info,
759				unsigned long *section_sym_count)
760{
761  unsigned long dynsymcount = 0;
762
763  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
764    {
765      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
766      asection *p;
767      for (p = output_bfd->sections; p ; p = p->next)
768	if ((p->flags & SEC_EXCLUDE) == 0
769	    && (p->flags & SEC_ALLOC) != 0
770	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
771	  elf_section_data (p)->dynindx = ++dynsymcount;
772	else
773	  elf_section_data (p)->dynindx = 0;
774    }
775  *section_sym_count = dynsymcount;
776
777  elf_link_hash_traverse (elf_hash_table (info),
778			  elf_link_renumber_local_hash_table_dynsyms,
779			  &dynsymcount);
780
781  if (elf_hash_table (info)->dynlocal)
782    {
783      struct elf_link_local_dynamic_entry *p;
784      for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
785	p->dynindx = ++dynsymcount;
786    }
787
788  elf_link_hash_traverse (elf_hash_table (info),
789			  elf_link_renumber_hash_table_dynsyms,
790			  &dynsymcount);
791
792  /* There is an unused NULL entry at the head of the table which
793     we must account for in our count.  Unless there weren't any
794     symbols, which means we'll have no table at all.  */
795  if (dynsymcount != 0)
796    ++dynsymcount;
797
798  elf_hash_table (info)->dynsymcount = dynsymcount;
799  return dynsymcount;
800}
801
802/* This function is called when we want to define a new symbol.  It
803   handles the various cases which arise when we find a definition in
804   a dynamic object, or when there is already a definition in a
805   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
806   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
807   OVERRIDE if the old symbol is overriding a new definition.  We set
808   TYPE_CHANGE_OK if it is OK for the type to change.  We set
809   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
810   change, we mean that we shouldn't warn if the type or size does
811   change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
812   object is overridden by a regular object.  */
813
814bfd_boolean
815_bfd_elf_merge_symbol (bfd *abfd,
816		       struct bfd_link_info *info,
817		       const char *name,
818		       Elf_Internal_Sym *sym,
819		       asection **psec,
820		       bfd_vma *pvalue,
821		       unsigned int *pold_alignment,
822		       struct elf_link_hash_entry **sym_hash,
823		       bfd_boolean *skip,
824		       bfd_boolean *override,
825		       bfd_boolean *type_change_ok,
826		       bfd_boolean *size_change_ok)
827{
828  asection *sec, *oldsec;
829  struct elf_link_hash_entry *h;
830  struct elf_link_hash_entry *flip;
831  int bind;
832  bfd *oldbfd;
833  bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
834  bfd_boolean newweak, oldweak;
835  const struct elf_backend_data *bed;
836
837  *skip = FALSE;
838  *override = FALSE;
839
840  sec = *psec;
841  bind = ELF_ST_BIND (sym->st_info);
842
843  /* Silently discard TLS symbols from --just-syms.  There's no way to
844     combine a static TLS block with a new TLS block for this executable.  */
845  if (ELF_ST_TYPE (sym->st_info) == STT_TLS
846      && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
847    {
848      *skip = TRUE;
849      return TRUE;
850    }
851
852  if (! bfd_is_und_section (sec))
853    h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
854  else
855    h = ((struct elf_link_hash_entry *)
856	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
857  if (h == NULL)
858    return FALSE;
859  *sym_hash = h;
860
861  /* This code is for coping with dynamic objects, and is only useful
862     if we are doing an ELF link.  */
863  if (info->hash->creator != abfd->xvec)
864    return TRUE;
865
866  /* For merging, we only care about real symbols.  */
867
868  while (h->root.type == bfd_link_hash_indirect
869	 || h->root.type == bfd_link_hash_warning)
870    h = (struct elf_link_hash_entry *) h->root.u.i.link;
871
872  /* We have to check it for every instance since the first few may be
873     refereences and not all compilers emit symbol type for undefined
874     symbols.  */
875  bfd_elf_link_mark_dynamic_symbol (info, h, sym);
876
877  /* If we just created the symbol, mark it as being an ELF symbol.
878     Other than that, there is nothing to do--there is no merge issue
879     with a newly defined symbol--so we just return.  */
880
881  if (h->root.type == bfd_link_hash_new)
882    {
883      h->non_elf = 0;
884      return TRUE;
885    }
886
887  /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
888     existing symbol.  */
889
890  switch (h->root.type)
891    {
892    default:
893      oldbfd = NULL;
894      oldsec = NULL;
895      break;
896
897    case bfd_link_hash_undefined:
898    case bfd_link_hash_undefweak:
899      oldbfd = h->root.u.undef.abfd;
900      oldsec = NULL;
901      break;
902
903    case bfd_link_hash_defined:
904    case bfd_link_hash_defweak:
905      oldbfd = h->root.u.def.section->owner;
906      oldsec = h->root.u.def.section;
907      break;
908
909    case bfd_link_hash_common:
910      oldbfd = h->root.u.c.p->section->owner;
911      oldsec = h->root.u.c.p->section;
912      break;
913    }
914
915  /* In cases involving weak versioned symbols, we may wind up trying
916     to merge a symbol with itself.  Catch that here, to avoid the
917     confusion that results if we try to override a symbol with
918     itself.  The additional tests catch cases like
919     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
920     dynamic object, which we do want to handle here.  */
921  if (abfd == oldbfd
922      && ((abfd->flags & DYNAMIC) == 0
923	  || !h->def_regular))
924    return TRUE;
925
926  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
927     respectively, is from a dynamic object.  */
928
929  newdyn = (abfd->flags & DYNAMIC) != 0;
930
931  olddyn = FALSE;
932  if (oldbfd != NULL)
933    olddyn = (oldbfd->flags & DYNAMIC) != 0;
934  else if (oldsec != NULL)
935    {
936      /* This handles the special SHN_MIPS_{TEXT,DATA} section
937	 indices used by MIPS ELF.  */
938      olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
939    }
940
941  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
942     respectively, appear to be a definition rather than reference.  */
943
944  newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
945
946  olddef = (h->root.type != bfd_link_hash_undefined
947	    && h->root.type != bfd_link_hash_undefweak
948	    && h->root.type != bfd_link_hash_common);
949
950  /* When we try to create a default indirect symbol from the dynamic
951     definition with the default version, we skip it if its type and
952     the type of existing regular definition mismatch.  We only do it
953     if the existing regular definition won't be dynamic.  */
954  if (pold_alignment == NULL
955      && !info->shared
956      && !info->export_dynamic
957      && !h->ref_dynamic
958      && newdyn
959      && newdef
960      && !olddyn
961      && (olddef || h->root.type == bfd_link_hash_common)
962      && ELF_ST_TYPE (sym->st_info) != h->type
963      && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
964      && h->type != STT_NOTYPE)
965    {
966      *skip = TRUE;
967      return TRUE;
968    }
969
970  /* Check TLS symbol.  We don't check undefined symbol introduced by
971     "ld -u".  */
972  if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
973      && ELF_ST_TYPE (sym->st_info) != h->type
974      && oldbfd != NULL)
975    {
976      bfd *ntbfd, *tbfd;
977      bfd_boolean ntdef, tdef;
978      asection *ntsec, *tsec;
979
980      if (h->type == STT_TLS)
981	{
982	  ntbfd = abfd;
983	  ntsec = sec;
984	  ntdef = newdef;
985	  tbfd = oldbfd;
986	  tsec = oldsec;
987	  tdef = olddef;
988	}
989      else
990	{
991	  ntbfd = oldbfd;
992	  ntsec = oldsec;
993	  ntdef = olddef;
994	  tbfd = abfd;
995	  tsec = sec;
996	  tdef = newdef;
997	}
998
999      if (tdef && ntdef)
1000	(*_bfd_error_handler)
1001	  (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1002	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1003      else if (!tdef && !ntdef)
1004	(*_bfd_error_handler)
1005	  (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1006	   tbfd, ntbfd, h->root.root.string);
1007      else if (tdef)
1008	(*_bfd_error_handler)
1009	  (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1010	   tbfd, tsec, ntbfd, h->root.root.string);
1011      else
1012	(*_bfd_error_handler)
1013	  (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1014	   tbfd, ntbfd, ntsec, h->root.root.string);
1015
1016      bfd_set_error (bfd_error_bad_value);
1017      return FALSE;
1018    }
1019
1020  /* We need to remember if a symbol has a definition in a dynamic
1021     object or is weak in all dynamic objects. Internal and hidden
1022     visibility will make it unavailable to dynamic objects.  */
1023  if (newdyn && !h->dynamic_def)
1024    {
1025      if (!bfd_is_und_section (sec))
1026	h->dynamic_def = 1;
1027      else
1028	{
1029	  /* Check if this symbol is weak in all dynamic objects. If it
1030	     is the first time we see it in a dynamic object, we mark
1031	     if it is weak. Otherwise, we clear it.  */
1032	  if (!h->ref_dynamic)
1033	    {
1034	      if (bind == STB_WEAK)
1035		h->dynamic_weak = 1;
1036	    }
1037	  else if (bind != STB_WEAK)
1038	    h->dynamic_weak = 0;
1039	}
1040    }
1041
1042  /* If the old symbol has non-default visibility, we ignore the new
1043     definition from a dynamic object.  */
1044  if (newdyn
1045      && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1046      && !bfd_is_und_section (sec))
1047    {
1048      *skip = TRUE;
1049      /* Make sure this symbol is dynamic.  */
1050      h->ref_dynamic = 1;
1051      /* A protected symbol has external availability. Make sure it is
1052	 recorded as dynamic.
1053
1054	 FIXME: Should we check type and size for protected symbol?  */
1055      if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1056	return bfd_elf_link_record_dynamic_symbol (info, h);
1057      else
1058	return TRUE;
1059    }
1060  else if (!newdyn
1061	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1062	   && h->def_dynamic)
1063    {
1064      /* If the new symbol with non-default visibility comes from a
1065	 relocatable file and the old definition comes from a dynamic
1066	 object, we remove the old definition.  */
1067      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1068	{
1069	  /* Handle the case where the old dynamic definition is
1070	     default versioned.  We need to copy the symbol info from
1071	     the symbol with default version to the normal one if it
1072	     was referenced before.  */
1073	  if (h->ref_regular)
1074	    {
1075	      const struct elf_backend_data *bed
1076		= get_elf_backend_data (abfd);
1077	      struct elf_link_hash_entry *vh = *sym_hash;
1078	      vh->root.type = h->root.type;
1079	      h->root.type = bfd_link_hash_indirect;
1080	      (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1081	      /* Protected symbols will override the dynamic definition
1082		 with default version.  */
1083	      if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1084		{
1085		  h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1086		  vh->dynamic_def = 1;
1087		  vh->ref_dynamic = 1;
1088		}
1089	      else
1090		{
1091		  h->root.type = vh->root.type;
1092		  vh->ref_dynamic = 0;
1093		  /* We have to hide it here since it was made dynamic
1094		     global with extra bits when the symbol info was
1095		     copied from the old dynamic definition.  */
1096		  (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1097		}
1098	      h = vh;
1099	    }
1100	  else
1101	    h = *sym_hash;
1102	}
1103
1104      if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1105	  && bfd_is_und_section (sec))
1106	{
1107	  /* If the new symbol is undefined and the old symbol was
1108	     also undefined before, we need to make sure
1109	     _bfd_generic_link_add_one_symbol doesn't mess
1110	     up the linker hash table undefs list.  Since the old
1111	     definition came from a dynamic object, it is still on the
1112	     undefs list.  */
1113	  h->root.type = bfd_link_hash_undefined;
1114	  h->root.u.undef.abfd = abfd;
1115	}
1116      else
1117	{
1118	  h->root.type = bfd_link_hash_new;
1119	  h->root.u.undef.abfd = NULL;
1120	}
1121
1122      if (h->def_dynamic)
1123	{
1124	  h->def_dynamic = 0;
1125	  h->ref_dynamic = 1;
1126	  h->dynamic_def = 1;
1127	}
1128      /* FIXME: Should we check type and size for protected symbol?  */
1129      h->size = 0;
1130      h->type = 0;
1131      return TRUE;
1132    }
1133
1134  /* Differentiate strong and weak symbols.  */
1135  newweak = bind == STB_WEAK;
1136  oldweak = (h->root.type == bfd_link_hash_defweak
1137	     || h->root.type == bfd_link_hash_undefweak);
1138
1139  /* If a new weak symbol definition comes from a regular file and the
1140     old symbol comes from a dynamic library, we treat the new one as
1141     strong.  Similarly, an old weak symbol definition from a regular
1142     file is treated as strong when the new symbol comes from a dynamic
1143     library.  Further, an old weak symbol from a dynamic library is
1144     treated as strong if the new symbol is from a dynamic library.
1145     This reflects the way glibc's ld.so works.
1146
1147     Do this before setting *type_change_ok or *size_change_ok so that
1148     we warn properly when dynamic library symbols are overridden.  */
1149
1150  if (newdef && !newdyn && olddyn)
1151    newweak = FALSE;
1152  if (olddef && newdyn)
1153    oldweak = FALSE;
1154
1155  /* It's OK to change the type if either the existing symbol or the
1156     new symbol is weak.  A type change is also OK if the old symbol
1157     is undefined and the new symbol is defined.  */
1158
1159  if (oldweak
1160      || newweak
1161      || (newdef
1162	  && h->root.type == bfd_link_hash_undefined))
1163    *type_change_ok = TRUE;
1164
1165  /* It's OK to change the size if either the existing symbol or the
1166     new symbol is weak, or if the old symbol is undefined.  */
1167
1168  if (*type_change_ok
1169      || h->root.type == bfd_link_hash_undefined)
1170    *size_change_ok = TRUE;
1171
1172  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1173     symbol, respectively, appears to be a common symbol in a dynamic
1174     object.  If a symbol appears in an uninitialized section, and is
1175     not weak, and is not a function, then it may be a common symbol
1176     which was resolved when the dynamic object was created.  We want
1177     to treat such symbols specially, because they raise special
1178     considerations when setting the symbol size: if the symbol
1179     appears as a common symbol in a regular object, and the size in
1180     the regular object is larger, we must make sure that we use the
1181     larger size.  This problematic case can always be avoided in C,
1182     but it must be handled correctly when using Fortran shared
1183     libraries.
1184
1185     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1186     likewise for OLDDYNCOMMON and OLDDEF.
1187
1188     Note that this test is just a heuristic, and that it is quite
1189     possible to have an uninitialized symbol in a shared object which
1190     is really a definition, rather than a common symbol.  This could
1191     lead to some minor confusion when the symbol really is a common
1192     symbol in some regular object.  However, I think it will be
1193     harmless.  */
1194
1195  if (newdyn
1196      && newdef
1197      && !newweak
1198      && (sec->flags & SEC_ALLOC) != 0
1199      && (sec->flags & SEC_LOAD) == 0
1200      && sym->st_size > 0
1201      && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1202    newdyncommon = TRUE;
1203  else
1204    newdyncommon = FALSE;
1205
1206  if (olddyn
1207      && olddef
1208      && h->root.type == bfd_link_hash_defined
1209      && h->def_dynamic
1210      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1211      && (h->root.u.def.section->flags & SEC_LOAD) == 0
1212      && h->size > 0
1213      && h->type != STT_FUNC)
1214    olddyncommon = TRUE;
1215  else
1216    olddyncommon = FALSE;
1217
1218  /* We now know everything about the old and new symbols.  We ask the
1219     backend to check if we can merge them.  */
1220  bed = get_elf_backend_data (abfd);
1221  if (bed->merge_symbol
1222      && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1223			     pold_alignment, skip, override,
1224			     type_change_ok, size_change_ok,
1225			     &newdyn, &newdef, &newdyncommon, &newweak,
1226			     abfd, &sec,
1227			     &olddyn, &olddef, &olddyncommon, &oldweak,
1228			     oldbfd, &oldsec))
1229    return FALSE;
1230
1231  /* If both the old and the new symbols look like common symbols in a
1232     dynamic object, set the size of the symbol to the larger of the
1233     two.  */
1234
1235  if (olddyncommon
1236      && newdyncommon
1237      && sym->st_size != h->size)
1238    {
1239      /* Since we think we have two common symbols, issue a multiple
1240	 common warning if desired.  Note that we only warn if the
1241	 size is different.  If the size is the same, we simply let
1242	 the old symbol override the new one as normally happens with
1243	 symbols defined in dynamic objects.  */
1244
1245      if (! ((*info->callbacks->multiple_common)
1246	     (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1247	      h->size, abfd, bfd_link_hash_common, sym->st_size)))
1248	return FALSE;
1249
1250      if (sym->st_size > h->size)
1251	h->size = sym->st_size;
1252
1253      *size_change_ok = TRUE;
1254    }
1255
1256  /* If we are looking at a dynamic object, and we have found a
1257     definition, we need to see if the symbol was already defined by
1258     some other object.  If so, we want to use the existing
1259     definition, and we do not want to report a multiple symbol
1260     definition error; we do this by clobbering *PSEC to be
1261     bfd_und_section_ptr.
1262
1263     We treat a common symbol as a definition if the symbol in the
1264     shared library is a function, since common symbols always
1265     represent variables; this can cause confusion in principle, but
1266     any such confusion would seem to indicate an erroneous program or
1267     shared library.  We also permit a common symbol in a regular
1268     object to override a weak symbol in a shared object.  */
1269
1270  if (newdyn
1271      && newdef
1272      && (olddef
1273	  || (h->root.type == bfd_link_hash_common
1274	      && (newweak
1275		  || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1276    {
1277      *override = TRUE;
1278      newdef = FALSE;
1279      newdyncommon = FALSE;
1280
1281      *psec = sec = bfd_und_section_ptr;
1282      *size_change_ok = TRUE;
1283
1284      /* If we get here when the old symbol is a common symbol, then
1285	 we are explicitly letting it override a weak symbol or
1286	 function in a dynamic object, and we don't want to warn about
1287	 a type change.  If the old symbol is a defined symbol, a type
1288	 change warning may still be appropriate.  */
1289
1290      if (h->root.type == bfd_link_hash_common)
1291	*type_change_ok = TRUE;
1292    }
1293
1294  /* Handle the special case of an old common symbol merging with a
1295     new symbol which looks like a common symbol in a shared object.
1296     We change *PSEC and *PVALUE to make the new symbol look like a
1297     common symbol, and let _bfd_generic_link_add_one_symbol do the
1298     right thing.  */
1299
1300  if (newdyncommon
1301      && h->root.type == bfd_link_hash_common)
1302    {
1303      *override = TRUE;
1304      newdef = FALSE;
1305      newdyncommon = FALSE;
1306      *pvalue = sym->st_size;
1307      *psec = sec = bed->common_section (oldsec);
1308      *size_change_ok = TRUE;
1309    }
1310
1311  /* Skip weak definitions of symbols that are already defined.  */
1312  if (newdef && olddef && newweak)
1313    *skip = TRUE;
1314
1315  /* If the old symbol is from a dynamic object, and the new symbol is
1316     a definition which is not from a dynamic object, then the new
1317     symbol overrides the old symbol.  Symbols from regular files
1318     always take precedence over symbols from dynamic objects, even if
1319     they are defined after the dynamic object in the link.
1320
1321     As above, we again permit a common symbol in a regular object to
1322     override a definition in a shared object if the shared object
1323     symbol is a function or is weak.  */
1324
1325  flip = NULL;
1326  if (!newdyn
1327      && (newdef
1328	  || (bfd_is_com_section (sec)
1329	      && (oldweak
1330		  || h->type == STT_FUNC)))
1331      && olddyn
1332      && olddef
1333      && h->def_dynamic)
1334    {
1335      /* Change the hash table entry to undefined, and let
1336	 _bfd_generic_link_add_one_symbol do the right thing with the
1337	 new definition.  */
1338
1339      h->root.type = bfd_link_hash_undefined;
1340      h->root.u.undef.abfd = h->root.u.def.section->owner;
1341      *size_change_ok = TRUE;
1342
1343      olddef = FALSE;
1344      olddyncommon = FALSE;
1345
1346      /* We again permit a type change when a common symbol may be
1347	 overriding a function.  */
1348
1349      if (bfd_is_com_section (sec))
1350	*type_change_ok = TRUE;
1351
1352      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1353	flip = *sym_hash;
1354      else
1355	/* This union may have been set to be non-NULL when this symbol
1356	   was seen in a dynamic object.  We must force the union to be
1357	   NULL, so that it is correct for a regular symbol.  */
1358	h->verinfo.vertree = NULL;
1359    }
1360
1361  /* Handle the special case of a new common symbol merging with an
1362     old symbol that looks like it might be a common symbol defined in
1363     a shared object.  Note that we have already handled the case in
1364     which a new common symbol should simply override the definition
1365     in the shared library.  */
1366
1367  if (! newdyn
1368      && bfd_is_com_section (sec)
1369      && olddyncommon)
1370    {
1371      /* It would be best if we could set the hash table entry to a
1372	 common symbol, but we don't know what to use for the section
1373	 or the alignment.  */
1374      if (! ((*info->callbacks->multiple_common)
1375	     (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1376	      h->size, abfd, bfd_link_hash_common, sym->st_size)))
1377	return FALSE;
1378
1379      /* If the presumed common symbol in the dynamic object is
1380	 larger, pretend that the new symbol has its size.  */
1381
1382      if (h->size > *pvalue)
1383	*pvalue = h->size;
1384
1385      /* We need to remember the alignment required by the symbol
1386	 in the dynamic object.  */
1387      BFD_ASSERT (pold_alignment);
1388      *pold_alignment = h->root.u.def.section->alignment_power;
1389
1390      olddef = FALSE;
1391      olddyncommon = FALSE;
1392
1393      h->root.type = bfd_link_hash_undefined;
1394      h->root.u.undef.abfd = h->root.u.def.section->owner;
1395
1396      *size_change_ok = TRUE;
1397      *type_change_ok = TRUE;
1398
1399      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1400	flip = *sym_hash;
1401      else
1402	h->verinfo.vertree = NULL;
1403    }
1404
1405  if (flip != NULL)
1406    {
1407      /* Handle the case where we had a versioned symbol in a dynamic
1408	 library and now find a definition in a normal object.  In this
1409	 case, we make the versioned symbol point to the normal one.  */
1410      const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1411      flip->root.type = h->root.type;
1412      h->root.type = bfd_link_hash_indirect;
1413      h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1414      (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1415      flip->root.u.undef.abfd = h->root.u.undef.abfd;
1416      if (h->def_dynamic)
1417	{
1418	  h->def_dynamic = 0;
1419	  flip->ref_dynamic = 1;
1420	}
1421    }
1422
1423  return TRUE;
1424}
1425
1426/* This function is called to create an indirect symbol from the
1427   default for the symbol with the default version if needed. The
1428   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1429   set DYNSYM if the new indirect symbol is dynamic.  */
1430
1431bfd_boolean
1432_bfd_elf_add_default_symbol (bfd *abfd,
1433			     struct bfd_link_info *info,
1434			     struct elf_link_hash_entry *h,
1435			     const char *name,
1436			     Elf_Internal_Sym *sym,
1437			     asection **psec,
1438			     bfd_vma *value,
1439			     bfd_boolean *dynsym,
1440			     bfd_boolean override)
1441{
1442  bfd_boolean type_change_ok;
1443  bfd_boolean size_change_ok;
1444  bfd_boolean skip;
1445  char *shortname;
1446  struct elf_link_hash_entry *hi;
1447  struct bfd_link_hash_entry *bh;
1448  const struct elf_backend_data *bed;
1449  bfd_boolean collect;
1450  bfd_boolean dynamic;
1451  char *p;
1452  size_t len, shortlen;
1453  asection *sec;
1454
1455  /* If this symbol has a version, and it is the default version, we
1456     create an indirect symbol from the default name to the fully
1457     decorated name.  This will cause external references which do not
1458     specify a version to be bound to this version of the symbol.  */
1459  p = strchr (name, ELF_VER_CHR);
1460  if (p == NULL || p[1] != ELF_VER_CHR)
1461    return TRUE;
1462
1463  if (override)
1464    {
1465      /* We are overridden by an old definition. We need to check if we
1466	 need to create the indirect symbol from the default name.  */
1467      hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1468				 FALSE, FALSE);
1469      BFD_ASSERT (hi != NULL);
1470      if (hi == h)
1471	return TRUE;
1472      while (hi->root.type == bfd_link_hash_indirect
1473	     || hi->root.type == bfd_link_hash_warning)
1474	{
1475	  hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1476	  if (hi == h)
1477	    return TRUE;
1478	}
1479    }
1480
1481  bed = get_elf_backend_data (abfd);
1482  collect = bed->collect;
1483  dynamic = (abfd->flags & DYNAMIC) != 0;
1484
1485  shortlen = p - name;
1486  shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1487  if (shortname == NULL)
1488    return FALSE;
1489  memcpy (shortname, name, shortlen);
1490  shortname[shortlen] = '\0';
1491
1492  /* We are going to create a new symbol.  Merge it with any existing
1493     symbol with this name.  For the purposes of the merge, act as
1494     though we were defining the symbol we just defined, although we
1495     actually going to define an indirect symbol.  */
1496  type_change_ok = FALSE;
1497  size_change_ok = FALSE;
1498  sec = *psec;
1499  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1500			      NULL, &hi, &skip, &override,
1501			      &type_change_ok, &size_change_ok))
1502    return FALSE;
1503
1504  if (skip)
1505    goto nondefault;
1506
1507  if (! override)
1508    {
1509      bh = &hi->root;
1510      if (! (_bfd_generic_link_add_one_symbol
1511	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1512	      0, name, FALSE, collect, &bh)))
1513	return FALSE;
1514      hi = (struct elf_link_hash_entry *) bh;
1515    }
1516  else
1517    {
1518      /* In this case the symbol named SHORTNAME is overriding the
1519	 indirect symbol we want to add.  We were planning on making
1520	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1521	 is the name without a version.  NAME is the fully versioned
1522	 name, and it is the default version.
1523
1524	 Overriding means that we already saw a definition for the
1525	 symbol SHORTNAME in a regular object, and it is overriding
1526	 the symbol defined in the dynamic object.
1527
1528	 When this happens, we actually want to change NAME, the
1529	 symbol we just added, to refer to SHORTNAME.  This will cause
1530	 references to NAME in the shared object to become references
1531	 to SHORTNAME in the regular object.  This is what we expect
1532	 when we override a function in a shared object: that the
1533	 references in the shared object will be mapped to the
1534	 definition in the regular object.  */
1535
1536      while (hi->root.type == bfd_link_hash_indirect
1537	     || hi->root.type == bfd_link_hash_warning)
1538	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1539
1540      h->root.type = bfd_link_hash_indirect;
1541      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1542      if (h->def_dynamic)
1543	{
1544	  h->def_dynamic = 0;
1545	  hi->ref_dynamic = 1;
1546	  if (hi->ref_regular
1547	      || hi->def_regular)
1548	    {
1549	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1550		return FALSE;
1551	    }
1552	}
1553
1554      /* Now set HI to H, so that the following code will set the
1555	 other fields correctly.  */
1556      hi = h;
1557    }
1558
1559  /* If there is a duplicate definition somewhere, then HI may not
1560     point to an indirect symbol.  We will have reported an error to
1561     the user in that case.  */
1562
1563  if (hi->root.type == bfd_link_hash_indirect)
1564    {
1565      struct elf_link_hash_entry *ht;
1566
1567      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1568      (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1569
1570      /* See if the new flags lead us to realize that the symbol must
1571	 be dynamic.  */
1572      if (! *dynsym)
1573	{
1574	  if (! dynamic)
1575	    {
1576	      if (info->shared
1577		  || hi->ref_dynamic)
1578		*dynsym = TRUE;
1579	    }
1580	  else
1581	    {
1582	      if (hi->ref_regular)
1583		*dynsym = TRUE;
1584	    }
1585	}
1586    }
1587
1588  /* We also need to define an indirection from the nondefault version
1589     of the symbol.  */
1590
1591nondefault:
1592  len = strlen (name);
1593  shortname = bfd_hash_allocate (&info->hash->table, len);
1594  if (shortname == NULL)
1595    return FALSE;
1596  memcpy (shortname, name, shortlen);
1597  memcpy (shortname + shortlen, p + 1, len - shortlen);
1598
1599  /* Once again, merge with any existing symbol.  */
1600  type_change_ok = FALSE;
1601  size_change_ok = FALSE;
1602  sec = *psec;
1603  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1604			      NULL, &hi, &skip, &override,
1605			      &type_change_ok, &size_change_ok))
1606    return FALSE;
1607
1608  if (skip)
1609    return TRUE;
1610
1611  if (override)
1612    {
1613      /* Here SHORTNAME is a versioned name, so we don't expect to see
1614	 the type of override we do in the case above unless it is
1615	 overridden by a versioned definition.  */
1616      if (hi->root.type != bfd_link_hash_defined
1617	  && hi->root.type != bfd_link_hash_defweak)
1618	(*_bfd_error_handler)
1619	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1620	   abfd, shortname);
1621    }
1622  else
1623    {
1624      bh = &hi->root;
1625      if (! (_bfd_generic_link_add_one_symbol
1626	     (info, abfd, shortname, BSF_INDIRECT,
1627	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1628	return FALSE;
1629      hi = (struct elf_link_hash_entry *) bh;
1630
1631      /* If there is a duplicate definition somewhere, then HI may not
1632	 point to an indirect symbol.  We will have reported an error
1633	 to the user in that case.  */
1634
1635      if (hi->root.type == bfd_link_hash_indirect)
1636	{
1637	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1638
1639	  /* See if the new flags lead us to realize that the symbol
1640	     must be dynamic.  */
1641	  if (! *dynsym)
1642	    {
1643	      if (! dynamic)
1644		{
1645		  if (info->shared
1646		      || hi->ref_dynamic)
1647		    *dynsym = TRUE;
1648		}
1649	      else
1650		{
1651		  if (hi->ref_regular)
1652		    *dynsym = TRUE;
1653		}
1654	    }
1655	}
1656    }
1657
1658  return TRUE;
1659}
1660
1661/* This routine is used to export all defined symbols into the dynamic
1662   symbol table.  It is called via elf_link_hash_traverse.  */
1663
1664bfd_boolean
1665_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1666{
1667  struct elf_info_failed *eif = data;
1668
1669  /* Ignore this if we won't export it.  */
1670  if (!eif->info->export_dynamic && !h->dynamic)
1671    return TRUE;
1672
1673  /* Ignore indirect symbols.  These are added by the versioning code.  */
1674  if (h->root.type == bfd_link_hash_indirect)
1675    return TRUE;
1676
1677  if (h->root.type == bfd_link_hash_warning)
1678    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1679
1680  if (h->dynindx == -1
1681      && (h->def_regular
1682	  || h->ref_regular))
1683    {
1684      struct bfd_elf_version_tree *t;
1685      struct bfd_elf_version_expr *d;
1686
1687      for (t = eif->verdefs; t != NULL; t = t->next)
1688	{
1689	  if (t->globals.list != NULL)
1690	    {
1691	      d = (*t->match) (&t->globals, NULL, h->root.root.string);
1692	      if (d != NULL)
1693		goto doit;
1694	    }
1695
1696	  if (t->locals.list != NULL)
1697	    {
1698	      d = (*t->match) (&t->locals, NULL, h->root.root.string);
1699	      if (d != NULL)
1700		return TRUE;
1701	    }
1702	}
1703
1704      if (!eif->verdefs)
1705	{
1706	doit:
1707	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1708	    {
1709	      eif->failed = TRUE;
1710	      return FALSE;
1711	    }
1712	}
1713    }
1714
1715  return TRUE;
1716}
1717
1718/* Look through the symbols which are defined in other shared
1719   libraries and referenced here.  Update the list of version
1720   dependencies.  This will be put into the .gnu.version_r section.
1721   This function is called via elf_link_hash_traverse.  */
1722
1723bfd_boolean
1724_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1725					 void *data)
1726{
1727  struct elf_find_verdep_info *rinfo = data;
1728  Elf_Internal_Verneed *t;
1729  Elf_Internal_Vernaux *a;
1730  bfd_size_type amt;
1731
1732  if (h->root.type == bfd_link_hash_warning)
1733    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1734
1735  /* We only care about symbols defined in shared objects with version
1736     information.  */
1737  if (!h->def_dynamic
1738      || h->def_regular
1739      || h->dynindx == -1
1740      || h->verinfo.verdef == NULL)
1741    return TRUE;
1742
1743  /* See if we already know about this version.  */
1744  for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1745    {
1746      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1747	continue;
1748
1749      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1750	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1751	  return TRUE;
1752
1753      break;
1754    }
1755
1756  /* This is a new version.  Add it to tree we are building.  */
1757
1758  if (t == NULL)
1759    {
1760      amt = sizeof *t;
1761      t = bfd_zalloc (rinfo->output_bfd, amt);
1762      if (t == NULL)
1763	{
1764	  rinfo->failed = TRUE;
1765	  return FALSE;
1766	}
1767
1768      t->vn_bfd = h->verinfo.verdef->vd_bfd;
1769      t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1770      elf_tdata (rinfo->output_bfd)->verref = t;
1771    }
1772
1773  amt = sizeof *a;
1774  a = bfd_zalloc (rinfo->output_bfd, amt);
1775
1776  /* Note that we are copying a string pointer here, and testing it
1777     above.  If bfd_elf_string_from_elf_section is ever changed to
1778     discard the string data when low in memory, this will have to be
1779     fixed.  */
1780  a->vna_nodename = h->verinfo.verdef->vd_nodename;
1781
1782  a->vna_flags = h->verinfo.verdef->vd_flags;
1783  a->vna_nextptr = t->vn_auxptr;
1784
1785  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1786  ++rinfo->vers;
1787
1788  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1789
1790  t->vn_auxptr = a;
1791
1792  return TRUE;
1793}
1794
1795/* Figure out appropriate versions for all the symbols.  We may not
1796   have the version number script until we have read all of the input
1797   files, so until that point we don't know which symbols should be
1798   local.  This function is called via elf_link_hash_traverse.  */
1799
1800bfd_boolean
1801_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1802{
1803  struct elf_assign_sym_version_info *sinfo;
1804  struct bfd_link_info *info;
1805  const struct elf_backend_data *bed;
1806  struct elf_info_failed eif;
1807  char *p;
1808  bfd_size_type amt;
1809
1810  sinfo = data;
1811  info = sinfo->info;
1812
1813  if (h->root.type == bfd_link_hash_warning)
1814    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1815
1816  /* Fix the symbol flags.  */
1817  eif.failed = FALSE;
1818  eif.info = info;
1819  if (! _bfd_elf_fix_symbol_flags (h, &eif))
1820    {
1821      if (eif.failed)
1822	sinfo->failed = TRUE;
1823      return FALSE;
1824    }
1825
1826  /* We only need version numbers for symbols defined in regular
1827     objects.  */
1828  if (!h->def_regular)
1829    return TRUE;
1830
1831  bed = get_elf_backend_data (sinfo->output_bfd);
1832  p = strchr (h->root.root.string, ELF_VER_CHR);
1833  if (p != NULL && h->verinfo.vertree == NULL)
1834    {
1835      struct bfd_elf_version_tree *t;
1836      bfd_boolean hidden;
1837
1838      hidden = TRUE;
1839
1840      /* There are two consecutive ELF_VER_CHR characters if this is
1841	 not a hidden symbol.  */
1842      ++p;
1843      if (*p == ELF_VER_CHR)
1844	{
1845	  hidden = FALSE;
1846	  ++p;
1847	}
1848
1849      /* If there is no version string, we can just return out.  */
1850      if (*p == '\0')
1851	{
1852	  if (hidden)
1853	    h->hidden = 1;
1854	  return TRUE;
1855	}
1856
1857      /* Look for the version.  If we find it, it is no longer weak.  */
1858      for (t = sinfo->verdefs; t != NULL; t = t->next)
1859	{
1860	  if (strcmp (t->name, p) == 0)
1861	    {
1862	      size_t len;
1863	      char *alc;
1864	      struct bfd_elf_version_expr *d;
1865
1866	      len = p - h->root.root.string;
1867	      alc = bfd_malloc (len);
1868	      if (alc == NULL)
1869		return FALSE;
1870	      memcpy (alc, h->root.root.string, len - 1);
1871	      alc[len - 1] = '\0';
1872	      if (alc[len - 2] == ELF_VER_CHR)
1873		alc[len - 2] = '\0';
1874
1875	      h->verinfo.vertree = t;
1876	      t->used = TRUE;
1877	      d = NULL;
1878
1879	      if (t->globals.list != NULL)
1880		d = (*t->match) (&t->globals, NULL, alc);
1881
1882	      /* See if there is anything to force this symbol to
1883		 local scope.  */
1884	      if (d == NULL && t->locals.list != NULL)
1885		{
1886		  d = (*t->match) (&t->locals, NULL, alc);
1887		  if (d != NULL
1888		      && h->dynindx != -1
1889		      && ! info->export_dynamic)
1890		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1891		}
1892
1893	      free (alc);
1894	      break;
1895	    }
1896	}
1897
1898      /* If we are building an application, we need to create a
1899	 version node for this version.  */
1900      if (t == NULL && info->executable)
1901	{
1902	  struct bfd_elf_version_tree **pp;
1903	  int version_index;
1904
1905	  /* If we aren't going to export this symbol, we don't need
1906	     to worry about it.  */
1907	  if (h->dynindx == -1)
1908	    return TRUE;
1909
1910	  amt = sizeof *t;
1911	  t = bfd_zalloc (sinfo->output_bfd, amt);
1912	  if (t == NULL)
1913	    {
1914	      sinfo->failed = TRUE;
1915	      return FALSE;
1916	    }
1917
1918	  t->name = p;
1919	  t->name_indx = (unsigned int) -1;
1920	  t->used = TRUE;
1921
1922	  version_index = 1;
1923	  /* Don't count anonymous version tag.  */
1924	  if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1925	    version_index = 0;
1926	  for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1927	    ++version_index;
1928	  t->vernum = version_index;
1929
1930	  *pp = t;
1931
1932	  h->verinfo.vertree = t;
1933	}
1934      else if (t == NULL)
1935	{
1936	  /* We could not find the version for a symbol when
1937	     generating a shared archive.  Return an error.  */
1938	  (*_bfd_error_handler)
1939	    (_("%B: undefined versioned symbol name %s"),
1940	     sinfo->output_bfd, h->root.root.string);
1941	  bfd_set_error (bfd_error_bad_value);
1942	  sinfo->failed = TRUE;
1943	  return FALSE;
1944	}
1945
1946      if (hidden)
1947	h->hidden = 1;
1948    }
1949
1950  /* If we don't have a version for this symbol, see if we can find
1951     something.  */
1952  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1953    {
1954      struct bfd_elf_version_tree *t;
1955      struct bfd_elf_version_tree *local_ver;
1956      struct bfd_elf_version_expr *d;
1957
1958      /* See if can find what version this symbol is in.  If the
1959	 symbol is supposed to be local, then don't actually register
1960	 it.  */
1961      local_ver = NULL;
1962      for (t = sinfo->verdefs; t != NULL; t = t->next)
1963	{
1964	  if (t->globals.list != NULL)
1965	    {
1966	      bfd_boolean matched;
1967
1968	      matched = FALSE;
1969	      d = NULL;
1970	      while ((d = (*t->match) (&t->globals, d,
1971				       h->root.root.string)) != NULL)
1972		if (d->symver)
1973		  matched = TRUE;
1974		else
1975		  {
1976		    /* There is a version without definition.  Make
1977		       the symbol the default definition for this
1978		       version.  */
1979		    h->verinfo.vertree = t;
1980		    local_ver = NULL;
1981		    d->script = 1;
1982		    break;
1983		  }
1984	      if (d != NULL)
1985		break;
1986	      else if (matched)
1987		/* There is no undefined version for this symbol. Hide the
1988		   default one.  */
1989		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
1990	    }
1991
1992	  if (t->locals.list != NULL)
1993	    {
1994	      d = NULL;
1995	      while ((d = (*t->match) (&t->locals, d,
1996				       h->root.root.string)) != NULL)
1997		{
1998		  local_ver = t;
1999		  /* If the match is "*", keep looking for a more
2000		     explicit, perhaps even global, match.
2001		     XXX: Shouldn't this be !d->wildcard instead?  */
2002		  if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2003		    break;
2004		}
2005
2006	      if (d != NULL)
2007		break;
2008	    }
2009	}
2010
2011      if (local_ver != NULL)
2012	{
2013	  h->verinfo.vertree = local_ver;
2014	  if (h->dynindx != -1
2015	      && ! info->export_dynamic)
2016	    {
2017	      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2018	    }
2019	}
2020    }
2021
2022  return TRUE;
2023}
2024
2025/* Read and swap the relocs from the section indicated by SHDR.  This
2026   may be either a REL or a RELA section.  The relocations are
2027   translated into RELA relocations and stored in INTERNAL_RELOCS,
2028   which should have already been allocated to contain enough space.
2029   The EXTERNAL_RELOCS are a buffer where the external form of the
2030   relocations should be stored.
2031
2032   Returns FALSE if something goes wrong.  */
2033
2034static bfd_boolean
2035elf_link_read_relocs_from_section (bfd *abfd,
2036				   asection *sec,
2037				   Elf_Internal_Shdr *shdr,
2038				   void *external_relocs,
2039				   Elf_Internal_Rela *internal_relocs)
2040{
2041  const struct elf_backend_data *bed;
2042  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2043  const bfd_byte *erela;
2044  const bfd_byte *erelaend;
2045  Elf_Internal_Rela *irela;
2046  Elf_Internal_Shdr *symtab_hdr;
2047  size_t nsyms;
2048
2049  /* Position ourselves at the start of the section.  */
2050  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2051    return FALSE;
2052
2053  /* Read the relocations.  */
2054  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2055    return FALSE;
2056
2057  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2058  nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2059
2060  bed = get_elf_backend_data (abfd);
2061
2062  /* Convert the external relocations to the internal format.  */
2063  if (shdr->sh_entsize == bed->s->sizeof_rel)
2064    swap_in = bed->s->swap_reloc_in;
2065  else if (shdr->sh_entsize == bed->s->sizeof_rela)
2066    swap_in = bed->s->swap_reloca_in;
2067  else
2068    {
2069      bfd_set_error (bfd_error_wrong_format);
2070      return FALSE;
2071    }
2072
2073  erela = external_relocs;
2074  erelaend = erela + shdr->sh_size;
2075  irela = internal_relocs;
2076  while (erela < erelaend)
2077    {
2078      bfd_vma r_symndx;
2079
2080      (*swap_in) (abfd, erela, irela);
2081      r_symndx = ELF32_R_SYM (irela->r_info);
2082      if (bed->s->arch_size == 64)
2083	r_symndx >>= 24;
2084      if ((size_t) r_symndx >= nsyms)
2085	{
2086	  (*_bfd_error_handler)
2087	    (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2088	       " for offset 0x%lx in section `%A'"),
2089	     abfd, sec,
2090	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2091	  bfd_set_error (bfd_error_bad_value);
2092	  return FALSE;
2093	}
2094      irela += bed->s->int_rels_per_ext_rel;
2095      erela += shdr->sh_entsize;
2096    }
2097
2098  return TRUE;
2099}
2100
2101/* Read and swap the relocs for a section O.  They may have been
2102   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2103   not NULL, they are used as buffers to read into.  They are known to
2104   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2105   the return value is allocated using either malloc or bfd_alloc,
2106   according to the KEEP_MEMORY argument.  If O has two relocation
2107   sections (both REL and RELA relocations), then the REL_HDR
2108   relocations will appear first in INTERNAL_RELOCS, followed by the
2109   REL_HDR2 relocations.  */
2110
2111Elf_Internal_Rela *
2112_bfd_elf_link_read_relocs (bfd *abfd,
2113			   asection *o,
2114			   void *external_relocs,
2115			   Elf_Internal_Rela *internal_relocs,
2116			   bfd_boolean keep_memory)
2117{
2118  Elf_Internal_Shdr *rel_hdr;
2119  void *alloc1 = NULL;
2120  Elf_Internal_Rela *alloc2 = NULL;
2121  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2122
2123  if (elf_section_data (o)->relocs != NULL)
2124    return elf_section_data (o)->relocs;
2125
2126  if (o->reloc_count == 0)
2127    return NULL;
2128
2129  rel_hdr = &elf_section_data (o)->rel_hdr;
2130
2131  if (internal_relocs == NULL)
2132    {
2133      bfd_size_type size;
2134
2135      size = o->reloc_count;
2136      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2137      if (keep_memory)
2138	internal_relocs = bfd_alloc (abfd, size);
2139      else
2140	internal_relocs = alloc2 = bfd_malloc (size);
2141      if (internal_relocs == NULL)
2142	goto error_return;
2143    }
2144
2145  if (external_relocs == NULL)
2146    {
2147      bfd_size_type size = rel_hdr->sh_size;
2148
2149      if (elf_section_data (o)->rel_hdr2)
2150	size += elf_section_data (o)->rel_hdr2->sh_size;
2151      alloc1 = bfd_malloc (size);
2152      if (alloc1 == NULL)
2153	goto error_return;
2154      external_relocs = alloc1;
2155    }
2156
2157  if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2158					  external_relocs,
2159					  internal_relocs))
2160    goto error_return;
2161  if (elf_section_data (o)->rel_hdr2
2162      && (!elf_link_read_relocs_from_section
2163	  (abfd, o,
2164	   elf_section_data (o)->rel_hdr2,
2165	   ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2166	   internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2167			      * bed->s->int_rels_per_ext_rel))))
2168    goto error_return;
2169
2170  /* Cache the results for next time, if we can.  */
2171  if (keep_memory)
2172    elf_section_data (o)->relocs = internal_relocs;
2173
2174  if (alloc1 != NULL)
2175    free (alloc1);
2176
2177  /* Don't free alloc2, since if it was allocated we are passing it
2178     back (under the name of internal_relocs).  */
2179
2180  return internal_relocs;
2181
2182 error_return:
2183  if (alloc1 != NULL)
2184    free (alloc1);
2185  if (alloc2 != NULL)
2186    free (alloc2);
2187  return NULL;
2188}
2189
2190/* Compute the size of, and allocate space for, REL_HDR which is the
2191   section header for a section containing relocations for O.  */
2192
2193bfd_boolean
2194_bfd_elf_link_size_reloc_section (bfd *abfd,
2195				  Elf_Internal_Shdr *rel_hdr,
2196				  asection *o)
2197{
2198  bfd_size_type reloc_count;
2199  bfd_size_type num_rel_hashes;
2200
2201  /* Figure out how many relocations there will be.  */
2202  if (rel_hdr == &elf_section_data (o)->rel_hdr)
2203    reloc_count = elf_section_data (o)->rel_count;
2204  else
2205    reloc_count = elf_section_data (o)->rel_count2;
2206
2207  num_rel_hashes = o->reloc_count;
2208  if (num_rel_hashes < reloc_count)
2209    num_rel_hashes = reloc_count;
2210
2211  /* That allows us to calculate the size of the section.  */
2212  rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2213
2214  /* The contents field must last into write_object_contents, so we
2215     allocate it with bfd_alloc rather than malloc.  Also since we
2216     cannot be sure that the contents will actually be filled in,
2217     we zero the allocated space.  */
2218  rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2219  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2220    return FALSE;
2221
2222  /* We only allocate one set of hash entries, so we only do it the
2223     first time we are called.  */
2224  if (elf_section_data (o)->rel_hashes == NULL
2225      && num_rel_hashes)
2226    {
2227      struct elf_link_hash_entry **p;
2228
2229      p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2230      if (p == NULL)
2231	return FALSE;
2232
2233      elf_section_data (o)->rel_hashes = p;
2234    }
2235
2236  return TRUE;
2237}
2238
2239/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2240   originated from the section given by INPUT_REL_HDR) to the
2241   OUTPUT_BFD.  */
2242
2243bfd_boolean
2244_bfd_elf_link_output_relocs (bfd *output_bfd,
2245			     asection *input_section,
2246			     Elf_Internal_Shdr *input_rel_hdr,
2247			     Elf_Internal_Rela *internal_relocs,
2248			     struct elf_link_hash_entry **rel_hash
2249			       ATTRIBUTE_UNUSED)
2250{
2251  Elf_Internal_Rela *irela;
2252  Elf_Internal_Rela *irelaend;
2253  bfd_byte *erel;
2254  Elf_Internal_Shdr *output_rel_hdr;
2255  asection *output_section;
2256  unsigned int *rel_countp = NULL;
2257  const struct elf_backend_data *bed;
2258  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2259
2260  output_section = input_section->output_section;
2261  output_rel_hdr = NULL;
2262
2263  if (elf_section_data (output_section)->rel_hdr.sh_entsize
2264      == input_rel_hdr->sh_entsize)
2265    {
2266      output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2267      rel_countp = &elf_section_data (output_section)->rel_count;
2268    }
2269  else if (elf_section_data (output_section)->rel_hdr2
2270	   && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2271	       == input_rel_hdr->sh_entsize))
2272    {
2273      output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2274      rel_countp = &elf_section_data (output_section)->rel_count2;
2275    }
2276  else
2277    {
2278      (*_bfd_error_handler)
2279	(_("%B: relocation size mismatch in %B section %A"),
2280	 output_bfd, input_section->owner, input_section);
2281      bfd_set_error (bfd_error_wrong_object_format);
2282      return FALSE;
2283    }
2284
2285  bed = get_elf_backend_data (output_bfd);
2286  if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2287    swap_out = bed->s->swap_reloc_out;
2288  else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2289    swap_out = bed->s->swap_reloca_out;
2290  else
2291    abort ();
2292
2293  erel = output_rel_hdr->contents;
2294  erel += *rel_countp * input_rel_hdr->sh_entsize;
2295  irela = internal_relocs;
2296  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2297		      * bed->s->int_rels_per_ext_rel);
2298  while (irela < irelaend)
2299    {
2300      (*swap_out) (output_bfd, irela, erel);
2301      irela += bed->s->int_rels_per_ext_rel;
2302      erel += input_rel_hdr->sh_entsize;
2303    }
2304
2305  /* Bump the counter, so that we know where to add the next set of
2306     relocations.  */
2307  *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2308
2309  return TRUE;
2310}
2311
2312/* Make weak undefined symbols in PIE dynamic.  */
2313
2314bfd_boolean
2315_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2316				 struct elf_link_hash_entry *h)
2317{
2318  if (info->pie
2319      && h->dynindx == -1
2320      && h->root.type == bfd_link_hash_undefweak)
2321    return bfd_elf_link_record_dynamic_symbol (info, h);
2322
2323  return TRUE;
2324}
2325
2326/* Fix up the flags for a symbol.  This handles various cases which
2327   can only be fixed after all the input files are seen.  This is
2328   currently called by both adjust_dynamic_symbol and
2329   assign_sym_version, which is unnecessary but perhaps more robust in
2330   the face of future changes.  */
2331
2332bfd_boolean
2333_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2334			   struct elf_info_failed *eif)
2335{
2336  const struct elf_backend_data *bed = NULL;
2337
2338  /* If this symbol was mentioned in a non-ELF file, try to set
2339     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2340     permit a non-ELF file to correctly refer to a symbol defined in
2341     an ELF dynamic object.  */
2342  if (h->non_elf)
2343    {
2344      while (h->root.type == bfd_link_hash_indirect)
2345	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2346
2347      if (h->root.type != bfd_link_hash_defined
2348	  && h->root.type != bfd_link_hash_defweak)
2349	{
2350	  h->ref_regular = 1;
2351	  h->ref_regular_nonweak = 1;
2352	}
2353      else
2354	{
2355	  if (h->root.u.def.section->owner != NULL
2356	      && (bfd_get_flavour (h->root.u.def.section->owner)
2357		  == bfd_target_elf_flavour))
2358	    {
2359	      h->ref_regular = 1;
2360	      h->ref_regular_nonweak = 1;
2361	    }
2362	  else
2363	    h->def_regular = 1;
2364	}
2365
2366      if (h->dynindx == -1
2367	  && (h->def_dynamic
2368	      || h->ref_dynamic))
2369	{
2370	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2371	    {
2372	      eif->failed = TRUE;
2373	      return FALSE;
2374	    }
2375	}
2376    }
2377  else
2378    {
2379      /* Unfortunately, NON_ELF is only correct if the symbol
2380	 was first seen in a non-ELF file.  Fortunately, if the symbol
2381	 was first seen in an ELF file, we're probably OK unless the
2382	 symbol was defined in a non-ELF file.  Catch that case here.
2383	 FIXME: We're still in trouble if the symbol was first seen in
2384	 a dynamic object, and then later in a non-ELF regular object.  */
2385      if ((h->root.type == bfd_link_hash_defined
2386	   || h->root.type == bfd_link_hash_defweak)
2387	  && !h->def_regular
2388	  && (h->root.u.def.section->owner != NULL
2389	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2390		 != bfd_target_elf_flavour)
2391	      : (bfd_is_abs_section (h->root.u.def.section)
2392		 && !h->def_dynamic)))
2393	h->def_regular = 1;
2394    }
2395
2396  /* Backend specific symbol fixup.  */
2397  if (elf_hash_table (eif->info)->dynobj)
2398    {
2399      bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2400      if (bed->elf_backend_fixup_symbol
2401	  && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2402	return FALSE;
2403    }
2404
2405  /* If this is a final link, and the symbol was defined as a common
2406     symbol in a regular object file, and there was no definition in
2407     any dynamic object, then the linker will have allocated space for
2408     the symbol in a common section but the DEF_REGULAR
2409     flag will not have been set.  */
2410  if (h->root.type == bfd_link_hash_defined
2411      && !h->def_regular
2412      && h->ref_regular
2413      && !h->def_dynamic
2414      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2415    h->def_regular = 1;
2416
2417  /* If -Bsymbolic was used (which means to bind references to global
2418     symbols to the definition within the shared object), and this
2419     symbol was defined in a regular object, then it actually doesn't
2420     need a PLT entry.  Likewise, if the symbol has non-default
2421     visibility.  If the symbol has hidden or internal visibility, we
2422     will force it local.  */
2423  if (h->needs_plt
2424      && eif->info->shared
2425      && is_elf_hash_table (eif->info->hash)
2426      && (SYMBOLIC_BIND (eif->info, h)
2427	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2428      && h->def_regular)
2429    {
2430      bfd_boolean force_local;
2431
2432      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2433		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2434      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2435    }
2436
2437  /* If a weak undefined symbol has non-default visibility, we also
2438     hide it from the dynamic linker.  */
2439  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2440      && h->root.type == bfd_link_hash_undefweak)
2441    {
2442      const struct elf_backend_data *bed;
2443      bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2444      (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2445    }
2446
2447  /* If this is a weak defined symbol in a dynamic object, and we know
2448     the real definition in the dynamic object, copy interesting flags
2449     over to the real definition.  */
2450  if (h->u.weakdef != NULL)
2451    {
2452      struct elf_link_hash_entry *weakdef;
2453
2454      weakdef = h->u.weakdef;
2455      if (h->root.type == bfd_link_hash_indirect)
2456	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2457
2458      BFD_ASSERT (h->root.type == bfd_link_hash_defined
2459		  || h->root.type == bfd_link_hash_defweak);
2460      BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2461		  || weakdef->root.type == bfd_link_hash_defweak);
2462      BFD_ASSERT (weakdef->def_dynamic);
2463
2464      /* If the real definition is defined by a regular object file,
2465	 don't do anything special.  See the longer description in
2466	 _bfd_elf_adjust_dynamic_symbol, below.  */
2467      if (weakdef->def_regular)
2468	h->u.weakdef = NULL;
2469      else
2470	(*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef,
2471						  h);
2472    }
2473
2474  return TRUE;
2475}
2476
2477/* Make the backend pick a good value for a dynamic symbol.  This is
2478   called via elf_link_hash_traverse, and also calls itself
2479   recursively.  */
2480
2481bfd_boolean
2482_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2483{
2484  struct elf_info_failed *eif = data;
2485  bfd *dynobj;
2486  const struct elf_backend_data *bed;
2487
2488  if (! is_elf_hash_table (eif->info->hash))
2489    return FALSE;
2490
2491  if (h->root.type == bfd_link_hash_warning)
2492    {
2493      h->got = elf_hash_table (eif->info)->init_got_offset;
2494      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2495
2496      /* When warning symbols are created, they **replace** the "real"
2497	 entry in the hash table, thus we never get to see the real
2498	 symbol in a hash traversal.  So look at it now.  */
2499      h = (struct elf_link_hash_entry *) h->root.u.i.link;
2500    }
2501
2502  /* Ignore indirect symbols.  These are added by the versioning code.  */
2503  if (h->root.type == bfd_link_hash_indirect)
2504    return TRUE;
2505
2506  /* Fix the symbol flags.  */
2507  if (! _bfd_elf_fix_symbol_flags (h, eif))
2508    return FALSE;
2509
2510  /* If this symbol does not require a PLT entry, and it is not
2511     defined by a dynamic object, or is not referenced by a regular
2512     object, ignore it.  We do have to handle a weak defined symbol,
2513     even if no regular object refers to it, if we decided to add it
2514     to the dynamic symbol table.  FIXME: Do we normally need to worry
2515     about symbols which are defined by one dynamic object and
2516     referenced by another one?  */
2517  if (!h->needs_plt
2518      && (h->def_regular
2519	  || !h->def_dynamic
2520	  || (!h->ref_regular
2521	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2522    {
2523      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2524      return TRUE;
2525    }
2526
2527  /* If we've already adjusted this symbol, don't do it again.  This
2528     can happen via a recursive call.  */
2529  if (h->dynamic_adjusted)
2530    return TRUE;
2531
2532  /* Don't look at this symbol again.  Note that we must set this
2533     after checking the above conditions, because we may look at a
2534     symbol once, decide not to do anything, and then get called
2535     recursively later after REF_REGULAR is set below.  */
2536  h->dynamic_adjusted = 1;
2537
2538  /* If this is a weak definition, and we know a real definition, and
2539     the real symbol is not itself defined by a regular object file,
2540     then get a good value for the real definition.  We handle the
2541     real symbol first, for the convenience of the backend routine.
2542
2543     Note that there is a confusing case here.  If the real definition
2544     is defined by a regular object file, we don't get the real symbol
2545     from the dynamic object, but we do get the weak symbol.  If the
2546     processor backend uses a COPY reloc, then if some routine in the
2547     dynamic object changes the real symbol, we will not see that
2548     change in the corresponding weak symbol.  This is the way other
2549     ELF linkers work as well, and seems to be a result of the shared
2550     library model.
2551
2552     I will clarify this issue.  Most SVR4 shared libraries define the
2553     variable _timezone and define timezone as a weak synonym.  The
2554     tzset call changes _timezone.  If you write
2555       extern int timezone;
2556       int _timezone = 5;
2557       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2558     you might expect that, since timezone is a synonym for _timezone,
2559     the same number will print both times.  However, if the processor
2560     backend uses a COPY reloc, then actually timezone will be copied
2561     into your process image, and, since you define _timezone
2562     yourself, _timezone will not.  Thus timezone and _timezone will
2563     wind up at different memory locations.  The tzset call will set
2564     _timezone, leaving timezone unchanged.  */
2565
2566  if (h->u.weakdef != NULL)
2567    {
2568      /* If we get to this point, we know there is an implicit
2569	 reference by a regular object file via the weak symbol H.
2570	 FIXME: Is this really true?  What if the traversal finds
2571	 H->U.WEAKDEF before it finds H?  */
2572      h->u.weakdef->ref_regular = 1;
2573
2574      if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2575	return FALSE;
2576    }
2577
2578  /* If a symbol has no type and no size and does not require a PLT
2579     entry, then we are probably about to do the wrong thing here: we
2580     are probably going to create a COPY reloc for an empty object.
2581     This case can arise when a shared object is built with assembly
2582     code, and the assembly code fails to set the symbol type.  */
2583  if (h->size == 0
2584      && h->type == STT_NOTYPE
2585      && !h->needs_plt)
2586    (*_bfd_error_handler)
2587      (_("warning: type and size of dynamic symbol `%s' are not defined"),
2588       h->root.root.string);
2589
2590  dynobj = elf_hash_table (eif->info)->dynobj;
2591  bed = get_elf_backend_data (dynobj);
2592  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2593    {
2594      eif->failed = TRUE;
2595      return FALSE;
2596    }
2597
2598  return TRUE;
2599}
2600
2601/* Adjust all external symbols pointing into SEC_MERGE sections
2602   to reflect the object merging within the sections.  */
2603
2604bfd_boolean
2605_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2606{
2607  asection *sec;
2608
2609  if (h->root.type == bfd_link_hash_warning)
2610    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2611
2612  if ((h->root.type == bfd_link_hash_defined
2613       || h->root.type == bfd_link_hash_defweak)
2614      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2615      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2616    {
2617      bfd *output_bfd = data;
2618
2619      h->root.u.def.value =
2620	_bfd_merged_section_offset (output_bfd,
2621				    &h->root.u.def.section,
2622				    elf_section_data (sec)->sec_info,
2623				    h->root.u.def.value);
2624    }
2625
2626  return TRUE;
2627}
2628
2629/* Returns false if the symbol referred to by H should be considered
2630   to resolve local to the current module, and true if it should be
2631   considered to bind dynamically.  */
2632
2633bfd_boolean
2634_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2635			   struct bfd_link_info *info,
2636			   bfd_boolean ignore_protected)
2637{
2638  bfd_boolean binding_stays_local_p;
2639
2640  if (h == NULL)
2641    return FALSE;
2642
2643  while (h->root.type == bfd_link_hash_indirect
2644	 || h->root.type == bfd_link_hash_warning)
2645    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2646
2647  /* If it was forced local, then clearly it's not dynamic.  */
2648  if (h->dynindx == -1)
2649    return FALSE;
2650  if (h->forced_local)
2651    return FALSE;
2652
2653  /* Identify the cases where name binding rules say that a
2654     visible symbol resolves locally.  */
2655  binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2656
2657  switch (ELF_ST_VISIBILITY (h->other))
2658    {
2659    case STV_INTERNAL:
2660    case STV_HIDDEN:
2661      return FALSE;
2662
2663    case STV_PROTECTED:
2664      /* Proper resolution for function pointer equality may require
2665	 that these symbols perhaps be resolved dynamically, even though
2666	 we should be resolving them to the current module.  */
2667      if (!ignore_protected || h->type != STT_FUNC)
2668	binding_stays_local_p = TRUE;
2669      break;
2670
2671    default:
2672      break;
2673    }
2674
2675  /* If it isn't defined locally, then clearly it's dynamic.  */
2676  if (!h->def_regular)
2677    return TRUE;
2678
2679  /* Otherwise, the symbol is dynamic if binding rules don't tell
2680     us that it remains local.  */
2681  return !binding_stays_local_p;
2682}
2683
2684/* Return true if the symbol referred to by H should be considered
2685   to resolve local to the current module, and false otherwise.  Differs
2686   from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2687   undefined symbols and weak symbols.  */
2688
2689bfd_boolean
2690_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2691			      struct bfd_link_info *info,
2692			      bfd_boolean local_protected)
2693{
2694  /* If it's a local sym, of course we resolve locally.  */
2695  if (h == NULL)
2696    return TRUE;
2697
2698  /* Common symbols that become definitions don't get the DEF_REGULAR
2699     flag set, so test it first, and don't bail out.  */
2700  if (ELF_COMMON_DEF_P (h))
2701    /* Do nothing.  */;
2702  /* If we don't have a definition in a regular file, then we can't
2703     resolve locally.  The sym is either undefined or dynamic.  */
2704  else if (!h->def_regular)
2705    return FALSE;
2706
2707  /* Forced local symbols resolve locally.  */
2708  if (h->forced_local)
2709    return TRUE;
2710
2711  /* As do non-dynamic symbols.  */
2712  if (h->dynindx == -1)
2713    return TRUE;
2714
2715  /* At this point, we know the symbol is defined and dynamic.  In an
2716     executable it must resolve locally, likewise when building symbolic
2717     shared libraries.  */
2718  if (info->executable || SYMBOLIC_BIND (info, h))
2719    return TRUE;
2720
2721  /* Now deal with defined dynamic symbols in shared libraries.  Ones
2722     with default visibility might not resolve locally.  */
2723  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2724    return FALSE;
2725
2726  /* However, STV_HIDDEN or STV_INTERNAL ones must be local.  */
2727  if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2728    return TRUE;
2729
2730  /* STV_PROTECTED non-function symbols are local.  */
2731  if (h->type != STT_FUNC)
2732    return TRUE;
2733
2734  /* Function pointer equality tests may require that STV_PROTECTED
2735     symbols be treated as dynamic symbols, even when we know that the
2736     dynamic linker will resolve them locally.  */
2737  return local_protected;
2738}
2739
2740/* Caches some TLS segment info, and ensures that the TLS segment vma is
2741   aligned.  Returns the first TLS output section.  */
2742
2743struct bfd_section *
2744_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2745{
2746  struct bfd_section *sec, *tls;
2747  unsigned int align = 0;
2748
2749  for (sec = obfd->sections; sec != NULL; sec = sec->next)
2750    if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2751      break;
2752  tls = sec;
2753
2754  for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2755    if (sec->alignment_power > align)
2756      align = sec->alignment_power;
2757
2758  elf_hash_table (info)->tls_sec = tls;
2759
2760  /* Ensure the alignment of the first section is the largest alignment,
2761     so that the tls segment starts aligned.  */
2762  if (tls != NULL)
2763    tls->alignment_power = align;
2764
2765  return tls;
2766}
2767
2768/* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2769static bfd_boolean
2770is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2771				  Elf_Internal_Sym *sym)
2772{
2773  const struct elf_backend_data *bed;
2774
2775  /* Local symbols do not count, but target specific ones might.  */
2776  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2777      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2778    return FALSE;
2779
2780  /* Function symbols do not count.  */
2781  if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2782    return FALSE;
2783
2784  /* If the section is undefined, then so is the symbol.  */
2785  if (sym->st_shndx == SHN_UNDEF)
2786    return FALSE;
2787
2788  /* If the symbol is defined in the common section, then
2789     it is a common definition and so does not count.  */
2790  bed = get_elf_backend_data (abfd);
2791  if (bed->common_definition (sym))
2792    return FALSE;
2793
2794  /* If the symbol is in a target specific section then we
2795     must rely upon the backend to tell us what it is.  */
2796  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2797    /* FIXME - this function is not coded yet:
2798
2799       return _bfd_is_global_symbol_definition (abfd, sym);
2800
2801       Instead for now assume that the definition is not global,
2802       Even if this is wrong, at least the linker will behave
2803       in the same way that it used to do.  */
2804    return FALSE;
2805
2806  return TRUE;
2807}
2808
2809/* Search the symbol table of the archive element of the archive ABFD
2810   whose archive map contains a mention of SYMDEF, and determine if
2811   the symbol is defined in this element.  */
2812static bfd_boolean
2813elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2814{
2815  Elf_Internal_Shdr * hdr;
2816  bfd_size_type symcount;
2817  bfd_size_type extsymcount;
2818  bfd_size_type extsymoff;
2819  Elf_Internal_Sym *isymbuf;
2820  Elf_Internal_Sym *isym;
2821  Elf_Internal_Sym *isymend;
2822  bfd_boolean result;
2823
2824  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2825  if (abfd == NULL)
2826    return FALSE;
2827
2828  if (! bfd_check_format (abfd, bfd_object))
2829    return FALSE;
2830
2831  /* If we have already included the element containing this symbol in the
2832     link then we do not need to include it again.  Just claim that any symbol
2833     it contains is not a definition, so that our caller will not decide to
2834     (re)include this element.  */
2835  if (abfd->archive_pass)
2836    return FALSE;
2837
2838  /* Select the appropriate symbol table.  */
2839  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2840    hdr = &elf_tdata (abfd)->symtab_hdr;
2841  else
2842    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2843
2844  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2845
2846  /* The sh_info field of the symtab header tells us where the
2847     external symbols start.  We don't care about the local symbols.  */
2848  if (elf_bad_symtab (abfd))
2849    {
2850      extsymcount = symcount;
2851      extsymoff = 0;
2852    }
2853  else
2854    {
2855      extsymcount = symcount - hdr->sh_info;
2856      extsymoff = hdr->sh_info;
2857    }
2858
2859  if (extsymcount == 0)
2860    return FALSE;
2861
2862  /* Read in the symbol table.  */
2863  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2864				  NULL, NULL, NULL);
2865  if (isymbuf == NULL)
2866    return FALSE;
2867
2868  /* Scan the symbol table looking for SYMDEF.  */
2869  result = FALSE;
2870  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2871    {
2872      const char *name;
2873
2874      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2875					      isym->st_name);
2876      if (name == NULL)
2877	break;
2878
2879      if (strcmp (name, symdef->name) == 0)
2880	{
2881	  result = is_global_data_symbol_definition (abfd, isym);
2882	  break;
2883	}
2884    }
2885
2886  free (isymbuf);
2887
2888  return result;
2889}
2890
2891/* Add an entry to the .dynamic table.  */
2892
2893bfd_boolean
2894_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2895			    bfd_vma tag,
2896			    bfd_vma val)
2897{
2898  struct elf_link_hash_table *hash_table;
2899  const struct elf_backend_data *bed;
2900  asection *s;
2901  bfd_size_type newsize;
2902  bfd_byte *newcontents;
2903  Elf_Internal_Dyn dyn;
2904
2905  hash_table = elf_hash_table (info);
2906  if (! is_elf_hash_table (hash_table))
2907    return FALSE;
2908
2909  bed = get_elf_backend_data (hash_table->dynobj);
2910  s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2911  BFD_ASSERT (s != NULL);
2912
2913  newsize = s->size + bed->s->sizeof_dyn;
2914  newcontents = bfd_realloc (s->contents, newsize);
2915  if (newcontents == NULL)
2916    return FALSE;
2917
2918  dyn.d_tag = tag;
2919  dyn.d_un.d_val = val;
2920  bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2921
2922  s->size = newsize;
2923  s->contents = newcontents;
2924
2925  return TRUE;
2926}
2927
2928/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2929   otherwise just check whether one already exists.  Returns -1 on error,
2930   1 if a DT_NEEDED tag already exists, and 0 on success.  */
2931
2932static int
2933elf_add_dt_needed_tag (bfd *abfd,
2934		       struct bfd_link_info *info,
2935		       const char *soname,
2936		       bfd_boolean do_it)
2937{
2938  struct elf_link_hash_table *hash_table;
2939  bfd_size_type oldsize;
2940  bfd_size_type strindex;
2941
2942  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2943    return -1;
2944
2945  hash_table = elf_hash_table (info);
2946  oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2947  strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2948  if (strindex == (bfd_size_type) -1)
2949    return -1;
2950
2951  if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2952    {
2953      asection *sdyn;
2954      const struct elf_backend_data *bed;
2955      bfd_byte *extdyn;
2956
2957      bed = get_elf_backend_data (hash_table->dynobj);
2958      sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2959      if (sdyn != NULL)
2960	for (extdyn = sdyn->contents;
2961	     extdyn < sdyn->contents + sdyn->size;
2962	     extdyn += bed->s->sizeof_dyn)
2963	  {
2964	    Elf_Internal_Dyn dyn;
2965
2966	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2967	    if (dyn.d_tag == DT_NEEDED
2968		&& dyn.d_un.d_val == strindex)
2969	      {
2970		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2971		return 1;
2972	      }
2973	  }
2974    }
2975
2976  if (do_it)
2977    {
2978      if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2979	return -1;
2980
2981      if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2982	return -1;
2983    }
2984  else
2985    /* We were just checking for existence of the tag.  */
2986    _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2987
2988  return 0;
2989}
2990
2991/* Sort symbol by value and section.  */
2992static int
2993elf_sort_symbol (const void *arg1, const void *arg2)
2994{
2995  const struct elf_link_hash_entry *h1;
2996  const struct elf_link_hash_entry *h2;
2997  bfd_signed_vma vdiff;
2998
2999  h1 = *(const struct elf_link_hash_entry **) arg1;
3000  h2 = *(const struct elf_link_hash_entry **) arg2;
3001  vdiff = h1->root.u.def.value - h2->root.u.def.value;
3002  if (vdiff != 0)
3003    return vdiff > 0 ? 1 : -1;
3004  else
3005    {
3006      long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3007      if (sdiff != 0)
3008	return sdiff > 0 ? 1 : -1;
3009    }
3010  return 0;
3011}
3012
3013/* This function is used to adjust offsets into .dynstr for
3014   dynamic symbols.  This is called via elf_link_hash_traverse.  */
3015
3016static bfd_boolean
3017elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3018{
3019  struct elf_strtab_hash *dynstr = data;
3020
3021  if (h->root.type == bfd_link_hash_warning)
3022    h = (struct elf_link_hash_entry *) h->root.u.i.link;
3023
3024  if (h->dynindx != -1)
3025    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3026  return TRUE;
3027}
3028
3029/* Assign string offsets in .dynstr, update all structures referencing
3030   them.  */
3031
3032static bfd_boolean
3033elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3034{
3035  struct elf_link_hash_table *hash_table = elf_hash_table (info);
3036  struct elf_link_local_dynamic_entry *entry;
3037  struct elf_strtab_hash *dynstr = hash_table->dynstr;
3038  bfd *dynobj = hash_table->dynobj;
3039  asection *sdyn;
3040  bfd_size_type size;
3041  const struct elf_backend_data *bed;
3042  bfd_byte *extdyn;
3043
3044  _bfd_elf_strtab_finalize (dynstr);
3045  size = _bfd_elf_strtab_size (dynstr);
3046
3047  bed = get_elf_backend_data (dynobj);
3048  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3049  BFD_ASSERT (sdyn != NULL);
3050
3051  /* Update all .dynamic entries referencing .dynstr strings.  */
3052  for (extdyn = sdyn->contents;
3053       extdyn < sdyn->contents + sdyn->size;
3054       extdyn += bed->s->sizeof_dyn)
3055    {
3056      Elf_Internal_Dyn dyn;
3057
3058      bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3059      switch (dyn.d_tag)
3060	{
3061	case DT_STRSZ:
3062	  dyn.d_un.d_val = size;
3063	  break;
3064	case DT_NEEDED:
3065	case DT_SONAME:
3066	case DT_RPATH:
3067	case DT_RUNPATH:
3068	case DT_FILTER:
3069	case DT_AUXILIARY:
3070	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3071	  break;
3072	default:
3073	  continue;
3074	}
3075      bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3076    }
3077
3078  /* Now update local dynamic symbols.  */
3079  for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3080    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3081						  entry->isym.st_name);
3082
3083  /* And the rest of dynamic symbols.  */
3084  elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3085
3086  /* Adjust version definitions.  */
3087  if (elf_tdata (output_bfd)->cverdefs)
3088    {
3089      asection *s;
3090      bfd_byte *p;
3091      bfd_size_type i;
3092      Elf_Internal_Verdef def;
3093      Elf_Internal_Verdaux defaux;
3094
3095      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3096      p = s->contents;
3097      do
3098	{
3099	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3100				   &def);
3101	  p += sizeof (Elf_External_Verdef);
3102	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3103	    continue;
3104	  for (i = 0; i < def.vd_cnt; ++i)
3105	    {
3106	      _bfd_elf_swap_verdaux_in (output_bfd,
3107					(Elf_External_Verdaux *) p, &defaux);
3108	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3109							defaux.vda_name);
3110	      _bfd_elf_swap_verdaux_out (output_bfd,
3111					 &defaux, (Elf_External_Verdaux *) p);
3112	      p += sizeof (Elf_External_Verdaux);
3113	    }
3114	}
3115      while (def.vd_next);
3116    }
3117
3118  /* Adjust version references.  */
3119  if (elf_tdata (output_bfd)->verref)
3120    {
3121      asection *s;
3122      bfd_byte *p;
3123      bfd_size_type i;
3124      Elf_Internal_Verneed need;
3125      Elf_Internal_Vernaux needaux;
3126
3127      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3128      p = s->contents;
3129      do
3130	{
3131	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3132				    &need);
3133	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3134	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3135				     (Elf_External_Verneed *) p);
3136	  p += sizeof (Elf_External_Verneed);
3137	  for (i = 0; i < need.vn_cnt; ++i)
3138	    {
3139	      _bfd_elf_swap_vernaux_in (output_bfd,
3140					(Elf_External_Vernaux *) p, &needaux);
3141	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3142							 needaux.vna_name);
3143	      _bfd_elf_swap_vernaux_out (output_bfd,
3144					 &needaux,
3145					 (Elf_External_Vernaux *) p);
3146	      p += sizeof (Elf_External_Vernaux);
3147	    }
3148	}
3149      while (need.vn_next);
3150    }
3151
3152  return TRUE;
3153}
3154
3155/* Add symbols from an ELF object file to the linker hash table.  */
3156
3157static bfd_boolean
3158elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3159{
3160  Elf_Internal_Shdr *hdr;
3161  bfd_size_type symcount;
3162  bfd_size_type extsymcount;
3163  bfd_size_type extsymoff;
3164  struct elf_link_hash_entry **sym_hash;
3165  bfd_boolean dynamic;
3166  Elf_External_Versym *extversym = NULL;
3167  Elf_External_Versym *ever;
3168  struct elf_link_hash_entry *weaks;
3169  struct elf_link_hash_entry **nondeflt_vers = NULL;
3170  bfd_size_type nondeflt_vers_cnt = 0;
3171  Elf_Internal_Sym *isymbuf = NULL;
3172  Elf_Internal_Sym *isym;
3173  Elf_Internal_Sym *isymend;
3174  const struct elf_backend_data *bed;
3175  bfd_boolean add_needed;
3176  struct elf_link_hash_table *htab;
3177  bfd_size_type amt;
3178  void *alloc_mark = NULL;
3179  struct bfd_hash_entry **old_table = NULL;
3180  unsigned int old_size = 0;
3181  unsigned int old_count = 0;
3182  void *old_tab = NULL;
3183  void *old_hash;
3184  void *old_ent;
3185  struct bfd_link_hash_entry *old_undefs = NULL;
3186  struct bfd_link_hash_entry *old_undefs_tail = NULL;
3187  long old_dynsymcount = 0;
3188  size_t tabsize = 0;
3189  size_t hashsize = 0;
3190
3191  htab = elf_hash_table (info);
3192  bed = get_elf_backend_data (abfd);
3193
3194  if ((abfd->flags & DYNAMIC) == 0)
3195    dynamic = FALSE;
3196  else
3197    {
3198      dynamic = TRUE;
3199
3200      /* You can't use -r against a dynamic object.  Also, there's no
3201	 hope of using a dynamic object which does not exactly match
3202	 the format of the output file.  */
3203      if (info->relocatable
3204	  || !is_elf_hash_table (htab)
3205	  || htab->root.creator != abfd->xvec)
3206	{
3207	  if (info->relocatable)
3208	    bfd_set_error (bfd_error_invalid_operation);
3209	  else
3210	    bfd_set_error (bfd_error_wrong_format);
3211	  goto error_return;
3212	}
3213    }
3214
3215  /* As a GNU extension, any input sections which are named
3216     .gnu.warning.SYMBOL are treated as warning symbols for the given
3217     symbol.  This differs from .gnu.warning sections, which generate
3218     warnings when they are included in an output file.  */
3219  if (info->executable)
3220    {
3221      asection *s;
3222
3223      for (s = abfd->sections; s != NULL; s = s->next)
3224	{
3225	  const char *name;
3226
3227	  name = bfd_get_section_name (abfd, s);
3228	  if (CONST_STRNEQ (name, ".gnu.warning."))
3229	    {
3230	      char *msg;
3231	      bfd_size_type sz;
3232
3233	      name += sizeof ".gnu.warning." - 1;
3234
3235	      /* If this is a shared object, then look up the symbol
3236		 in the hash table.  If it is there, and it is already
3237		 been defined, then we will not be using the entry
3238		 from this shared object, so we don't need to warn.
3239		 FIXME: If we see the definition in a regular object
3240		 later on, we will warn, but we shouldn't.  The only
3241		 fix is to keep track of what warnings we are supposed
3242		 to emit, and then handle them all at the end of the
3243		 link.  */
3244	      if (dynamic)
3245		{
3246		  struct elf_link_hash_entry *h;
3247
3248		  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3249
3250		  /* FIXME: What about bfd_link_hash_common?  */
3251		  if (h != NULL
3252		      && (h->root.type == bfd_link_hash_defined
3253			  || h->root.type == bfd_link_hash_defweak))
3254		    {
3255		      /* We don't want to issue this warning.  Clobber
3256			 the section size so that the warning does not
3257			 get copied into the output file.  */
3258		      s->size = 0;
3259		      continue;
3260		    }
3261		}
3262
3263	      sz = s->size;
3264	      msg = bfd_alloc (abfd, sz + 1);
3265	      if (msg == NULL)
3266		goto error_return;
3267
3268	      if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3269		goto error_return;
3270
3271	      msg[sz] = '\0';
3272
3273	      if (! (_bfd_generic_link_add_one_symbol
3274		     (info, abfd, name, BSF_WARNING, s, 0, msg,
3275		      FALSE, bed->collect, NULL)))
3276		goto error_return;
3277
3278	      if (! info->relocatable)
3279		{
3280		  /* Clobber the section size so that the warning does
3281		     not get copied into the output file.  */
3282		  s->size = 0;
3283
3284		  /* Also set SEC_EXCLUDE, so that symbols defined in
3285		     the warning section don't get copied to the output.  */
3286		  s->flags |= SEC_EXCLUDE;
3287		}
3288	    }
3289	}
3290    }
3291
3292  add_needed = TRUE;
3293  if (! dynamic)
3294    {
3295      /* If we are creating a shared library, create all the dynamic
3296	 sections immediately.  We need to attach them to something,
3297	 so we attach them to this BFD, provided it is the right
3298	 format.  FIXME: If there are no input BFD's of the same
3299	 format as the output, we can't make a shared library.  */
3300      if (info->shared
3301	  && is_elf_hash_table (htab)
3302	  && htab->root.creator == abfd->xvec
3303	  && !htab->dynamic_sections_created)
3304	{
3305	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3306	    goto error_return;
3307	}
3308    }
3309  else if (!is_elf_hash_table (htab))
3310    goto error_return;
3311  else
3312    {
3313      asection *s;
3314      const char *soname = NULL;
3315      struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3316      int ret;
3317
3318      /* ld --just-symbols and dynamic objects don't mix very well.
3319	 ld shouldn't allow it.  */
3320      if ((s = abfd->sections) != NULL
3321	  && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3322	abort ();
3323
3324      /* If this dynamic lib was specified on the command line with
3325	 --as-needed in effect, then we don't want to add a DT_NEEDED
3326	 tag unless the lib is actually used.  Similary for libs brought
3327	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3328	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3329	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3330	 all.  */
3331      add_needed = (elf_dyn_lib_class (abfd)
3332		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3333		       | DYN_NO_NEEDED)) == 0;
3334
3335      s = bfd_get_section_by_name (abfd, ".dynamic");
3336      if (s != NULL)
3337	{
3338	  bfd_byte *dynbuf;
3339	  bfd_byte *extdyn;
3340	  int elfsec;
3341	  unsigned long shlink;
3342
3343	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3344	    goto error_free_dyn;
3345
3346	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3347	  if (elfsec == -1)
3348	    goto error_free_dyn;
3349	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3350
3351	  for (extdyn = dynbuf;
3352	       extdyn < dynbuf + s->size;
3353	       extdyn += bed->s->sizeof_dyn)
3354	    {
3355	      Elf_Internal_Dyn dyn;
3356
3357	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3358	      if (dyn.d_tag == DT_SONAME)
3359		{
3360		  unsigned int tagv = dyn.d_un.d_val;
3361		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3362		  if (soname == NULL)
3363		    goto error_free_dyn;
3364		}
3365	      if (dyn.d_tag == DT_NEEDED)
3366		{
3367		  struct bfd_link_needed_list *n, **pn;
3368		  char *fnm, *anm;
3369		  unsigned int tagv = dyn.d_un.d_val;
3370
3371		  amt = sizeof (struct bfd_link_needed_list);
3372		  n = bfd_alloc (abfd, amt);
3373		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3374		  if (n == NULL || fnm == NULL)
3375		    goto error_free_dyn;
3376		  amt = strlen (fnm) + 1;
3377		  anm = bfd_alloc (abfd, amt);
3378		  if (anm == NULL)
3379		    goto error_free_dyn;
3380		  memcpy (anm, fnm, amt);
3381		  n->name = anm;
3382		  n->by = abfd;
3383		  n->next = NULL;
3384		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3385		    ;
3386		  *pn = n;
3387		}
3388	      if (dyn.d_tag == DT_RUNPATH)
3389		{
3390		  struct bfd_link_needed_list *n, **pn;
3391		  char *fnm, *anm;
3392		  unsigned int tagv = dyn.d_un.d_val;
3393
3394		  amt = sizeof (struct bfd_link_needed_list);
3395		  n = bfd_alloc (abfd, amt);
3396		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3397		  if (n == NULL || fnm == NULL)
3398		    goto error_free_dyn;
3399		  amt = strlen (fnm) + 1;
3400		  anm = bfd_alloc (abfd, amt);
3401		  if (anm == NULL)
3402		    goto error_free_dyn;
3403		  memcpy (anm, fnm, amt);
3404		  n->name = anm;
3405		  n->by = abfd;
3406		  n->next = NULL;
3407		  for (pn = & runpath;
3408		       *pn != NULL;
3409		       pn = &(*pn)->next)
3410		    ;
3411		  *pn = n;
3412		}
3413	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3414	      if (!runpath && dyn.d_tag == DT_RPATH)
3415		{
3416		  struct bfd_link_needed_list *n, **pn;
3417		  char *fnm, *anm;
3418		  unsigned int tagv = dyn.d_un.d_val;
3419
3420		  amt = sizeof (struct bfd_link_needed_list);
3421		  n = bfd_alloc (abfd, amt);
3422		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3423		  if (n == NULL || fnm == NULL)
3424		    goto error_free_dyn;
3425		  amt = strlen (fnm) + 1;
3426		  anm = bfd_alloc (abfd, amt);
3427		  if (anm == NULL)
3428		    {
3429		    error_free_dyn:
3430		      free (dynbuf);
3431		      goto error_return;
3432		    }
3433		  memcpy (anm, fnm, amt);
3434		  n->name = anm;
3435		  n->by = abfd;
3436		  n->next = NULL;
3437		  for (pn = & rpath;
3438		       *pn != NULL;
3439		       pn = &(*pn)->next)
3440		    ;
3441		  *pn = n;
3442		}
3443	    }
3444
3445	  free (dynbuf);
3446	}
3447
3448      /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3449	 frees all more recently bfd_alloc'd blocks as well.  */
3450      if (runpath)
3451	rpath = runpath;
3452
3453      if (rpath)
3454	{
3455	  struct bfd_link_needed_list **pn;
3456	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3457	    ;
3458	  *pn = rpath;
3459	}
3460
3461      /* We do not want to include any of the sections in a dynamic
3462	 object in the output file.  We hack by simply clobbering the
3463	 list of sections in the BFD.  This could be handled more
3464	 cleanly by, say, a new section flag; the existing
3465	 SEC_NEVER_LOAD flag is not the one we want, because that one
3466	 still implies that the section takes up space in the output
3467	 file.  */
3468      bfd_section_list_clear (abfd);
3469
3470      /* Find the name to use in a DT_NEEDED entry that refers to this
3471	 object.  If the object has a DT_SONAME entry, we use it.
3472	 Otherwise, if the generic linker stuck something in
3473	 elf_dt_name, we use that.  Otherwise, we just use the file
3474	 name.  */
3475      if (soname == NULL || *soname == '\0')
3476	{
3477	  soname = elf_dt_name (abfd);
3478	  if (soname == NULL || *soname == '\0')
3479	    soname = bfd_get_filename (abfd);
3480	}
3481
3482      /* Save the SONAME because sometimes the linker emulation code
3483	 will need to know it.  */
3484      elf_dt_name (abfd) = soname;
3485
3486      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3487      if (ret < 0)
3488	goto error_return;
3489
3490      /* If we have already included this dynamic object in the
3491	 link, just ignore it.  There is no reason to include a
3492	 particular dynamic object more than once.  */
3493      if (ret > 0)
3494	return TRUE;
3495    }
3496
3497  /* If this is a dynamic object, we always link against the .dynsym
3498     symbol table, not the .symtab symbol table.  The dynamic linker
3499     will only see the .dynsym symbol table, so there is no reason to
3500     look at .symtab for a dynamic object.  */
3501
3502  if (! dynamic || elf_dynsymtab (abfd) == 0)
3503    hdr = &elf_tdata (abfd)->symtab_hdr;
3504  else
3505    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3506
3507  symcount = hdr->sh_size / bed->s->sizeof_sym;
3508
3509  /* The sh_info field of the symtab header tells us where the
3510     external symbols start.  We don't care about the local symbols at
3511     this point.  */
3512  if (elf_bad_symtab (abfd))
3513    {
3514      extsymcount = symcount;
3515      extsymoff = 0;
3516    }
3517  else
3518    {
3519      extsymcount = symcount - hdr->sh_info;
3520      extsymoff = hdr->sh_info;
3521    }
3522
3523  sym_hash = NULL;
3524  if (extsymcount != 0)
3525    {
3526      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3527				      NULL, NULL, NULL);
3528      if (isymbuf == NULL)
3529	goto error_return;
3530
3531      /* We store a pointer to the hash table entry for each external
3532	 symbol.  */
3533      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3534      sym_hash = bfd_alloc (abfd, amt);
3535      if (sym_hash == NULL)
3536	goto error_free_sym;
3537      elf_sym_hashes (abfd) = sym_hash;
3538    }
3539
3540  if (dynamic)
3541    {
3542      /* Read in any version definitions.  */
3543      if (!_bfd_elf_slurp_version_tables (abfd,
3544					  info->default_imported_symver))
3545	goto error_free_sym;
3546
3547      /* Read in the symbol versions, but don't bother to convert them
3548	 to internal format.  */
3549      if (elf_dynversym (abfd) != 0)
3550	{
3551	  Elf_Internal_Shdr *versymhdr;
3552
3553	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3554	  extversym = bfd_malloc (versymhdr->sh_size);
3555	  if (extversym == NULL)
3556	    goto error_free_sym;
3557	  amt = versymhdr->sh_size;
3558	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3559	      || bfd_bread (extversym, amt, abfd) != amt)
3560	    goto error_free_vers;
3561	}
3562    }
3563
3564  /* If we are loading an as-needed shared lib, save the symbol table
3565     state before we start adding symbols.  If the lib turns out
3566     to be unneeded, restore the state.  */
3567  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3568    {
3569      unsigned int i;
3570      size_t entsize;
3571
3572      for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3573	{
3574	  struct bfd_hash_entry *p;
3575	  struct elf_link_hash_entry *h;
3576
3577	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3578	    {
3579	      h = (struct elf_link_hash_entry *) p;
3580	      entsize += htab->root.table.entsize;
3581	      if (h->root.type == bfd_link_hash_warning)
3582		entsize += htab->root.table.entsize;
3583	    }
3584	}
3585
3586      tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3587      hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3588      old_tab = bfd_malloc (tabsize + entsize + hashsize);
3589      if (old_tab == NULL)
3590	goto error_free_vers;
3591
3592      /* Remember the current objalloc pointer, so that all mem for
3593	 symbols added can later be reclaimed.  */
3594      alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3595      if (alloc_mark == NULL)
3596	goto error_free_vers;
3597
3598      /* Make a special call to the linker "notice" function to
3599	 tell it that we are about to handle an as-needed lib.  */
3600      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3601				       notice_as_needed))
3602	return FALSE;
3603
3604
3605      /* Clone the symbol table and sym hashes.  Remember some
3606	 pointers into the symbol table, and dynamic symbol count.  */
3607      old_hash = (char *) old_tab + tabsize;
3608      old_ent = (char *) old_hash + hashsize;
3609      memcpy (old_tab, htab->root.table.table, tabsize);
3610      memcpy (old_hash, sym_hash, hashsize);
3611      old_undefs = htab->root.undefs;
3612      old_undefs_tail = htab->root.undefs_tail;
3613      old_table = htab->root.table.table;
3614      old_size = htab->root.table.size;
3615      old_count = htab->root.table.count;
3616      old_dynsymcount = htab->dynsymcount;
3617
3618      for (i = 0; i < htab->root.table.size; i++)
3619	{
3620	  struct bfd_hash_entry *p;
3621	  struct elf_link_hash_entry *h;
3622
3623	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3624	    {
3625	      memcpy (old_ent, p, htab->root.table.entsize);
3626	      old_ent = (char *) old_ent + htab->root.table.entsize;
3627	      h = (struct elf_link_hash_entry *) p;
3628	      if (h->root.type == bfd_link_hash_warning)
3629		{
3630		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3631		  old_ent = (char *) old_ent + htab->root.table.entsize;
3632		}
3633	    }
3634	}
3635    }
3636
3637  weaks = NULL;
3638  ever = extversym != NULL ? extversym + extsymoff : NULL;
3639  for (isym = isymbuf, isymend = isymbuf + extsymcount;
3640       isym < isymend;
3641       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3642    {
3643      int bind;
3644      bfd_vma value;
3645      asection *sec, *new_sec;
3646      flagword flags;
3647      const char *name;
3648      struct elf_link_hash_entry *h;
3649      bfd_boolean definition;
3650      bfd_boolean size_change_ok;
3651      bfd_boolean type_change_ok;
3652      bfd_boolean new_weakdef;
3653      bfd_boolean override;
3654      bfd_boolean common;
3655      unsigned int old_alignment;
3656      bfd *old_bfd;
3657
3658      override = FALSE;
3659
3660      flags = BSF_NO_FLAGS;
3661      sec = NULL;
3662      value = isym->st_value;
3663      *sym_hash = NULL;
3664      common = bed->common_definition (isym);
3665
3666      bind = ELF_ST_BIND (isym->st_info);
3667      if (bind == STB_LOCAL)
3668	{
3669	  /* This should be impossible, since ELF requires that all
3670	     global symbols follow all local symbols, and that sh_info
3671	     point to the first global symbol.  Unfortunately, Irix 5
3672	     screws this up.  */
3673	  continue;
3674	}
3675      else if (bind == STB_GLOBAL)
3676	{
3677	  if (isym->st_shndx != SHN_UNDEF && !common)
3678	    flags = BSF_GLOBAL;
3679	}
3680      else if (bind == STB_WEAK)
3681	flags = BSF_WEAK;
3682      else
3683	{
3684	  /* Leave it up to the processor backend.  */
3685	}
3686
3687      if (isym->st_shndx == SHN_UNDEF)
3688	sec = bfd_und_section_ptr;
3689      else if (isym->st_shndx < SHN_LORESERVE
3690	       || isym->st_shndx > SHN_HIRESERVE)
3691	{
3692	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3693	  if (sec == NULL)
3694	    sec = bfd_abs_section_ptr;
3695	  else if (sec->kept_section)
3696	    {
3697	      /* Symbols from discarded section are undefined.  We keep
3698		 its visibility.  */
3699	      sec = bfd_und_section_ptr;
3700	      isym->st_shndx = SHN_UNDEF;
3701	    }
3702	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3703	    value -= sec->vma;
3704	}
3705      else if (isym->st_shndx == SHN_ABS)
3706	sec = bfd_abs_section_ptr;
3707      else if (isym->st_shndx == SHN_COMMON)
3708	{
3709	  sec = bfd_com_section_ptr;
3710	  /* What ELF calls the size we call the value.  What ELF
3711	     calls the value we call the alignment.  */
3712	  value = isym->st_size;
3713	}
3714      else
3715	{
3716	  /* Leave it up to the processor backend.  */
3717	}
3718
3719      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3720					      isym->st_name);
3721      if (name == NULL)
3722	goto error_free_vers;
3723
3724      if (isym->st_shndx == SHN_COMMON
3725	  && ELF_ST_TYPE (isym->st_info) == STT_TLS
3726	  && !info->relocatable)
3727	{
3728	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3729
3730	  if (tcomm == NULL)
3731	    {
3732	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3733						   (SEC_ALLOC
3734						    | SEC_IS_COMMON
3735						    | SEC_LINKER_CREATED
3736						    | SEC_THREAD_LOCAL));
3737	      if (tcomm == NULL)
3738		goto error_free_vers;
3739	    }
3740	  sec = tcomm;
3741	}
3742      else if (bed->elf_add_symbol_hook)
3743	{
3744	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3745					     &sec, &value))
3746	    goto error_free_vers;
3747
3748	  /* The hook function sets the name to NULL if this symbol
3749	     should be skipped for some reason.  */
3750	  if (name == NULL)
3751	    continue;
3752	}
3753
3754      /* Sanity check that all possibilities were handled.  */
3755      if (sec == NULL)
3756	{
3757	  bfd_set_error (bfd_error_bad_value);
3758	  goto error_free_vers;
3759	}
3760
3761      if (bfd_is_und_section (sec)
3762	  || bfd_is_com_section (sec))
3763	definition = FALSE;
3764      else
3765	definition = TRUE;
3766
3767      size_change_ok = FALSE;
3768      type_change_ok = bed->type_change_ok;
3769      old_alignment = 0;
3770      old_bfd = NULL;
3771      new_sec = sec;
3772
3773      if (is_elf_hash_table (htab))
3774	{
3775	  Elf_Internal_Versym iver;
3776	  unsigned int vernum = 0;
3777	  bfd_boolean skip;
3778
3779	  if (ever == NULL)
3780	    {
3781	      if (info->default_imported_symver)
3782		/* Use the default symbol version created earlier.  */
3783		iver.vs_vers = elf_tdata (abfd)->cverdefs;
3784	      else
3785		iver.vs_vers = 0;
3786	    }
3787	  else
3788	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
3789
3790	  vernum = iver.vs_vers & VERSYM_VERSION;
3791
3792	  /* If this is a hidden symbol, or if it is not version
3793	     1, we append the version name to the symbol name.
3794	     However, we do not modify a non-hidden absolute symbol
3795	     if it is not a function, because it might be the version
3796	     symbol itself.  FIXME: What if it isn't?  */
3797	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3798	      || (vernum > 1 && (! bfd_is_abs_section (sec)
3799				 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
3800	    {
3801	      const char *verstr;
3802	      size_t namelen, verlen, newlen;
3803	      char *newname, *p;
3804
3805	      if (isym->st_shndx != SHN_UNDEF)
3806		{
3807		  if (vernum > elf_tdata (abfd)->cverdefs)
3808		    verstr = NULL;
3809		  else if (vernum > 1)
3810		    verstr =
3811		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3812		  else
3813		    verstr = "";
3814
3815		  if (verstr == NULL)
3816		    {
3817		      (*_bfd_error_handler)
3818			(_("%B: %s: invalid version %u (max %d)"),
3819			 abfd, name, vernum,
3820			 elf_tdata (abfd)->cverdefs);
3821		      bfd_set_error (bfd_error_bad_value);
3822		      goto error_free_vers;
3823		    }
3824		}
3825	      else
3826		{
3827		  /* We cannot simply test for the number of
3828		     entries in the VERNEED section since the
3829		     numbers for the needed versions do not start
3830		     at 0.  */
3831		  Elf_Internal_Verneed *t;
3832
3833		  verstr = NULL;
3834		  for (t = elf_tdata (abfd)->verref;
3835		       t != NULL;
3836		       t = t->vn_nextref)
3837		    {
3838		      Elf_Internal_Vernaux *a;
3839
3840		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3841			{
3842			  if (a->vna_other == vernum)
3843			    {
3844			      verstr = a->vna_nodename;
3845			      break;
3846			    }
3847			}
3848		      if (a != NULL)
3849			break;
3850		    }
3851		  if (verstr == NULL)
3852		    {
3853		      (*_bfd_error_handler)
3854			(_("%B: %s: invalid needed version %d"),
3855			 abfd, name, vernum);
3856		      bfd_set_error (bfd_error_bad_value);
3857		      goto error_free_vers;
3858		    }
3859		}
3860
3861	      namelen = strlen (name);
3862	      verlen = strlen (verstr);
3863	      newlen = namelen + verlen + 2;
3864	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3865		  && isym->st_shndx != SHN_UNDEF)
3866		++newlen;
3867
3868	      newname = bfd_hash_allocate (&htab->root.table, newlen);
3869	      if (newname == NULL)
3870		goto error_free_vers;
3871	      memcpy (newname, name, namelen);
3872	      p = newname + namelen;
3873	      *p++ = ELF_VER_CHR;
3874	      /* If this is a defined non-hidden version symbol,
3875		 we add another @ to the name.  This indicates the
3876		 default version of the symbol.  */
3877	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3878		  && isym->st_shndx != SHN_UNDEF)
3879		*p++ = ELF_VER_CHR;
3880	      memcpy (p, verstr, verlen + 1);
3881
3882	      name = newname;
3883	    }
3884
3885	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3886				      &value, &old_alignment,
3887				      sym_hash, &skip, &override,
3888				      &type_change_ok, &size_change_ok))
3889	    goto error_free_vers;
3890
3891	  if (skip)
3892	    continue;
3893
3894	  if (override)
3895	    definition = FALSE;
3896
3897	  h = *sym_hash;
3898	  while (h->root.type == bfd_link_hash_indirect
3899		 || h->root.type == bfd_link_hash_warning)
3900	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
3901
3902	  /* Remember the old alignment if this is a common symbol, so
3903	     that we don't reduce the alignment later on.  We can't
3904	     check later, because _bfd_generic_link_add_one_symbol
3905	     will set a default for the alignment which we want to
3906	     override. We also remember the old bfd where the existing
3907	     definition comes from.  */
3908	  switch (h->root.type)
3909	    {
3910	    default:
3911	      break;
3912
3913	    case bfd_link_hash_defined:
3914	    case bfd_link_hash_defweak:
3915	      old_bfd = h->root.u.def.section->owner;
3916	      break;
3917
3918	    case bfd_link_hash_common:
3919	      old_bfd = h->root.u.c.p->section->owner;
3920	      old_alignment = h->root.u.c.p->alignment_power;
3921	      break;
3922	    }
3923
3924	  if (elf_tdata (abfd)->verdef != NULL
3925	      && ! override
3926	      && vernum > 1
3927	      && definition)
3928	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3929	}
3930
3931      if (! (_bfd_generic_link_add_one_symbol
3932	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
3933	      (struct bfd_link_hash_entry **) sym_hash)))
3934	goto error_free_vers;
3935
3936      h = *sym_hash;
3937      while (h->root.type == bfd_link_hash_indirect
3938	     || h->root.type == bfd_link_hash_warning)
3939	h = (struct elf_link_hash_entry *) h->root.u.i.link;
3940      *sym_hash = h;
3941
3942      new_weakdef = FALSE;
3943      if (dynamic
3944	  && definition
3945	  && (flags & BSF_WEAK) != 0
3946	  && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3947	  && is_elf_hash_table (htab)
3948	  && h->u.weakdef == NULL)
3949	{
3950	  /* Keep a list of all weak defined non function symbols from
3951	     a dynamic object, using the weakdef field.  Later in this
3952	     function we will set the weakdef field to the correct
3953	     value.  We only put non-function symbols from dynamic
3954	     objects on this list, because that happens to be the only
3955	     time we need to know the normal symbol corresponding to a
3956	     weak symbol, and the information is time consuming to
3957	     figure out.  If the weakdef field is not already NULL,
3958	     then this symbol was already defined by some previous
3959	     dynamic object, and we will be using that previous
3960	     definition anyhow.  */
3961
3962	  h->u.weakdef = weaks;
3963	  weaks = h;
3964	  new_weakdef = TRUE;
3965	}
3966
3967      /* Set the alignment of a common symbol.  */
3968      if ((common || bfd_is_com_section (sec))
3969	  && h->root.type == bfd_link_hash_common)
3970	{
3971	  unsigned int align;
3972
3973	  if (common)
3974	    align = bfd_log2 (isym->st_value);
3975	  else
3976	    {
3977	      /* The new symbol is a common symbol in a shared object.
3978		 We need to get the alignment from the section.  */
3979	      align = new_sec->alignment_power;
3980	    }
3981	  if (align > old_alignment
3982	      /* Permit an alignment power of zero if an alignment of one
3983		 is specified and no other alignments have been specified.  */
3984	      || (isym->st_value == 1 && old_alignment == 0))
3985	    h->root.u.c.p->alignment_power = align;
3986	  else
3987	    h->root.u.c.p->alignment_power = old_alignment;
3988	}
3989
3990      if (is_elf_hash_table (htab))
3991	{
3992	  bfd_boolean dynsym;
3993
3994	  /* Check the alignment when a common symbol is involved. This
3995	     can change when a common symbol is overridden by a normal
3996	     definition or a common symbol is ignored due to the old
3997	     normal definition. We need to make sure the maximum
3998	     alignment is maintained.  */
3999	  if ((old_alignment || common)
4000	      && h->root.type != bfd_link_hash_common)
4001	    {
4002	      unsigned int common_align;
4003	      unsigned int normal_align;
4004	      unsigned int symbol_align;
4005	      bfd *normal_bfd;
4006	      bfd *common_bfd;
4007
4008	      symbol_align = ffs (h->root.u.def.value) - 1;
4009	      if (h->root.u.def.section->owner != NULL
4010		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4011		{
4012		  normal_align = h->root.u.def.section->alignment_power;
4013		  if (normal_align > symbol_align)
4014		    normal_align = symbol_align;
4015		}
4016	      else
4017		normal_align = symbol_align;
4018
4019	      if (old_alignment)
4020		{
4021		  common_align = old_alignment;
4022		  common_bfd = old_bfd;
4023		  normal_bfd = abfd;
4024		}
4025	      else
4026		{
4027		  common_align = bfd_log2 (isym->st_value);
4028		  common_bfd = abfd;
4029		  normal_bfd = old_bfd;
4030		}
4031
4032	      if (normal_align < common_align)
4033		{
4034		  /* PR binutils/2735 */
4035		  if (normal_bfd == NULL)
4036		    (*_bfd_error_handler)
4037		      (_("Warning: alignment %u of common symbol `%s' in %B"
4038			 " is greater than the alignment (%u) of its section %A"),
4039		       common_bfd, h->root.u.def.section,
4040		       1 << common_align, name, 1 << normal_align);
4041		  else
4042		    (*_bfd_error_handler)
4043		      (_("Warning: alignment %u of symbol `%s' in %B"
4044			 " is smaller than %u in %B"),
4045		       normal_bfd, common_bfd,
4046		       1 << normal_align, name, 1 << common_align);
4047		}
4048	    }
4049
4050	  /* Remember the symbol size if it isn't undefined.  */
4051	  if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4052	      && (definition || h->size == 0))
4053	    {
4054	      if (h->size != 0
4055		  && h->size != isym->st_size
4056		  && ! size_change_ok)
4057		(*_bfd_error_handler)
4058		  (_("Warning: size of symbol `%s' changed"
4059		     " from %lu in %B to %lu in %B"),
4060		   old_bfd, abfd,
4061		   name, (unsigned long) h->size,
4062		   (unsigned long) isym->st_size);
4063
4064	      h->size = isym->st_size;
4065	    }
4066
4067	  /* If this is a common symbol, then we always want H->SIZE
4068	     to be the size of the common symbol.  The code just above
4069	     won't fix the size if a common symbol becomes larger.  We
4070	     don't warn about a size change here, because that is
4071	     covered by --warn-common.  */
4072	  if (h->root.type == bfd_link_hash_common)
4073	    h->size = h->root.u.c.size;
4074
4075	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4076	      && (definition || h->type == STT_NOTYPE))
4077	    {
4078	      if (h->type != STT_NOTYPE
4079		  && h->type != ELF_ST_TYPE (isym->st_info)
4080		  && ! type_change_ok)
4081		(*_bfd_error_handler)
4082		  (_("Warning: type of symbol `%s' changed"
4083		     " from %d to %d in %B"),
4084		   abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4085
4086	      h->type = ELF_ST_TYPE (isym->st_info);
4087	    }
4088
4089	  /* If st_other has a processor-specific meaning, specific
4090	     code might be needed here. We never merge the visibility
4091	     attribute with the one from a dynamic object.  */
4092	  if (bed->elf_backend_merge_symbol_attribute)
4093	    (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4094							dynamic);
4095
4096	  /* If this symbol has default visibility and the user has requested
4097	     we not re-export it, then mark it as hidden.  */
4098	  if (definition && !dynamic
4099	      && (abfd->no_export
4100		  || (abfd->my_archive && abfd->my_archive->no_export))
4101	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4102	    isym->st_other = (STV_HIDDEN
4103			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4104
4105	  if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4106	    {
4107	      unsigned char hvis, symvis, other, nvis;
4108
4109	      /* Only merge the visibility. Leave the remainder of the
4110		 st_other field to elf_backend_merge_symbol_attribute.  */
4111	      other = h->other & ~ELF_ST_VISIBILITY (-1);
4112
4113	      /* Combine visibilities, using the most constraining one.  */
4114	      hvis   = ELF_ST_VISIBILITY (h->other);
4115	      symvis = ELF_ST_VISIBILITY (isym->st_other);
4116	      if (! hvis)
4117		nvis = symvis;
4118	      else if (! symvis)
4119		nvis = hvis;
4120	      else
4121		nvis = hvis < symvis ? hvis : symvis;
4122
4123	      h->other = other | nvis;
4124	    }
4125
4126	  /* Set a flag in the hash table entry indicating the type of
4127	     reference or definition we just found.  Keep a count of
4128	     the number of dynamic symbols we find.  A dynamic symbol
4129	     is one which is referenced or defined by both a regular
4130	     object and a shared object.  */
4131	  dynsym = FALSE;
4132	  if (! dynamic)
4133	    {
4134	      if (! definition)
4135		{
4136		  h->ref_regular = 1;
4137		  if (bind != STB_WEAK)
4138		    h->ref_regular_nonweak = 1;
4139		}
4140	      else
4141		h->def_regular = 1;
4142	      if (! info->executable
4143		  || h->def_dynamic
4144		  || h->ref_dynamic)
4145		dynsym = TRUE;
4146	    }
4147	  else
4148	    {
4149	      if (! definition)
4150		h->ref_dynamic = 1;
4151	      else
4152		h->def_dynamic = 1;
4153	      if (h->def_regular
4154		  || h->ref_regular
4155		  || (h->u.weakdef != NULL
4156		      && ! new_weakdef
4157		      && h->u.weakdef->dynindx != -1))
4158		dynsym = TRUE;
4159	    }
4160
4161	  if (definition && (sec->flags & SEC_DEBUGGING))
4162	    {
4163	      /* We don't want to make debug symbol dynamic.  */
4164	      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4165	      dynsym = FALSE;
4166	    }
4167
4168	  /* Check to see if we need to add an indirect symbol for
4169	     the default name.  */
4170	  if (definition || h->root.type == bfd_link_hash_common)
4171	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4172					      &sec, &value, &dynsym,
4173					      override))
4174	      goto error_free_vers;
4175
4176	  if (definition && !dynamic)
4177	    {
4178	      char *p = strchr (name, ELF_VER_CHR);
4179	      if (p != NULL && p[1] != ELF_VER_CHR)
4180		{
4181		  /* Queue non-default versions so that .symver x, x@FOO
4182		     aliases can be checked.  */
4183		  if (!nondeflt_vers)
4184		    {
4185		      amt = ((isymend - isym + 1)
4186			     * sizeof (struct elf_link_hash_entry *));
4187		      nondeflt_vers = bfd_malloc (amt);
4188		    }
4189		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4190		}
4191	    }
4192
4193	  if (dynsym && h->dynindx == -1)
4194	    {
4195	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4196		goto error_free_vers;
4197	      if (h->u.weakdef != NULL
4198		  && ! new_weakdef
4199		  && h->u.weakdef->dynindx == -1)
4200		{
4201		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4202		    goto error_free_vers;
4203		}
4204	    }
4205	  else if (dynsym && h->dynindx != -1)
4206	    /* If the symbol already has a dynamic index, but
4207	       visibility says it should not be visible, turn it into
4208	       a local symbol.  */
4209	    switch (ELF_ST_VISIBILITY (h->other))
4210	      {
4211	      case STV_INTERNAL:
4212	      case STV_HIDDEN:
4213		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4214		dynsym = FALSE;
4215		break;
4216	      }
4217
4218	  if (!add_needed
4219	      && definition
4220	      && dynsym
4221	      && h->ref_regular)
4222	    {
4223	      int ret;
4224	      const char *soname = elf_dt_name (abfd);
4225
4226	      /* A symbol from a library loaded via DT_NEEDED of some
4227		 other library is referenced by a regular object.
4228		 Add a DT_NEEDED entry for it.  Issue an error if
4229		 --no-add-needed is used.  */
4230	      if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4231		{
4232		  (*_bfd_error_handler)
4233		    (_("%s: invalid DSO for symbol `%s' definition"),
4234		     abfd, name);
4235		  bfd_set_error (bfd_error_bad_value);
4236		  goto error_free_vers;
4237		}
4238
4239	      elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4240
4241	      add_needed = TRUE;
4242	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4243	      if (ret < 0)
4244		goto error_free_vers;
4245
4246	      BFD_ASSERT (ret == 0);
4247	    }
4248	}
4249    }
4250
4251  if (extversym != NULL)
4252    {
4253      free (extversym);
4254      extversym = NULL;
4255    }
4256
4257  if (isymbuf != NULL)
4258    {
4259      free (isymbuf);
4260      isymbuf = NULL;
4261    }
4262
4263  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4264    {
4265      unsigned int i;
4266
4267      /* Restore the symbol table.  */
4268      if (bed->as_needed_cleanup)
4269	(*bed->as_needed_cleanup) (abfd, info);
4270      old_hash = (char *) old_tab + tabsize;
4271      old_ent = (char *) old_hash + hashsize;
4272      sym_hash = elf_sym_hashes (abfd);
4273      htab->root.table.table = old_table;
4274      htab->root.table.size = old_size;
4275      htab->root.table.count = old_count;
4276      memcpy (htab->root.table.table, old_tab, tabsize);
4277      memcpy (sym_hash, old_hash, hashsize);
4278      htab->root.undefs = old_undefs;
4279      htab->root.undefs_tail = old_undefs_tail;
4280      for (i = 0; i < htab->root.table.size; i++)
4281	{
4282	  struct bfd_hash_entry *p;
4283	  struct elf_link_hash_entry *h;
4284
4285	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4286	    {
4287	      h = (struct elf_link_hash_entry *) p;
4288	      if (h->root.type == bfd_link_hash_warning)
4289		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4290	      if (h->dynindx >= old_dynsymcount)
4291		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4292
4293	      memcpy (p, old_ent, htab->root.table.entsize);
4294	      old_ent = (char *) old_ent + htab->root.table.entsize;
4295	      h = (struct elf_link_hash_entry *) p;
4296	      if (h->root.type == bfd_link_hash_warning)
4297		{
4298		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4299		  old_ent = (char *) old_ent + htab->root.table.entsize;
4300		}
4301	    }
4302	}
4303
4304      /* Make a special call to the linker "notice" function to
4305	 tell it that symbols added for crefs may need to be removed.  */
4306      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4307				       notice_not_needed))
4308	return FALSE;
4309
4310      free (old_tab);
4311      objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4312			   alloc_mark);
4313      if (nondeflt_vers != NULL)
4314	free (nondeflt_vers);
4315      return TRUE;
4316    }
4317
4318  if (old_tab != NULL)
4319    {
4320      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4321				       notice_needed))
4322	return FALSE;
4323      free (old_tab);
4324      old_tab = NULL;
4325    }
4326
4327  /* Now that all the symbols from this input file are created, handle
4328     .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4329  if (nondeflt_vers != NULL)
4330    {
4331      bfd_size_type cnt, symidx;
4332
4333      for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4334	{
4335	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4336	  char *shortname, *p;
4337
4338	  p = strchr (h->root.root.string, ELF_VER_CHR);
4339	  if (p == NULL
4340	      || (h->root.type != bfd_link_hash_defined
4341		  && h->root.type != bfd_link_hash_defweak))
4342	    continue;
4343
4344	  amt = p - h->root.root.string;
4345	  shortname = bfd_malloc (amt + 1);
4346	  memcpy (shortname, h->root.root.string, amt);
4347	  shortname[amt] = '\0';
4348
4349	  hi = (struct elf_link_hash_entry *)
4350	       bfd_link_hash_lookup (&htab->root, shortname,
4351				     FALSE, FALSE, FALSE);
4352	  if (hi != NULL
4353	      && hi->root.type == h->root.type
4354	      && hi->root.u.def.value == h->root.u.def.value
4355	      && hi->root.u.def.section == h->root.u.def.section)
4356	    {
4357	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4358	      hi->root.type = bfd_link_hash_indirect;
4359	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4360	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4361	      sym_hash = elf_sym_hashes (abfd);
4362	      if (sym_hash)
4363		for (symidx = 0; symidx < extsymcount; ++symidx)
4364		  if (sym_hash[symidx] == hi)
4365		    {
4366		      sym_hash[symidx] = h;
4367		      break;
4368		    }
4369	    }
4370	  free (shortname);
4371	}
4372      free (nondeflt_vers);
4373      nondeflt_vers = NULL;
4374    }
4375
4376  /* Now set the weakdefs field correctly for all the weak defined
4377     symbols we found.  The only way to do this is to search all the
4378     symbols.  Since we only need the information for non functions in
4379     dynamic objects, that's the only time we actually put anything on
4380     the list WEAKS.  We need this information so that if a regular
4381     object refers to a symbol defined weakly in a dynamic object, the
4382     real symbol in the dynamic object is also put in the dynamic
4383     symbols; we also must arrange for both symbols to point to the
4384     same memory location.  We could handle the general case of symbol
4385     aliasing, but a general symbol alias can only be generated in
4386     assembler code, handling it correctly would be very time
4387     consuming, and other ELF linkers don't handle general aliasing
4388     either.  */
4389  if (weaks != NULL)
4390    {
4391      struct elf_link_hash_entry **hpp;
4392      struct elf_link_hash_entry **hppend;
4393      struct elf_link_hash_entry **sorted_sym_hash;
4394      struct elf_link_hash_entry *h;
4395      size_t sym_count;
4396
4397      /* Since we have to search the whole symbol list for each weak
4398	 defined symbol, search time for N weak defined symbols will be
4399	 O(N^2). Binary search will cut it down to O(NlogN).  */
4400      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4401      sorted_sym_hash = bfd_malloc (amt);
4402      if (sorted_sym_hash == NULL)
4403	goto error_return;
4404      sym_hash = sorted_sym_hash;
4405      hpp = elf_sym_hashes (abfd);
4406      hppend = hpp + extsymcount;
4407      sym_count = 0;
4408      for (; hpp < hppend; hpp++)
4409	{
4410	  h = *hpp;
4411	  if (h != NULL
4412	      && h->root.type == bfd_link_hash_defined
4413	      && h->type != STT_FUNC)
4414	    {
4415	      *sym_hash = h;
4416	      sym_hash++;
4417	      sym_count++;
4418	    }
4419	}
4420
4421      qsort (sorted_sym_hash, sym_count,
4422	     sizeof (struct elf_link_hash_entry *),
4423	     elf_sort_symbol);
4424
4425      while (weaks != NULL)
4426	{
4427	  struct elf_link_hash_entry *hlook;
4428	  asection *slook;
4429	  bfd_vma vlook;
4430	  long ilook;
4431	  size_t i, j, idx;
4432
4433	  hlook = weaks;
4434	  weaks = hlook->u.weakdef;
4435	  hlook->u.weakdef = NULL;
4436
4437	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4438		      || hlook->root.type == bfd_link_hash_defweak
4439		      || hlook->root.type == bfd_link_hash_common
4440		      || hlook->root.type == bfd_link_hash_indirect);
4441	  slook = hlook->root.u.def.section;
4442	  vlook = hlook->root.u.def.value;
4443
4444	  ilook = -1;
4445	  i = 0;
4446	  j = sym_count;
4447	  while (i < j)
4448	    {
4449	      bfd_signed_vma vdiff;
4450	      idx = (i + j) / 2;
4451	      h = sorted_sym_hash [idx];
4452	      vdiff = vlook - h->root.u.def.value;
4453	      if (vdiff < 0)
4454		j = idx;
4455	      else if (vdiff > 0)
4456		i = idx + 1;
4457	      else
4458		{
4459		  long sdiff = slook->id - h->root.u.def.section->id;
4460		  if (sdiff < 0)
4461		    j = idx;
4462		  else if (sdiff > 0)
4463		    i = idx + 1;
4464		  else
4465		    {
4466		      ilook = idx;
4467		      break;
4468		    }
4469		}
4470	    }
4471
4472	  /* We didn't find a value/section match.  */
4473	  if (ilook == -1)
4474	    continue;
4475
4476	  for (i = ilook; i < sym_count; i++)
4477	    {
4478	      h = sorted_sym_hash [i];
4479
4480	      /* Stop if value or section doesn't match.  */
4481	      if (h->root.u.def.value != vlook
4482		  || h->root.u.def.section != slook)
4483		break;
4484	      else if (h != hlook)
4485		{
4486		  hlook->u.weakdef = h;
4487
4488		  /* If the weak definition is in the list of dynamic
4489		     symbols, make sure the real definition is put
4490		     there as well.  */
4491		  if (hlook->dynindx != -1 && h->dynindx == -1)
4492		    {
4493		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4494			goto error_return;
4495		    }
4496
4497		  /* If the real definition is in the list of dynamic
4498		     symbols, make sure the weak definition is put
4499		     there as well.  If we don't do this, then the
4500		     dynamic loader might not merge the entries for the
4501		     real definition and the weak definition.  */
4502		  if (h->dynindx != -1 && hlook->dynindx == -1)
4503		    {
4504		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4505			goto error_return;
4506		    }
4507		  break;
4508		}
4509	    }
4510	}
4511
4512      free (sorted_sym_hash);
4513    }
4514
4515  if (bed->check_directives)
4516    (*bed->check_directives) (abfd, info);
4517
4518  /* If this object is the same format as the output object, and it is
4519     not a shared library, then let the backend look through the
4520     relocs.
4521
4522     This is required to build global offset table entries and to
4523     arrange for dynamic relocs.  It is not required for the
4524     particular common case of linking non PIC code, even when linking
4525     against shared libraries, but unfortunately there is no way of
4526     knowing whether an object file has been compiled PIC or not.
4527     Looking through the relocs is not particularly time consuming.
4528     The problem is that we must either (1) keep the relocs in memory,
4529     which causes the linker to require additional runtime memory or
4530     (2) read the relocs twice from the input file, which wastes time.
4531     This would be a good case for using mmap.
4532
4533     I have no idea how to handle linking PIC code into a file of a
4534     different format.  It probably can't be done.  */
4535  if (! dynamic
4536      && is_elf_hash_table (htab)
4537      && htab->root.creator == abfd->xvec
4538      && bed->check_relocs != NULL)
4539    {
4540      asection *o;
4541
4542      for (o = abfd->sections; o != NULL; o = o->next)
4543	{
4544	  Elf_Internal_Rela *internal_relocs;
4545	  bfd_boolean ok;
4546
4547	  if ((o->flags & SEC_RELOC) == 0
4548	      || o->reloc_count == 0
4549	      || ((info->strip == strip_all || info->strip == strip_debugger)
4550		  && (o->flags & SEC_DEBUGGING) != 0)
4551	      || bfd_is_abs_section (o->output_section))
4552	    continue;
4553
4554	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4555						       info->keep_memory);
4556	  if (internal_relocs == NULL)
4557	    goto error_return;
4558
4559	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4560
4561	  if (elf_section_data (o)->relocs != internal_relocs)
4562	    free (internal_relocs);
4563
4564	  if (! ok)
4565	    goto error_return;
4566	}
4567    }
4568
4569  /* If this is a non-traditional link, try to optimize the handling
4570     of the .stab/.stabstr sections.  */
4571  if (! dynamic
4572      && ! info->traditional_format
4573      && is_elf_hash_table (htab)
4574      && (info->strip != strip_all && info->strip != strip_debugger))
4575    {
4576      asection *stabstr;
4577
4578      stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4579      if (stabstr != NULL)
4580	{
4581	  bfd_size_type string_offset = 0;
4582	  asection *stab;
4583
4584	  for (stab = abfd->sections; stab; stab = stab->next)
4585	    if (CONST_STRNEQ (stab->name, ".stab")
4586		&& (!stab->name[5] ||
4587		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4588		&& (stab->flags & SEC_MERGE) == 0
4589		&& !bfd_is_abs_section (stab->output_section))
4590	      {
4591		struct bfd_elf_section_data *secdata;
4592
4593		secdata = elf_section_data (stab);
4594		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4595					       stabstr, &secdata->sec_info,
4596					       &string_offset))
4597		  goto error_return;
4598		if (secdata->sec_info)
4599		  stab->sec_info_type = ELF_INFO_TYPE_STABS;
4600	    }
4601	}
4602    }
4603
4604  if (is_elf_hash_table (htab) && add_needed)
4605    {
4606      /* Add this bfd to the loaded list.  */
4607      struct elf_link_loaded_list *n;
4608
4609      n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4610      if (n == NULL)
4611	goto error_return;
4612      n->abfd = abfd;
4613      n->next = htab->loaded;
4614      htab->loaded = n;
4615    }
4616
4617  return TRUE;
4618
4619 error_free_vers:
4620  if (old_tab != NULL)
4621    free (old_tab);
4622  if (nondeflt_vers != NULL)
4623    free (nondeflt_vers);
4624  if (extversym != NULL)
4625    free (extversym);
4626 error_free_sym:
4627  if (isymbuf != NULL)
4628    free (isymbuf);
4629 error_return:
4630  return FALSE;
4631}
4632
4633/* Return the linker hash table entry of a symbol that might be
4634   satisfied by an archive symbol.  Return -1 on error.  */
4635
4636struct elf_link_hash_entry *
4637_bfd_elf_archive_symbol_lookup (bfd *abfd,
4638				struct bfd_link_info *info,
4639				const char *name)
4640{
4641  struct elf_link_hash_entry *h;
4642  char *p, *copy;
4643  size_t len, first;
4644
4645  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4646  if (h != NULL)
4647    return h;
4648
4649  /* If this is a default version (the name contains @@), look up the
4650     symbol again with only one `@' as well as without the version.
4651     The effect is that references to the symbol with and without the
4652     version will be matched by the default symbol in the archive.  */
4653
4654  p = strchr (name, ELF_VER_CHR);
4655  if (p == NULL || p[1] != ELF_VER_CHR)
4656    return h;
4657
4658  /* First check with only one `@'.  */
4659  len = strlen (name);
4660  copy = bfd_alloc (abfd, len);
4661  if (copy == NULL)
4662    return (struct elf_link_hash_entry *) 0 - 1;
4663
4664  first = p - name + 1;
4665  memcpy (copy, name, first);
4666  memcpy (copy + first, name + first + 1, len - first);
4667
4668  h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4669  if (h == NULL)
4670    {
4671      /* We also need to check references to the symbol without the
4672	 version.  */
4673      copy[first - 1] = '\0';
4674      h = elf_link_hash_lookup (elf_hash_table (info), copy,
4675				FALSE, FALSE, FALSE);
4676    }
4677
4678  bfd_release (abfd, copy);
4679  return h;
4680}
4681
4682/* Add symbols from an ELF archive file to the linker hash table.  We
4683   don't use _bfd_generic_link_add_archive_symbols because of a
4684   problem which arises on UnixWare.  The UnixWare libc.so is an
4685   archive which includes an entry libc.so.1 which defines a bunch of
4686   symbols.  The libc.so archive also includes a number of other
4687   object files, which also define symbols, some of which are the same
4688   as those defined in libc.so.1.  Correct linking requires that we
4689   consider each object file in turn, and include it if it defines any
4690   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4691   this; it looks through the list of undefined symbols, and includes
4692   any object file which defines them.  When this algorithm is used on
4693   UnixWare, it winds up pulling in libc.so.1 early and defining a
4694   bunch of symbols.  This means that some of the other objects in the
4695   archive are not included in the link, which is incorrect since they
4696   precede libc.so.1 in the archive.
4697
4698   Fortunately, ELF archive handling is simpler than that done by
4699   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4700   oddities.  In ELF, if we find a symbol in the archive map, and the
4701   symbol is currently undefined, we know that we must pull in that
4702   object file.
4703
4704   Unfortunately, we do have to make multiple passes over the symbol
4705   table until nothing further is resolved.  */
4706
4707static bfd_boolean
4708elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4709{
4710  symindex c;
4711  bfd_boolean *defined = NULL;
4712  bfd_boolean *included = NULL;
4713  carsym *symdefs;
4714  bfd_boolean loop;
4715  bfd_size_type amt;
4716  const struct elf_backend_data *bed;
4717  struct elf_link_hash_entry * (*archive_symbol_lookup)
4718    (bfd *, struct bfd_link_info *, const char *);
4719
4720  if (! bfd_has_map (abfd))
4721    {
4722      /* An empty archive is a special case.  */
4723      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4724	return TRUE;
4725      bfd_set_error (bfd_error_no_armap);
4726      return FALSE;
4727    }
4728
4729  /* Keep track of all symbols we know to be already defined, and all
4730     files we know to be already included.  This is to speed up the
4731     second and subsequent passes.  */
4732  c = bfd_ardata (abfd)->symdef_count;
4733  if (c == 0)
4734    return TRUE;
4735  amt = c;
4736  amt *= sizeof (bfd_boolean);
4737  defined = bfd_zmalloc (amt);
4738  included = bfd_zmalloc (amt);
4739  if (defined == NULL || included == NULL)
4740    goto error_return;
4741
4742  symdefs = bfd_ardata (abfd)->symdefs;
4743  bed = get_elf_backend_data (abfd);
4744  archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4745
4746  do
4747    {
4748      file_ptr last;
4749      symindex i;
4750      carsym *symdef;
4751      carsym *symdefend;
4752
4753      loop = FALSE;
4754      last = -1;
4755
4756      symdef = symdefs;
4757      symdefend = symdef + c;
4758      for (i = 0; symdef < symdefend; symdef++, i++)
4759	{
4760	  struct elf_link_hash_entry *h;
4761	  bfd *element;
4762	  struct bfd_link_hash_entry *undefs_tail;
4763	  symindex mark;
4764
4765	  if (defined[i] || included[i])
4766	    continue;
4767	  if (symdef->file_offset == last)
4768	    {
4769	      included[i] = TRUE;
4770	      continue;
4771	    }
4772
4773	  h = archive_symbol_lookup (abfd, info, symdef->name);
4774	  if (h == (struct elf_link_hash_entry *) 0 - 1)
4775	    goto error_return;
4776
4777	  if (h == NULL)
4778	    continue;
4779
4780	  if (h->root.type == bfd_link_hash_common)
4781	    {
4782	      /* We currently have a common symbol.  The archive map contains
4783		 a reference to this symbol, so we may want to include it.  We
4784		 only want to include it however, if this archive element
4785		 contains a definition of the symbol, not just another common
4786		 declaration of it.
4787
4788		 Unfortunately some archivers (including GNU ar) will put
4789		 declarations of common symbols into their archive maps, as
4790		 well as real definitions, so we cannot just go by the archive
4791		 map alone.  Instead we must read in the element's symbol
4792		 table and check that to see what kind of symbol definition
4793		 this is.  */
4794	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4795		continue;
4796	    }
4797	  else if (h->root.type != bfd_link_hash_undefined)
4798	    {
4799	      if (h->root.type != bfd_link_hash_undefweak)
4800		defined[i] = TRUE;
4801	      continue;
4802	    }
4803
4804	  /* We need to include this archive member.  */
4805	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4806	  if (element == NULL)
4807	    goto error_return;
4808
4809	  if (! bfd_check_format (element, bfd_object))
4810	    goto error_return;
4811
4812	  /* Doublecheck that we have not included this object
4813	     already--it should be impossible, but there may be
4814	     something wrong with the archive.  */
4815	  if (element->archive_pass != 0)
4816	    {
4817	      bfd_set_error (bfd_error_bad_value);
4818	      goto error_return;
4819	    }
4820	  element->archive_pass = 1;
4821
4822	  undefs_tail = info->hash->undefs_tail;
4823
4824	  if (! (*info->callbacks->add_archive_element) (info, element,
4825							 symdef->name))
4826	    goto error_return;
4827	  if (! bfd_link_add_symbols (element, info))
4828	    goto error_return;
4829
4830	  /* If there are any new undefined symbols, we need to make
4831	     another pass through the archive in order to see whether
4832	     they can be defined.  FIXME: This isn't perfect, because
4833	     common symbols wind up on undefs_tail and because an
4834	     undefined symbol which is defined later on in this pass
4835	     does not require another pass.  This isn't a bug, but it
4836	     does make the code less efficient than it could be.  */
4837	  if (undefs_tail != info->hash->undefs_tail)
4838	    loop = TRUE;
4839
4840	  /* Look backward to mark all symbols from this object file
4841	     which we have already seen in this pass.  */
4842	  mark = i;
4843	  do
4844	    {
4845	      included[mark] = TRUE;
4846	      if (mark == 0)
4847		break;
4848	      --mark;
4849	    }
4850	  while (symdefs[mark].file_offset == symdef->file_offset);
4851
4852	  /* We mark subsequent symbols from this object file as we go
4853	     on through the loop.  */
4854	  last = symdef->file_offset;
4855	}
4856    }
4857  while (loop);
4858
4859  free (defined);
4860  free (included);
4861
4862  return TRUE;
4863
4864 error_return:
4865  if (defined != NULL)
4866    free (defined);
4867  if (included != NULL)
4868    free (included);
4869  return FALSE;
4870}
4871
4872/* Given an ELF BFD, add symbols to the global hash table as
4873   appropriate.  */
4874
4875bfd_boolean
4876bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4877{
4878  switch (bfd_get_format (abfd))
4879    {
4880    case bfd_object:
4881      return elf_link_add_object_symbols (abfd, info);
4882    case bfd_archive:
4883      return elf_link_add_archive_symbols (abfd, info);
4884    default:
4885      bfd_set_error (bfd_error_wrong_format);
4886      return FALSE;
4887    }
4888}
4889
4890/* This function will be called though elf_link_hash_traverse to store
4891   all hash value of the exported symbols in an array.  */
4892
4893static bfd_boolean
4894elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4895{
4896  unsigned long **valuep = data;
4897  const char *name;
4898  char *p;
4899  unsigned long ha;
4900  char *alc = NULL;
4901
4902  if (h->root.type == bfd_link_hash_warning)
4903    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4904
4905  /* Ignore indirect symbols.  These are added by the versioning code.  */
4906  if (h->dynindx == -1)
4907    return TRUE;
4908
4909  name = h->root.root.string;
4910  p = strchr (name, ELF_VER_CHR);
4911  if (p != NULL)
4912    {
4913      alc = bfd_malloc (p - name + 1);
4914      memcpy (alc, name, p - name);
4915      alc[p - name] = '\0';
4916      name = alc;
4917    }
4918
4919  /* Compute the hash value.  */
4920  ha = bfd_elf_hash (name);
4921
4922  /* Store the found hash value in the array given as the argument.  */
4923  *(*valuep)++ = ha;
4924
4925  /* And store it in the struct so that we can put it in the hash table
4926     later.  */
4927  h->u.elf_hash_value = ha;
4928
4929  if (alc != NULL)
4930    free (alc);
4931
4932  return TRUE;
4933}
4934
4935struct collect_gnu_hash_codes
4936{
4937  bfd *output_bfd;
4938  const struct elf_backend_data *bed;
4939  unsigned long int nsyms;
4940  unsigned long int maskbits;
4941  unsigned long int *hashcodes;
4942  unsigned long int *hashval;
4943  unsigned long int *indx;
4944  unsigned long int *counts;
4945  bfd_vma *bitmask;
4946  bfd_byte *contents;
4947  long int min_dynindx;
4948  unsigned long int bucketcount;
4949  unsigned long int symindx;
4950  long int local_indx;
4951  long int shift1, shift2;
4952  unsigned long int mask;
4953};
4954
4955/* This function will be called though elf_link_hash_traverse to store
4956   all hash value of the exported symbols in an array.  */
4957
4958static bfd_boolean
4959elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
4960{
4961  struct collect_gnu_hash_codes *s = data;
4962  const char *name;
4963  char *p;
4964  unsigned long ha;
4965  char *alc = NULL;
4966
4967  if (h->root.type == bfd_link_hash_warning)
4968    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4969
4970  /* Ignore indirect symbols.  These are added by the versioning code.  */
4971  if (h->dynindx == -1)
4972    return TRUE;
4973
4974  /* Ignore also local symbols and undefined symbols.  */
4975  if (! (*s->bed->elf_hash_symbol) (h))
4976    return TRUE;
4977
4978  name = h->root.root.string;
4979  p = strchr (name, ELF_VER_CHR);
4980  if (p != NULL)
4981    {
4982      alc = bfd_malloc (p - name + 1);
4983      memcpy (alc, name, p - name);
4984      alc[p - name] = '\0';
4985      name = alc;
4986    }
4987
4988  /* Compute the hash value.  */
4989  ha = bfd_elf_gnu_hash (name);
4990
4991  /* Store the found hash value in the array for compute_bucket_count,
4992     and also for .dynsym reordering purposes.  */
4993  s->hashcodes[s->nsyms] = ha;
4994  s->hashval[h->dynindx] = ha;
4995  ++s->nsyms;
4996  if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
4997    s->min_dynindx = h->dynindx;
4998
4999  if (alc != NULL)
5000    free (alc);
5001
5002  return TRUE;
5003}
5004
5005/* This function will be called though elf_link_hash_traverse to do
5006   final dynaminc symbol renumbering.  */
5007
5008static bfd_boolean
5009elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5010{
5011  struct collect_gnu_hash_codes *s = data;
5012  unsigned long int bucket;
5013  unsigned long int val;
5014
5015  if (h->root.type == bfd_link_hash_warning)
5016    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5017
5018  /* Ignore indirect symbols.  */
5019  if (h->dynindx == -1)
5020    return TRUE;
5021
5022  /* Ignore also local symbols and undefined symbols.  */
5023  if (! (*s->bed->elf_hash_symbol) (h))
5024    {
5025      if (h->dynindx >= s->min_dynindx)
5026	h->dynindx = s->local_indx++;
5027      return TRUE;
5028    }
5029
5030  bucket = s->hashval[h->dynindx] % s->bucketcount;
5031  val = (s->hashval[h->dynindx] >> s->shift1)
5032	& ((s->maskbits >> s->shift1) - 1);
5033  s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5034  s->bitmask[val]
5035    |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5036  val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5037  if (s->counts[bucket] == 1)
5038    /* Last element terminates the chain.  */
5039    val |= 1;
5040  bfd_put_32 (s->output_bfd, val,
5041	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5042  --s->counts[bucket];
5043  h->dynindx = s->indx[bucket]++;
5044  return TRUE;
5045}
5046
5047/* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5048
5049bfd_boolean
5050_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5051{
5052  return !(h->forced_local
5053	   || h->root.type == bfd_link_hash_undefined
5054	   || h->root.type == bfd_link_hash_undefweak
5055	   || ((h->root.type == bfd_link_hash_defined
5056		|| h->root.type == bfd_link_hash_defweak)
5057	       && h->root.u.def.section->output_section == NULL));
5058}
5059
5060/* Array used to determine the number of hash table buckets to use
5061   based on the number of symbols there are.  If there are fewer than
5062   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5063   fewer than 37 we use 17 buckets, and so forth.  We never use more
5064   than 32771 buckets.  */
5065
5066static const size_t elf_buckets[] =
5067{
5068  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5069  16411, 32771, 0
5070};
5071
5072/* Compute bucket count for hashing table.  We do not use a static set
5073   of possible tables sizes anymore.  Instead we determine for all
5074   possible reasonable sizes of the table the outcome (i.e., the
5075   number of collisions etc) and choose the best solution.  The
5076   weighting functions are not too simple to allow the table to grow
5077   without bounds.  Instead one of the weighting factors is the size.
5078   Therefore the result is always a good payoff between few collisions
5079   (= short chain lengths) and table size.  */
5080static size_t
5081compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5082		      unsigned long int nsyms, int gnu_hash)
5083{
5084  size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5085  size_t best_size = 0;
5086  unsigned long int i;
5087  bfd_size_type amt;
5088
5089  /* We have a problem here.  The following code to optimize the table
5090     size requires an integer type with more the 32 bits.  If
5091     BFD_HOST_U_64_BIT is set we know about such a type.  */
5092#ifdef BFD_HOST_U_64_BIT
5093  if (info->optimize)
5094    {
5095      size_t minsize;
5096      size_t maxsize;
5097      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5098      bfd *dynobj = elf_hash_table (info)->dynobj;
5099      const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5100      unsigned long int *counts;
5101
5102      /* Possible optimization parameters: if we have NSYMS symbols we say
5103	 that the hashing table must at least have NSYMS/4 and at most
5104	 2*NSYMS buckets.  */
5105      minsize = nsyms / 4;
5106      if (minsize == 0)
5107	minsize = 1;
5108      best_size = maxsize = nsyms * 2;
5109      if (gnu_hash)
5110	{
5111	  if (minsize < 2)
5112	    minsize = 2;
5113	  if ((best_size & 31) == 0)
5114	    ++best_size;
5115	}
5116
5117      /* Create array where we count the collisions in.  We must use bfd_malloc
5118	 since the size could be large.  */
5119      amt = maxsize;
5120      amt *= sizeof (unsigned long int);
5121      counts = bfd_malloc (amt);
5122      if (counts == NULL)
5123	return 0;
5124
5125      /* Compute the "optimal" size for the hash table.  The criteria is a
5126	 minimal chain length.  The minor criteria is (of course) the size
5127	 of the table.  */
5128      for (i = minsize; i < maxsize; ++i)
5129	{
5130	  /* Walk through the array of hashcodes and count the collisions.  */
5131	  BFD_HOST_U_64_BIT max;
5132	  unsigned long int j;
5133	  unsigned long int fact;
5134
5135	  if (gnu_hash && (i & 31) == 0)
5136	    continue;
5137
5138	  memset (counts, '\0', i * sizeof (unsigned long int));
5139
5140	  /* Determine how often each hash bucket is used.  */
5141	  for (j = 0; j < nsyms; ++j)
5142	    ++counts[hashcodes[j] % i];
5143
5144	  /* For the weight function we need some information about the
5145	     pagesize on the target.  This is information need not be 100%
5146	     accurate.  Since this information is not available (so far) we
5147	     define it here to a reasonable default value.  If it is crucial
5148	     to have a better value some day simply define this value.  */
5149# ifndef BFD_TARGET_PAGESIZE
5150#  define BFD_TARGET_PAGESIZE	(4096)
5151# endif
5152
5153	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5154	     and the chains.  */
5155	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5156
5157# if 1
5158	  /* Variant 1: optimize for short chains.  We add the squares
5159	     of all the chain lengths (which favors many small chain
5160	     over a few long chains).  */
5161	  for (j = 0; j < i; ++j)
5162	    max += counts[j] * counts[j];
5163
5164	  /* This adds penalties for the overall size of the table.  */
5165	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5166	  max *= fact * fact;
5167# else
5168	  /* Variant 2: Optimize a lot more for small table.  Here we
5169	     also add squares of the size but we also add penalties for
5170	     empty slots (the +1 term).  */
5171	  for (j = 0; j < i; ++j)
5172	    max += (1 + counts[j]) * (1 + counts[j]);
5173
5174	  /* The overall size of the table is considered, but not as
5175	     strong as in variant 1, where it is squared.  */
5176	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5177	  max *= fact;
5178# endif
5179
5180	  /* Compare with current best results.  */
5181	  if (max < best_chlen)
5182	    {
5183	      best_chlen = max;
5184	      best_size = i;
5185	    }
5186	}
5187
5188      free (counts);
5189    }
5190  else
5191#endif /* defined (BFD_HOST_U_64_BIT) */
5192    {
5193      /* This is the fallback solution if no 64bit type is available or if we
5194	 are not supposed to spend much time on optimizations.  We select the
5195	 bucket count using a fixed set of numbers.  */
5196      for (i = 0; elf_buckets[i] != 0; i++)
5197	{
5198	  best_size = elf_buckets[i];
5199	  if (nsyms < elf_buckets[i + 1])
5200	    break;
5201	}
5202      if (gnu_hash && best_size < 2)
5203	best_size = 2;
5204    }
5205
5206  return best_size;
5207}
5208
5209/* Set up the sizes and contents of the ELF dynamic sections.  This is
5210   called by the ELF linker emulation before_allocation routine.  We
5211   must set the sizes of the sections before the linker sets the
5212   addresses of the various sections.  */
5213
5214bfd_boolean
5215bfd_elf_size_dynamic_sections (bfd *output_bfd,
5216			       const char *soname,
5217			       const char *rpath,
5218			       const char *filter_shlib,
5219			       const char * const *auxiliary_filters,
5220			       struct bfd_link_info *info,
5221			       asection **sinterpptr,
5222			       struct bfd_elf_version_tree *verdefs)
5223{
5224  bfd_size_type soname_indx;
5225  bfd *dynobj;
5226  const struct elf_backend_data *bed;
5227  struct elf_assign_sym_version_info asvinfo;
5228
5229  *sinterpptr = NULL;
5230
5231  soname_indx = (bfd_size_type) -1;
5232
5233  if (!is_elf_hash_table (info->hash))
5234    return TRUE;
5235
5236  elf_tdata (output_bfd)->relro = info->relro;
5237  if (info->execstack)
5238    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5239  else if (info->noexecstack)
5240    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5241  else
5242    {
5243      bfd *inputobj;
5244      asection *notesec = NULL;
5245      int exec = 0;
5246
5247      for (inputobj = info->input_bfds;
5248	   inputobj;
5249	   inputobj = inputobj->link_next)
5250	{
5251	  asection *s;
5252
5253	  if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5254	    continue;
5255	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5256	  if (s)
5257	    {
5258	      if (s->flags & SEC_CODE)
5259		exec = PF_X;
5260	      notesec = s;
5261	    }
5262	  else
5263	    exec = PF_X;
5264	}
5265      if (notesec)
5266	{
5267	  elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5268	  if (exec && info->relocatable
5269	      && notesec->output_section != bfd_abs_section_ptr)
5270	    notesec->output_section->flags |= SEC_CODE;
5271	}
5272    }
5273
5274  /* Any syms created from now on start with -1 in
5275     got.refcount/offset and plt.refcount/offset.  */
5276  elf_hash_table (info)->init_got_refcount
5277    = elf_hash_table (info)->init_got_offset;
5278  elf_hash_table (info)->init_plt_refcount
5279    = elf_hash_table (info)->init_plt_offset;
5280
5281  /* The backend may have to create some sections regardless of whether
5282     we're dynamic or not.  */
5283  bed = get_elf_backend_data (output_bfd);
5284  if (bed->elf_backend_always_size_sections
5285      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5286    return FALSE;
5287
5288  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5289    return FALSE;
5290
5291  dynobj = elf_hash_table (info)->dynobj;
5292
5293  /* If there were no dynamic objects in the link, there is nothing to
5294     do here.  */
5295  if (dynobj == NULL)
5296    return TRUE;
5297
5298  if (elf_hash_table (info)->dynamic_sections_created)
5299    {
5300      struct elf_info_failed eif;
5301      struct elf_link_hash_entry *h;
5302      asection *dynstr;
5303      struct bfd_elf_version_tree *t;
5304      struct bfd_elf_version_expr *d;
5305      asection *s;
5306      bfd_boolean all_defined;
5307
5308      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5309      BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5310
5311      if (soname != NULL)
5312	{
5313	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5314					     soname, TRUE);
5315	  if (soname_indx == (bfd_size_type) -1
5316	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5317	    return FALSE;
5318	}
5319
5320      if (info->symbolic)
5321	{
5322	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5323	    return FALSE;
5324	  info->flags |= DF_SYMBOLIC;
5325	}
5326
5327      if (rpath != NULL)
5328	{
5329	  bfd_size_type indx;
5330
5331	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5332				      TRUE);
5333	  if (indx == (bfd_size_type) -1
5334	      || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5335	    return FALSE;
5336
5337	  if  (info->new_dtags)
5338	    {
5339	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5340	      if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5341		return FALSE;
5342	    }
5343	}
5344
5345      if (filter_shlib != NULL)
5346	{
5347	  bfd_size_type indx;
5348
5349	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5350				      filter_shlib, TRUE);
5351	  if (indx == (bfd_size_type) -1
5352	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5353	    return FALSE;
5354	}
5355
5356      if (auxiliary_filters != NULL)
5357	{
5358	  const char * const *p;
5359
5360	  for (p = auxiliary_filters; *p != NULL; p++)
5361	    {
5362	      bfd_size_type indx;
5363
5364	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5365					  *p, TRUE);
5366	      if (indx == (bfd_size_type) -1
5367		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5368		return FALSE;
5369	    }
5370	}
5371
5372      eif.info = info;
5373      eif.verdefs = verdefs;
5374      eif.failed = FALSE;
5375
5376      /* If we are supposed to export all symbols into the dynamic symbol
5377	 table (this is not the normal case), then do so.  */
5378      if (info->export_dynamic
5379	  || (info->executable && info->dynamic))
5380	{
5381	  elf_link_hash_traverse (elf_hash_table (info),
5382				  _bfd_elf_export_symbol,
5383				  &eif);
5384	  if (eif.failed)
5385	    return FALSE;
5386	}
5387
5388      /* Make all global versions with definition.  */
5389      for (t = verdefs; t != NULL; t = t->next)
5390	for (d = t->globals.list; d != NULL; d = d->next)
5391	  if (!d->symver && d->symbol)
5392	    {
5393	      const char *verstr, *name;
5394	      size_t namelen, verlen, newlen;
5395	      char *newname, *p;
5396	      struct elf_link_hash_entry *newh;
5397
5398	      name = d->symbol;
5399	      namelen = strlen (name);
5400	      verstr = t->name;
5401	      verlen = strlen (verstr);
5402	      newlen = namelen + verlen + 3;
5403
5404	      newname = bfd_malloc (newlen);
5405	      if (newname == NULL)
5406		return FALSE;
5407	      memcpy (newname, name, namelen);
5408
5409	      /* Check the hidden versioned definition.  */
5410	      p = newname + namelen;
5411	      *p++ = ELF_VER_CHR;
5412	      memcpy (p, verstr, verlen + 1);
5413	      newh = elf_link_hash_lookup (elf_hash_table (info),
5414					   newname, FALSE, FALSE,
5415					   FALSE);
5416	      if (newh == NULL
5417		  || (newh->root.type != bfd_link_hash_defined
5418		      && newh->root.type != bfd_link_hash_defweak))
5419		{
5420		  /* Check the default versioned definition.  */
5421		  *p++ = ELF_VER_CHR;
5422		  memcpy (p, verstr, verlen + 1);
5423		  newh = elf_link_hash_lookup (elf_hash_table (info),
5424					       newname, FALSE, FALSE,
5425					       FALSE);
5426		}
5427	      free (newname);
5428
5429	      /* Mark this version if there is a definition and it is
5430		 not defined in a shared object.  */
5431	      if (newh != NULL
5432		  && !newh->def_dynamic
5433		  && (newh->root.type == bfd_link_hash_defined
5434		      || newh->root.type == bfd_link_hash_defweak))
5435		d->symver = 1;
5436	    }
5437
5438      /* Attach all the symbols to their version information.  */
5439      asvinfo.output_bfd = output_bfd;
5440      asvinfo.info = info;
5441      asvinfo.verdefs = verdefs;
5442      asvinfo.failed = FALSE;
5443
5444      elf_link_hash_traverse (elf_hash_table (info),
5445			      _bfd_elf_link_assign_sym_version,
5446			      &asvinfo);
5447      if (asvinfo.failed)
5448	return FALSE;
5449
5450      if (!info->allow_undefined_version)
5451	{
5452	  /* Check if all global versions have a definition.  */
5453	  all_defined = TRUE;
5454	  for (t = verdefs; t != NULL; t = t->next)
5455	    for (d = t->globals.list; d != NULL; d = d->next)
5456	      if (!d->symver && !d->script)
5457		{
5458		  (*_bfd_error_handler)
5459		    (_("%s: undefined version: %s"),
5460		     d->pattern, t->name);
5461		  all_defined = FALSE;
5462		}
5463
5464	  if (!all_defined)
5465	    {
5466	      bfd_set_error (bfd_error_bad_value);
5467	      return FALSE;
5468	    }
5469	}
5470
5471      /* Find all symbols which were defined in a dynamic object and make
5472	 the backend pick a reasonable value for them.  */
5473      elf_link_hash_traverse (elf_hash_table (info),
5474			      _bfd_elf_adjust_dynamic_symbol,
5475			      &eif);
5476      if (eif.failed)
5477	return FALSE;
5478
5479      /* Add some entries to the .dynamic section.  We fill in some of the
5480	 values later, in bfd_elf_final_link, but we must add the entries
5481	 now so that we know the final size of the .dynamic section.  */
5482
5483      /* If there are initialization and/or finalization functions to
5484	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5485      h = (info->init_function
5486	   ? elf_link_hash_lookup (elf_hash_table (info),
5487				   info->init_function, FALSE,
5488				   FALSE, FALSE)
5489	   : NULL);
5490      if (h != NULL
5491	  && (h->ref_regular
5492	      || h->def_regular))
5493	{
5494	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5495	    return FALSE;
5496	}
5497      h = (info->fini_function
5498	   ? elf_link_hash_lookup (elf_hash_table (info),
5499				   info->fini_function, FALSE,
5500				   FALSE, FALSE)
5501	   : NULL);
5502      if (h != NULL
5503	  && (h->ref_regular
5504	      || h->def_regular))
5505	{
5506	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5507	    return FALSE;
5508	}
5509
5510      s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5511      if (s != NULL && s->linker_has_input)
5512	{
5513	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5514	  if (! info->executable)
5515	    {
5516	      bfd *sub;
5517	      asection *o;
5518
5519	      for (sub = info->input_bfds; sub != NULL;
5520		   sub = sub->link_next)
5521		for (o = sub->sections; o != NULL; o = o->next)
5522		  if (elf_section_data (o)->this_hdr.sh_type
5523		      == SHT_PREINIT_ARRAY)
5524		    {
5525		      (*_bfd_error_handler)
5526			(_("%B: .preinit_array section is not allowed in DSO"),
5527			 sub);
5528		      break;
5529		    }
5530
5531	      bfd_set_error (bfd_error_nonrepresentable_section);
5532	      return FALSE;
5533	    }
5534
5535	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5536	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5537	    return FALSE;
5538	}
5539      s = bfd_get_section_by_name (output_bfd, ".init_array");
5540      if (s != NULL && s->linker_has_input)
5541	{
5542	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5543	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5544	    return FALSE;
5545	}
5546      s = bfd_get_section_by_name (output_bfd, ".fini_array");
5547      if (s != NULL && s->linker_has_input)
5548	{
5549	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5550	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5551	    return FALSE;
5552	}
5553
5554      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5555      /* If .dynstr is excluded from the link, we don't want any of
5556	 these tags.  Strictly, we should be checking each section
5557	 individually;  This quick check covers for the case where
5558	 someone does a /DISCARD/ : { *(*) }.  */
5559      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5560	{
5561	  bfd_size_type strsize;
5562
5563	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5564	  if ((info->emit_hash
5565	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5566	      || (info->emit_gnu_hash
5567		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5568	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5569	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5570	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5571	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5572					      bed->s->sizeof_sym))
5573	    return FALSE;
5574	}
5575    }
5576
5577  /* The backend must work out the sizes of all the other dynamic
5578     sections.  */
5579  if (bed->elf_backend_size_dynamic_sections
5580      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5581    return FALSE;
5582
5583  if (elf_hash_table (info)->dynamic_sections_created)
5584    {
5585      unsigned long section_sym_count;
5586      asection *s;
5587
5588      /* Set up the version definition section.  */
5589      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5590      BFD_ASSERT (s != NULL);
5591
5592      /* We may have created additional version definitions if we are
5593	 just linking a regular application.  */
5594      verdefs = asvinfo.verdefs;
5595
5596      /* Skip anonymous version tag.  */
5597      if (verdefs != NULL && verdefs->vernum == 0)
5598	verdefs = verdefs->next;
5599
5600      if (verdefs == NULL && !info->create_default_symver)
5601	s->flags |= SEC_EXCLUDE;
5602      else
5603	{
5604	  unsigned int cdefs;
5605	  bfd_size_type size;
5606	  struct bfd_elf_version_tree *t;
5607	  bfd_byte *p;
5608	  Elf_Internal_Verdef def;
5609	  Elf_Internal_Verdaux defaux;
5610	  struct bfd_link_hash_entry *bh;
5611	  struct elf_link_hash_entry *h;
5612	  const char *name;
5613
5614	  cdefs = 0;
5615	  size = 0;
5616
5617	  /* Make space for the base version.  */
5618	  size += sizeof (Elf_External_Verdef);
5619	  size += sizeof (Elf_External_Verdaux);
5620	  ++cdefs;
5621
5622	  /* Make space for the default version.  */
5623	  if (info->create_default_symver)
5624	    {
5625	      size += sizeof (Elf_External_Verdef);
5626	      ++cdefs;
5627	    }
5628
5629	  for (t = verdefs; t != NULL; t = t->next)
5630	    {
5631	      struct bfd_elf_version_deps *n;
5632
5633	      size += sizeof (Elf_External_Verdef);
5634	      size += sizeof (Elf_External_Verdaux);
5635	      ++cdefs;
5636
5637	      for (n = t->deps; n != NULL; n = n->next)
5638		size += sizeof (Elf_External_Verdaux);
5639	    }
5640
5641	  s->size = size;
5642	  s->contents = bfd_alloc (output_bfd, s->size);
5643	  if (s->contents == NULL && s->size != 0)
5644	    return FALSE;
5645
5646	  /* Fill in the version definition section.  */
5647
5648	  p = s->contents;
5649
5650	  def.vd_version = VER_DEF_CURRENT;
5651	  def.vd_flags = VER_FLG_BASE;
5652	  def.vd_ndx = 1;
5653	  def.vd_cnt = 1;
5654	  if (info->create_default_symver)
5655	    {
5656	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5657	      def.vd_next = sizeof (Elf_External_Verdef);
5658	    }
5659	  else
5660	    {
5661	      def.vd_aux = sizeof (Elf_External_Verdef);
5662	      def.vd_next = (sizeof (Elf_External_Verdef)
5663			     + sizeof (Elf_External_Verdaux));
5664	    }
5665
5666	  if (soname_indx != (bfd_size_type) -1)
5667	    {
5668	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5669				      soname_indx);
5670	      def.vd_hash = bfd_elf_hash (soname);
5671	      defaux.vda_name = soname_indx;
5672	      name = soname;
5673	    }
5674	  else
5675	    {
5676	      bfd_size_type indx;
5677
5678	      name = lbasename (output_bfd->filename);
5679	      def.vd_hash = bfd_elf_hash (name);
5680	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5681					  name, FALSE);
5682	      if (indx == (bfd_size_type) -1)
5683		return FALSE;
5684	      defaux.vda_name = indx;
5685	    }
5686	  defaux.vda_next = 0;
5687
5688	  _bfd_elf_swap_verdef_out (output_bfd, &def,
5689				    (Elf_External_Verdef *) p);
5690	  p += sizeof (Elf_External_Verdef);
5691	  if (info->create_default_symver)
5692	    {
5693	      /* Add a symbol representing this version.  */
5694	      bh = NULL;
5695	      if (! (_bfd_generic_link_add_one_symbol
5696		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5697		      0, NULL, FALSE,
5698		      get_elf_backend_data (dynobj)->collect, &bh)))
5699		return FALSE;
5700	      h = (struct elf_link_hash_entry *) bh;
5701	      h->non_elf = 0;
5702	      h->def_regular = 1;
5703	      h->type = STT_OBJECT;
5704	      h->verinfo.vertree = NULL;
5705
5706	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5707		return FALSE;
5708
5709	      /* Create a duplicate of the base version with the same
5710		 aux block, but different flags.  */
5711	      def.vd_flags = 0;
5712	      def.vd_ndx = 2;
5713	      def.vd_aux = sizeof (Elf_External_Verdef);
5714	      if (verdefs)
5715		def.vd_next = (sizeof (Elf_External_Verdef)
5716			       + sizeof (Elf_External_Verdaux));
5717	      else
5718		def.vd_next = 0;
5719	      _bfd_elf_swap_verdef_out (output_bfd, &def,
5720					(Elf_External_Verdef *) p);
5721	      p += sizeof (Elf_External_Verdef);
5722	    }
5723	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5724				     (Elf_External_Verdaux *) p);
5725	  p += sizeof (Elf_External_Verdaux);
5726
5727	  for (t = verdefs; t != NULL; t = t->next)
5728	    {
5729	      unsigned int cdeps;
5730	      struct bfd_elf_version_deps *n;
5731
5732	      cdeps = 0;
5733	      for (n = t->deps; n != NULL; n = n->next)
5734		++cdeps;
5735
5736	      /* Add a symbol representing this version.  */
5737	      bh = NULL;
5738	      if (! (_bfd_generic_link_add_one_symbol
5739		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5740		      0, NULL, FALSE,
5741		      get_elf_backend_data (dynobj)->collect, &bh)))
5742		return FALSE;
5743	      h = (struct elf_link_hash_entry *) bh;
5744	      h->non_elf = 0;
5745	      h->def_regular = 1;
5746	      h->type = STT_OBJECT;
5747	      h->verinfo.vertree = t;
5748
5749	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5750		return FALSE;
5751
5752	      def.vd_version = VER_DEF_CURRENT;
5753	      def.vd_flags = 0;
5754	      if (t->globals.list == NULL
5755		  && t->locals.list == NULL
5756		  && ! t->used)
5757		def.vd_flags |= VER_FLG_WEAK;
5758	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5759	      def.vd_cnt = cdeps + 1;
5760	      def.vd_hash = bfd_elf_hash (t->name);
5761	      def.vd_aux = sizeof (Elf_External_Verdef);
5762	      def.vd_next = 0;
5763	      if (t->next != NULL)
5764		def.vd_next = (sizeof (Elf_External_Verdef)
5765			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5766
5767	      _bfd_elf_swap_verdef_out (output_bfd, &def,
5768					(Elf_External_Verdef *) p);
5769	      p += sizeof (Elf_External_Verdef);
5770
5771	      defaux.vda_name = h->dynstr_index;
5772	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5773				      h->dynstr_index);
5774	      defaux.vda_next = 0;
5775	      if (t->deps != NULL)
5776		defaux.vda_next = sizeof (Elf_External_Verdaux);
5777	      t->name_indx = defaux.vda_name;
5778
5779	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5780					 (Elf_External_Verdaux *) p);
5781	      p += sizeof (Elf_External_Verdaux);
5782
5783	      for (n = t->deps; n != NULL; n = n->next)
5784		{
5785		  if (n->version_needed == NULL)
5786		    {
5787		      /* This can happen if there was an error in the
5788			 version script.  */
5789		      defaux.vda_name = 0;
5790		    }
5791		  else
5792		    {
5793		      defaux.vda_name = n->version_needed->name_indx;
5794		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5795					      defaux.vda_name);
5796		    }
5797		  if (n->next == NULL)
5798		    defaux.vda_next = 0;
5799		  else
5800		    defaux.vda_next = sizeof (Elf_External_Verdaux);
5801
5802		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5803					     (Elf_External_Verdaux *) p);
5804		  p += sizeof (Elf_External_Verdaux);
5805		}
5806	    }
5807
5808	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5809	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5810	    return FALSE;
5811
5812	  elf_tdata (output_bfd)->cverdefs = cdefs;
5813	}
5814
5815      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5816	{
5817	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5818	    return FALSE;
5819	}
5820      else if (info->flags & DF_BIND_NOW)
5821	{
5822	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5823	    return FALSE;
5824	}
5825
5826      if (info->flags_1)
5827	{
5828	  if (info->executable)
5829	    info->flags_1 &= ~ (DF_1_INITFIRST
5830				| DF_1_NODELETE
5831				| DF_1_NOOPEN);
5832	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5833	    return FALSE;
5834	}
5835
5836      /* Work out the size of the version reference section.  */
5837
5838      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5839      BFD_ASSERT (s != NULL);
5840      {
5841	struct elf_find_verdep_info sinfo;
5842
5843	sinfo.output_bfd = output_bfd;
5844	sinfo.info = info;
5845	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5846	if (sinfo.vers == 0)
5847	  sinfo.vers = 1;
5848	sinfo.failed = FALSE;
5849
5850	elf_link_hash_traverse (elf_hash_table (info),
5851				_bfd_elf_link_find_version_dependencies,
5852				&sinfo);
5853
5854	if (elf_tdata (output_bfd)->verref == NULL)
5855	  s->flags |= SEC_EXCLUDE;
5856	else
5857	  {
5858	    Elf_Internal_Verneed *t;
5859	    unsigned int size;
5860	    unsigned int crefs;
5861	    bfd_byte *p;
5862
5863	    /* Build the version definition section.  */
5864	    size = 0;
5865	    crefs = 0;
5866	    for (t = elf_tdata (output_bfd)->verref;
5867		 t != NULL;
5868		 t = t->vn_nextref)
5869	      {
5870		Elf_Internal_Vernaux *a;
5871
5872		size += sizeof (Elf_External_Verneed);
5873		++crefs;
5874		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5875		  size += sizeof (Elf_External_Vernaux);
5876	      }
5877
5878	    s->size = size;
5879	    s->contents = bfd_alloc (output_bfd, s->size);
5880	    if (s->contents == NULL)
5881	      return FALSE;
5882
5883	    p = s->contents;
5884	    for (t = elf_tdata (output_bfd)->verref;
5885		 t != NULL;
5886		 t = t->vn_nextref)
5887	      {
5888		unsigned int caux;
5889		Elf_Internal_Vernaux *a;
5890		bfd_size_type indx;
5891
5892		caux = 0;
5893		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5894		  ++caux;
5895
5896		t->vn_version = VER_NEED_CURRENT;
5897		t->vn_cnt = caux;
5898		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5899					    elf_dt_name (t->vn_bfd) != NULL
5900					    ? elf_dt_name (t->vn_bfd)
5901					    : lbasename (t->vn_bfd->filename),
5902					    FALSE);
5903		if (indx == (bfd_size_type) -1)
5904		  return FALSE;
5905		t->vn_file = indx;
5906		t->vn_aux = sizeof (Elf_External_Verneed);
5907		if (t->vn_nextref == NULL)
5908		  t->vn_next = 0;
5909		else
5910		  t->vn_next = (sizeof (Elf_External_Verneed)
5911				+ caux * sizeof (Elf_External_Vernaux));
5912
5913		_bfd_elf_swap_verneed_out (output_bfd, t,
5914					   (Elf_External_Verneed *) p);
5915		p += sizeof (Elf_External_Verneed);
5916
5917		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5918		  {
5919		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
5920		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5921						a->vna_nodename, FALSE);
5922		    if (indx == (bfd_size_type) -1)
5923		      return FALSE;
5924		    a->vna_name = indx;
5925		    if (a->vna_nextptr == NULL)
5926		      a->vna_next = 0;
5927		    else
5928		      a->vna_next = sizeof (Elf_External_Vernaux);
5929
5930		    _bfd_elf_swap_vernaux_out (output_bfd, a,
5931					       (Elf_External_Vernaux *) p);
5932		    p += sizeof (Elf_External_Vernaux);
5933		  }
5934	      }
5935
5936	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5937		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5938	      return FALSE;
5939
5940	    elf_tdata (output_bfd)->cverrefs = crefs;
5941	  }
5942      }
5943
5944      if ((elf_tdata (output_bfd)->cverrefs == 0
5945	   && elf_tdata (output_bfd)->cverdefs == 0)
5946	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5947					     &section_sym_count) == 0)
5948	{
5949	  s = bfd_get_section_by_name (dynobj, ".gnu.version");
5950	  s->flags |= SEC_EXCLUDE;
5951	}
5952    }
5953  return TRUE;
5954}
5955
5956/* Find the first non-excluded output section.  We'll use its
5957   section symbol for some emitted relocs.  */
5958void
5959_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
5960{
5961  asection *s;
5962
5963  for (s = output_bfd->sections; s != NULL; s = s->next)
5964    if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
5965	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5966      {
5967	elf_hash_table (info)->text_index_section = s;
5968	break;
5969      }
5970}
5971
5972/* Find two non-excluded output sections, one for code, one for data.
5973   We'll use their section symbols for some emitted relocs.  */
5974void
5975_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
5976{
5977  asection *s;
5978
5979  for (s = output_bfd->sections; s != NULL; s = s->next)
5980    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
5981	 == (SEC_ALLOC | SEC_READONLY))
5982	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5983      {
5984	elf_hash_table (info)->text_index_section = s;
5985	break;
5986      }
5987
5988  for (s = output_bfd->sections; s != NULL; s = s->next)
5989    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
5990	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5991      {
5992	elf_hash_table (info)->data_index_section = s;
5993	break;
5994      }
5995
5996  if (elf_hash_table (info)->text_index_section == NULL)
5997    elf_hash_table (info)->text_index_section
5998      = elf_hash_table (info)->data_index_section;
5999}
6000
6001bfd_boolean
6002bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6003{
6004  const struct elf_backend_data *bed;
6005
6006  if (!is_elf_hash_table (info->hash))
6007    return TRUE;
6008
6009  bed = get_elf_backend_data (output_bfd);
6010  (*bed->elf_backend_init_index_section) (output_bfd, info);
6011
6012  if (elf_hash_table (info)->dynamic_sections_created)
6013    {
6014      bfd *dynobj;
6015      asection *s;
6016      bfd_size_type dynsymcount;
6017      unsigned long section_sym_count;
6018      unsigned int dtagcount;
6019
6020      dynobj = elf_hash_table (info)->dynobj;
6021
6022      /* Assign dynsym indicies.  In a shared library we generate a
6023	 section symbol for each output section, which come first.
6024	 Next come all of the back-end allocated local dynamic syms,
6025	 followed by the rest of the global symbols.  */
6026
6027      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6028						    &section_sym_count);
6029
6030      /* Work out the size of the symbol version section.  */
6031      s = bfd_get_section_by_name (dynobj, ".gnu.version");
6032      BFD_ASSERT (s != NULL);
6033      if (dynsymcount != 0
6034	  && (s->flags & SEC_EXCLUDE) == 0)
6035	{
6036	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6037	  s->contents = bfd_zalloc (output_bfd, s->size);
6038	  if (s->contents == NULL)
6039	    return FALSE;
6040
6041	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6042	    return FALSE;
6043	}
6044
6045      /* Set the size of the .dynsym and .hash sections.  We counted
6046	 the number of dynamic symbols in elf_link_add_object_symbols.
6047	 We will build the contents of .dynsym and .hash when we build
6048	 the final symbol table, because until then we do not know the
6049	 correct value to give the symbols.  We built the .dynstr
6050	 section as we went along in elf_link_add_object_symbols.  */
6051      s = bfd_get_section_by_name (dynobj, ".dynsym");
6052      BFD_ASSERT (s != NULL);
6053      s->size = dynsymcount * bed->s->sizeof_sym;
6054
6055      if (dynsymcount != 0)
6056	{
6057	  s->contents = bfd_alloc (output_bfd, s->size);
6058	  if (s->contents == NULL)
6059	    return FALSE;
6060
6061	  /* The first entry in .dynsym is a dummy symbol.
6062	     Clear all the section syms, in case we don't output them all.  */
6063	  ++section_sym_count;
6064	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6065	}
6066
6067      elf_hash_table (info)->bucketcount = 0;
6068
6069      /* Compute the size of the hashing table.  As a side effect this
6070	 computes the hash values for all the names we export.  */
6071      if (info->emit_hash)
6072	{
6073	  unsigned long int *hashcodes;
6074	  unsigned long int *hashcodesp;
6075	  bfd_size_type amt;
6076	  unsigned long int nsyms;
6077	  size_t bucketcount;
6078	  size_t hash_entry_size;
6079
6080	  /* Compute the hash values for all exported symbols.  At the same
6081	     time store the values in an array so that we could use them for
6082	     optimizations.  */
6083	  amt = dynsymcount * sizeof (unsigned long int);
6084	  hashcodes = bfd_malloc (amt);
6085	  if (hashcodes == NULL)
6086	    return FALSE;
6087	  hashcodesp = hashcodes;
6088
6089	  /* Put all hash values in HASHCODES.  */
6090	  elf_link_hash_traverse (elf_hash_table (info),
6091				  elf_collect_hash_codes, &hashcodesp);
6092
6093	  nsyms = hashcodesp - hashcodes;
6094	  bucketcount
6095	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6096	  free (hashcodes);
6097
6098	  if (bucketcount == 0)
6099	    return FALSE;
6100
6101	  elf_hash_table (info)->bucketcount = bucketcount;
6102
6103	  s = bfd_get_section_by_name (dynobj, ".hash");
6104	  BFD_ASSERT (s != NULL);
6105	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6106	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6107	  s->contents = bfd_zalloc (output_bfd, s->size);
6108	  if (s->contents == NULL)
6109	    return FALSE;
6110
6111	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6112	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6113		   s->contents + hash_entry_size);
6114	}
6115
6116      if (info->emit_gnu_hash)
6117	{
6118	  size_t i, cnt;
6119	  unsigned char *contents;
6120	  struct collect_gnu_hash_codes cinfo;
6121	  bfd_size_type amt;
6122	  size_t bucketcount;
6123
6124	  memset (&cinfo, 0, sizeof (cinfo));
6125
6126	  /* Compute the hash values for all exported symbols.  At the same
6127	     time store the values in an array so that we could use them for
6128	     optimizations.  */
6129	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6130	  cinfo.hashcodes = bfd_malloc (amt);
6131	  if (cinfo.hashcodes == NULL)
6132	    return FALSE;
6133
6134	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6135	  cinfo.min_dynindx = -1;
6136	  cinfo.output_bfd = output_bfd;
6137	  cinfo.bed = bed;
6138
6139	  /* Put all hash values in HASHCODES.  */
6140	  elf_link_hash_traverse (elf_hash_table (info),
6141				  elf_collect_gnu_hash_codes, &cinfo);
6142
6143	  bucketcount
6144	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6145
6146	  if (bucketcount == 0)
6147	    {
6148	      free (cinfo.hashcodes);
6149	      return FALSE;
6150	    }
6151
6152	  s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6153	  BFD_ASSERT (s != NULL);
6154
6155	  if (cinfo.nsyms == 0)
6156	    {
6157	      /* Empty .gnu.hash section is special.  */
6158	      BFD_ASSERT (cinfo.min_dynindx == -1);
6159	      free (cinfo.hashcodes);
6160	      s->size = 5 * 4 + bed->s->arch_size / 8;
6161	      contents = bfd_zalloc (output_bfd, s->size);
6162	      if (contents == NULL)
6163		return FALSE;
6164	      s->contents = contents;
6165	      /* 1 empty bucket.  */
6166	      bfd_put_32 (output_bfd, 1, contents);
6167	      /* SYMIDX above the special symbol 0.  */
6168	      bfd_put_32 (output_bfd, 1, contents + 4);
6169	      /* Just one word for bitmask.  */
6170	      bfd_put_32 (output_bfd, 1, contents + 8);
6171	      /* Only hash fn bloom filter.  */
6172	      bfd_put_32 (output_bfd, 0, contents + 12);
6173	      /* No hashes are valid - empty bitmask.  */
6174	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6175	      /* No hashes in the only bucket.  */
6176	      bfd_put_32 (output_bfd, 0,
6177			  contents + 16 + bed->s->arch_size / 8);
6178	    }
6179	  else
6180	    {
6181	      unsigned long int maskwords, maskbitslog2;
6182	      BFD_ASSERT (cinfo.min_dynindx != -1);
6183
6184	      maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6185	      if (maskbitslog2 < 3)
6186		maskbitslog2 = 5;
6187	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6188		maskbitslog2 = maskbitslog2 + 3;
6189	      else
6190		maskbitslog2 = maskbitslog2 + 2;
6191	      if (bed->s->arch_size == 64)
6192		{
6193		  if (maskbitslog2 == 5)
6194		    maskbitslog2 = 6;
6195		  cinfo.shift1 = 6;
6196		}
6197	      else
6198		cinfo.shift1 = 5;
6199	      cinfo.mask = (1 << cinfo.shift1) - 1;
6200	      cinfo.shift2 = maskbitslog2;
6201	      cinfo.maskbits = 1 << maskbitslog2;
6202	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6203	      amt = bucketcount * sizeof (unsigned long int) * 2;
6204	      amt += maskwords * sizeof (bfd_vma);
6205	      cinfo.bitmask = bfd_malloc (amt);
6206	      if (cinfo.bitmask == NULL)
6207		{
6208		  free (cinfo.hashcodes);
6209		  return FALSE;
6210		}
6211
6212	      cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6213	      cinfo.indx = cinfo.counts + bucketcount;
6214	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6215	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6216
6217	      /* Determine how often each hash bucket is used.  */
6218	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6219	      for (i = 0; i < cinfo.nsyms; ++i)
6220		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6221
6222	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6223		if (cinfo.counts[i] != 0)
6224		  {
6225		    cinfo.indx[i] = cnt;
6226		    cnt += cinfo.counts[i];
6227		  }
6228	      BFD_ASSERT (cnt == dynsymcount);
6229	      cinfo.bucketcount = bucketcount;
6230	      cinfo.local_indx = cinfo.min_dynindx;
6231
6232	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6233	      s->size += cinfo.maskbits / 8;
6234	      contents = bfd_zalloc (output_bfd, s->size);
6235	      if (contents == NULL)
6236		{
6237		  free (cinfo.bitmask);
6238		  free (cinfo.hashcodes);
6239		  return FALSE;
6240		}
6241
6242	      s->contents = contents;
6243	      bfd_put_32 (output_bfd, bucketcount, contents);
6244	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6245	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6246	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6247	      contents += 16 + cinfo.maskbits / 8;
6248
6249	      for (i = 0; i < bucketcount; ++i)
6250		{
6251		  if (cinfo.counts[i] == 0)
6252		    bfd_put_32 (output_bfd, 0, contents);
6253		  else
6254		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6255		  contents += 4;
6256		}
6257
6258	      cinfo.contents = contents;
6259
6260	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6261	      elf_link_hash_traverse (elf_hash_table (info),
6262				      elf_renumber_gnu_hash_syms, &cinfo);
6263
6264	      contents = s->contents + 16;
6265	      for (i = 0; i < maskwords; ++i)
6266		{
6267		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6268			   contents);
6269		  contents += bed->s->arch_size / 8;
6270		}
6271
6272	      free (cinfo.bitmask);
6273	      free (cinfo.hashcodes);
6274	    }
6275	}
6276
6277      s = bfd_get_section_by_name (dynobj, ".dynstr");
6278      BFD_ASSERT (s != NULL);
6279
6280      elf_finalize_dynstr (output_bfd, info);
6281
6282      s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6283
6284      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6285	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6286	  return FALSE;
6287    }
6288
6289  return TRUE;
6290}
6291
6292/* Final phase of ELF linker.  */
6293
6294/* A structure we use to avoid passing large numbers of arguments.  */
6295
6296struct elf_final_link_info
6297{
6298  /* General link information.  */
6299  struct bfd_link_info *info;
6300  /* Output BFD.  */
6301  bfd *output_bfd;
6302  /* Symbol string table.  */
6303  struct bfd_strtab_hash *symstrtab;
6304  /* .dynsym section.  */
6305  asection *dynsym_sec;
6306  /* .hash section.  */
6307  asection *hash_sec;
6308  /* symbol version section (.gnu.version).  */
6309  asection *symver_sec;
6310  /* Buffer large enough to hold contents of any section.  */
6311  bfd_byte *contents;
6312  /* Buffer large enough to hold external relocs of any section.  */
6313  void *external_relocs;
6314  /* Buffer large enough to hold internal relocs of any section.  */
6315  Elf_Internal_Rela *internal_relocs;
6316  /* Buffer large enough to hold external local symbols of any input
6317     BFD.  */
6318  bfd_byte *external_syms;
6319  /* And a buffer for symbol section indices.  */
6320  Elf_External_Sym_Shndx *locsym_shndx;
6321  /* Buffer large enough to hold internal local symbols of any input
6322     BFD.  */
6323  Elf_Internal_Sym *internal_syms;
6324  /* Array large enough to hold a symbol index for each local symbol
6325     of any input BFD.  */
6326  long *indices;
6327  /* Array large enough to hold a section pointer for each local
6328     symbol of any input BFD.  */
6329  asection **sections;
6330  /* Buffer to hold swapped out symbols.  */
6331  bfd_byte *symbuf;
6332  /* And one for symbol section indices.  */
6333  Elf_External_Sym_Shndx *symshndxbuf;
6334  /* Number of swapped out symbols in buffer.  */
6335  size_t symbuf_count;
6336  /* Number of symbols which fit in symbuf.  */
6337  size_t symbuf_size;
6338  /* And same for symshndxbuf.  */
6339  size_t shndxbuf_size;
6340};
6341
6342/* This struct is used to pass information to elf_link_output_extsym.  */
6343
6344struct elf_outext_info
6345{
6346  bfd_boolean failed;
6347  bfd_boolean localsyms;
6348  struct elf_final_link_info *finfo;
6349};
6350
6351
6352/* Support for evaluating a complex relocation.
6353
6354   Complex relocations are generalized, self-describing relocations.  The
6355   implementation of them consists of two parts: complex symbols, and the
6356   relocations themselves.
6357
6358   The relocations are use a reserved elf-wide relocation type code (R_RELC
6359   external / BFD_RELOC_RELC internal) and an encoding of relocation field
6360   information (start bit, end bit, word width, etc) into the addend.  This
6361   information is extracted from CGEN-generated operand tables within gas.
6362
6363   Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
6364   internal) representing prefix-notation expressions, including but not
6365   limited to those sorts of expressions normally encoded as addends in the
6366   addend field.  The symbol mangling format is:
6367
6368   <node> := <literal>
6369          |  <unary-operator> ':' <node>
6370          |  <binary-operator> ':' <node> ':' <node>
6371	  ;
6372
6373   <literal> := 's' <digits=N> ':' <N character symbol name>
6374             |  'S' <digits=N> ':' <N character section name>
6375	     |  '#' <hexdigits>
6376	     ;
6377
6378   <binary-operator> := as in C
6379   <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
6380
6381static void
6382set_symbol_value (bfd *                         bfd_with_globals,
6383		  struct elf_final_link_info *  finfo,
6384		  int                           symidx,
6385		  bfd_vma                       val)
6386{
6387  bfd_boolean                    is_local;
6388  Elf_Internal_Sym *             sym;
6389  struct elf_link_hash_entry **  sym_hashes;
6390  struct elf_link_hash_entry *   h;
6391
6392  sym_hashes = elf_sym_hashes (bfd_with_globals);
6393  sym = finfo->internal_syms + symidx;
6394  is_local = ELF_ST_BIND(sym->st_info) == STB_LOCAL;
6395
6396  if (is_local)
6397    {
6398      /* It is a local symbol: move it to the
6399	 "absolute" section and give it a value.  */
6400      sym->st_shndx = SHN_ABS;
6401      sym->st_value = val;
6402    }
6403  else
6404    {
6405      /* It is a global symbol: set its link type
6406	 to "defined" and give it a value.  */
6407      h = sym_hashes [symidx];
6408      while (h->root.type == bfd_link_hash_indirect
6409	     || h->root.type == bfd_link_hash_warning)
6410	h = (struct elf_link_hash_entry *) h->root.u.i.link;
6411      h->root.type = bfd_link_hash_defined;
6412      h->root.u.def.value = val;
6413      h->root.u.def.section = bfd_abs_section_ptr;
6414    }
6415}
6416
6417static bfd_boolean
6418resolve_symbol (const char *                  name,
6419		bfd *                         input_bfd,
6420		struct elf_final_link_info *  finfo,
6421		bfd_vma *                     result,
6422		size_t                        locsymcount)
6423{
6424  Elf_Internal_Sym *            sym;
6425  struct bfd_link_hash_entry *  global_entry;
6426  const char *                  candidate = NULL;
6427  Elf_Internal_Shdr *           symtab_hdr;
6428  asection *                    sec = NULL;
6429  size_t                        i;
6430
6431  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6432
6433  for (i = 0; i < locsymcount; ++ i)
6434    {
6435      sym = finfo->internal_syms + i;
6436      sec = finfo->sections [i];
6437
6438      if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
6439	continue;
6440
6441      candidate = bfd_elf_string_from_elf_section (input_bfd,
6442						   symtab_hdr->sh_link,
6443						   sym->st_name);
6444#ifdef DEBUG
6445      printf ("Comparing string: '%s' vs. '%s' = 0x%x\n",
6446	      name, candidate, (unsigned int)sym->st_value);
6447#endif
6448      if (candidate && strcmp (candidate, name) == 0)
6449	{
6450	  * result = sym->st_value;
6451
6452	  if (sym->st_shndx > SHN_UNDEF &&
6453	      sym->st_shndx < SHN_LORESERVE)
6454	    {
6455#ifdef DEBUG
6456	      printf ("adjusting for sec '%s' @ 0x%x + 0x%x\n",
6457		      sec->output_section->name,
6458		      (unsigned int)sec->output_section->vma,
6459		      (unsigned int)sec->output_offset);
6460#endif
6461	      * result += sec->output_offset + sec->output_section->vma;
6462	    }
6463#ifdef DEBUG
6464	  printf ("Found symbol with effective value %8.8x\n", (unsigned int)* result);
6465#endif
6466	  return TRUE;
6467	}
6468    }
6469
6470  /* Hmm, haven't found it yet. perhaps it is a global.  */
6471  global_entry = bfd_link_hash_lookup (finfo->info->hash, name, FALSE, FALSE, TRUE);
6472  if (!global_entry)
6473    return FALSE;
6474
6475  if (global_entry->type == bfd_link_hash_defined
6476      || global_entry->type == bfd_link_hash_defweak)
6477    {
6478      * result = global_entry->u.def.value
6479	+ global_entry->u.def.section->output_section->vma
6480	+ global_entry->u.def.section->output_offset;
6481#ifdef DEBUG
6482      printf ("Found GLOBAL symbol '%s' with value %8.8x\n",
6483	      global_entry->root.string, (unsigned int)*result);
6484#endif
6485      return TRUE;
6486    }
6487
6488  if (global_entry->type == bfd_link_hash_common)
6489    {
6490      *result = global_entry->u.def.value +
6491	bfd_com_section_ptr->output_section->vma +
6492	bfd_com_section_ptr->output_offset;
6493#ifdef DEBUG
6494      printf ("Found COMMON symbol '%s' with value %8.8x\n",
6495	      global_entry->root.string, (unsigned int)*result);
6496#endif
6497      return TRUE;
6498    }
6499
6500  return FALSE;
6501}
6502
6503static bfd_boolean
6504resolve_section (const char *  name,
6505		 asection *    sections,
6506		 bfd_vma *     result)
6507{
6508  asection *    curr;
6509  unsigned int  len;
6510
6511  for (curr = sections; curr; curr = curr->next)
6512    if (strcmp (curr->name, name) == 0)
6513      {
6514	*result = curr->vma;
6515	return TRUE;
6516      }
6517
6518  /* Hmm. still haven't found it. try pseudo-section names.  */
6519  for (curr = sections; curr; curr = curr->next)
6520    {
6521      len = strlen (curr->name);
6522      if (len > strlen (name))
6523	continue;
6524
6525      if (strncmp (curr->name, name, len) == 0)
6526	{
6527	  if (strncmp (".end", name + len, 4) == 0)
6528	    {
6529	      *result = curr->vma + curr->size;
6530	      return TRUE;
6531	    }
6532
6533	  /* Insert more pseudo-section names here, if you like.  */
6534	}
6535    }
6536
6537  return FALSE;
6538}
6539
6540static void
6541undefined_reference (const char *  reftype,
6542		     const char *  name)
6543{
6544  _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), reftype, name);
6545}
6546
6547static bfd_boolean
6548eval_symbol (bfd_vma *                     result,
6549	     char *                        sym,
6550	     char **                       advanced,
6551	     bfd *                         input_bfd,
6552	     struct elf_final_link_info *  finfo,
6553	     bfd_vma                       addr,
6554	     bfd_vma                       section_offset,
6555	     size_t                        locsymcount,
6556	     int                           signed_p)
6557{
6558  int           len;
6559  int           symlen;
6560  bfd_vma       a;
6561  bfd_vma       b;
6562  const int     bufsz = 4096;
6563  char          symbuf [bufsz];
6564  const char *  symend;
6565  bfd_boolean   symbol_is_section = FALSE;
6566
6567  len = strlen (sym);
6568  symend = sym + len;
6569
6570  if (len < 1 || len > bufsz)
6571    {
6572      bfd_set_error (bfd_error_invalid_operation);
6573      return FALSE;
6574    }
6575
6576  switch (* sym)
6577    {
6578    case '.':
6579      * result = addr + section_offset;
6580      * advanced = sym + 1;
6581      return TRUE;
6582
6583    case '#':
6584      ++ sym;
6585      * result = strtoul (sym, advanced, 16);
6586      return TRUE;
6587
6588    case 'S':
6589      symbol_is_section = TRUE;
6590    case 's':
6591      ++ sym;
6592      symlen = strtol (sym, &sym, 10);
6593      ++ sym; /* Skip the trailing ':'.  */
6594
6595      if ((symend < sym) || ((symlen + 1) > bufsz))
6596	{
6597	  bfd_set_error (bfd_error_invalid_operation);
6598	  return FALSE;
6599	}
6600
6601      memcpy (symbuf, sym, symlen);
6602      symbuf [symlen] = '\0';
6603      * advanced = sym + symlen;
6604
6605      /* Is it always possible, with complex symbols, that gas "mis-guessed"
6606	 the symbol as a section, or vice-versa. so we're pretty liberal in our
6607	 interpretation here; section means "try section first", not "must be a
6608	 section", and likewise with symbol.  */
6609
6610      if (symbol_is_section)
6611	{
6612	  if ((resolve_section (symbuf, finfo->output_bfd->sections, result) != TRUE)
6613	      && (resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE))
6614	    {
6615	      undefined_reference ("section", symbuf);
6616	      return FALSE;
6617	    }
6618	}
6619      else
6620	{
6621	  if ((resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE)
6622	      && (resolve_section (symbuf, finfo->output_bfd->sections,
6623				   result) != TRUE))
6624	    {
6625	      undefined_reference ("symbol", symbuf);
6626	      return FALSE;
6627	    }
6628	}
6629
6630      return TRUE;
6631
6632      /* All that remains are operators.  */
6633
6634#define UNARY_OP(op)						\
6635  if (strncmp (sym, #op, strlen (#op)) == 0)			\
6636    {								\
6637      sym += strlen (#op);					\
6638      if (* sym == ':')						\
6639        ++ sym;							\
6640      if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
6641                       section_offset, locsymcount, signed_p)   \
6642	                                             != TRUE)	\
6643        return FALSE;						\
6644      if (signed_p)                                             \
6645        * result = op ((signed)a);         			\
6646      else                                                      \
6647        * result = op a;                                        \
6648      * advanced = sym; 					\
6649      return TRUE;						\
6650    }
6651
6652#define BINARY_OP(op)						\
6653  if (strncmp (sym, #op, strlen (#op)) == 0)			\
6654    {								\
6655      sym += strlen (#op);					\
6656      if (* sym == ':')						\
6657        ++ sym;							\
6658      if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
6659                       section_offset, locsymcount, signed_p)   \
6660                                                     != TRUE)	\
6661        return FALSE;						\
6662      ++ sym;							\
6663      if (eval_symbol (& b, sym, & sym, input_bfd, finfo, addr, \
6664                       section_offset, locsymcount, signed_p)   \
6665                                                     != TRUE)	\
6666        return FALSE;						\
6667      if (signed_p)                                             \
6668        * result = ((signed) a) op ((signed) b);	        \
6669      else                                                      \
6670        * result = a op b;                                      \
6671      * advanced = sym;						\
6672      return TRUE;						\
6673    }
6674
6675    default:
6676      UNARY_OP  (0-);
6677      BINARY_OP (<<);
6678      BINARY_OP (>>);
6679      BINARY_OP (==);
6680      BINARY_OP (!=);
6681      BINARY_OP (<=);
6682      BINARY_OP (>=);
6683      BINARY_OP (&&);
6684      BINARY_OP (||);
6685      UNARY_OP  (~);
6686      UNARY_OP  (!);
6687      BINARY_OP (*);
6688      BINARY_OP (/);
6689      BINARY_OP (%);
6690      BINARY_OP (^);
6691      BINARY_OP (|);
6692      BINARY_OP (&);
6693      BINARY_OP (+);
6694      BINARY_OP (-);
6695      BINARY_OP (<);
6696      BINARY_OP (>);
6697#undef UNARY_OP
6698#undef BINARY_OP
6699      _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
6700      bfd_set_error (bfd_error_invalid_operation);
6701      return FALSE;
6702    }
6703}
6704
6705/* Entry point to evaluator, called from elf_link_input_bfd.  */
6706
6707static bfd_boolean
6708evaluate_complex_relocation_symbols (bfd * input_bfd,
6709				     struct elf_final_link_info * finfo,
6710				     size_t locsymcount)
6711{
6712  const struct elf_backend_data * bed;
6713  Elf_Internal_Shdr *             symtab_hdr;
6714  struct elf_link_hash_entry **   sym_hashes;
6715  asection *                      reloc_sec;
6716  bfd_boolean                     result = TRUE;
6717
6718  /* For each section, we're going to check and see if it has any
6719     complex relocations, and we're going to evaluate any of them
6720     we can.  */
6721
6722  if (finfo->info->relocatable)
6723    return TRUE;
6724
6725  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6726  sym_hashes = elf_sym_hashes (input_bfd);
6727  bed = get_elf_backend_data (input_bfd);
6728
6729  for (reloc_sec = input_bfd->sections; reloc_sec; reloc_sec = reloc_sec->next)
6730    {
6731      Elf_Internal_Rela * internal_relocs;
6732      unsigned long i;
6733
6734      /* This section was omitted from the link.  */
6735      if (! reloc_sec->linker_mark)
6736	continue;
6737
6738      /* Only process sections containing relocs.  */
6739      if ((reloc_sec->flags & SEC_RELOC) == 0)
6740	continue;
6741
6742      if (reloc_sec->reloc_count == 0)
6743	continue;
6744
6745      /* Read in the relocs for this section.  */
6746      internal_relocs
6747	= _bfd_elf_link_read_relocs (input_bfd, reloc_sec, NULL,
6748				     (Elf_Internal_Rela *) NULL,
6749				     FALSE);
6750      if (internal_relocs == NULL)
6751	continue;
6752
6753      for (i = reloc_sec->reloc_count; i--;)
6754	{
6755	  Elf_Internal_Rela * rel;
6756	  char * sym_name;
6757	  unsigned long index;
6758	  Elf_Internal_Sym * sym;
6759	  bfd_vma result;
6760	  bfd_vma section_offset;
6761	  bfd_vma addr;
6762	  int signed_p = 0;
6763
6764	  rel = internal_relocs + i;
6765	  section_offset = reloc_sec->output_section->vma
6766	    + reloc_sec->output_offset;
6767	  addr = rel->r_offset;
6768
6769	  index = ELF32_R_SYM (rel->r_info);
6770	  if (bed->s->arch_size == 64)
6771	    index >>= 24;
6772
6773	  if (index < locsymcount)
6774	    {
6775	      /* The symbol is local.  */
6776	      sym = finfo->internal_syms + index;
6777
6778	      /* We're only processing STT_RELC or STT_SRELC type symbols.  */
6779	      if ((ELF_ST_TYPE (sym->st_info) != STT_RELC) &&
6780		  (ELF_ST_TYPE (sym->st_info) != STT_SRELC))
6781		continue;
6782
6783	      sym_name = bfd_elf_string_from_elf_section
6784		(input_bfd, symtab_hdr->sh_link, sym->st_name);
6785
6786	      signed_p = (ELF_ST_TYPE (sym->st_info) == STT_SRELC);
6787	    }
6788	  else
6789	    {
6790	      /* The symbol is global.  */
6791	      struct elf_link_hash_entry * h;
6792
6793	      if (elf_bad_symtab (input_bfd))
6794		continue;
6795
6796	      h = sym_hashes [index - locsymcount];
6797	      while (   h->root.type == bfd_link_hash_indirect
6798		     || h->root.type == bfd_link_hash_warning)
6799		h = (struct elf_link_hash_entry *) h->root.u.i.link;
6800
6801	      if (h->type != STT_RELC && h->type != STT_SRELC)
6802		continue;
6803
6804	      signed_p = (h->type == STT_SRELC);
6805	      sym_name = (char *) h->root.root.string;
6806	    }
6807#ifdef DEBUG
6808	  printf ("Encountered a complex symbol!");
6809	  printf (" (input_bfd %s, section %s, reloc %ld\n",
6810		  input_bfd->filename, reloc_sec->name, i);
6811	  printf (" symbol: idx  %8.8lx, name %s\n",
6812		  index, sym_name);
6813	  printf (" reloc : info %8.8lx, addr %8.8lx\n",
6814		  rel->r_info, addr);
6815	  printf (" Evaluating '%s' ...\n ", sym_name);
6816#endif
6817	  if (eval_symbol (& result, sym_name, & sym_name, input_bfd,
6818			   finfo, addr, section_offset, locsymcount,
6819			   signed_p))
6820	    /* Symbol evaluated OK.  Update to absolute value.  */
6821	    set_symbol_value (input_bfd, finfo, index, result);
6822
6823	  else
6824	    result = FALSE;
6825	}
6826
6827      if (internal_relocs != elf_section_data (reloc_sec)->relocs)
6828	free (internal_relocs);
6829    }
6830
6831  /* If nothing went wrong, then we adjusted
6832     everything we wanted to adjust.  */
6833  return result;
6834}
6835
6836static void
6837put_value (bfd_vma        size,
6838	   unsigned long  chunksz,
6839	   bfd *          input_bfd,
6840	   bfd_vma        x,
6841	   bfd_byte *     location)
6842{
6843  location += (size - chunksz);
6844
6845  for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
6846    {
6847      switch (chunksz)
6848	{
6849	default:
6850	case 0:
6851	  abort ();
6852	case 1:
6853	  bfd_put_8 (input_bfd, x, location);
6854	  break;
6855	case 2:
6856	  bfd_put_16 (input_bfd, x, location);
6857	  break;
6858	case 4:
6859	  bfd_put_32 (input_bfd, x, location);
6860	  break;
6861	case 8:
6862#ifdef BFD64
6863	  bfd_put_64 (input_bfd, x, location);
6864#else
6865	  abort ();
6866#endif
6867	  break;
6868	}
6869    }
6870}
6871
6872static bfd_vma
6873get_value (bfd_vma        size,
6874	   unsigned long  chunksz,
6875	   bfd *          input_bfd,
6876	   bfd_byte *     location)
6877{
6878  bfd_vma x = 0;
6879
6880  for (; size; size -= chunksz, location += chunksz)
6881    {
6882      switch (chunksz)
6883	{
6884	default:
6885	case 0:
6886	  abort ();
6887	case 1:
6888	  x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
6889	  break;
6890	case 2:
6891	  x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
6892	  break;
6893	case 4:
6894	  x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
6895	  break;
6896	case 8:
6897#ifdef BFD64
6898	  x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
6899#else
6900	  abort ();
6901#endif
6902	  break;
6903	}
6904    }
6905  return x;
6906}
6907
6908static void
6909decode_complex_addend
6910    (unsigned long * start,   /* in bits */
6911     unsigned long * oplen,   /* in bits */
6912     unsigned long * len,     /* in bits */
6913     unsigned long * wordsz,  /* in bytes */
6914     unsigned long * chunksz,  /* in bytes */
6915     unsigned long * lsb0_p,
6916     unsigned long * signed_p,
6917     unsigned long * trunc_p,
6918     unsigned long encoded)
6919{
6920  * start     =  encoded        & 0x3F;
6921  * len       = (encoded >>  6) & 0x3F;
6922  * oplen     = (encoded >> 12) & 0x3F;
6923  * wordsz    = (encoded >> 18) & 0xF;
6924  * chunksz   = (encoded >> 22) & 0xF;
6925  * lsb0_p    = (encoded >> 27) & 1;
6926  * signed_p  = (encoded >> 28) & 1;
6927  * trunc_p   = (encoded >> 29) & 1;
6928}
6929
6930void
6931bfd_elf_perform_complex_relocation
6932    (bfd *                   output_bfd ATTRIBUTE_UNUSED,
6933     struct bfd_link_info *  info,
6934     bfd *                   input_bfd,
6935     asection *              input_section,
6936     bfd_byte *              contents,
6937     Elf_Internal_Rela *     rel,
6938     Elf_Internal_Sym *      local_syms,
6939     asection **             local_sections)
6940{
6941  const struct elf_backend_data * bed;
6942  Elf_Internal_Shdr * symtab_hdr;
6943  asection * sec;
6944  bfd_vma relocation = 0, shift, x;
6945  unsigned long r_symndx;
6946  bfd_vma mask;
6947  unsigned long start, oplen, len, wordsz,
6948    chunksz, lsb0_p, signed_p, trunc_p;
6949
6950  /*  Perform this reloc, since it is complex.
6951      (this is not to say that it necessarily refers to a complex
6952      symbol; merely that it is a self-describing CGEN based reloc.
6953      i.e. the addend has the complete reloc information (bit start, end,
6954      word size, etc) encoded within it.).  */
6955  r_symndx = ELF32_R_SYM (rel->r_info);
6956  bed = get_elf_backend_data (input_bfd);
6957  if (bed->s->arch_size == 64)
6958    r_symndx >>= 24;
6959
6960#ifdef DEBUG
6961  printf ("Performing complex relocation %ld...\n", r_symndx);
6962#endif
6963
6964  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6965  if (r_symndx < symtab_hdr->sh_info)
6966    {
6967      /* The symbol is local.  */
6968      Elf_Internal_Sym * sym;
6969
6970      sym = local_syms + r_symndx;
6971      sec = local_sections [r_symndx];
6972      relocation = sym->st_value;
6973      if (sym->st_shndx > SHN_UNDEF &&
6974	  sym->st_shndx < SHN_LORESERVE)
6975	relocation += (sec->output_offset +
6976		       sec->output_section->vma);
6977    }
6978  else
6979    {
6980      /* The symbol is global.  */
6981      struct elf_link_hash_entry **sym_hashes;
6982      struct elf_link_hash_entry * h;
6983
6984      sym_hashes = elf_sym_hashes (input_bfd);
6985      h = sym_hashes [r_symndx];
6986
6987      while (h->root.type == bfd_link_hash_indirect
6988	     || h->root.type == bfd_link_hash_warning)
6989	h = (struct elf_link_hash_entry *) h->root.u.i.link;
6990
6991      if (h->root.type == bfd_link_hash_defined
6992	  || h->root.type == bfd_link_hash_defweak)
6993	{
6994	  sec = h->root.u.def.section;
6995	  relocation = h->root.u.def.value;
6996
6997	  if (! bfd_is_abs_section (sec))
6998	    relocation += (sec->output_section->vma
6999			   + sec->output_offset);
7000	}
7001      if (h->root.type == bfd_link_hash_undefined
7002	  && !((*info->callbacks->undefined_symbol)
7003	       (info, h->root.root.string, input_bfd,
7004		input_section, rel->r_offset,
7005		info->unresolved_syms_in_objects == RM_GENERATE_ERROR
7006		|| ELF_ST_VISIBILITY (h->other))))
7007	return;
7008    }
7009
7010  decode_complex_addend (& start, & oplen, & len, & wordsz,
7011			 & chunksz, & lsb0_p, & signed_p,
7012			 & trunc_p, rel->r_addend);
7013
7014  mask = (((1L << (len - 1)) - 1) << 1) | 1;
7015
7016  if (lsb0_p)
7017    shift = (start + 1) - len;
7018  else
7019    shift = (8 * wordsz) - (start + len);
7020
7021  x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7022
7023#ifdef DEBUG
7024  printf ("Doing complex reloc: "
7025	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7026	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7027	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7028	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7029	  oplen, x, mask,  relocation);
7030#endif
7031
7032  if (! trunc_p)
7033    {
7034      /* Now do an overflow check.  */
7035      if (bfd_check_overflow ((signed_p ?
7036			       complain_overflow_signed :
7037			       complain_overflow_unsigned),
7038			      len, 0, (8 * wordsz),
7039			      relocation) == bfd_reloc_overflow)
7040	(*_bfd_error_handler)
7041	  ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7042	   "within 0x%lx",
7043	   input_bfd->filename, input_section->name, rel->r_offset,
7044	   relocation, (signed_p ? "(signed) " : ""), mask);
7045    }
7046
7047  /* Do the deed.  */
7048  x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7049
7050#ifdef DEBUG
7051  printf ("           relocation: %8.8lx\n"
7052	  "         shifted mask: %8.8lx\n"
7053	  " shifted/masked reloc: %8.8lx\n"
7054	  "               result: %8.8lx\n",
7055	  relocation, (mask << shift),
7056	  ((relocation & mask) << shift), x);
7057#endif
7058  put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7059}
7060
7061/* When performing a relocatable link, the input relocations are
7062   preserved.  But, if they reference global symbols, the indices
7063   referenced must be updated.  Update all the relocations in
7064   REL_HDR (there are COUNT of them), using the data in REL_HASH.  */
7065
7066static void
7067elf_link_adjust_relocs (bfd *abfd,
7068			Elf_Internal_Shdr *rel_hdr,
7069			unsigned int count,
7070			struct elf_link_hash_entry **rel_hash)
7071{
7072  unsigned int i;
7073  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7074  bfd_byte *erela;
7075  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7076  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7077  bfd_vma r_type_mask;
7078  int r_sym_shift;
7079
7080  if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7081    {
7082      swap_in = bed->s->swap_reloc_in;
7083      swap_out = bed->s->swap_reloc_out;
7084    }
7085  else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7086    {
7087      swap_in = bed->s->swap_reloca_in;
7088      swap_out = bed->s->swap_reloca_out;
7089    }
7090  else
7091    abort ();
7092
7093  if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7094    abort ();
7095
7096  if (bed->s->arch_size == 32)
7097    {
7098      r_type_mask = 0xff;
7099      r_sym_shift = 8;
7100    }
7101  else
7102    {
7103      r_type_mask = 0xffffffff;
7104      r_sym_shift = 32;
7105    }
7106
7107  erela = rel_hdr->contents;
7108  for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7109    {
7110      Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7111      unsigned int j;
7112
7113      if (*rel_hash == NULL)
7114	continue;
7115
7116      BFD_ASSERT ((*rel_hash)->indx >= 0);
7117
7118      (*swap_in) (abfd, erela, irela);
7119      for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7120	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7121			   | (irela[j].r_info & r_type_mask));
7122      (*swap_out) (abfd, irela, erela);
7123    }
7124}
7125
7126struct elf_link_sort_rela
7127{
7128  union {
7129    bfd_vma offset;
7130    bfd_vma sym_mask;
7131  } u;
7132  enum elf_reloc_type_class type;
7133  /* We use this as an array of size int_rels_per_ext_rel.  */
7134  Elf_Internal_Rela rela[1];
7135};
7136
7137static int
7138elf_link_sort_cmp1 (const void *A, const void *B)
7139{
7140  const struct elf_link_sort_rela *a = A;
7141  const struct elf_link_sort_rela *b = B;
7142  int relativea, relativeb;
7143
7144  relativea = a->type == reloc_class_relative;
7145  relativeb = b->type == reloc_class_relative;
7146
7147  if (relativea < relativeb)
7148    return 1;
7149  if (relativea > relativeb)
7150    return -1;
7151  if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7152    return -1;
7153  if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7154    return 1;
7155  if (a->rela->r_offset < b->rela->r_offset)
7156    return -1;
7157  if (a->rela->r_offset > b->rela->r_offset)
7158    return 1;
7159  return 0;
7160}
7161
7162static int
7163elf_link_sort_cmp2 (const void *A, const void *B)
7164{
7165  const struct elf_link_sort_rela *a = A;
7166  const struct elf_link_sort_rela *b = B;
7167  int copya, copyb;
7168
7169  if (a->u.offset < b->u.offset)
7170    return -1;
7171  if (a->u.offset > b->u.offset)
7172    return 1;
7173  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7174  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7175  if (copya < copyb)
7176    return -1;
7177  if (copya > copyb)
7178    return 1;
7179  if (a->rela->r_offset < b->rela->r_offset)
7180    return -1;
7181  if (a->rela->r_offset > b->rela->r_offset)
7182    return 1;
7183  return 0;
7184}
7185
7186static size_t
7187elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7188{
7189  asection *reldyn;
7190  bfd_size_type count, size;
7191  size_t i, ret, sort_elt, ext_size;
7192  bfd_byte *sort, *s_non_relative, *p;
7193  struct elf_link_sort_rela *sq;
7194  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7195  int i2e = bed->s->int_rels_per_ext_rel;
7196  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7197  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7198  struct bfd_link_order *lo;
7199  bfd_vma r_sym_mask;
7200
7201  reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7202  if (reldyn == NULL || reldyn->size == 0)
7203    {
7204      reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7205      if (reldyn == NULL || reldyn->size == 0)
7206	return 0;
7207      ext_size = bed->s->sizeof_rel;
7208      swap_in = bed->s->swap_reloc_in;
7209      swap_out = bed->s->swap_reloc_out;
7210    }
7211  else
7212    {
7213      ext_size = bed->s->sizeof_rela;
7214      swap_in = bed->s->swap_reloca_in;
7215      swap_out = bed->s->swap_reloca_out;
7216    }
7217  count = reldyn->size / ext_size;
7218
7219  size = 0;
7220  for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
7221    if (lo->type == bfd_indirect_link_order)
7222      {
7223	asection *o = lo->u.indirect.section;
7224	size += o->size;
7225      }
7226
7227  if (size != reldyn->size)
7228    return 0;
7229
7230  sort_elt = (sizeof (struct elf_link_sort_rela)
7231	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
7232  sort = bfd_zmalloc (sort_elt * count);
7233  if (sort == NULL)
7234    {
7235      (*info->callbacks->warning)
7236	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
7237      return 0;
7238    }
7239
7240  if (bed->s->arch_size == 32)
7241    r_sym_mask = ~(bfd_vma) 0xff;
7242  else
7243    r_sym_mask = ~(bfd_vma) 0xffffffff;
7244
7245  for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
7246    if (lo->type == bfd_indirect_link_order)
7247      {
7248	bfd_byte *erel, *erelend;
7249	asection *o = lo->u.indirect.section;
7250
7251	if (o->contents == NULL && o->size != 0)
7252	  {
7253	    /* This is a reloc section that is being handled as a normal
7254	       section.  See bfd_section_from_shdr.  We can't combine
7255	       relocs in this case.  */
7256	    free (sort);
7257	    return 0;
7258	  }
7259	erel = o->contents;
7260	erelend = o->contents + o->size;
7261	p = sort + o->output_offset / ext_size * sort_elt;
7262	while (erel < erelend)
7263	  {
7264	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
7265	    (*swap_in) (abfd, erel, s->rela);
7266	    s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
7267	    s->u.sym_mask = r_sym_mask;
7268	    p += sort_elt;
7269	    erel += ext_size;
7270	  }
7271      }
7272
7273  qsort (sort, count, sort_elt, elf_link_sort_cmp1);
7274
7275  for (i = 0, p = sort; i < count; i++, p += sort_elt)
7276    {
7277      struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
7278      if (s->type != reloc_class_relative)
7279	break;
7280    }
7281  ret = i;
7282  s_non_relative = p;
7283
7284  sq = (struct elf_link_sort_rela *) s_non_relative;
7285  for (; i < count; i++, p += sort_elt)
7286    {
7287      struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
7288      if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
7289	sq = sp;
7290      sp->u.offset = sq->rela->r_offset;
7291    }
7292
7293  qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
7294
7295  for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
7296    if (lo->type == bfd_indirect_link_order)
7297      {
7298	bfd_byte *erel, *erelend;
7299	asection *o = lo->u.indirect.section;
7300
7301	erel = o->contents;
7302	erelend = o->contents + o->size;
7303	p = sort + o->output_offset / ext_size * sort_elt;
7304	while (erel < erelend)
7305	  {
7306	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
7307	    (*swap_out) (abfd, s->rela, erel);
7308	    p += sort_elt;
7309	    erel += ext_size;
7310	  }
7311      }
7312
7313  free (sort);
7314  *psec = reldyn;
7315  return ret;
7316}
7317
7318/* Flush the output symbols to the file.  */
7319
7320static bfd_boolean
7321elf_link_flush_output_syms (struct elf_final_link_info *finfo,
7322			    const struct elf_backend_data *bed)
7323{
7324  if (finfo->symbuf_count > 0)
7325    {
7326      Elf_Internal_Shdr *hdr;
7327      file_ptr pos;
7328      bfd_size_type amt;
7329
7330      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
7331      pos = hdr->sh_offset + hdr->sh_size;
7332      amt = finfo->symbuf_count * bed->s->sizeof_sym;
7333      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
7334	  || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
7335	return FALSE;
7336
7337      hdr->sh_size += amt;
7338      finfo->symbuf_count = 0;
7339    }
7340
7341  return TRUE;
7342}
7343
7344/* Add a symbol to the output symbol table.  */
7345
7346static bfd_boolean
7347elf_link_output_sym (struct elf_final_link_info *finfo,
7348		     const char *name,
7349		     Elf_Internal_Sym *elfsym,
7350		     asection *input_sec,
7351		     struct elf_link_hash_entry *h)
7352{
7353  bfd_byte *dest;
7354  Elf_External_Sym_Shndx *destshndx;
7355  bfd_boolean (*output_symbol_hook)
7356    (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
7357     struct elf_link_hash_entry *);
7358  const struct elf_backend_data *bed;
7359
7360  bed = get_elf_backend_data (finfo->output_bfd);
7361  output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
7362  if (output_symbol_hook != NULL)
7363    {
7364      if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
7365	return FALSE;
7366    }
7367
7368  if (name == NULL || *name == '\0')
7369    elfsym->st_name = 0;
7370  else if (input_sec->flags & SEC_EXCLUDE)
7371    elfsym->st_name = 0;
7372  else
7373    {
7374      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
7375							    name, TRUE, FALSE);
7376      if (elfsym->st_name == (unsigned long) -1)
7377	return FALSE;
7378    }
7379
7380  if (finfo->symbuf_count >= finfo->symbuf_size)
7381    {
7382      if (! elf_link_flush_output_syms (finfo, bed))
7383	return FALSE;
7384    }
7385
7386  dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
7387  destshndx = finfo->symshndxbuf;
7388  if (destshndx != NULL)
7389    {
7390      if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
7391	{
7392	  bfd_size_type amt;
7393
7394	  amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
7395	  finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
7396	  if (destshndx == NULL)
7397	    return FALSE;
7398	  memset ((char *) destshndx + amt, 0, amt);
7399	  finfo->shndxbuf_size *= 2;
7400	}
7401      destshndx += bfd_get_symcount (finfo->output_bfd);
7402    }
7403
7404  bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
7405  finfo->symbuf_count += 1;
7406  bfd_get_symcount (finfo->output_bfd) += 1;
7407
7408  return TRUE;
7409}
7410
7411/* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
7412
7413static bfd_boolean
7414check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
7415{
7416  if (sym->st_shndx > SHN_HIRESERVE)
7417    {
7418      /* The gABI doesn't support dynamic symbols in output sections
7419         beyond 64k.  */
7420      (*_bfd_error_handler)
7421	(_("%B: Too many sections: %d (>= %d)"),
7422	 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
7423      bfd_set_error (bfd_error_nonrepresentable_section);
7424      return FALSE;
7425    }
7426  return TRUE;
7427}
7428
7429/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
7430   allowing an unsatisfied unversioned symbol in the DSO to match a
7431   versioned symbol that would normally require an explicit version.
7432   We also handle the case that a DSO references a hidden symbol
7433   which may be satisfied by a versioned symbol in another DSO.  */
7434
7435static bfd_boolean
7436elf_link_check_versioned_symbol (struct bfd_link_info *info,
7437				 const struct elf_backend_data *bed,
7438				 struct elf_link_hash_entry *h)
7439{
7440  bfd *abfd;
7441  struct elf_link_loaded_list *loaded;
7442
7443  if (!is_elf_hash_table (info->hash))
7444    return FALSE;
7445
7446  switch (h->root.type)
7447    {
7448    default:
7449      abfd = NULL;
7450      break;
7451
7452    case bfd_link_hash_undefined:
7453    case bfd_link_hash_undefweak:
7454      abfd = h->root.u.undef.abfd;
7455      if ((abfd->flags & DYNAMIC) == 0
7456	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
7457	return FALSE;
7458      break;
7459
7460    case bfd_link_hash_defined:
7461    case bfd_link_hash_defweak:
7462      abfd = h->root.u.def.section->owner;
7463      break;
7464
7465    case bfd_link_hash_common:
7466      abfd = h->root.u.c.p->section->owner;
7467      break;
7468    }
7469  BFD_ASSERT (abfd != NULL);
7470
7471  for (loaded = elf_hash_table (info)->loaded;
7472       loaded != NULL;
7473       loaded = loaded->next)
7474    {
7475      bfd *input;
7476      Elf_Internal_Shdr *hdr;
7477      bfd_size_type symcount;
7478      bfd_size_type extsymcount;
7479      bfd_size_type extsymoff;
7480      Elf_Internal_Shdr *versymhdr;
7481      Elf_Internal_Sym *isym;
7482      Elf_Internal_Sym *isymend;
7483      Elf_Internal_Sym *isymbuf;
7484      Elf_External_Versym *ever;
7485      Elf_External_Versym *extversym;
7486
7487      input = loaded->abfd;
7488
7489      /* We check each DSO for a possible hidden versioned definition.  */
7490      if (input == abfd
7491	  || (input->flags & DYNAMIC) == 0
7492	  || elf_dynversym (input) == 0)
7493	continue;
7494
7495      hdr = &elf_tdata (input)->dynsymtab_hdr;
7496
7497      symcount = hdr->sh_size / bed->s->sizeof_sym;
7498      if (elf_bad_symtab (input))
7499	{
7500	  extsymcount = symcount;
7501	  extsymoff = 0;
7502	}
7503      else
7504	{
7505	  extsymcount = symcount - hdr->sh_info;
7506	  extsymoff = hdr->sh_info;
7507	}
7508
7509      if (extsymcount == 0)
7510	continue;
7511
7512      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
7513				      NULL, NULL, NULL);
7514      if (isymbuf == NULL)
7515	return FALSE;
7516
7517      /* Read in any version definitions.  */
7518      versymhdr = &elf_tdata (input)->dynversym_hdr;
7519      extversym = bfd_malloc (versymhdr->sh_size);
7520      if (extversym == NULL)
7521	goto error_ret;
7522
7523      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
7524	  || (bfd_bread (extversym, versymhdr->sh_size, input)
7525	      != versymhdr->sh_size))
7526	{
7527	  free (extversym);
7528	error_ret:
7529	  free (isymbuf);
7530	  return FALSE;
7531	}
7532
7533      ever = extversym + extsymoff;
7534      isymend = isymbuf + extsymcount;
7535      for (isym = isymbuf; isym < isymend; isym++, ever++)
7536	{
7537	  const char *name;
7538	  Elf_Internal_Versym iver;
7539	  unsigned short version_index;
7540
7541	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
7542	      || isym->st_shndx == SHN_UNDEF)
7543	    continue;
7544
7545	  name = bfd_elf_string_from_elf_section (input,
7546						  hdr->sh_link,
7547						  isym->st_name);
7548	  if (strcmp (name, h->root.root.string) != 0)
7549	    continue;
7550
7551	  _bfd_elf_swap_versym_in (input, ever, &iver);
7552
7553	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
7554	    {
7555	      /* If we have a non-hidden versioned sym, then it should
7556		 have provided a definition for the undefined sym.  */
7557	      abort ();
7558	    }
7559
7560	  version_index = iver.vs_vers & VERSYM_VERSION;
7561	  if (version_index == 1 || version_index == 2)
7562	    {
7563	      /* This is the base or first version.  We can use it.  */
7564	      free (extversym);
7565	      free (isymbuf);
7566	      return TRUE;
7567	    }
7568	}
7569
7570      free (extversym);
7571      free (isymbuf);
7572    }
7573
7574  return FALSE;
7575}
7576
7577/* Add an external symbol to the symbol table.  This is called from
7578   the hash table traversal routine.  When generating a shared object,
7579   we go through the symbol table twice.  The first time we output
7580   anything that might have been forced to local scope in a version
7581   script.  The second time we output the symbols that are still
7582   global symbols.  */
7583
7584static bfd_boolean
7585elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
7586{
7587  struct elf_outext_info *eoinfo = data;
7588  struct elf_final_link_info *finfo = eoinfo->finfo;
7589  bfd_boolean strip;
7590  Elf_Internal_Sym sym;
7591  asection *input_sec;
7592  const struct elf_backend_data *bed;
7593
7594  if (h->root.type == bfd_link_hash_warning)
7595    {
7596      h = (struct elf_link_hash_entry *) h->root.u.i.link;
7597      if (h->root.type == bfd_link_hash_new)
7598	return TRUE;
7599    }
7600
7601  /* Decide whether to output this symbol in this pass.  */
7602  if (eoinfo->localsyms)
7603    {
7604      if (!h->forced_local)
7605	return TRUE;
7606    }
7607  else
7608    {
7609      if (h->forced_local)
7610	return TRUE;
7611    }
7612
7613  bed = get_elf_backend_data (finfo->output_bfd);
7614
7615  if (h->root.type == bfd_link_hash_undefined)
7616    {
7617      /* If we have an undefined symbol reference here then it must have
7618	 come from a shared library that is being linked in.  (Undefined
7619	 references in regular files have already been handled).  */
7620      bfd_boolean ignore_undef = FALSE;
7621
7622      /* Some symbols may be special in that the fact that they're
7623	 undefined can be safely ignored - let backend determine that.  */
7624      if (bed->elf_backend_ignore_undef_symbol)
7625	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
7626
7627      /* If we are reporting errors for this situation then do so now.  */
7628      if (ignore_undef == FALSE
7629	  && h->ref_dynamic
7630	  && ! h->ref_regular
7631	  && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
7632	  && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
7633	{
7634	  if (! (finfo->info->callbacks->undefined_symbol
7635		 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
7636		  NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
7637	    {
7638	      eoinfo->failed = TRUE;
7639	      return FALSE;
7640	    }
7641	}
7642    }
7643
7644  /* We should also warn if a forced local symbol is referenced from
7645     shared libraries.  */
7646  if (! finfo->info->relocatable
7647      && (! finfo->info->shared)
7648      && h->forced_local
7649      && h->ref_dynamic
7650      && !h->dynamic_def
7651      && !h->dynamic_weak
7652      && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
7653    {
7654      (*_bfd_error_handler)
7655	(_("%B: %s symbol `%s' in %B is referenced by DSO"),
7656	 finfo->output_bfd,
7657	 h->root.u.def.section == bfd_abs_section_ptr
7658	 ? finfo->output_bfd : h->root.u.def.section->owner,
7659	 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
7660	 ? "internal"
7661	 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
7662	 ? "hidden" : "local",
7663	 h->root.root.string);
7664      eoinfo->failed = TRUE;
7665      return FALSE;
7666    }
7667
7668  /* We don't want to output symbols that have never been mentioned by
7669     a regular file, or that we have been told to strip.  However, if
7670     h->indx is set to -2, the symbol is used by a reloc and we must
7671     output it.  */
7672  if (h->indx == -2)
7673    strip = FALSE;
7674  else if ((h->def_dynamic
7675	    || h->ref_dynamic
7676	    || h->root.type == bfd_link_hash_new)
7677	   && !h->def_regular
7678	   && !h->ref_regular)
7679    strip = TRUE;
7680  else if (finfo->info->strip == strip_all)
7681    strip = TRUE;
7682  else if (finfo->info->strip == strip_some
7683	   && bfd_hash_lookup (finfo->info->keep_hash,
7684			       h->root.root.string, FALSE, FALSE) == NULL)
7685    strip = TRUE;
7686  else if (finfo->info->strip_discarded
7687	   && (h->root.type == bfd_link_hash_defined
7688	       || h->root.type == bfd_link_hash_defweak)
7689	   && elf_discarded_section (h->root.u.def.section))
7690    strip = TRUE;
7691  else
7692    strip = FALSE;
7693
7694  /* If we're stripping it, and it's not a dynamic symbol, there's
7695     nothing else to do unless it is a forced local symbol.  */
7696  if (strip
7697      && h->dynindx == -1
7698      && !h->forced_local)
7699    return TRUE;
7700
7701  sym.st_value = 0;
7702  sym.st_size = h->size;
7703  sym.st_other = h->other;
7704  if (h->forced_local)
7705    sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
7706  else if (h->root.type == bfd_link_hash_undefweak
7707	   || h->root.type == bfd_link_hash_defweak)
7708    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
7709  else
7710    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
7711
7712  switch (h->root.type)
7713    {
7714    default:
7715    case bfd_link_hash_new:
7716    case bfd_link_hash_warning:
7717      abort ();
7718      return FALSE;
7719
7720    case bfd_link_hash_undefined:
7721    case bfd_link_hash_undefweak:
7722      input_sec = bfd_und_section_ptr;
7723      sym.st_shndx = SHN_UNDEF;
7724      break;
7725
7726    case bfd_link_hash_defined:
7727    case bfd_link_hash_defweak:
7728      {
7729	input_sec = h->root.u.def.section;
7730	if (input_sec->output_section != NULL)
7731	  {
7732	    sym.st_shndx =
7733	      _bfd_elf_section_from_bfd_section (finfo->output_bfd,
7734						 input_sec->output_section);
7735	    if (sym.st_shndx == SHN_BAD)
7736	      {
7737		(*_bfd_error_handler)
7738		  (_("%B: could not find output section %A for input section %A"),
7739		   finfo->output_bfd, input_sec->output_section, input_sec);
7740		eoinfo->failed = TRUE;
7741		return FALSE;
7742	      }
7743
7744	    /* ELF symbols in relocatable files are section relative,
7745	       but in nonrelocatable files they are virtual
7746	       addresses.  */
7747	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
7748	    if (! finfo->info->relocatable)
7749	      {
7750		sym.st_value += input_sec->output_section->vma;
7751		if (h->type == STT_TLS)
7752		  {
7753		    /* STT_TLS symbols are relative to PT_TLS segment
7754		       base.  */
7755		    BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
7756		    sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
7757		  }
7758	      }
7759	  }
7760	else
7761	  {
7762	    BFD_ASSERT (input_sec->owner == NULL
7763			|| (input_sec->owner->flags & DYNAMIC) != 0);
7764	    sym.st_shndx = SHN_UNDEF;
7765	    input_sec = bfd_und_section_ptr;
7766	  }
7767      }
7768      break;
7769
7770    case bfd_link_hash_common:
7771      input_sec = h->root.u.c.p->section;
7772      sym.st_shndx = bed->common_section_index (input_sec);
7773      sym.st_value = 1 << h->root.u.c.p->alignment_power;
7774      break;
7775
7776    case bfd_link_hash_indirect:
7777      /* These symbols are created by symbol versioning.  They point
7778	 to the decorated version of the name.  For example, if the
7779	 symbol foo@@GNU_1.2 is the default, which should be used when
7780	 foo is used with no version, then we add an indirect symbol
7781	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
7782	 since the indirected symbol is already in the hash table.  */
7783      return TRUE;
7784    }
7785
7786  /* Give the processor backend a chance to tweak the symbol value,
7787     and also to finish up anything that needs to be done for this
7788     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
7789     forced local syms when non-shared is due to a historical quirk.  */
7790  if ((h->dynindx != -1
7791       || h->forced_local)
7792      && ((finfo->info->shared
7793	   && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7794	       || h->root.type != bfd_link_hash_undefweak))
7795	  || !h->forced_local)
7796      && elf_hash_table (finfo->info)->dynamic_sections_created)
7797    {
7798      if (! ((*bed->elf_backend_finish_dynamic_symbol)
7799	     (finfo->output_bfd, finfo->info, h, &sym)))
7800	{
7801	  eoinfo->failed = TRUE;
7802	  return FALSE;
7803	}
7804    }
7805
7806  /* If we are marking the symbol as undefined, and there are no
7807     non-weak references to this symbol from a regular object, then
7808     mark the symbol as weak undefined; if there are non-weak
7809     references, mark the symbol as strong.  We can't do this earlier,
7810     because it might not be marked as undefined until the
7811     finish_dynamic_symbol routine gets through with it.  */
7812  if (sym.st_shndx == SHN_UNDEF
7813      && h->ref_regular
7814      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
7815	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
7816    {
7817      int bindtype;
7818
7819      if (h->ref_regular_nonweak)
7820	bindtype = STB_GLOBAL;
7821      else
7822	bindtype = STB_WEAK;
7823      sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
7824    }
7825
7826  /* If a non-weak symbol with non-default visibility is not defined
7827     locally, it is a fatal error.  */
7828  if (! finfo->info->relocatable
7829      && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
7830      && ELF_ST_BIND (sym.st_info) != STB_WEAK
7831      && h->root.type == bfd_link_hash_undefined
7832      && !h->def_regular)
7833    {
7834      (*_bfd_error_handler)
7835	(_("%B: %s symbol `%s' isn't defined"),
7836	 finfo->output_bfd,
7837	 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
7838	 ? "protected"
7839	 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
7840	 ? "internal" : "hidden",
7841	 h->root.root.string);
7842      eoinfo->failed = TRUE;
7843      return FALSE;
7844    }
7845
7846  /* If this symbol should be put in the .dynsym section, then put it
7847     there now.  We already know the symbol index.  We also fill in
7848     the entry in the .hash section.  */
7849  if (h->dynindx != -1
7850      && elf_hash_table (finfo->info)->dynamic_sections_created)
7851    {
7852      bfd_byte *esym;
7853
7854      sym.st_name = h->dynstr_index;
7855      esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
7856      if (! check_dynsym (finfo->output_bfd, &sym))
7857	{
7858	  eoinfo->failed = TRUE;
7859	  return FALSE;
7860	}
7861      bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
7862
7863      if (finfo->hash_sec != NULL)
7864	{
7865	  size_t hash_entry_size;
7866	  bfd_byte *bucketpos;
7867	  bfd_vma chain;
7868	  size_t bucketcount;
7869	  size_t bucket;
7870
7871	  bucketcount = elf_hash_table (finfo->info)->bucketcount;
7872	  bucket = h->u.elf_hash_value % bucketcount;
7873
7874	  hash_entry_size
7875	    = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
7876	  bucketpos = ((bfd_byte *) finfo->hash_sec->contents
7877		       + (bucket + 2) * hash_entry_size);
7878	  chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
7879	  bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
7880	  bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
7881		   ((bfd_byte *) finfo->hash_sec->contents
7882		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
7883	}
7884
7885      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
7886	{
7887	  Elf_Internal_Versym iversym;
7888	  Elf_External_Versym *eversym;
7889
7890	  if (!h->def_regular)
7891	    {
7892	      if (h->verinfo.verdef == NULL)
7893		iversym.vs_vers = 0;
7894	      else
7895		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
7896	    }
7897	  else
7898	    {
7899	      if (h->verinfo.vertree == NULL)
7900		iversym.vs_vers = 1;
7901	      else
7902		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
7903	      if (finfo->info->create_default_symver)
7904		iversym.vs_vers++;
7905	    }
7906
7907	  if (h->hidden)
7908	    iversym.vs_vers |= VERSYM_HIDDEN;
7909
7910	  eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
7911	  eversym += h->dynindx;
7912	  _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
7913	}
7914    }
7915
7916  /* If we're stripping it, then it was just a dynamic symbol, and
7917     there's nothing else to do.  */
7918  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
7919    return TRUE;
7920
7921  h->indx = bfd_get_symcount (finfo->output_bfd);
7922
7923  if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
7924    {
7925      eoinfo->failed = TRUE;
7926      return FALSE;
7927    }
7928
7929  return TRUE;
7930}
7931
7932/* Return TRUE if special handling is done for relocs in SEC against
7933   symbols defined in discarded sections.  */
7934
7935static bfd_boolean
7936elf_section_ignore_discarded_relocs (asection *sec)
7937{
7938  const struct elf_backend_data *bed;
7939
7940  switch (sec->sec_info_type)
7941    {
7942    case ELF_INFO_TYPE_STABS:
7943    case ELF_INFO_TYPE_EH_FRAME:
7944      return TRUE;
7945    default:
7946      break;
7947    }
7948
7949  bed = get_elf_backend_data (sec->owner);
7950  if (bed->elf_backend_ignore_discarded_relocs != NULL
7951      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
7952    return TRUE;
7953
7954  return FALSE;
7955}
7956
7957/* Return a mask saying how ld should treat relocations in SEC against
7958   symbols defined in discarded sections.  If this function returns
7959   COMPLAIN set, ld will issue a warning message.  If this function
7960   returns PRETEND set, and the discarded section was link-once and the
7961   same size as the kept link-once section, ld will pretend that the
7962   symbol was actually defined in the kept section.  Otherwise ld will
7963   zero the reloc (at least that is the intent, but some cooperation by
7964   the target dependent code is needed, particularly for REL targets).  */
7965
7966unsigned int
7967_bfd_elf_default_action_discarded (asection *sec)
7968{
7969  if (sec->flags & SEC_DEBUGGING)
7970    return PRETEND;
7971
7972  if (strcmp (".eh_frame", sec->name) == 0)
7973    return 0;
7974
7975  if (strcmp (".gcc_except_table", sec->name) == 0)
7976    return 0;
7977
7978  return COMPLAIN | PRETEND;
7979}
7980
7981/* Find a match between a section and a member of a section group.  */
7982
7983static asection *
7984match_group_member (asection *sec, asection *group,
7985		    struct bfd_link_info *info)
7986{
7987  asection *first = elf_next_in_group (group);
7988  asection *s = first;
7989
7990  while (s != NULL)
7991    {
7992      if (bfd_elf_match_symbols_in_sections (s, sec, info))
7993	return s;
7994
7995      s = elf_next_in_group (s);
7996      if (s == first)
7997	break;
7998    }
7999
8000  return NULL;
8001}
8002
8003/* Check if the kept section of a discarded section SEC can be used
8004   to replace it.  Return the replacement if it is OK.  Otherwise return
8005   NULL.  */
8006
8007asection *
8008_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8009{
8010  asection *kept;
8011
8012  kept = sec->kept_section;
8013  if (kept != NULL)
8014    {
8015      if ((kept->flags & SEC_GROUP) != 0)
8016	kept = match_group_member (sec, kept, info);
8017      if (kept != NULL && sec->size != kept->size)
8018	kept = NULL;
8019      sec->kept_section = kept;
8020    }
8021  return kept;
8022}
8023
8024/* Link an input file into the linker output file.  This function
8025   handles all the sections and relocations of the input file at once.
8026   This is so that we only have to read the local symbols once, and
8027   don't have to keep them in memory.  */
8028
8029static bfd_boolean
8030elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8031{
8032  bfd_boolean (*relocate_section)
8033    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8034     Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8035  bfd *output_bfd;
8036  Elf_Internal_Shdr *symtab_hdr;
8037  size_t locsymcount;
8038  size_t extsymoff;
8039  Elf_Internal_Sym *isymbuf;
8040  Elf_Internal_Sym *isym;
8041  Elf_Internal_Sym *isymend;
8042  long *pindex;
8043  asection **ppsection;
8044  asection *o;
8045  const struct elf_backend_data *bed;
8046  bfd_boolean emit_relocs;
8047  struct elf_link_hash_entry **sym_hashes;
8048
8049  output_bfd = finfo->output_bfd;
8050  bed = get_elf_backend_data (output_bfd);
8051  relocate_section = bed->elf_backend_relocate_section;
8052
8053  /* If this is a dynamic object, we don't want to do anything here:
8054     we don't want the local symbols, and we don't want the section
8055     contents.  */
8056  if ((input_bfd->flags & DYNAMIC) != 0)
8057    return TRUE;
8058
8059  emit_relocs = (finfo->info->relocatable
8060		 || finfo->info->emitrelocations);
8061
8062  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8063  if (elf_bad_symtab (input_bfd))
8064    {
8065      locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8066      extsymoff = 0;
8067    }
8068  else
8069    {
8070      locsymcount = symtab_hdr->sh_info;
8071      extsymoff = symtab_hdr->sh_info;
8072    }
8073
8074  /* Read the local symbols.  */
8075  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8076  if (isymbuf == NULL && locsymcount != 0)
8077    {
8078      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8079				      finfo->internal_syms,
8080				      finfo->external_syms,
8081				      finfo->locsym_shndx);
8082      if (isymbuf == NULL)
8083	return FALSE;
8084    }
8085  /* evaluate_complex_relocation_symbols looks for symbols in
8086     finfo->internal_syms.  */
8087  else if (isymbuf != NULL && locsymcount != 0)
8088    {
8089      bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8090			    finfo->internal_syms,
8091			    finfo->external_syms,
8092			    finfo->locsym_shndx);
8093    }
8094
8095  /* Find local symbol sections and adjust values of symbols in
8096     SEC_MERGE sections.  Write out those local symbols we know are
8097     going into the output file.  */
8098  isymend = isymbuf + locsymcount;
8099  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8100       isym < isymend;
8101       isym++, pindex++, ppsection++)
8102    {
8103      asection *isec;
8104      const char *name;
8105      Elf_Internal_Sym osym;
8106
8107      *pindex = -1;
8108
8109      if (elf_bad_symtab (input_bfd))
8110	{
8111	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8112	    {
8113	      *ppsection = NULL;
8114	      continue;
8115	    }
8116	}
8117
8118      if (isym->st_shndx == SHN_UNDEF)
8119	isec = bfd_und_section_ptr;
8120      else if (isym->st_shndx < SHN_LORESERVE
8121	       || isym->st_shndx > SHN_HIRESERVE)
8122	{
8123	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8124	  if (isec
8125	      && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8126	      && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8127	    isym->st_value =
8128	      _bfd_merged_section_offset (output_bfd, &isec,
8129					  elf_section_data (isec)->sec_info,
8130					  isym->st_value);
8131	}
8132      else if (isym->st_shndx == SHN_ABS)
8133	isec = bfd_abs_section_ptr;
8134      else if (isym->st_shndx == SHN_COMMON)
8135	isec = bfd_com_section_ptr;
8136      else
8137	{
8138	  /* Don't attempt to output symbols with st_shnx in the
8139	     reserved range other than SHN_ABS and SHN_COMMON.  */
8140	  *ppsection = NULL;
8141	  continue;
8142	}
8143
8144      *ppsection = isec;
8145
8146      /* Don't output the first, undefined, symbol.  */
8147      if (ppsection == finfo->sections)
8148	continue;
8149
8150      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8151	{
8152	  /* We never output section symbols.  Instead, we use the
8153	     section symbol of the corresponding section in the output
8154	     file.  */
8155	  continue;
8156	}
8157
8158      /* If we are stripping all symbols, we don't want to output this
8159	 one.  */
8160      if (finfo->info->strip == strip_all)
8161	continue;
8162
8163      /* If we are discarding all local symbols, we don't want to
8164	 output this one.  If we are generating a relocatable output
8165	 file, then some of the local symbols may be required by
8166	 relocs; we output them below as we discover that they are
8167	 needed.  */
8168      if (finfo->info->discard == discard_all)
8169	continue;
8170
8171      /* If this symbol is defined in a section which we are
8172	 discarding, we don't need to keep it.  */
8173      if (isym->st_shndx != SHN_UNDEF
8174	  && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8175	  && (isec == NULL
8176	      || bfd_section_removed_from_list (output_bfd,
8177						isec->output_section)))
8178	continue;
8179
8180      /* Get the name of the symbol.  */
8181      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8182					      isym->st_name);
8183      if (name == NULL)
8184	return FALSE;
8185
8186      /* See if we are discarding symbols with this name.  */
8187      if ((finfo->info->strip == strip_some
8188	   && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8189	       == NULL))
8190	  || (((finfo->info->discard == discard_sec_merge
8191		&& (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8192	       || finfo->info->discard == discard_l)
8193	      && bfd_is_local_label_name (input_bfd, name)))
8194	continue;
8195
8196      /* If we get here, we are going to output this symbol.  */
8197
8198      osym = *isym;
8199
8200      /* Adjust the section index for the output file.  */
8201      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8202							 isec->output_section);
8203      if (osym.st_shndx == SHN_BAD)
8204	return FALSE;
8205
8206      *pindex = bfd_get_symcount (output_bfd);
8207
8208      /* ELF symbols in relocatable files are section relative, but
8209	 in executable files they are virtual addresses.  Note that
8210	 this code assumes that all ELF sections have an associated
8211	 BFD section with a reasonable value for output_offset; below
8212	 we assume that they also have a reasonable value for
8213	 output_section.  Any special sections must be set up to meet
8214	 these requirements.  */
8215      osym.st_value += isec->output_offset;
8216      if (! finfo->info->relocatable)
8217	{
8218	  osym.st_value += isec->output_section->vma;
8219	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
8220	    {
8221	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
8222	      BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8223	      osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8224	    }
8225	}
8226
8227      if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
8228	return FALSE;
8229    }
8230
8231  if (! evaluate_complex_relocation_symbols (input_bfd, finfo, locsymcount))
8232    return FALSE;
8233
8234  /* Relocate the contents of each section.  */
8235  sym_hashes = elf_sym_hashes (input_bfd);
8236  for (o = input_bfd->sections; o != NULL; o = o->next)
8237    {
8238      bfd_byte *contents;
8239
8240      if (! o->linker_mark)
8241	{
8242	  /* This section was omitted from the link.  */
8243	  continue;
8244	}
8245
8246      if ((o->flags & SEC_HAS_CONTENTS) == 0
8247	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
8248	continue;
8249
8250      if ((o->flags & SEC_LINKER_CREATED) != 0)
8251	{
8252	  /* Section was created by _bfd_elf_link_create_dynamic_sections
8253	     or somesuch.  */
8254	  continue;
8255	}
8256
8257      /* Get the contents of the section.  They have been cached by a
8258	 relaxation routine.  Note that o is a section in an input
8259	 file, so the contents field will not have been set by any of
8260	 the routines which work on output files.  */
8261      if (elf_section_data (o)->this_hdr.contents != NULL)
8262	contents = elf_section_data (o)->this_hdr.contents;
8263      else
8264	{
8265	  bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
8266
8267	  contents = finfo->contents;
8268	  if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
8269	    return FALSE;
8270	}
8271
8272      if ((o->flags & SEC_RELOC) != 0)
8273	{
8274	  Elf_Internal_Rela *internal_relocs;
8275	  bfd_vma r_type_mask;
8276	  int r_sym_shift;
8277
8278	  /* Get the swapped relocs.  */
8279	  internal_relocs
8280	    = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
8281					 finfo->internal_relocs, FALSE);
8282	  if (internal_relocs == NULL
8283	      && o->reloc_count > 0)
8284	    return FALSE;
8285
8286	  if (bed->s->arch_size == 32)
8287	    {
8288	      r_type_mask = 0xff;
8289	      r_sym_shift = 8;
8290	    }
8291	  else
8292	    {
8293	      r_type_mask = 0xffffffff;
8294	      r_sym_shift = 32;
8295	    }
8296
8297	  /* Run through the relocs looking for any against symbols
8298	     from discarded sections and section symbols from
8299	     removed link-once sections.  Complain about relocs
8300	     against discarded sections.  Zero relocs against removed
8301	     link-once sections.  */
8302	  if (!elf_section_ignore_discarded_relocs (o))
8303	    {
8304	      Elf_Internal_Rela *rel, *relend;
8305	      unsigned int action = (*bed->action_discarded) (o);
8306
8307	      rel = internal_relocs;
8308	      relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
8309	      for ( ; rel < relend; rel++)
8310		{
8311		  unsigned long r_symndx = rel->r_info >> r_sym_shift;
8312		  asection **ps, *sec;
8313		  struct elf_link_hash_entry *h = NULL;
8314		  const char *sym_name;
8315
8316		  if (r_symndx == STN_UNDEF)
8317		    continue;
8318
8319		  if (r_symndx >= locsymcount
8320		      || (elf_bad_symtab (input_bfd)
8321			  && finfo->sections[r_symndx] == NULL))
8322		    {
8323		      h = sym_hashes[r_symndx - extsymoff];
8324
8325		      /* Badly formatted input files can contain relocs that
8326			 reference non-existant symbols.  Check here so that
8327			 we do not seg fault.  */
8328		      if (h == NULL)
8329			{
8330			  char buffer [32];
8331
8332			  sprintf_vma (buffer, rel->r_info);
8333			  (*_bfd_error_handler)
8334			    (_("error: %B contains a reloc (0x%s) for section %A "
8335			       "that references a non-existent global symbol"),
8336			     input_bfd, o, buffer);
8337			  bfd_set_error (bfd_error_bad_value);
8338			  return FALSE;
8339			}
8340
8341		      while (h->root.type == bfd_link_hash_indirect
8342			     || h->root.type == bfd_link_hash_warning)
8343			h = (struct elf_link_hash_entry *) h->root.u.i.link;
8344
8345		      if (h->root.type != bfd_link_hash_defined
8346			  && h->root.type != bfd_link_hash_defweak)
8347			continue;
8348
8349		      ps = &h->root.u.def.section;
8350		      sym_name = h->root.root.string;
8351		    }
8352		  else
8353		    {
8354		      Elf_Internal_Sym *sym = isymbuf + r_symndx;
8355		      ps = &finfo->sections[r_symndx];
8356		      sym_name = bfd_elf_sym_name (input_bfd,
8357						   symtab_hdr,
8358						   sym, *ps);
8359		    }
8360
8361		  /* Complain if the definition comes from a
8362		     discarded section.  */
8363		  if ((sec = *ps) != NULL && elf_discarded_section (sec))
8364		    {
8365		      BFD_ASSERT (r_symndx != 0);
8366		      if (action & COMPLAIN)
8367			(*finfo->info->callbacks->einfo)
8368			  (_("%X`%s' referenced in section `%A' of %B: "
8369			     "defined in discarded section `%A' of %B\n"),
8370			   sym_name, o, input_bfd, sec, sec->owner);
8371
8372		      /* Try to do the best we can to support buggy old
8373			 versions of gcc.  Pretend that the symbol is
8374			 really defined in the kept linkonce section.
8375			 FIXME: This is quite broken.  Modifying the
8376			 symbol here means we will be changing all later
8377			 uses of the symbol, not just in this section.  */
8378		      if (action & PRETEND)
8379			{
8380			  asection *kept;
8381
8382			  kept = _bfd_elf_check_kept_section (sec,
8383							      finfo->info);
8384			  if (kept != NULL)
8385			    {
8386			      *ps = kept;
8387			      continue;
8388			    }
8389			}
8390
8391		      /* Remove the symbol reference from the reloc, but
8392			 don't kill the reloc completely.  This is so that
8393			 a zero value will be written into the section,
8394			 which may have non-zero contents put there by the
8395			 assembler.  Zero in things like an eh_frame fde
8396			 pc_begin allows stack unwinders to recognize the
8397			 fde as bogus.  */
8398		      rel->r_info &= r_type_mask;
8399		      rel->r_addend = 0;
8400		    }
8401		}
8402	    }
8403
8404	  /* Relocate the section by invoking a back end routine.
8405
8406	     The back end routine is responsible for adjusting the
8407	     section contents as necessary, and (if using Rela relocs
8408	     and generating a relocatable output file) adjusting the
8409	     reloc addend as necessary.
8410
8411	     The back end routine does not have to worry about setting
8412	     the reloc address or the reloc symbol index.
8413
8414	     The back end routine is given a pointer to the swapped in
8415	     internal symbols, and can access the hash table entries
8416	     for the external symbols via elf_sym_hashes (input_bfd).
8417
8418	     When generating relocatable output, the back end routine
8419	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
8420	     output symbol is going to be a section symbol
8421	     corresponding to the output section, which will require
8422	     the addend to be adjusted.  */
8423
8424	  if (! (*relocate_section) (output_bfd, finfo->info,
8425				     input_bfd, o, contents,
8426				     internal_relocs,
8427				     isymbuf,
8428				     finfo->sections))
8429	    return FALSE;
8430
8431	  if (emit_relocs)
8432	    {
8433	      Elf_Internal_Rela *irela;
8434	      Elf_Internal_Rela *irelaend;
8435	      bfd_vma last_offset;
8436	      struct elf_link_hash_entry **rel_hash;
8437	      struct elf_link_hash_entry **rel_hash_list;
8438	      Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
8439	      unsigned int next_erel;
8440	      bfd_boolean rela_normal;
8441
8442	      input_rel_hdr = &elf_section_data (o)->rel_hdr;
8443	      rela_normal = (bed->rela_normal
8444			     && (input_rel_hdr->sh_entsize
8445				 == bed->s->sizeof_rela));
8446
8447	      /* Adjust the reloc addresses and symbol indices.  */
8448
8449	      irela = internal_relocs;
8450	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
8451	      rel_hash = (elf_section_data (o->output_section)->rel_hashes
8452			  + elf_section_data (o->output_section)->rel_count
8453			  + elf_section_data (o->output_section)->rel_count2);
8454	      rel_hash_list = rel_hash;
8455	      last_offset = o->output_offset;
8456	      if (!finfo->info->relocatable)
8457		last_offset += o->output_section->vma;
8458	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
8459		{
8460		  unsigned long r_symndx;
8461		  asection *sec;
8462		  Elf_Internal_Sym sym;
8463
8464		  if (next_erel == bed->s->int_rels_per_ext_rel)
8465		    {
8466		      rel_hash++;
8467		      next_erel = 0;
8468		    }
8469
8470		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
8471							     finfo->info, o,
8472							     irela->r_offset);
8473		  if (irela->r_offset >= (bfd_vma) -2)
8474		    {
8475		      /* This is a reloc for a deleted entry or somesuch.
8476			 Turn it into an R_*_NONE reloc, at the same
8477			 offset as the last reloc.  elf_eh_frame.c and
8478			 bfd_elf_discard_info rely on reloc offsets
8479			 being ordered.  */
8480		      irela->r_offset = last_offset;
8481		      irela->r_info = 0;
8482		      irela->r_addend = 0;
8483		      continue;
8484		    }
8485
8486		  irela->r_offset += o->output_offset;
8487
8488		  /* Relocs in an executable have to be virtual addresses.  */
8489		  if (!finfo->info->relocatable)
8490		    irela->r_offset += o->output_section->vma;
8491
8492		  last_offset = irela->r_offset;
8493
8494		  r_symndx = irela->r_info >> r_sym_shift;
8495		  if (r_symndx == STN_UNDEF)
8496		    continue;
8497
8498		  if (r_symndx >= locsymcount
8499		      || (elf_bad_symtab (input_bfd)
8500			  && finfo->sections[r_symndx] == NULL))
8501		    {
8502		      struct elf_link_hash_entry *rh;
8503		      unsigned long indx;
8504
8505		      /* This is a reloc against a global symbol.  We
8506			 have not yet output all the local symbols, so
8507			 we do not know the symbol index of any global
8508			 symbol.  We set the rel_hash entry for this
8509			 reloc to point to the global hash table entry
8510			 for this symbol.  The symbol index is then
8511			 set at the end of bfd_elf_final_link.  */
8512		      indx = r_symndx - extsymoff;
8513		      rh = elf_sym_hashes (input_bfd)[indx];
8514		      while (rh->root.type == bfd_link_hash_indirect
8515			     || rh->root.type == bfd_link_hash_warning)
8516			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
8517
8518		      /* Setting the index to -2 tells
8519			 elf_link_output_extsym that this symbol is
8520			 used by a reloc.  */
8521		      BFD_ASSERT (rh->indx < 0);
8522		      rh->indx = -2;
8523
8524		      *rel_hash = rh;
8525
8526		      continue;
8527		    }
8528
8529		  /* This is a reloc against a local symbol.  */
8530
8531		  *rel_hash = NULL;
8532		  sym = isymbuf[r_symndx];
8533		  sec = finfo->sections[r_symndx];
8534		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
8535		    {
8536		      /* I suppose the backend ought to fill in the
8537			 section of any STT_SECTION symbol against a
8538			 processor specific section.  */
8539		      r_symndx = 0;
8540		      if (bfd_is_abs_section (sec))
8541			;
8542		      else if (sec == NULL || sec->owner == NULL)
8543			{
8544			  bfd_set_error (bfd_error_bad_value);
8545			  return FALSE;
8546			}
8547		      else
8548			{
8549			  asection *osec = sec->output_section;
8550
8551			  /* If we have discarded a section, the output
8552			     section will be the absolute section.  In
8553			     case of discarded link-once and discarded
8554			     SEC_MERGE sections, use the kept section.  */
8555			  if (bfd_is_abs_section (osec)
8556			      && sec->kept_section != NULL
8557			      && sec->kept_section->output_section != NULL)
8558			    {
8559			      osec = sec->kept_section->output_section;
8560			      irela->r_addend -= osec->vma;
8561			    }
8562
8563			  if (!bfd_is_abs_section (osec))
8564			    {
8565			      r_symndx = osec->target_index;
8566			      if (r_symndx == 0)
8567				{
8568				  struct elf_link_hash_table *htab;
8569				  asection *oi;
8570
8571				  htab = elf_hash_table (finfo->info);
8572				  oi = htab->text_index_section;
8573				  if ((osec->flags & SEC_READONLY) == 0
8574				      && htab->data_index_section != NULL)
8575				    oi = htab->data_index_section;
8576
8577				  if (oi != NULL)
8578				    {
8579				      irela->r_addend += osec->vma - oi->vma;
8580				      r_symndx = oi->target_index;
8581				    }
8582				}
8583
8584			      BFD_ASSERT (r_symndx != 0);
8585			    }
8586			}
8587
8588		      /* Adjust the addend according to where the
8589			 section winds up in the output section.  */
8590		      if (rela_normal)
8591			irela->r_addend += sec->output_offset;
8592		    }
8593		  else
8594		    {
8595		      if (finfo->indices[r_symndx] == -1)
8596			{
8597			  unsigned long shlink;
8598			  const char *name;
8599			  asection *osec;
8600
8601			  if (finfo->info->strip == strip_all)
8602			    {
8603			      /* You can't do ld -r -s.  */
8604			      bfd_set_error (bfd_error_invalid_operation);
8605			      return FALSE;
8606			    }
8607
8608			  /* This symbol was skipped earlier, but
8609			     since it is needed by a reloc, we
8610			     must output it now.  */
8611			  shlink = symtab_hdr->sh_link;
8612			  name = (bfd_elf_string_from_elf_section
8613				  (input_bfd, shlink, sym.st_name));
8614			  if (name == NULL)
8615			    return FALSE;
8616
8617			  osec = sec->output_section;
8618			  sym.st_shndx =
8619			    _bfd_elf_section_from_bfd_section (output_bfd,
8620							       osec);
8621			  if (sym.st_shndx == SHN_BAD)
8622			    return FALSE;
8623
8624			  sym.st_value += sec->output_offset;
8625			  if (! finfo->info->relocatable)
8626			    {
8627			      sym.st_value += osec->vma;
8628			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
8629				{
8630				  /* STT_TLS symbols are relative to PT_TLS
8631				     segment base.  */
8632				  BFD_ASSERT (elf_hash_table (finfo->info)
8633					      ->tls_sec != NULL);
8634				  sym.st_value -= (elf_hash_table (finfo->info)
8635						   ->tls_sec->vma);
8636				}
8637			    }
8638
8639			  finfo->indices[r_symndx]
8640			    = bfd_get_symcount (output_bfd);
8641
8642			  if (! elf_link_output_sym (finfo, name, &sym, sec,
8643						     NULL))
8644			    return FALSE;
8645			}
8646
8647		      r_symndx = finfo->indices[r_symndx];
8648		    }
8649
8650		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
8651				   | (irela->r_info & r_type_mask));
8652		}
8653
8654	      /* Swap out the relocs.  */
8655	      if (input_rel_hdr->sh_size != 0
8656		  && !bed->elf_backend_emit_relocs (output_bfd, o,
8657						    input_rel_hdr,
8658						    internal_relocs,
8659						    rel_hash_list))
8660		return FALSE;
8661
8662	      input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
8663	      if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
8664		{
8665		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
8666				      * bed->s->int_rels_per_ext_rel);
8667		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
8668		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
8669						     input_rel_hdr2,
8670						     internal_relocs,
8671						     rel_hash_list))
8672		    return FALSE;
8673		}
8674	    }
8675	}
8676
8677      /* Write out the modified section contents.  */
8678      if (bed->elf_backend_write_section
8679	  && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
8680						contents))
8681	{
8682	  /* Section written out.  */
8683	}
8684      else switch (o->sec_info_type)
8685	{
8686	case ELF_INFO_TYPE_STABS:
8687	  if (! (_bfd_write_section_stabs
8688		 (output_bfd,
8689		  &elf_hash_table (finfo->info)->stab_info,
8690		  o, &elf_section_data (o)->sec_info, contents)))
8691	    return FALSE;
8692	  break;
8693	case ELF_INFO_TYPE_MERGE:
8694	  if (! _bfd_write_merged_section (output_bfd, o,
8695					   elf_section_data (o)->sec_info))
8696	    return FALSE;
8697	  break;
8698	case ELF_INFO_TYPE_EH_FRAME:
8699	  {
8700	    if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
8701						   o, contents))
8702	      return FALSE;
8703	  }
8704	  break;
8705	default:
8706	  {
8707	    if (! (o->flags & SEC_EXCLUDE)
8708		&& ! bfd_set_section_contents (output_bfd, o->output_section,
8709					       contents,
8710					       (file_ptr) o->output_offset,
8711					       o->size))
8712	      return FALSE;
8713	  }
8714	  break;
8715	}
8716    }
8717
8718  return TRUE;
8719}
8720
8721/* Generate a reloc when linking an ELF file.  This is a reloc
8722   requested by the linker, and does not come from any input file.  This
8723   is used to build constructor and destructor tables when linking
8724   with -Ur.  */
8725
8726static bfd_boolean
8727elf_reloc_link_order (bfd *output_bfd,
8728		      struct bfd_link_info *info,
8729		      asection *output_section,
8730		      struct bfd_link_order *link_order)
8731{
8732  reloc_howto_type *howto;
8733  long indx;
8734  bfd_vma offset;
8735  bfd_vma addend;
8736  struct elf_link_hash_entry **rel_hash_ptr;
8737  Elf_Internal_Shdr *rel_hdr;
8738  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
8739  Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
8740  bfd_byte *erel;
8741  unsigned int i;
8742
8743  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
8744  if (howto == NULL)
8745    {
8746      bfd_set_error (bfd_error_bad_value);
8747      return FALSE;
8748    }
8749
8750  addend = link_order->u.reloc.p->addend;
8751
8752  /* Figure out the symbol index.  */
8753  rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
8754		  + elf_section_data (output_section)->rel_count
8755		  + elf_section_data (output_section)->rel_count2);
8756  if (link_order->type == bfd_section_reloc_link_order)
8757    {
8758      indx = link_order->u.reloc.p->u.section->target_index;
8759      BFD_ASSERT (indx != 0);
8760      *rel_hash_ptr = NULL;
8761    }
8762  else
8763    {
8764      struct elf_link_hash_entry *h;
8765
8766      /* Treat a reloc against a defined symbol as though it were
8767	 actually against the section.  */
8768      h = ((struct elf_link_hash_entry *)
8769	   bfd_wrapped_link_hash_lookup (output_bfd, info,
8770					 link_order->u.reloc.p->u.name,
8771					 FALSE, FALSE, TRUE));
8772      if (h != NULL
8773	  && (h->root.type == bfd_link_hash_defined
8774	      || h->root.type == bfd_link_hash_defweak))
8775	{
8776	  asection *section;
8777
8778	  section = h->root.u.def.section;
8779	  indx = section->output_section->target_index;
8780	  *rel_hash_ptr = NULL;
8781	  /* It seems that we ought to add the symbol value to the
8782	     addend here, but in practice it has already been added
8783	     because it was passed to constructor_callback.  */
8784	  addend += section->output_section->vma + section->output_offset;
8785	}
8786      else if (h != NULL)
8787	{
8788	  /* Setting the index to -2 tells elf_link_output_extsym that
8789	     this symbol is used by a reloc.  */
8790	  h->indx = -2;
8791	  *rel_hash_ptr = h;
8792	  indx = 0;
8793	}
8794      else
8795	{
8796	  if (! ((*info->callbacks->unattached_reloc)
8797		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
8798	    return FALSE;
8799	  indx = 0;
8800	}
8801    }
8802
8803  /* If this is an inplace reloc, we must write the addend into the
8804     object file.  */
8805  if (howto->partial_inplace && addend != 0)
8806    {
8807      bfd_size_type size;
8808      bfd_reloc_status_type rstat;
8809      bfd_byte *buf;
8810      bfd_boolean ok;
8811      const char *sym_name;
8812
8813      size = bfd_get_reloc_size (howto);
8814      buf = bfd_zmalloc (size);
8815      if (buf == NULL)
8816	return FALSE;
8817      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
8818      switch (rstat)
8819	{
8820	case bfd_reloc_ok:
8821	  break;
8822
8823	default:
8824	case bfd_reloc_outofrange:
8825	  abort ();
8826
8827	case bfd_reloc_overflow:
8828	  if (link_order->type == bfd_section_reloc_link_order)
8829	    sym_name = bfd_section_name (output_bfd,
8830					 link_order->u.reloc.p->u.section);
8831	  else
8832	    sym_name = link_order->u.reloc.p->u.name;
8833	  if (! ((*info->callbacks->reloc_overflow)
8834		 (info, NULL, sym_name, howto->name, addend, NULL,
8835		  NULL, (bfd_vma) 0)))
8836	    {
8837	      free (buf);
8838	      return FALSE;
8839	    }
8840	  break;
8841	}
8842      ok = bfd_set_section_contents (output_bfd, output_section, buf,
8843				     link_order->offset, size);
8844      free (buf);
8845      if (! ok)
8846	return FALSE;
8847    }
8848
8849  /* The address of a reloc is relative to the section in a
8850     relocatable file, and is a virtual address in an executable
8851     file.  */
8852  offset = link_order->offset;
8853  if (! info->relocatable)
8854    offset += output_section->vma;
8855
8856  for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
8857    {
8858      irel[i].r_offset = offset;
8859      irel[i].r_info = 0;
8860      irel[i].r_addend = 0;
8861    }
8862  if (bed->s->arch_size == 32)
8863    irel[0].r_info = ELF32_R_INFO (indx, howto->type);
8864  else
8865    irel[0].r_info = ELF64_R_INFO (indx, howto->type);
8866
8867  rel_hdr = &elf_section_data (output_section)->rel_hdr;
8868  erel = rel_hdr->contents;
8869  if (rel_hdr->sh_type == SHT_REL)
8870    {
8871      erel += (elf_section_data (output_section)->rel_count
8872	       * bed->s->sizeof_rel);
8873      (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
8874    }
8875  else
8876    {
8877      irel[0].r_addend = addend;
8878      erel += (elf_section_data (output_section)->rel_count
8879	       * bed->s->sizeof_rela);
8880      (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
8881    }
8882
8883  ++elf_section_data (output_section)->rel_count;
8884
8885  return TRUE;
8886}
8887
8888
8889/* Get the output vma of the section pointed to by the sh_link field.  */
8890
8891static bfd_vma
8892elf_get_linked_section_vma (struct bfd_link_order *p)
8893{
8894  Elf_Internal_Shdr **elf_shdrp;
8895  asection *s;
8896  int elfsec;
8897
8898  s = p->u.indirect.section;
8899  elf_shdrp = elf_elfsections (s->owner);
8900  elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
8901  elfsec = elf_shdrp[elfsec]->sh_link;
8902  /* PR 290:
8903     The Intel C compiler generates SHT_IA_64_UNWIND with
8904     SHF_LINK_ORDER.  But it doesn't set the sh_link or
8905     sh_info fields.  Hence we could get the situation
8906     where elfsec is 0.  */
8907  if (elfsec == 0)
8908    {
8909      const struct elf_backend_data *bed
8910	= get_elf_backend_data (s->owner);
8911      if (bed->link_order_error_handler)
8912	bed->link_order_error_handler
8913	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
8914      return 0;
8915    }
8916  else
8917    {
8918      s = elf_shdrp[elfsec]->bfd_section;
8919      return s->output_section->vma + s->output_offset;
8920    }
8921}
8922
8923
8924/* Compare two sections based on the locations of the sections they are
8925   linked to.  Used by elf_fixup_link_order.  */
8926
8927static int
8928compare_link_order (const void * a, const void * b)
8929{
8930  bfd_vma apos;
8931  bfd_vma bpos;
8932
8933  apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
8934  bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
8935  if (apos < bpos)
8936    return -1;
8937  return apos > bpos;
8938}
8939
8940
8941/* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
8942   order as their linked sections.  Returns false if this could not be done
8943   because an output section includes both ordered and unordered
8944   sections.  Ideally we'd do this in the linker proper.  */
8945
8946static bfd_boolean
8947elf_fixup_link_order (bfd *abfd, asection *o)
8948{
8949  int seen_linkorder;
8950  int seen_other;
8951  int n;
8952  struct bfd_link_order *p;
8953  bfd *sub;
8954  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8955  unsigned elfsec;
8956  struct bfd_link_order **sections;
8957  asection *s, *other_sec, *linkorder_sec;
8958  bfd_vma offset;
8959
8960  other_sec = NULL;
8961  linkorder_sec = NULL;
8962  seen_other = 0;
8963  seen_linkorder = 0;
8964  for (p = o->map_head.link_order; p != NULL; p = p->next)
8965    {
8966      if (p->type == bfd_indirect_link_order)
8967	{
8968	  s = p->u.indirect.section;
8969	  sub = s->owner;
8970	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
8971	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
8972	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
8973	      && elfsec < elf_numsections (sub)
8974	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
8975	    {
8976	      seen_linkorder++;
8977	      linkorder_sec = s;
8978	    }
8979	  else
8980	    {
8981	      seen_other++;
8982	      other_sec = s;
8983	    }
8984	}
8985      else
8986	seen_other++;
8987
8988      if (seen_other && seen_linkorder)
8989	{
8990	  if (other_sec && linkorder_sec)
8991	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
8992				   o, linkorder_sec,
8993				   linkorder_sec->owner, other_sec,
8994				   other_sec->owner);
8995	  else
8996	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
8997				   o);
8998	  bfd_set_error (bfd_error_bad_value);
8999	  return FALSE;
9000	}
9001    }
9002
9003  if (!seen_linkorder)
9004    return TRUE;
9005
9006  sections = (struct bfd_link_order **)
9007    xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
9008  seen_linkorder = 0;
9009
9010  for (p = o->map_head.link_order; p != NULL; p = p->next)
9011    {
9012      sections[seen_linkorder++] = p;
9013    }
9014  /* Sort the input sections in the order of their linked section.  */
9015  qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9016	 compare_link_order);
9017
9018  /* Change the offsets of the sections.  */
9019  offset = 0;
9020  for (n = 0; n < seen_linkorder; n++)
9021    {
9022      s = sections[n]->u.indirect.section;
9023      offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
9024      s->output_offset = offset;
9025      sections[n]->offset = offset;
9026      offset += sections[n]->size;
9027    }
9028
9029  return TRUE;
9030}
9031
9032
9033/* Do the final step of an ELF link.  */
9034
9035bfd_boolean
9036bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9037{
9038  bfd_boolean dynamic;
9039  bfd_boolean emit_relocs;
9040  bfd *dynobj;
9041  struct elf_final_link_info finfo;
9042  register asection *o;
9043  register struct bfd_link_order *p;
9044  register bfd *sub;
9045  bfd_size_type max_contents_size;
9046  bfd_size_type max_external_reloc_size;
9047  bfd_size_type max_internal_reloc_count;
9048  bfd_size_type max_sym_count;
9049  bfd_size_type max_sym_shndx_count;
9050  file_ptr off;
9051  Elf_Internal_Sym elfsym;
9052  unsigned int i;
9053  Elf_Internal_Shdr *symtab_hdr;
9054  Elf_Internal_Shdr *symtab_shndx_hdr;
9055  Elf_Internal_Shdr *symstrtab_hdr;
9056  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9057  struct elf_outext_info eoinfo;
9058  bfd_boolean merged;
9059  size_t relativecount = 0;
9060  asection *reldyn = 0;
9061  bfd_size_type amt;
9062
9063  if (! is_elf_hash_table (info->hash))
9064    return FALSE;
9065
9066  if (info->shared)
9067    abfd->flags |= DYNAMIC;
9068
9069  dynamic = elf_hash_table (info)->dynamic_sections_created;
9070  dynobj = elf_hash_table (info)->dynobj;
9071
9072  emit_relocs = (info->relocatable
9073		 || info->emitrelocations);
9074
9075  finfo.info = info;
9076  finfo.output_bfd = abfd;
9077  finfo.symstrtab = _bfd_elf_stringtab_init ();
9078  if (finfo.symstrtab == NULL)
9079    return FALSE;
9080
9081  if (! dynamic)
9082    {
9083      finfo.dynsym_sec = NULL;
9084      finfo.hash_sec = NULL;
9085      finfo.symver_sec = NULL;
9086    }
9087  else
9088    {
9089      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9090      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9091      BFD_ASSERT (finfo.dynsym_sec != NULL);
9092      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9093      /* Note that it is OK if symver_sec is NULL.  */
9094    }
9095
9096  finfo.contents = NULL;
9097  finfo.external_relocs = NULL;
9098  finfo.internal_relocs = NULL;
9099  finfo.external_syms = NULL;
9100  finfo.locsym_shndx = NULL;
9101  finfo.internal_syms = NULL;
9102  finfo.indices = NULL;
9103  finfo.sections = NULL;
9104  finfo.symbuf = NULL;
9105  finfo.symshndxbuf = NULL;
9106  finfo.symbuf_count = 0;
9107  finfo.shndxbuf_size = 0;
9108
9109  /* Count up the number of relocations we will output for each output
9110     section, so that we know the sizes of the reloc sections.  We
9111     also figure out some maximum sizes.  */
9112  max_contents_size = 0;
9113  max_external_reloc_size = 0;
9114  max_internal_reloc_count = 0;
9115  max_sym_count = 0;
9116  max_sym_shndx_count = 0;
9117  merged = FALSE;
9118  for (o = abfd->sections; o != NULL; o = o->next)
9119    {
9120      struct bfd_elf_section_data *esdo = elf_section_data (o);
9121      o->reloc_count = 0;
9122
9123      for (p = o->map_head.link_order; p != NULL; p = p->next)
9124	{
9125	  unsigned int reloc_count = 0;
9126	  struct bfd_elf_section_data *esdi = NULL;
9127	  unsigned int *rel_count1;
9128
9129	  if (p->type == bfd_section_reloc_link_order
9130	      || p->type == bfd_symbol_reloc_link_order)
9131	    reloc_count = 1;
9132	  else if (p->type == bfd_indirect_link_order)
9133	    {
9134	      asection *sec;
9135
9136	      sec = p->u.indirect.section;
9137	      esdi = elf_section_data (sec);
9138
9139	      /* Mark all sections which are to be included in the
9140		 link.  This will normally be every section.  We need
9141		 to do this so that we can identify any sections which
9142		 the linker has decided to not include.  */
9143	      sec->linker_mark = TRUE;
9144
9145	      if (sec->flags & SEC_MERGE)
9146		merged = TRUE;
9147
9148	      if (info->relocatable || info->emitrelocations)
9149		reloc_count = sec->reloc_count;
9150	      else if (bed->elf_backend_count_relocs)
9151		{
9152		  Elf_Internal_Rela * relocs;
9153
9154		  relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
9155						      info->keep_memory);
9156
9157		  reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
9158
9159		  if (elf_section_data (o)->relocs != relocs)
9160		    free (relocs);
9161		}
9162
9163	      if (sec->rawsize > max_contents_size)
9164		max_contents_size = sec->rawsize;
9165	      if (sec->size > max_contents_size)
9166		max_contents_size = sec->size;
9167
9168	      /* We are interested in just local symbols, not all
9169		 symbols.  */
9170	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
9171		  && (sec->owner->flags & DYNAMIC) == 0)
9172		{
9173		  size_t sym_count;
9174
9175		  if (elf_bad_symtab (sec->owner))
9176		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
9177				 / bed->s->sizeof_sym);
9178		  else
9179		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
9180
9181		  if (sym_count > max_sym_count)
9182		    max_sym_count = sym_count;
9183
9184		  if (sym_count > max_sym_shndx_count
9185		      && elf_symtab_shndx (sec->owner) != 0)
9186		    max_sym_shndx_count = sym_count;
9187
9188		  if ((sec->flags & SEC_RELOC) != 0)
9189		    {
9190		      size_t ext_size;
9191
9192		      ext_size = elf_section_data (sec)->rel_hdr.sh_size;
9193		      if (ext_size > max_external_reloc_size)
9194			max_external_reloc_size = ext_size;
9195		      if (sec->reloc_count > max_internal_reloc_count)
9196			max_internal_reloc_count = sec->reloc_count;
9197		    }
9198		}
9199	    }
9200
9201	  if (reloc_count == 0)
9202	    continue;
9203
9204	  o->reloc_count += reloc_count;
9205
9206	  /* MIPS may have a mix of REL and RELA relocs on sections.
9207	     To support this curious ABI we keep reloc counts in
9208	     elf_section_data too.  We must be careful to add the
9209	     relocations from the input section to the right output
9210	     count.  FIXME: Get rid of one count.  We have
9211	     o->reloc_count == esdo->rel_count + esdo->rel_count2.  */
9212	  rel_count1 = &esdo->rel_count;
9213	  if (esdi != NULL)
9214	    {
9215	      bfd_boolean same_size;
9216	      bfd_size_type entsize1;
9217
9218	      entsize1 = esdi->rel_hdr.sh_entsize;
9219	      BFD_ASSERT (entsize1 == bed->s->sizeof_rel
9220			  || entsize1 == bed->s->sizeof_rela);
9221	      same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
9222
9223	      if (!same_size)
9224		rel_count1 = &esdo->rel_count2;
9225
9226	      if (esdi->rel_hdr2 != NULL)
9227		{
9228		  bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
9229		  unsigned int alt_count;
9230		  unsigned int *rel_count2;
9231
9232		  BFD_ASSERT (entsize2 != entsize1
9233			      && (entsize2 == bed->s->sizeof_rel
9234				  || entsize2 == bed->s->sizeof_rela));
9235
9236		  rel_count2 = &esdo->rel_count2;
9237		  if (!same_size)
9238		    rel_count2 = &esdo->rel_count;
9239
9240		  /* The following is probably too simplistic if the
9241		     backend counts output relocs unusually.  */
9242		  BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
9243		  alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
9244		  *rel_count2 += alt_count;
9245		  reloc_count -= alt_count;
9246		}
9247	    }
9248	  *rel_count1 += reloc_count;
9249	}
9250
9251      if (o->reloc_count > 0)
9252	o->flags |= SEC_RELOC;
9253      else
9254	{
9255	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
9256	     set it (this is probably a bug) and if it is set
9257	     assign_section_numbers will create a reloc section.  */
9258	  o->flags &=~ SEC_RELOC;
9259	}
9260
9261      /* If the SEC_ALLOC flag is not set, force the section VMA to
9262	 zero.  This is done in elf_fake_sections as well, but forcing
9263	 the VMA to 0 here will ensure that relocs against these
9264	 sections are handled correctly.  */
9265      if ((o->flags & SEC_ALLOC) == 0
9266	  && ! o->user_set_vma)
9267	o->vma = 0;
9268    }
9269
9270  if (! info->relocatable && merged)
9271    elf_link_hash_traverse (elf_hash_table (info),
9272			    _bfd_elf_link_sec_merge_syms, abfd);
9273
9274  /* Figure out the file positions for everything but the symbol table
9275     and the relocs.  We set symcount to force assign_section_numbers
9276     to create a symbol table.  */
9277  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
9278  BFD_ASSERT (! abfd->output_has_begun);
9279  if (! _bfd_elf_compute_section_file_positions (abfd, info))
9280    goto error_return;
9281
9282  /* Set sizes, and assign file positions for reloc sections.  */
9283  for (o = abfd->sections; o != NULL; o = o->next)
9284    {
9285      if ((o->flags & SEC_RELOC) != 0)
9286	{
9287	  if (!(_bfd_elf_link_size_reloc_section
9288		(abfd, &elf_section_data (o)->rel_hdr, o)))
9289	    goto error_return;
9290
9291	  if (elf_section_data (o)->rel_hdr2
9292	      && !(_bfd_elf_link_size_reloc_section
9293		   (abfd, elf_section_data (o)->rel_hdr2, o)))
9294	    goto error_return;
9295	}
9296
9297      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
9298	 to count upwards while actually outputting the relocations.  */
9299      elf_section_data (o)->rel_count = 0;
9300      elf_section_data (o)->rel_count2 = 0;
9301    }
9302
9303  _bfd_elf_assign_file_positions_for_relocs (abfd);
9304
9305  /* We have now assigned file positions for all the sections except
9306     .symtab and .strtab.  We start the .symtab section at the current
9307     file position, and write directly to it.  We build the .strtab
9308     section in memory.  */
9309  bfd_get_symcount (abfd) = 0;
9310  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9311  /* sh_name is set in prep_headers.  */
9312  symtab_hdr->sh_type = SHT_SYMTAB;
9313  /* sh_flags, sh_addr and sh_size all start off zero.  */
9314  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
9315  /* sh_link is set in assign_section_numbers.  */
9316  /* sh_info is set below.  */
9317  /* sh_offset is set just below.  */
9318  symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
9319
9320  off = elf_tdata (abfd)->next_file_pos;
9321  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
9322
9323  /* Note that at this point elf_tdata (abfd)->next_file_pos is
9324     incorrect.  We do not yet know the size of the .symtab section.
9325     We correct next_file_pos below, after we do know the size.  */
9326
9327  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
9328     continuously seeking to the right position in the file.  */
9329  if (! info->keep_memory || max_sym_count < 20)
9330    finfo.symbuf_size = 20;
9331  else
9332    finfo.symbuf_size = max_sym_count;
9333  amt = finfo.symbuf_size;
9334  amt *= bed->s->sizeof_sym;
9335  finfo.symbuf = bfd_malloc (amt);
9336  if (finfo.symbuf == NULL)
9337    goto error_return;
9338  if (elf_numsections (abfd) > SHN_LORESERVE)
9339    {
9340      /* Wild guess at number of output symbols.  realloc'd as needed.  */
9341      amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
9342      finfo.shndxbuf_size = amt;
9343      amt *= sizeof (Elf_External_Sym_Shndx);
9344      finfo.symshndxbuf = bfd_zmalloc (amt);
9345      if (finfo.symshndxbuf == NULL)
9346	goto error_return;
9347    }
9348
9349  /* Start writing out the symbol table.  The first symbol is always a
9350     dummy symbol.  */
9351  if (info->strip != strip_all
9352      || emit_relocs)
9353    {
9354      elfsym.st_value = 0;
9355      elfsym.st_size = 0;
9356      elfsym.st_info = 0;
9357      elfsym.st_other = 0;
9358      elfsym.st_shndx = SHN_UNDEF;
9359      if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
9360				 NULL))
9361	goto error_return;
9362    }
9363
9364  /* Output a symbol for each section.  We output these even if we are
9365     discarding local symbols, since they are used for relocs.  These
9366     symbols have no names.  We store the index of each one in the
9367     index field of the section, so that we can find it again when
9368     outputting relocs.  */
9369  if (info->strip != strip_all
9370      || emit_relocs)
9371    {
9372      elfsym.st_size = 0;
9373      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
9374      elfsym.st_other = 0;
9375      elfsym.st_value = 0;
9376      for (i = 1; i < elf_numsections (abfd); i++)
9377	{
9378	  o = bfd_section_from_elf_index (abfd, i);
9379	  if (o != NULL)
9380	    {
9381	      o->target_index = bfd_get_symcount (abfd);
9382	      elfsym.st_shndx = i;
9383	      if (!info->relocatable)
9384		elfsym.st_value = o->vma;
9385	      if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
9386		goto error_return;
9387	    }
9388	  if (i == SHN_LORESERVE - 1)
9389	    i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
9390	}
9391    }
9392
9393  /* Allocate some memory to hold information read in from the input
9394     files.  */
9395  if (max_contents_size != 0)
9396    {
9397      finfo.contents = bfd_malloc (max_contents_size);
9398      if (finfo.contents == NULL)
9399	goto error_return;
9400    }
9401
9402  if (max_external_reloc_size != 0)
9403    {
9404      finfo.external_relocs = bfd_malloc (max_external_reloc_size);
9405      if (finfo.external_relocs == NULL)
9406	goto error_return;
9407    }
9408
9409  if (max_internal_reloc_count != 0)
9410    {
9411      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
9412      amt *= sizeof (Elf_Internal_Rela);
9413      finfo.internal_relocs = bfd_malloc (amt);
9414      if (finfo.internal_relocs == NULL)
9415	goto error_return;
9416    }
9417
9418  if (max_sym_count != 0)
9419    {
9420      amt = max_sym_count * bed->s->sizeof_sym;
9421      finfo.external_syms = bfd_malloc (amt);
9422      if (finfo.external_syms == NULL)
9423	goto error_return;
9424
9425      amt = max_sym_count * sizeof (Elf_Internal_Sym);
9426      finfo.internal_syms = bfd_malloc (amt);
9427      if (finfo.internal_syms == NULL)
9428	goto error_return;
9429
9430      amt = max_sym_count * sizeof (long);
9431      finfo.indices = bfd_malloc (amt);
9432      if (finfo.indices == NULL)
9433	goto error_return;
9434
9435      amt = max_sym_count * sizeof (asection *);
9436      finfo.sections = bfd_malloc (amt);
9437      if (finfo.sections == NULL)
9438	goto error_return;
9439    }
9440
9441  if (max_sym_shndx_count != 0)
9442    {
9443      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
9444      finfo.locsym_shndx = bfd_malloc (amt);
9445      if (finfo.locsym_shndx == NULL)
9446	goto error_return;
9447    }
9448
9449  if (elf_hash_table (info)->tls_sec)
9450    {
9451      bfd_vma base, end = 0;
9452      asection *sec;
9453
9454      for (sec = elf_hash_table (info)->tls_sec;
9455	   sec && (sec->flags & SEC_THREAD_LOCAL);
9456	   sec = sec->next)
9457	{
9458	  bfd_size_type size = sec->size;
9459
9460	  if (size == 0
9461	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
9462	    {
9463	      struct bfd_link_order *o = sec->map_tail.link_order;
9464	      if (o != NULL)
9465		size = o->offset + o->size;
9466	    }
9467	  end = sec->vma + size;
9468	}
9469      base = elf_hash_table (info)->tls_sec->vma;
9470      end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
9471      elf_hash_table (info)->tls_size = end - base;
9472    }
9473
9474  /* Reorder SHF_LINK_ORDER sections.  */
9475  for (o = abfd->sections; o != NULL; o = o->next)
9476    {
9477      if (!elf_fixup_link_order (abfd, o))
9478	return FALSE;
9479    }
9480
9481  /* Since ELF permits relocations to be against local symbols, we
9482     must have the local symbols available when we do the relocations.
9483     Since we would rather only read the local symbols once, and we
9484     would rather not keep them in memory, we handle all the
9485     relocations for a single input file at the same time.
9486
9487     Unfortunately, there is no way to know the total number of local
9488     symbols until we have seen all of them, and the local symbol
9489     indices precede the global symbol indices.  This means that when
9490     we are generating relocatable output, and we see a reloc against
9491     a global symbol, we can not know the symbol index until we have
9492     finished examining all the local symbols to see which ones we are
9493     going to output.  To deal with this, we keep the relocations in
9494     memory, and don't output them until the end of the link.  This is
9495     an unfortunate waste of memory, but I don't see a good way around
9496     it.  Fortunately, it only happens when performing a relocatable
9497     link, which is not the common case.  FIXME: If keep_memory is set
9498     we could write the relocs out and then read them again; I don't
9499     know how bad the memory loss will be.  */
9500
9501  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9502    sub->output_has_begun = FALSE;
9503  for (o = abfd->sections; o != NULL; o = o->next)
9504    {
9505      for (p = o->map_head.link_order; p != NULL; p = p->next)
9506	{
9507	  if (p->type == bfd_indirect_link_order
9508	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
9509		  == bfd_target_elf_flavour)
9510	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
9511	    {
9512	      if (! sub->output_has_begun)
9513		{
9514		  if (! elf_link_input_bfd (&finfo, sub))
9515		    goto error_return;
9516		  sub->output_has_begun = TRUE;
9517		}
9518	    }
9519	  else if (p->type == bfd_section_reloc_link_order
9520		   || p->type == bfd_symbol_reloc_link_order)
9521	    {
9522	      if (! elf_reloc_link_order (abfd, info, o, p))
9523		goto error_return;
9524	    }
9525	  else
9526	    {
9527	      if (! _bfd_default_link_order (abfd, info, o, p))
9528		goto error_return;
9529	    }
9530	}
9531    }
9532
9533  /* Free symbol buffer if needed.  */
9534  if (!info->reduce_memory_overheads)
9535    {
9536      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9537	if (elf_tdata (sub)->symbuf)
9538	  {
9539	    free (elf_tdata (sub)->symbuf);
9540	    elf_tdata (sub)->symbuf = NULL;
9541	  }
9542    }
9543
9544  /* Output any global symbols that got converted to local in a
9545     version script or due to symbol visibility.  We do this in a
9546     separate step since ELF requires all local symbols to appear
9547     prior to any global symbols.  FIXME: We should only do this if
9548     some global symbols were, in fact, converted to become local.
9549     FIXME: Will this work correctly with the Irix 5 linker?  */
9550  eoinfo.failed = FALSE;
9551  eoinfo.finfo = &finfo;
9552  eoinfo.localsyms = TRUE;
9553  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
9554			  &eoinfo);
9555  if (eoinfo.failed)
9556    return FALSE;
9557
9558  /* If backend needs to output some local symbols not present in the hash
9559     table, do it now.  */
9560  if (bed->elf_backend_output_arch_local_syms)
9561    {
9562      typedef bfd_boolean (*out_sym_func)
9563	(void *, const char *, Elf_Internal_Sym *, asection *,
9564	 struct elf_link_hash_entry *);
9565
9566      if (! ((*bed->elf_backend_output_arch_local_syms)
9567	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
9568	return FALSE;
9569    }
9570
9571  /* That wrote out all the local symbols.  Finish up the symbol table
9572     with the global symbols. Even if we want to strip everything we
9573     can, we still need to deal with those global symbols that got
9574     converted to local in a version script.  */
9575
9576  /* The sh_info field records the index of the first non local symbol.  */
9577  symtab_hdr->sh_info = bfd_get_symcount (abfd);
9578
9579  if (dynamic
9580      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
9581    {
9582      Elf_Internal_Sym sym;
9583      bfd_byte *dynsym = finfo.dynsym_sec->contents;
9584      long last_local = 0;
9585
9586      /* Write out the section symbols for the output sections.  */
9587      if (info->shared || elf_hash_table (info)->is_relocatable_executable)
9588	{
9589	  asection *s;
9590
9591	  sym.st_size = 0;
9592	  sym.st_name = 0;
9593	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
9594	  sym.st_other = 0;
9595
9596	  for (s = abfd->sections; s != NULL; s = s->next)
9597	    {
9598	      int indx;
9599	      bfd_byte *dest;
9600	      long dynindx;
9601
9602	      dynindx = elf_section_data (s)->dynindx;
9603	      if (dynindx <= 0)
9604		continue;
9605	      indx = elf_section_data (s)->this_idx;
9606	      BFD_ASSERT (indx > 0);
9607	      sym.st_shndx = indx;
9608	      if (! check_dynsym (abfd, &sym))
9609		return FALSE;
9610	      sym.st_value = s->vma;
9611	      dest = dynsym + dynindx * bed->s->sizeof_sym;
9612	      if (last_local < dynindx)
9613		last_local = dynindx;
9614	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
9615	    }
9616	}
9617
9618      /* Write out the local dynsyms.  */
9619      if (elf_hash_table (info)->dynlocal)
9620	{
9621	  struct elf_link_local_dynamic_entry *e;
9622	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
9623	    {
9624	      asection *s;
9625	      bfd_byte *dest;
9626
9627	      sym.st_size = e->isym.st_size;
9628	      sym.st_other = e->isym.st_other;
9629
9630	      /* Copy the internal symbol as is.
9631		 Note that we saved a word of storage and overwrote
9632		 the original st_name with the dynstr_index.  */
9633	      sym = e->isym;
9634
9635	      if (e->isym.st_shndx != SHN_UNDEF
9636		  && (e->isym.st_shndx < SHN_LORESERVE
9637		      || e->isym.st_shndx > SHN_HIRESERVE))
9638		{
9639		  s = bfd_section_from_elf_index (e->input_bfd,
9640						  e->isym.st_shndx);
9641
9642		  sym.st_shndx =
9643		    elf_section_data (s->output_section)->this_idx;
9644		  if (! check_dynsym (abfd, &sym))
9645		    return FALSE;
9646		  sym.st_value = (s->output_section->vma
9647				  + s->output_offset
9648				  + e->isym.st_value);
9649		}
9650
9651	      if (last_local < e->dynindx)
9652		last_local = e->dynindx;
9653
9654	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
9655	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
9656	    }
9657	}
9658
9659      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
9660	last_local + 1;
9661    }
9662
9663  /* We get the global symbols from the hash table.  */
9664  eoinfo.failed = FALSE;
9665  eoinfo.localsyms = FALSE;
9666  eoinfo.finfo = &finfo;
9667  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
9668			  &eoinfo);
9669  if (eoinfo.failed)
9670    return FALSE;
9671
9672  /* If backend needs to output some symbols not present in the hash
9673     table, do it now.  */
9674  if (bed->elf_backend_output_arch_syms)
9675    {
9676      typedef bfd_boolean (*out_sym_func)
9677	(void *, const char *, Elf_Internal_Sym *, asection *,
9678	 struct elf_link_hash_entry *);
9679
9680      if (! ((*bed->elf_backend_output_arch_syms)
9681	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
9682	return FALSE;
9683    }
9684
9685  /* Flush all symbols to the file.  */
9686  if (! elf_link_flush_output_syms (&finfo, bed))
9687    return FALSE;
9688
9689  /* Now we know the size of the symtab section.  */
9690  off += symtab_hdr->sh_size;
9691
9692  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
9693  if (symtab_shndx_hdr->sh_name != 0)
9694    {
9695      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
9696      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
9697      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
9698      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
9699      symtab_shndx_hdr->sh_size = amt;
9700
9701      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
9702						       off, TRUE);
9703
9704      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
9705	  || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
9706	return FALSE;
9707    }
9708
9709
9710  /* Finish up and write out the symbol string table (.strtab)
9711     section.  */
9712  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
9713  /* sh_name was set in prep_headers.  */
9714  symstrtab_hdr->sh_type = SHT_STRTAB;
9715  symstrtab_hdr->sh_flags = 0;
9716  symstrtab_hdr->sh_addr = 0;
9717  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
9718  symstrtab_hdr->sh_entsize = 0;
9719  symstrtab_hdr->sh_link = 0;
9720  symstrtab_hdr->sh_info = 0;
9721  /* sh_offset is set just below.  */
9722  symstrtab_hdr->sh_addralign = 1;
9723
9724  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
9725  elf_tdata (abfd)->next_file_pos = off;
9726
9727  if (bfd_get_symcount (abfd) > 0)
9728    {
9729      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
9730	  || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
9731	return FALSE;
9732    }
9733
9734  /* Adjust the relocs to have the correct symbol indices.  */
9735  for (o = abfd->sections; o != NULL; o = o->next)
9736    {
9737      if ((o->flags & SEC_RELOC) == 0)
9738	continue;
9739
9740      elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
9741			      elf_section_data (o)->rel_count,
9742			      elf_section_data (o)->rel_hashes);
9743      if (elf_section_data (o)->rel_hdr2 != NULL)
9744	elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
9745				elf_section_data (o)->rel_count2,
9746				(elf_section_data (o)->rel_hashes
9747				 + elf_section_data (o)->rel_count));
9748
9749      /* Set the reloc_count field to 0 to prevent write_relocs from
9750	 trying to swap the relocs out itself.  */
9751      o->reloc_count = 0;
9752    }
9753
9754  if (dynamic && info->combreloc && dynobj != NULL)
9755    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
9756
9757  /* If we are linking against a dynamic object, or generating a
9758     shared library, finish up the dynamic linking information.  */
9759  if (dynamic)
9760    {
9761      bfd_byte *dyncon, *dynconend;
9762
9763      /* Fix up .dynamic entries.  */
9764      o = bfd_get_section_by_name (dynobj, ".dynamic");
9765      BFD_ASSERT (o != NULL);
9766
9767      dyncon = o->contents;
9768      dynconend = o->contents + o->size;
9769      for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
9770	{
9771	  Elf_Internal_Dyn dyn;
9772	  const char *name;
9773	  unsigned int type;
9774
9775	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
9776
9777	  switch (dyn.d_tag)
9778	    {
9779	    default:
9780	      continue;
9781	    case DT_NULL:
9782	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
9783		{
9784		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
9785		    {
9786		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
9787		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
9788		    default: continue;
9789		    }
9790		  dyn.d_un.d_val = relativecount;
9791		  relativecount = 0;
9792		  break;
9793		}
9794	      continue;
9795
9796	    case DT_INIT:
9797	      name = info->init_function;
9798	      goto get_sym;
9799	    case DT_FINI:
9800	      name = info->fini_function;
9801	    get_sym:
9802	      {
9803		struct elf_link_hash_entry *h;
9804
9805		h = elf_link_hash_lookup (elf_hash_table (info), name,
9806					  FALSE, FALSE, TRUE);
9807		if (h != NULL
9808		    && (h->root.type == bfd_link_hash_defined
9809			|| h->root.type == bfd_link_hash_defweak))
9810		  {
9811		    dyn.d_un.d_val = h->root.u.def.value;
9812		    o = h->root.u.def.section;
9813		    if (o->output_section != NULL)
9814		      dyn.d_un.d_val += (o->output_section->vma
9815					 + o->output_offset);
9816		    else
9817		      {
9818			/* The symbol is imported from another shared
9819			   library and does not apply to this one.  */
9820			dyn.d_un.d_val = 0;
9821		      }
9822		    break;
9823		  }
9824	      }
9825	      continue;
9826
9827	    case DT_PREINIT_ARRAYSZ:
9828	      name = ".preinit_array";
9829	      goto get_size;
9830	    case DT_INIT_ARRAYSZ:
9831	      name = ".init_array";
9832	      goto get_size;
9833	    case DT_FINI_ARRAYSZ:
9834	      name = ".fini_array";
9835	    get_size:
9836	      o = bfd_get_section_by_name (abfd, name);
9837	      if (o == NULL)
9838		{
9839		  (*_bfd_error_handler)
9840		    (_("%B: could not find output section %s"), abfd, name);
9841		  goto error_return;
9842		}
9843	      if (o->size == 0)
9844		(*_bfd_error_handler)
9845		  (_("warning: %s section has zero size"), name);
9846	      dyn.d_un.d_val = o->size;
9847	      break;
9848
9849	    case DT_PREINIT_ARRAY:
9850	      name = ".preinit_array";
9851	      goto get_vma;
9852	    case DT_INIT_ARRAY:
9853	      name = ".init_array";
9854	      goto get_vma;
9855	    case DT_FINI_ARRAY:
9856	      name = ".fini_array";
9857	      goto get_vma;
9858
9859	    case DT_HASH:
9860	      name = ".hash";
9861	      goto get_vma;
9862	    case DT_GNU_HASH:
9863	      name = ".gnu.hash";
9864	      goto get_vma;
9865	    case DT_STRTAB:
9866	      name = ".dynstr";
9867	      goto get_vma;
9868	    case DT_SYMTAB:
9869	      name = ".dynsym";
9870	      goto get_vma;
9871	    case DT_VERDEF:
9872	      name = ".gnu.version_d";
9873	      goto get_vma;
9874	    case DT_VERNEED:
9875	      name = ".gnu.version_r";
9876	      goto get_vma;
9877	    case DT_VERSYM:
9878	      name = ".gnu.version";
9879	    get_vma:
9880	      o = bfd_get_section_by_name (abfd, name);
9881	      if (o == NULL)
9882		{
9883		  (*_bfd_error_handler)
9884		    (_("%B: could not find output section %s"), abfd, name);
9885		  goto error_return;
9886		}
9887	      dyn.d_un.d_ptr = o->vma;
9888	      break;
9889
9890	    case DT_REL:
9891	    case DT_RELA:
9892	    case DT_RELSZ:
9893	    case DT_RELASZ:
9894	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9895		type = SHT_REL;
9896	      else
9897		type = SHT_RELA;
9898	      dyn.d_un.d_val = 0;
9899	      for (i = 1; i < elf_numsections (abfd); i++)
9900		{
9901		  Elf_Internal_Shdr *hdr;
9902
9903		  hdr = elf_elfsections (abfd)[i];
9904		  if (hdr->sh_type == type
9905		      && (hdr->sh_flags & SHF_ALLOC) != 0)
9906		    {
9907		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
9908			dyn.d_un.d_val += hdr->sh_size;
9909		      else
9910			{
9911			  if (dyn.d_un.d_val == 0
9912			      || hdr->sh_addr < dyn.d_un.d_val)
9913			    dyn.d_un.d_val = hdr->sh_addr;
9914			}
9915		    }
9916		}
9917	      break;
9918	    }
9919	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
9920	}
9921    }
9922
9923  /* If we have created any dynamic sections, then output them.  */
9924  if (dynobj != NULL)
9925    {
9926      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
9927	goto error_return;
9928
9929      /* Check for DT_TEXTREL (late, in case the backend removes it).  */
9930      if (info->warn_shared_textrel && info->shared)
9931	{
9932	  bfd_byte *dyncon, *dynconend;
9933
9934	  /* Fix up .dynamic entries.  */
9935	  o = bfd_get_section_by_name (dynobj, ".dynamic");
9936	  BFD_ASSERT (o != NULL);
9937
9938	  dyncon = o->contents;
9939	  dynconend = o->contents + o->size;
9940	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
9941	    {
9942	      Elf_Internal_Dyn dyn;
9943
9944	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
9945
9946	      if (dyn.d_tag == DT_TEXTREL)
9947		{
9948		  _bfd_error_handler
9949		    (_("warning: creating a DT_TEXTREL in a shared object."));
9950		  break;
9951		}
9952	    }
9953	}
9954
9955      for (o = dynobj->sections; o != NULL; o = o->next)
9956	{
9957	  if ((o->flags & SEC_HAS_CONTENTS) == 0
9958	      || o->size == 0
9959	      || o->output_section == bfd_abs_section_ptr)
9960	    continue;
9961	  if ((o->flags & SEC_LINKER_CREATED) == 0)
9962	    {
9963	      /* At this point, we are only interested in sections
9964		 created by _bfd_elf_link_create_dynamic_sections.  */
9965	      continue;
9966	    }
9967	  if (elf_hash_table (info)->stab_info.stabstr == o)
9968	    continue;
9969	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
9970	    continue;
9971	  if ((elf_section_data (o->output_section)->this_hdr.sh_type
9972	       != SHT_STRTAB)
9973	      || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
9974	    {
9975	      if (! bfd_set_section_contents (abfd, o->output_section,
9976					      o->contents,
9977					      (file_ptr) o->output_offset,
9978					      o->size))
9979		goto error_return;
9980	    }
9981	  else
9982	    {
9983	      /* The contents of the .dynstr section are actually in a
9984		 stringtab.  */
9985	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
9986	      if (bfd_seek (abfd, off, SEEK_SET) != 0
9987		  || ! _bfd_elf_strtab_emit (abfd,
9988					     elf_hash_table (info)->dynstr))
9989		goto error_return;
9990	    }
9991	}
9992    }
9993
9994  if (info->relocatable)
9995    {
9996      bfd_boolean failed = FALSE;
9997
9998      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
9999      if (failed)
10000	goto error_return;
10001    }
10002
10003  /* If we have optimized stabs strings, output them.  */
10004  if (elf_hash_table (info)->stab_info.stabstr != NULL)
10005    {
10006      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10007	goto error_return;
10008    }
10009
10010  if (info->eh_frame_hdr)
10011    {
10012      if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10013	goto error_return;
10014    }
10015
10016  if (finfo.symstrtab != NULL)
10017    _bfd_stringtab_free (finfo.symstrtab);
10018  if (finfo.contents != NULL)
10019    free (finfo.contents);
10020  if (finfo.external_relocs != NULL)
10021    free (finfo.external_relocs);
10022  if (finfo.internal_relocs != NULL)
10023    free (finfo.internal_relocs);
10024  if (finfo.external_syms != NULL)
10025    free (finfo.external_syms);
10026  if (finfo.locsym_shndx != NULL)
10027    free (finfo.locsym_shndx);
10028  if (finfo.internal_syms != NULL)
10029    free (finfo.internal_syms);
10030  if (finfo.indices != NULL)
10031    free (finfo.indices);
10032  if (finfo.sections != NULL)
10033    free (finfo.sections);
10034  if (finfo.symbuf != NULL)
10035    free (finfo.symbuf);
10036  if (finfo.symshndxbuf != NULL)
10037    free (finfo.symshndxbuf);
10038  for (o = abfd->sections; o != NULL; o = o->next)
10039    {
10040      if ((o->flags & SEC_RELOC) != 0
10041	  && elf_section_data (o)->rel_hashes != NULL)
10042	free (elf_section_data (o)->rel_hashes);
10043    }
10044
10045  elf_tdata (abfd)->linker = TRUE;
10046
10047  return TRUE;
10048
10049 error_return:
10050  if (finfo.symstrtab != NULL)
10051    _bfd_stringtab_free (finfo.symstrtab);
10052  if (finfo.contents != NULL)
10053    free (finfo.contents);
10054  if (finfo.external_relocs != NULL)
10055    free (finfo.external_relocs);
10056  if (finfo.internal_relocs != NULL)
10057    free (finfo.internal_relocs);
10058  if (finfo.external_syms != NULL)
10059    free (finfo.external_syms);
10060  if (finfo.locsym_shndx != NULL)
10061    free (finfo.locsym_shndx);
10062  if (finfo.internal_syms != NULL)
10063    free (finfo.internal_syms);
10064  if (finfo.indices != NULL)
10065    free (finfo.indices);
10066  if (finfo.sections != NULL)
10067    free (finfo.sections);
10068  if (finfo.symbuf != NULL)
10069    free (finfo.symbuf);
10070  if (finfo.symshndxbuf != NULL)
10071    free (finfo.symshndxbuf);
10072  for (o = abfd->sections; o != NULL; o = o->next)
10073    {
10074      if ((o->flags & SEC_RELOC) != 0
10075	  && elf_section_data (o)->rel_hashes != NULL)
10076	free (elf_section_data (o)->rel_hashes);
10077    }
10078
10079  return FALSE;
10080}
10081
10082/* Garbage collect unused sections.  */
10083
10084typedef asection * (*gc_mark_hook_fn)
10085  (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
10086   struct elf_link_hash_entry *, Elf_Internal_Sym *);
10087
10088/* Default gc_mark_hook.  */
10089
10090asection *
10091_bfd_elf_gc_mark_hook (asection *sec,
10092		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
10093		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
10094		       struct elf_link_hash_entry *h,
10095		       Elf_Internal_Sym *sym)
10096{
10097  if (h != NULL)
10098    {
10099      switch (h->root.type)
10100	{
10101	case bfd_link_hash_defined:
10102	case bfd_link_hash_defweak:
10103	  return h->root.u.def.section;
10104
10105	case bfd_link_hash_common:
10106	  return h->root.u.c.p->section;
10107
10108	default:
10109	  break;
10110	}
10111    }
10112  else
10113    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
10114
10115  return NULL;
10116}
10117
10118/* The mark phase of garbage collection.  For a given section, mark
10119   it and any sections in this section's group, and all the sections
10120   which define symbols to which it refers.  */
10121
10122bfd_boolean
10123_bfd_elf_gc_mark (struct bfd_link_info *info,
10124		  asection *sec,
10125		  gc_mark_hook_fn gc_mark_hook)
10126{
10127  bfd_boolean ret;
10128  bfd_boolean is_eh;
10129  asection *group_sec;
10130
10131  sec->gc_mark = 1;
10132
10133  /* Mark all the sections in the group.  */
10134  group_sec = elf_section_data (sec)->next_in_group;
10135  if (group_sec && !group_sec->gc_mark)
10136    if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
10137      return FALSE;
10138
10139  /* Look through the section relocs.  */
10140  ret = TRUE;
10141  is_eh = strcmp (sec->name, ".eh_frame") == 0;
10142  if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
10143    {
10144      Elf_Internal_Rela *relstart, *rel, *relend;
10145      Elf_Internal_Shdr *symtab_hdr;
10146      struct elf_link_hash_entry **sym_hashes;
10147      size_t nlocsyms;
10148      size_t extsymoff;
10149      bfd *input_bfd = sec->owner;
10150      const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
10151      Elf_Internal_Sym *isym = NULL;
10152      int r_sym_shift;
10153
10154      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10155      sym_hashes = elf_sym_hashes (input_bfd);
10156
10157      /* Read the local symbols.  */
10158      if (elf_bad_symtab (input_bfd))
10159	{
10160	  nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
10161	  extsymoff = 0;
10162	}
10163      else
10164	extsymoff = nlocsyms = symtab_hdr->sh_info;
10165
10166      isym = (Elf_Internal_Sym *) symtab_hdr->contents;
10167      if (isym == NULL && nlocsyms != 0)
10168	{
10169	  isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
10170				       NULL, NULL, NULL);
10171	  if (isym == NULL)
10172	    return FALSE;
10173	}
10174
10175      /* Read the relocations.  */
10176      relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
10177					    info->keep_memory);
10178      if (relstart == NULL)
10179	{
10180	  ret = FALSE;
10181	  goto out1;
10182	}
10183      relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
10184
10185      if (bed->s->arch_size == 32)
10186	r_sym_shift = 8;
10187      else
10188	r_sym_shift = 32;
10189
10190      for (rel = relstart; rel < relend; rel++)
10191	{
10192	  unsigned long r_symndx;
10193	  asection *rsec;
10194	  struct elf_link_hash_entry *h;
10195
10196	  r_symndx = rel->r_info >> r_sym_shift;
10197	  if (r_symndx == 0)
10198	    continue;
10199
10200	  if (r_symndx >= nlocsyms
10201	      || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
10202	    {
10203	      h = sym_hashes[r_symndx - extsymoff];
10204	      while (h->root.type == bfd_link_hash_indirect
10205		     || h->root.type == bfd_link_hash_warning)
10206		h = (struct elf_link_hash_entry *) h->root.u.i.link;
10207	      rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
10208	    }
10209	  else
10210	    {
10211	      rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
10212	    }
10213
10214	  if (rsec && !rsec->gc_mark)
10215	    {
10216	      if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
10217		rsec->gc_mark = 1;
10218	      else if (is_eh)
10219		rsec->gc_mark_from_eh = 1;
10220	      else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
10221		{
10222		  ret = FALSE;
10223		  goto out2;
10224		}
10225	    }
10226	}
10227
10228    out2:
10229      if (elf_section_data (sec)->relocs != relstart)
10230	free (relstart);
10231    out1:
10232      if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
10233	{
10234	  if (! info->keep_memory)
10235	    free (isym);
10236	  else
10237	    symtab_hdr->contents = (unsigned char *) isym;
10238	}
10239    }
10240
10241  return ret;
10242}
10243
10244/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
10245
10246struct elf_gc_sweep_symbol_info
10247{
10248  struct bfd_link_info *info;
10249  void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
10250		       bfd_boolean);
10251};
10252
10253static bfd_boolean
10254elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
10255{
10256  if (h->root.type == bfd_link_hash_warning)
10257    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10258
10259  if ((h->root.type == bfd_link_hash_defined
10260       || h->root.type == bfd_link_hash_defweak)
10261      && !h->root.u.def.section->gc_mark
10262      && !(h->root.u.def.section->owner->flags & DYNAMIC))
10263    {
10264      struct elf_gc_sweep_symbol_info *inf = data;
10265      (*inf->hide_symbol) (inf->info, h, TRUE);
10266    }
10267
10268  return TRUE;
10269}
10270
10271/* The sweep phase of garbage collection.  Remove all garbage sections.  */
10272
10273typedef bfd_boolean (*gc_sweep_hook_fn)
10274  (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
10275
10276static bfd_boolean
10277elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
10278{
10279  bfd *sub;
10280  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10281  gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
10282  unsigned long section_sym_count;
10283  struct elf_gc_sweep_symbol_info sweep_info;
10284
10285  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10286    {
10287      asection *o;
10288
10289      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
10290	continue;
10291
10292      for (o = sub->sections; o != NULL; o = o->next)
10293	{
10294	  /* Keep debug and special sections.  */
10295	  if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
10296	      || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
10297	    o->gc_mark = 1;
10298
10299	  if (o->gc_mark)
10300	    continue;
10301
10302	  /* Skip sweeping sections already excluded.  */
10303	  if (o->flags & SEC_EXCLUDE)
10304	    continue;
10305
10306	  /* Since this is early in the link process, it is simple
10307	     to remove a section from the output.  */
10308	  o->flags |= SEC_EXCLUDE;
10309
10310	  if (info->print_gc_sections == TRUE)
10311	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
10312
10313	  /* But we also have to update some of the relocation
10314	     info we collected before.  */
10315	  if (gc_sweep_hook
10316	      && (o->flags & SEC_RELOC) != 0
10317	      && o->reloc_count > 0
10318	      && !bfd_is_abs_section (o->output_section))
10319	    {
10320	      Elf_Internal_Rela *internal_relocs;
10321	      bfd_boolean r;
10322
10323	      internal_relocs
10324		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
10325					     info->keep_memory);
10326	      if (internal_relocs == NULL)
10327		return FALSE;
10328
10329	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
10330
10331	      if (elf_section_data (o)->relocs != internal_relocs)
10332		free (internal_relocs);
10333
10334	      if (!r)
10335		return FALSE;
10336	    }
10337	}
10338    }
10339
10340  /* Remove the symbols that were in the swept sections from the dynamic
10341     symbol table.  GCFIXME: Anyone know how to get them out of the
10342     static symbol table as well?  */
10343  sweep_info.info = info;
10344  sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
10345  elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
10346			  &sweep_info);
10347
10348  _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
10349  return TRUE;
10350}
10351
10352/* Propagate collected vtable information.  This is called through
10353   elf_link_hash_traverse.  */
10354
10355static bfd_boolean
10356elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
10357{
10358  if (h->root.type == bfd_link_hash_warning)
10359    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10360
10361  /* Those that are not vtables.  */
10362  if (h->vtable == NULL || h->vtable->parent == NULL)
10363    return TRUE;
10364
10365  /* Those vtables that do not have parents, we cannot merge.  */
10366  if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
10367    return TRUE;
10368
10369  /* If we've already been done, exit.  */
10370  if (h->vtable->used && h->vtable->used[-1])
10371    return TRUE;
10372
10373  /* Make sure the parent's table is up to date.  */
10374  elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
10375
10376  if (h->vtable->used == NULL)
10377    {
10378      /* None of this table's entries were referenced.  Re-use the
10379	 parent's table.  */
10380      h->vtable->used = h->vtable->parent->vtable->used;
10381      h->vtable->size = h->vtable->parent->vtable->size;
10382    }
10383  else
10384    {
10385      size_t n;
10386      bfd_boolean *cu, *pu;
10387
10388      /* Or the parent's entries into ours.  */
10389      cu = h->vtable->used;
10390      cu[-1] = TRUE;
10391      pu = h->vtable->parent->vtable->used;
10392      if (pu != NULL)
10393	{
10394	  const struct elf_backend_data *bed;
10395	  unsigned int log_file_align;
10396
10397	  bed = get_elf_backend_data (h->root.u.def.section->owner);
10398	  log_file_align = bed->s->log_file_align;
10399	  n = h->vtable->parent->vtable->size >> log_file_align;
10400	  while (n--)
10401	    {
10402	      if (*pu)
10403		*cu = TRUE;
10404	      pu++;
10405	      cu++;
10406	    }
10407	}
10408    }
10409
10410  return TRUE;
10411}
10412
10413static bfd_boolean
10414elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
10415{
10416  asection *sec;
10417  bfd_vma hstart, hend;
10418  Elf_Internal_Rela *relstart, *relend, *rel;
10419  const struct elf_backend_data *bed;
10420  unsigned int log_file_align;
10421
10422  if (h->root.type == bfd_link_hash_warning)
10423    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10424
10425  /* Take care of both those symbols that do not describe vtables as
10426     well as those that are not loaded.  */
10427  if (h->vtable == NULL || h->vtable->parent == NULL)
10428    return TRUE;
10429
10430  BFD_ASSERT (h->root.type == bfd_link_hash_defined
10431	      || h->root.type == bfd_link_hash_defweak);
10432
10433  sec = h->root.u.def.section;
10434  hstart = h->root.u.def.value;
10435  hend = hstart + h->size;
10436
10437  relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
10438  if (!relstart)
10439    return *(bfd_boolean *) okp = FALSE;
10440  bed = get_elf_backend_data (sec->owner);
10441  log_file_align = bed->s->log_file_align;
10442
10443  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
10444
10445  for (rel = relstart; rel < relend; ++rel)
10446    if (rel->r_offset >= hstart && rel->r_offset < hend)
10447      {
10448	/* If the entry is in use, do nothing.  */
10449	if (h->vtable->used
10450	    && (rel->r_offset - hstart) < h->vtable->size)
10451	  {
10452	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
10453	    if (h->vtable->used[entry])
10454	      continue;
10455	  }
10456	/* Otherwise, kill it.  */
10457	rel->r_offset = rel->r_info = rel->r_addend = 0;
10458      }
10459
10460  return TRUE;
10461}
10462
10463/* Mark sections containing dynamically referenced symbols.  When
10464   building shared libraries, we must assume that any visible symbol is
10465   referenced.  */
10466
10467bfd_boolean
10468bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
10469{
10470  struct bfd_link_info *info = (struct bfd_link_info *) inf;
10471
10472  if (h->root.type == bfd_link_hash_warning)
10473    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10474
10475  if ((h->root.type == bfd_link_hash_defined
10476       || h->root.type == bfd_link_hash_defweak)
10477      && (h->ref_dynamic
10478	  || (!info->executable
10479	      && h->def_regular
10480	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
10481	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
10482    h->root.u.def.section->flags |= SEC_KEEP;
10483
10484  return TRUE;
10485}
10486
10487/* Do mark and sweep of unused sections.  */
10488
10489bfd_boolean
10490bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
10491{
10492  bfd_boolean ok = TRUE;
10493  bfd *sub;
10494  asection * (*gc_mark_hook)
10495    (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
10496     struct elf_link_hash_entry *h, Elf_Internal_Sym *);
10497  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10498
10499  if (!bed->can_gc_sections
10500      || info->relocatable
10501      || info->emitrelocations
10502      || !is_elf_hash_table (info->hash))
10503    {
10504      (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
10505      return TRUE;
10506    }
10507
10508  /* Apply transitive closure to the vtable entry usage info.  */
10509  elf_link_hash_traverse (elf_hash_table (info),
10510			  elf_gc_propagate_vtable_entries_used,
10511			  &ok);
10512  if (!ok)
10513    return FALSE;
10514
10515  /* Kill the vtable relocations that were not used.  */
10516  elf_link_hash_traverse (elf_hash_table (info),
10517			  elf_gc_smash_unused_vtentry_relocs,
10518			  &ok);
10519  if (!ok)
10520    return FALSE;
10521
10522  /* Mark dynamically referenced symbols.  */
10523  if (elf_hash_table (info)->dynamic_sections_created)
10524    elf_link_hash_traverse (elf_hash_table (info),
10525			    bed->gc_mark_dynamic_ref,
10526			    info);
10527
10528  /* Grovel through relocs to find out who stays ...  */
10529  gc_mark_hook = bed->gc_mark_hook;
10530  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10531    {
10532      asection *o;
10533
10534      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
10535	continue;
10536
10537      for (o = sub->sections; o != NULL; o = o->next)
10538	if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
10539	  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
10540	    return FALSE;
10541    }
10542
10543  /* ... again for sections marked from eh_frame.  */
10544  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10545    {
10546      asection *o;
10547
10548      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
10549	continue;
10550
10551      /* Keep .gcc_except_table.* if the associated .text.* (or the
10552	 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
10553	 marked.  This isn't very nice, but the proper solution,
10554	 splitting .eh_frame up and using comdat doesn't pan out
10555	 easily due to needing special relocs to handle the
10556	 difference of two symbols in separate sections.
10557	 Don't keep code sections referenced by .eh_frame.  */
10558#define TEXT_PREFIX			".text."
10559#define TEXT_PREFIX2			".gnu.linkonce.t."
10560#define GCC_EXCEPT_TABLE_PREFIX		".gcc_except_table."
10561      for (o = sub->sections; o != NULL; o = o->next)
10562	if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
10563	  {
10564	    if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
10565	      {
10566		char *fn_name;
10567		const char *sec_name;
10568		asection *fn_text;
10569		unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
10570
10571		o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
10572		sec_name = o->name + o_name_prefix_len;
10573		fn_name_prefix_len = strlen (TEXT_PREFIX);
10574		tmp = strlen (TEXT_PREFIX2);
10575		if (tmp > fn_name_prefix_len)
10576		  fn_name_prefix_len = tmp;
10577		fn_name
10578		  = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
10579		if (fn_name == NULL)
10580		  return FALSE;
10581
10582		/* Try the first prefix.  */
10583		sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
10584		fn_text = bfd_get_section_by_name (sub, fn_name);
10585
10586		/* Try the second prefix.  */
10587		if (fn_text == NULL)
10588		  {
10589		    sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
10590		    fn_text = bfd_get_section_by_name (sub, fn_name);
10591		  }
10592
10593		free (fn_name);
10594		if (fn_text == NULL || !fn_text->gc_mark)
10595		  continue;
10596	      }
10597
10598	    /* If not using specially named exception table section,
10599	       then keep whatever we are using.  */
10600	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
10601	      return FALSE;
10602	  }
10603    }
10604
10605  /* ... and mark SEC_EXCLUDE for those that go.  */
10606  return elf_gc_sweep (abfd, info);
10607}
10608
10609/* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
10610
10611bfd_boolean
10612bfd_elf_gc_record_vtinherit (bfd *abfd,
10613			     asection *sec,
10614			     struct elf_link_hash_entry *h,
10615			     bfd_vma offset)
10616{
10617  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
10618  struct elf_link_hash_entry **search, *child;
10619  bfd_size_type extsymcount;
10620  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10621
10622  /* The sh_info field of the symtab header tells us where the
10623     external symbols start.  We don't care about the local symbols at
10624     this point.  */
10625  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
10626  if (!elf_bad_symtab (abfd))
10627    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
10628
10629  sym_hashes = elf_sym_hashes (abfd);
10630  sym_hashes_end = sym_hashes + extsymcount;
10631
10632  /* Hunt down the child symbol, which is in this section at the same
10633     offset as the relocation.  */
10634  for (search = sym_hashes; search != sym_hashes_end; ++search)
10635    {
10636      if ((child = *search) != NULL
10637	  && (child->root.type == bfd_link_hash_defined
10638	      || child->root.type == bfd_link_hash_defweak)
10639	  && child->root.u.def.section == sec
10640	  && child->root.u.def.value == offset)
10641	goto win;
10642    }
10643
10644  (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
10645			 abfd, sec, (unsigned long) offset);
10646  bfd_set_error (bfd_error_invalid_operation);
10647  return FALSE;
10648
10649 win:
10650  if (!child->vtable)
10651    {
10652      child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
10653      if (!child->vtable)
10654	return FALSE;
10655    }
10656  if (!h)
10657    {
10658      /* This *should* only be the absolute section.  It could potentially
10659	 be that someone has defined a non-global vtable though, which
10660	 would be bad.  It isn't worth paging in the local symbols to be
10661	 sure though; that case should simply be handled by the assembler.  */
10662
10663      child->vtable->parent = (struct elf_link_hash_entry *) -1;
10664    }
10665  else
10666    child->vtable->parent = h;
10667
10668  return TRUE;
10669}
10670
10671/* Called from check_relocs to record the existence of a VTENTRY reloc.  */
10672
10673bfd_boolean
10674bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
10675			   asection *sec ATTRIBUTE_UNUSED,
10676			   struct elf_link_hash_entry *h,
10677			   bfd_vma addend)
10678{
10679  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10680  unsigned int log_file_align = bed->s->log_file_align;
10681
10682  if (!h->vtable)
10683    {
10684      h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
10685      if (!h->vtable)
10686	return FALSE;
10687    }
10688
10689  if (addend >= h->vtable->size)
10690    {
10691      size_t size, bytes, file_align;
10692      bfd_boolean *ptr = h->vtable->used;
10693
10694      /* While the symbol is undefined, we have to be prepared to handle
10695	 a zero size.  */
10696      file_align = 1 << log_file_align;
10697      if (h->root.type == bfd_link_hash_undefined)
10698	size = addend + file_align;
10699      else
10700	{
10701	  size = h->size;
10702	  if (addend >= size)
10703	    {
10704	      /* Oops!  We've got a reference past the defined end of
10705		 the table.  This is probably a bug -- shall we warn?  */
10706	      size = addend + file_align;
10707	    }
10708	}
10709      size = (size + file_align - 1) & -file_align;
10710
10711      /* Allocate one extra entry for use as a "done" flag for the
10712	 consolidation pass.  */
10713      bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
10714
10715      if (ptr)
10716	{
10717	  ptr = bfd_realloc (ptr - 1, bytes);
10718
10719	  if (ptr != NULL)
10720	    {
10721	      size_t oldbytes;
10722
10723	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
10724			  * sizeof (bfd_boolean));
10725	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
10726	    }
10727	}
10728      else
10729	ptr = bfd_zmalloc (bytes);
10730
10731      if (ptr == NULL)
10732	return FALSE;
10733
10734      /* And arrange for that done flag to be at index -1.  */
10735      h->vtable->used = ptr + 1;
10736      h->vtable->size = size;
10737    }
10738
10739  h->vtable->used[addend >> log_file_align] = TRUE;
10740
10741  return TRUE;
10742}
10743
10744struct alloc_got_off_arg {
10745  bfd_vma gotoff;
10746  unsigned int got_elt_size;
10747};
10748
10749/* We need a special top-level link routine to convert got reference counts
10750   to real got offsets.  */
10751
10752static bfd_boolean
10753elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
10754{
10755  struct alloc_got_off_arg *gofarg = arg;
10756
10757  if (h->root.type == bfd_link_hash_warning)
10758    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10759
10760  if (h->got.refcount > 0)
10761    {
10762      h->got.offset = gofarg->gotoff;
10763      gofarg->gotoff += gofarg->got_elt_size;
10764    }
10765  else
10766    h->got.offset = (bfd_vma) -1;
10767
10768  return TRUE;
10769}
10770
10771/* And an accompanying bit to work out final got entry offsets once
10772   we're done.  Should be called from final_link.  */
10773
10774bfd_boolean
10775bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
10776					struct bfd_link_info *info)
10777{
10778  bfd *i;
10779  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10780  bfd_vma gotoff;
10781  unsigned int got_elt_size = bed->s->arch_size / 8;
10782  struct alloc_got_off_arg gofarg;
10783
10784  if (! is_elf_hash_table (info->hash))
10785    return FALSE;
10786
10787  /* The GOT offset is relative to the .got section, but the GOT header is
10788     put into the .got.plt section, if the backend uses it.  */
10789  if (bed->want_got_plt)
10790    gotoff = 0;
10791  else
10792    gotoff = bed->got_header_size;
10793
10794  /* Do the local .got entries first.  */
10795  for (i = info->input_bfds; i; i = i->link_next)
10796    {
10797      bfd_signed_vma *local_got;
10798      bfd_size_type j, locsymcount;
10799      Elf_Internal_Shdr *symtab_hdr;
10800
10801      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
10802	continue;
10803
10804      local_got = elf_local_got_refcounts (i);
10805      if (!local_got)
10806	continue;
10807
10808      symtab_hdr = &elf_tdata (i)->symtab_hdr;
10809      if (elf_bad_symtab (i))
10810	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10811      else
10812	locsymcount = symtab_hdr->sh_info;
10813
10814      for (j = 0; j < locsymcount; ++j)
10815	{
10816	  if (local_got[j] > 0)
10817	    {
10818	      local_got[j] = gotoff;
10819	      gotoff += got_elt_size;
10820	    }
10821	  else
10822	    local_got[j] = (bfd_vma) -1;
10823	}
10824    }
10825
10826  /* Then the global .got entries.  .plt refcounts are handled by
10827     adjust_dynamic_symbol  */
10828  gofarg.gotoff = gotoff;
10829  gofarg.got_elt_size = got_elt_size;
10830  elf_link_hash_traverse (elf_hash_table (info),
10831			  elf_gc_allocate_got_offsets,
10832			  &gofarg);
10833  return TRUE;
10834}
10835
10836/* Many folk need no more in the way of final link than this, once
10837   got entry reference counting is enabled.  */
10838
10839bfd_boolean
10840bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
10841{
10842  if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
10843    return FALSE;
10844
10845  /* Invoke the regular ELF backend linker to do all the work.  */
10846  return bfd_elf_final_link (abfd, info);
10847}
10848
10849bfd_boolean
10850bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
10851{
10852  struct elf_reloc_cookie *rcookie = cookie;
10853
10854  if (rcookie->bad_symtab)
10855    rcookie->rel = rcookie->rels;
10856
10857  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
10858    {
10859      unsigned long r_symndx;
10860
10861      if (! rcookie->bad_symtab)
10862	if (rcookie->rel->r_offset > offset)
10863	  return FALSE;
10864      if (rcookie->rel->r_offset != offset)
10865	continue;
10866
10867      r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
10868      if (r_symndx == SHN_UNDEF)
10869	return TRUE;
10870
10871      if (r_symndx >= rcookie->locsymcount
10872	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
10873	{
10874	  struct elf_link_hash_entry *h;
10875
10876	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
10877
10878	  while (h->root.type == bfd_link_hash_indirect
10879		 || h->root.type == bfd_link_hash_warning)
10880	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10881
10882	  if ((h->root.type == bfd_link_hash_defined
10883	       || h->root.type == bfd_link_hash_defweak)
10884	      && elf_discarded_section (h->root.u.def.section))
10885	    return TRUE;
10886	  else
10887	    return FALSE;
10888	}
10889      else
10890	{
10891	  /* It's not a relocation against a global symbol,
10892	     but it could be a relocation against a local
10893	     symbol for a discarded section.  */
10894	  asection *isec;
10895	  Elf_Internal_Sym *isym;
10896
10897	  /* Need to: get the symbol; get the section.  */
10898	  isym = &rcookie->locsyms[r_symndx];
10899	  if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
10900	    {
10901	      isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
10902	      if (isec != NULL && elf_discarded_section (isec))
10903		return TRUE;
10904	    }
10905	}
10906      return FALSE;
10907    }
10908  return FALSE;
10909}
10910
10911/* Discard unneeded references to discarded sections.
10912   Returns TRUE if any section's size was changed.  */
10913/* This function assumes that the relocations are in sorted order,
10914   which is true for all known assemblers.  */
10915
10916bfd_boolean
10917bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
10918{
10919  struct elf_reloc_cookie cookie;
10920  asection *stab, *eh;
10921  Elf_Internal_Shdr *symtab_hdr;
10922  const struct elf_backend_data *bed;
10923  bfd *abfd;
10924  unsigned int count;
10925  bfd_boolean ret = FALSE;
10926
10927  if (info->traditional_format
10928      || !is_elf_hash_table (info->hash))
10929    return FALSE;
10930
10931  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
10932    {
10933      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10934	continue;
10935
10936      bed = get_elf_backend_data (abfd);
10937
10938      if ((abfd->flags & DYNAMIC) != 0)
10939	continue;
10940
10941      eh = bfd_get_section_by_name (abfd, ".eh_frame");
10942      if (info->relocatable
10943	  || (eh != NULL
10944	      && (eh->size == 0
10945		  || bfd_is_abs_section (eh->output_section))))
10946	eh = NULL;
10947
10948      stab = bfd_get_section_by_name (abfd, ".stab");
10949      if (stab != NULL
10950	  && (stab->size == 0
10951	      || bfd_is_abs_section (stab->output_section)
10952	      || stab->sec_info_type != ELF_INFO_TYPE_STABS))
10953	stab = NULL;
10954
10955      if (stab == NULL
10956	  && eh == NULL
10957	  && bed->elf_backend_discard_info == NULL)
10958	continue;
10959
10960      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10961      cookie.abfd = abfd;
10962      cookie.sym_hashes = elf_sym_hashes (abfd);
10963      cookie.bad_symtab = elf_bad_symtab (abfd);
10964      if (cookie.bad_symtab)
10965	{
10966	  cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10967	  cookie.extsymoff = 0;
10968	}
10969      else
10970	{
10971	  cookie.locsymcount = symtab_hdr->sh_info;
10972	  cookie.extsymoff = symtab_hdr->sh_info;
10973	}
10974
10975      if (bed->s->arch_size == 32)
10976	cookie.r_sym_shift = 8;
10977      else
10978	cookie.r_sym_shift = 32;
10979
10980      cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10981      if (cookie.locsyms == NULL && cookie.locsymcount != 0)
10982	{
10983	  cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10984						 cookie.locsymcount, 0,
10985						 NULL, NULL, NULL);
10986	  if (cookie.locsyms == NULL)
10987	    return FALSE;
10988	}
10989
10990      if (stab != NULL)
10991	{
10992	  cookie.rels = NULL;
10993	  count = stab->reloc_count;
10994	  if (count != 0)
10995	    cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
10996						     info->keep_memory);
10997	  if (cookie.rels != NULL)
10998	    {
10999	      cookie.rel = cookie.rels;
11000	      cookie.relend = cookie.rels;
11001	      cookie.relend += count * bed->s->int_rels_per_ext_rel;
11002	      if (_bfd_discard_section_stabs (abfd, stab,
11003					      elf_section_data (stab)->sec_info,
11004					      bfd_elf_reloc_symbol_deleted_p,
11005					      &cookie))
11006		ret = TRUE;
11007	      if (elf_section_data (stab)->relocs != cookie.rels)
11008		free (cookie.rels);
11009	    }
11010	}
11011
11012      if (eh != NULL)
11013	{
11014	  cookie.rels = NULL;
11015	  count = eh->reloc_count;
11016	  if (count != 0)
11017	    cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
11018						     info->keep_memory);
11019	  cookie.rel = cookie.rels;
11020	  cookie.relend = cookie.rels;
11021	  if (cookie.rels != NULL)
11022	    cookie.relend += count * bed->s->int_rels_per_ext_rel;
11023
11024	  if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11025						 bfd_elf_reloc_symbol_deleted_p,
11026						 &cookie))
11027	    ret = TRUE;
11028
11029	  if (cookie.rels != NULL
11030	      && elf_section_data (eh)->relocs != cookie.rels)
11031	    free (cookie.rels);
11032	}
11033
11034      if (bed->elf_backend_discard_info != NULL
11035	  && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11036	ret = TRUE;
11037
11038      if (cookie.locsyms != NULL
11039	  && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
11040	{
11041	  if (! info->keep_memory)
11042	    free (cookie.locsyms);
11043	  else
11044	    symtab_hdr->contents = (unsigned char *) cookie.locsyms;
11045	}
11046    }
11047
11048  if (info->eh_frame_hdr
11049      && !info->relocatable
11050      && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11051    ret = TRUE;
11052
11053  return ret;
11054}
11055
11056void
11057_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11058				 struct bfd_link_info *info)
11059{
11060  flagword flags;
11061  const char *name, *p;
11062  struct bfd_section_already_linked *l;
11063  struct bfd_section_already_linked_hash_entry *already_linked_list;
11064
11065  if (sec->output_section == bfd_abs_section_ptr)
11066    return;
11067
11068  flags = sec->flags;
11069
11070  /* Return if it isn't a linkonce section.  A comdat group section
11071     also has SEC_LINK_ONCE set.  */
11072  if ((flags & SEC_LINK_ONCE) == 0)
11073    return;
11074
11075  /* Don't put group member sections on our list of already linked
11076     sections.  They are handled as a group via their group section.  */
11077  if (elf_sec_group (sec) != NULL)
11078    return;
11079
11080  /* FIXME: When doing a relocatable link, we may have trouble
11081     copying relocations in other sections that refer to local symbols
11082     in the section being discarded.  Those relocations will have to
11083     be converted somehow; as of this writing I'm not sure that any of
11084     the backends handle that correctly.
11085
11086     It is tempting to instead not discard link once sections when
11087     doing a relocatable link (technically, they should be discarded
11088     whenever we are building constructors).  However, that fails,
11089     because the linker winds up combining all the link once sections
11090     into a single large link once section, which defeats the purpose
11091     of having link once sections in the first place.
11092
11093     Also, not merging link once sections in a relocatable link
11094     causes trouble for MIPS ELF, which relies on link once semantics
11095     to handle the .reginfo section correctly.  */
11096
11097  name = bfd_get_section_name (abfd, sec);
11098
11099  if (CONST_STRNEQ (name, ".gnu.linkonce.")
11100      && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
11101    p++;
11102  else
11103    p = name;
11104
11105  already_linked_list = bfd_section_already_linked_table_lookup (p);
11106
11107  for (l = already_linked_list->entry; l != NULL; l = l->next)
11108    {
11109      /* We may have 2 different types of sections on the list: group
11110	 sections and linkonce sections.  Match like sections.  */
11111      if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
11112	  && strcmp (name, l->sec->name) == 0
11113	  && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
11114	{
11115	  /* The section has already been linked.  See if we should
11116	     issue a warning.  */
11117	  switch (flags & SEC_LINK_DUPLICATES)
11118	    {
11119	    default:
11120	      abort ();
11121
11122	    case SEC_LINK_DUPLICATES_DISCARD:
11123	      break;
11124
11125	    case SEC_LINK_DUPLICATES_ONE_ONLY:
11126	      (*_bfd_error_handler)
11127		(_("%B: ignoring duplicate section `%A'"),
11128		 abfd, sec);
11129	      break;
11130
11131	    case SEC_LINK_DUPLICATES_SAME_SIZE:
11132	      if (sec->size != l->sec->size)
11133		(*_bfd_error_handler)
11134		  (_("%B: duplicate section `%A' has different size"),
11135		   abfd, sec);
11136	      break;
11137
11138	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
11139	      if (sec->size != l->sec->size)
11140		(*_bfd_error_handler)
11141		  (_("%B: duplicate section `%A' has different size"),
11142		   abfd, sec);
11143	      else if (sec->size != 0)
11144		{
11145		  bfd_byte *sec_contents, *l_sec_contents;
11146
11147		  if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
11148		    (*_bfd_error_handler)
11149		      (_("%B: warning: could not read contents of section `%A'"),
11150		       abfd, sec);
11151		  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
11152							&l_sec_contents))
11153		    (*_bfd_error_handler)
11154		      (_("%B: warning: could not read contents of section `%A'"),
11155		       l->sec->owner, l->sec);
11156		  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
11157		    (*_bfd_error_handler)
11158		      (_("%B: warning: duplicate section `%A' has different contents"),
11159		       abfd, sec);
11160
11161		  if (sec_contents)
11162		    free (sec_contents);
11163		  if (l_sec_contents)
11164		    free (l_sec_contents);
11165		}
11166	      break;
11167	    }
11168
11169	  /* Set the output_section field so that lang_add_section
11170	     does not create a lang_input_section structure for this
11171	     section.  Since there might be a symbol in the section
11172	     being discarded, we must retain a pointer to the section
11173	     which we are really going to use.  */
11174	  sec->output_section = bfd_abs_section_ptr;
11175	  sec->kept_section = l->sec;
11176
11177	  if (flags & SEC_GROUP)
11178	    {
11179	      asection *first = elf_next_in_group (sec);
11180	      asection *s = first;
11181
11182	      while (s != NULL)
11183		{
11184		  s->output_section = bfd_abs_section_ptr;
11185		  /* Record which group discards it.  */
11186		  s->kept_section = l->sec;
11187		  s = elf_next_in_group (s);
11188		  /* These lists are circular.  */
11189		  if (s == first)
11190		    break;
11191		}
11192	    }
11193
11194	  return;
11195	}
11196    }
11197
11198  /* A single member comdat group section may be discarded by a
11199     linkonce section and vice versa.  */
11200
11201  if ((flags & SEC_GROUP) != 0)
11202    {
11203      asection *first = elf_next_in_group (sec);
11204
11205      if (first != NULL && elf_next_in_group (first) == first)
11206	/* Check this single member group against linkonce sections.  */
11207	for (l = already_linked_list->entry; l != NULL; l = l->next)
11208	  if ((l->sec->flags & SEC_GROUP) == 0
11209	      && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
11210	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
11211	    {
11212	      first->output_section = bfd_abs_section_ptr;
11213	      first->kept_section = l->sec;
11214	      sec->output_section = bfd_abs_section_ptr;
11215	      break;
11216	    }
11217    }
11218  else
11219    /* Check this linkonce section against single member groups.  */
11220    for (l = already_linked_list->entry; l != NULL; l = l->next)
11221      if (l->sec->flags & SEC_GROUP)
11222	{
11223	  asection *first = elf_next_in_group (l->sec);
11224
11225	  if (first != NULL
11226	      && elf_next_in_group (first) == first
11227	      && bfd_elf_match_symbols_in_sections (first, sec, info))
11228	    {
11229	      sec->output_section = bfd_abs_section_ptr;
11230	      sec->kept_section = first;
11231	      break;
11232	    }
11233	}
11234
11235  /* This is the first section with this name.  Record it.  */
11236  bfd_section_already_linked_table_insert (already_linked_list, sec);
11237}
11238
11239bfd_boolean
11240_bfd_elf_common_definition (Elf_Internal_Sym *sym)
11241{
11242  return sym->st_shndx == SHN_COMMON;
11243}
11244
11245unsigned int
11246_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
11247{
11248  return SHN_COMMON;
11249}
11250
11251asection *
11252_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
11253{
11254  return bfd_com_section_ptr;
11255}
11256