1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include <math.h>
31
32#include "fixed-dtoa.h"
33#include "double.h"
34
35namespace WTF {
36
37namespace double_conversion {
38
39    // Represents a 128bit type. This class should be replaced by a native type on
40    // platforms that support 128bit integers.
41    class UInt128 {
42    public:
43        UInt128() : high_bits_(0), low_bits_(0) { }
44        UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
45
46        void Multiply(uint32_t multiplicand) {
47            uint64_t accumulator;
48
49            accumulator = (low_bits_ & kMask32) * multiplicand;
50            uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
51            accumulator >>= 32;
52            accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
53            low_bits_ = (accumulator << 32) + part;
54            accumulator >>= 32;
55            accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
56            part = static_cast<uint32_t>(accumulator & kMask32);
57            accumulator >>= 32;
58            accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
59            high_bits_ = (accumulator << 32) + part;
60            ASSERT((accumulator >> 32) == 0);
61        }
62
63        void Shift(int shift_amount) {
64            ASSERT(-64 <= shift_amount && shift_amount <= 64);
65            if (shift_amount == 0) {
66                return;
67            } else if (shift_amount == -64) {
68                high_bits_ = low_bits_;
69                low_bits_ = 0;
70            } else if (shift_amount == 64) {
71                low_bits_ = high_bits_;
72                high_bits_ = 0;
73            } else if (shift_amount <= 0) {
74                high_bits_ <<= -shift_amount;
75                high_bits_ += low_bits_ >> (64 + shift_amount);
76                low_bits_ <<= -shift_amount;
77            } else {
78                low_bits_ >>= shift_amount;
79                low_bits_ += high_bits_ << (64 - shift_amount);
80                high_bits_ >>= shift_amount;
81            }
82        }
83
84        // Modifies *this to *this MOD (2^power).
85        // Returns *this DIV (2^power).
86        int DivModPowerOf2(int power) {
87            if (power >= 64) {
88                int result = static_cast<int>(high_bits_ >> (power - 64));
89                high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
90                return result;
91            } else {
92                uint64_t part_low = low_bits_ >> power;
93                uint64_t part_high = high_bits_ << (64 - power);
94                int result = static_cast<int>(part_low + part_high);
95                high_bits_ = 0;
96                low_bits_ -= part_low << power;
97                return result;
98            }
99        }
100
101        bool IsZero() const {
102            return high_bits_ == 0 && low_bits_ == 0;
103        }
104
105        int BitAt(int position) {
106            if (position >= 64) {
107                return static_cast<int>(high_bits_ >> (position - 64)) & 1;
108            } else {
109                return static_cast<int>(low_bits_ >> position) & 1;
110            }
111        }
112
113    private:
114        static const uint64_t kMask32 = 0xFFFFFFFF;
115        // Value == (high_bits_ << 64) + low_bits_
116        uint64_t high_bits_;
117        uint64_t low_bits_;
118    };
119
120
121    static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
122
123
124    static void FillDigits32FixedLength(uint32_t number, int requested_length,
125                                        BufferReference<char> buffer, int* length) {
126        for (int i = requested_length - 1; i >= 0; --i) {
127            buffer[(*length) + i] = '0' + number % 10;
128            number /= 10;
129        }
130        *length += requested_length;
131    }
132
133
134    static void FillDigits32(uint32_t number, BufferReference<char> buffer, int* length) {
135        int number_length = 0;
136        // We fill the digits in reverse order and exchange them afterwards.
137        while (number != 0) {
138            int digit = number % 10;
139            number /= 10;
140            buffer[(*length) + number_length] = '0' + digit;
141            number_length++;
142        }
143        // Exchange the digits.
144        int i = *length;
145        int j = *length + number_length - 1;
146        while (i < j) {
147            char tmp = buffer[i];
148            buffer[i] = buffer[j];
149            buffer[j] = tmp;
150            i++;
151            j--;
152        }
153        *length += number_length;
154    }
155
156
157    static void FillDigits64FixedLength(uint64_t number, int requested_length,
158                                        BufferReference<char> buffer, int* length) {
159        UNUSED_PARAM(requested_length);
160        const uint32_t kTen7 = 10000000;
161        // For efficiency cut the number into 3 uint32_t parts, and print those.
162        uint32_t part2 = static_cast<uint32_t>(number % kTen7);
163        number /= kTen7;
164        uint32_t part1 = static_cast<uint32_t>(number % kTen7);
165        uint32_t part0 = static_cast<uint32_t>(number / kTen7);
166
167        FillDigits32FixedLength(part0, 3, buffer, length);
168        FillDigits32FixedLength(part1, 7, buffer, length);
169        FillDigits32FixedLength(part2, 7, buffer, length);
170    }
171
172
173    static void FillDigits64(uint64_t number, BufferReference<char> buffer, int* length) {
174        const uint32_t kTen7 = 10000000;
175        // For efficiency cut the number into 3 uint32_t parts, and print those.
176        uint32_t part2 = static_cast<uint32_t>(number % kTen7);
177        number /= kTen7;
178        uint32_t part1 = static_cast<uint32_t>(number % kTen7);
179        uint32_t part0 = static_cast<uint32_t>(number / kTen7);
180
181        if (part0 != 0) {
182            FillDigits32(part0, buffer, length);
183            FillDigits32FixedLength(part1, 7, buffer, length);
184            FillDigits32FixedLength(part2, 7, buffer, length);
185        } else if (part1 != 0) {
186            FillDigits32(part1, buffer, length);
187            FillDigits32FixedLength(part2, 7, buffer, length);
188        } else {
189            FillDigits32(part2, buffer, length);
190        }
191    }
192
193
194    static void RoundUp(BufferReference<char> buffer, int* length, int* decimal_point) {
195        // An empty buffer represents 0.
196        if (*length == 0) {
197            buffer[0] = '1';
198            *decimal_point = 1;
199            *length = 1;
200            return;
201        }
202        // Round the last digit until we either have a digit that was not '9' or until
203        // we reached the first digit.
204        buffer[(*length) - 1]++;
205        for (int i = (*length) - 1; i > 0; --i) {
206            if (buffer[i] != '0' + 10) {
207                return;
208            }
209            buffer[i] = '0';
210            buffer[i - 1]++;
211        }
212        // If the first digit is now '0' + 10, we would need to set it to '0' and add
213        // a '1' in front. However we reach the first digit only if all following
214        // digits had been '9' before rounding up. Now all trailing digits are '0' and
215        // we simply switch the first digit to '1' and update the decimal-point
216        // (indicating that the point is now one digit to the right).
217        if (buffer[0] == '0' + 10) {
218            buffer[0] = '1';
219            (*decimal_point)++;
220        }
221    }
222
223
224    // The given fractionals number represents a fixed-point number with binary
225    // point at bit (-exponent).
226    // Preconditions:
227    //   -128 <= exponent <= 0.
228    //   0 <= fractionals * 2^exponent < 1
229    //   The buffer holds the result.
230    // The function will round its result. During the rounding-process digits not
231    // generated by this function might be updated, and the decimal-point variable
232    // might be updated. If this function generates the digits 99 and the buffer
233    // already contained "199" (thus yielding a buffer of "19999") then a
234    // rounding-up will change the contents of the buffer to "20000".
235    static void FillFractionals(uint64_t fractionals, int exponent,
236                                int fractional_count, BufferReference<char> buffer,
237                                int* length, int* decimal_point) {
238        ASSERT(-128 <= exponent && exponent <= 0);
239        // 'fractionals' is a fixed-point number, with binary point at bit
240        // (-exponent). Inside the function the non-converted remainder of fractionals
241        // is a fixed-point number, with binary point at bit 'point'.
242        if (-exponent <= 64) {
243            // One 64 bit number is sufficient.
244            ASSERT(fractionals >> 56 == 0);
245            int point = -exponent;
246            for (int i = 0; i < fractional_count; ++i) {
247                if (fractionals == 0) break;
248                // Instead of multiplying by 10 we multiply by 5 and adjust the point
249                // location. This way the fractionals variable will not overflow.
250                // Invariant at the beginning of the loop: fractionals < 2^point.
251                // Initially we have: point <= 64 and fractionals < 2^56
252                // After each iteration the point is decremented by one.
253                // Note that 5^3 = 125 < 128 = 2^7.
254                // Therefore three iterations of this loop will not overflow fractionals
255                // (even without the subtraction at the end of the loop body). At this
256                // time point will satisfy point <= 61 and therefore fractionals < 2^point
257                // and any further multiplication of fractionals by 5 will not overflow.
258                fractionals *= 5;
259                point--;
260                int digit = static_cast<int>(fractionals >> point);
261                buffer[*length] = '0' + digit;
262                (*length)++;
263                fractionals -= static_cast<uint64_t>(digit) << point;
264            }
265            // If the first bit after the point is set we have to round up.
266            if (((fractionals >> (point - 1)) & 1) == 1) {
267                RoundUp(buffer, length, decimal_point);
268            }
269        } else {  // We need 128 bits.
270            ASSERT(64 < -exponent && -exponent <= 128);
271            UInt128 fractionals128 = UInt128(fractionals, 0);
272            fractionals128.Shift(-exponent - 64);
273            int point = 128;
274            for (int i = 0; i < fractional_count; ++i) {
275                if (fractionals128.IsZero()) break;
276                // As before: instead of multiplying by 10 we multiply by 5 and adjust the
277                // point location.
278                // This multiplication will not overflow for the same reasons as before.
279                fractionals128.Multiply(5);
280                point--;
281                int digit = fractionals128.DivModPowerOf2(point);
282                buffer[*length] = '0' + digit;
283                (*length)++;
284            }
285            if (fractionals128.BitAt(point - 1) == 1) {
286                RoundUp(buffer, length, decimal_point);
287            }
288        }
289    }
290
291
292    // Removes leading and trailing zeros.
293    // If leading zeros are removed then the decimal point position is adjusted.
294    static void TrimZeros(BufferReference<char> buffer, int* length, int* decimal_point) {
295        while (*length > 0 && buffer[(*length) - 1] == '0') {
296            (*length)--;
297        }
298        int first_non_zero = 0;
299        while (first_non_zero < *length && buffer[first_non_zero] == '0') {
300            first_non_zero++;
301        }
302        if (first_non_zero != 0) {
303            for (int i = first_non_zero; i < *length; ++i) {
304                buffer[i - first_non_zero] = buffer[i];
305            }
306            *length -= first_non_zero;
307            *decimal_point -= first_non_zero;
308        }
309    }
310
311
312    bool FastFixedDtoa(double v,
313                       int fractional_count,
314                       BufferReference<char> buffer,
315                       int* length,
316                       int* decimal_point) {
317        const uint32_t kMaxUInt32 = 0xFFFFFFFF;
318        uint64_t significand = Double(v).Significand();
319        int exponent = Double(v).Exponent();
320        // v = significand * 2^exponent (with significand a 53bit integer).
321        // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
322        // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
323        // If necessary this limit could probably be increased, but we don't need
324        // more.
325        if (exponent > 20) return false;
326        if (fractional_count > 20) return false;
327        *length = 0;
328        // At most kDoubleSignificandSize bits of the significand are non-zero.
329        // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
330        // bits:  0..11*..0xxx..53*..xx
331        if (exponent + kDoubleSignificandSize > 64) {
332            // The exponent must be > 11.
333            //
334            // We know that v = significand * 2^exponent.
335            // And the exponent > 11.
336            // We simplify the task by dividing v by 10^17.
337            // The quotient delivers the first digits, and the remainder fits into a 64
338            // bit number.
339            // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
340            const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
341            uint64_t divisor = kFive17;
342            int divisor_power = 17;
343            uint64_t dividend = significand;
344            uint32_t quotient;
345            uint64_t remainder;
346            // Let v = f * 2^e with f == significand and e == exponent.
347            // Then need q (quotient) and r (remainder) as follows:
348            //   v            = q * 10^17       + r
349            //   f * 2^e      = q * 10^17       + r
350            //   f * 2^e      = q * 5^17 * 2^17 + r
351            // If e > 17 then
352            //   f * 2^(e-17) = q * 5^17        + r/2^17
353            // else
354            //   f  = q * 5^17 * 2^(17-e) + r/2^e
355            if (exponent > divisor_power) {
356                // We only allow exponents of up to 20 and therefore (17 - e) <= 3
357                dividend <<= exponent - divisor_power;
358                quotient = static_cast<uint32_t>(dividend / divisor);
359                remainder = (dividend % divisor) << divisor_power;
360            } else {
361                divisor <<= divisor_power - exponent;
362                quotient = static_cast<uint32_t>(dividend / divisor);
363                remainder = (dividend % divisor) << exponent;
364            }
365            FillDigits32(quotient, buffer, length);
366            FillDigits64FixedLength(remainder, divisor_power, buffer, length);
367            *decimal_point = *length;
368        } else if (exponent >= 0) {
369            // 0 <= exponent <= 11
370            significand <<= exponent;
371            FillDigits64(significand, buffer, length);
372            *decimal_point = *length;
373        } else if (exponent > -kDoubleSignificandSize) {
374            // We have to cut the number.
375            uint64_t integrals = significand >> -exponent;
376            uint64_t fractionals = significand - (integrals << -exponent);
377            if (integrals > kMaxUInt32) {
378                FillDigits64(integrals, buffer, length);
379            } else {
380                FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
381            }
382            *decimal_point = *length;
383            FillFractionals(fractionals, exponent, fractional_count,
384                            buffer, length, decimal_point);
385        } else if (exponent < -128) {
386            // This configuration (with at most 20 digits) means that all digits must be
387            // 0.
388            ASSERT(fractional_count <= 20);
389            buffer[0] = '\0';
390            *length = 0;
391            *decimal_point = -fractional_count;
392        } else {
393            *decimal_point = 0;
394            FillFractionals(significand, exponent, fractional_count,
395                            buffer, length, decimal_point);
396        }
397        TrimZeros(buffer, length, decimal_point);
398        buffer[*length] = '\0';
399        if ((*length) == 0) {
400            // The string is empty and the decimal_point thus has no importance. Mimick
401            // Gay's dtoa and and set it to -fractional_count.
402            *decimal_point = -fractional_count;
403        }
404        return true;
405    }
406
407}  // namespace double_conversion
408
409} // namespace WTF
410