1/* crypto/rand/md_rand.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#ifdef MD_RAND_DEBUG
113# ifndef NDEBUG
114#   define NDEBUG
115# endif
116#endif
117
118#include <assert.h>
119#include <stdio.h>
120#include <string.h>
121
122#include "e_os.h"
123
124#include <openssl/rand.h>
125#include "rand_lcl.h"
126
127#include <openssl/crypto.h>
128#include <openssl/err.h>
129#ifdef OPENSSL_FIPS
130#include <openssl/fips.h>
131#endif
132
133
134#ifdef BN_DEBUG
135# define PREDICT
136#endif
137
138/* #define PREDICT	1 */
139
140#define STATE_SIZE	1023
141static int state_num=0,state_index=0;
142static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
143static unsigned char md[MD_DIGEST_LENGTH];
144static long md_count[2]={0,0};
145static double entropy=0;
146static int initialized=0;
147
148static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
149                                           * holds CRYPTO_LOCK_RAND
150                                           * (to prevent double locking) */
151/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
152static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */
153
154
155#ifdef PREDICT
156int rand_predictable=0;
157#endif
158
159const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
160
161static void ssleay_rand_cleanup(void);
162static void ssleay_rand_seed(const void *buf, int num);
163static void ssleay_rand_add(const void *buf, int num, double add_entropy);
164static int ssleay_rand_bytes(unsigned char *buf, int num);
165static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
166static int ssleay_rand_status(void);
167
168RAND_METHOD rand_ssleay_meth={
169	ssleay_rand_seed,
170	ssleay_rand_bytes,
171	ssleay_rand_cleanup,
172	ssleay_rand_add,
173	ssleay_rand_pseudo_bytes,
174	ssleay_rand_status
175	};
176
177RAND_METHOD *RAND_SSLeay(void)
178	{
179	return(&rand_ssleay_meth);
180	}
181
182static void ssleay_rand_cleanup(void)
183	{
184	OPENSSL_cleanse(state,sizeof(state));
185	state_num=0;
186	state_index=0;
187	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
188	md_count[0]=0;
189	md_count[1]=0;
190	entropy=0;
191	initialized=0;
192	}
193
194static void ssleay_rand_add(const void *buf, int num, double add)
195	{
196	int i,j,k,st_idx;
197	long md_c[2];
198	unsigned char local_md[MD_DIGEST_LENGTH];
199	EVP_MD_CTX m;
200	int do_not_lock;
201
202	/*
203	 * (Based on the rand(3) manpage)
204	 *
205	 * The input is chopped up into units of 20 bytes (or less for
206	 * the last block).  Each of these blocks is run through the hash
207	 * function as follows:  The data passed to the hash function
208	 * is the current 'md', the same number of bytes from the 'state'
209	 * (the location determined by in incremented looping index) as
210	 * the current 'block', the new key data 'block', and 'count'
211	 * (which is incremented after each use).
212	 * The result of this is kept in 'md' and also xored into the
213	 * 'state' at the same locations that were used as input into the
214         * hash function.
215	 */
216
217	/* check if we already have the lock */
218	if (crypto_lock_rand)
219		{
220		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
221		do_not_lock = (locking_thread == CRYPTO_thread_id());
222		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
223		}
224	else
225		do_not_lock = 0;
226
227	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
228	st_idx=state_index;
229
230	/* use our own copies of the counters so that even
231	 * if a concurrent thread seeds with exactly the
232	 * same data and uses the same subarray there's _some_
233	 * difference */
234	md_c[0] = md_count[0];
235	md_c[1] = md_count[1];
236
237	memcpy(local_md, md, sizeof md);
238
239	/* state_index <= state_num <= STATE_SIZE */
240	state_index += num;
241	if (state_index >= STATE_SIZE)
242		{
243		state_index%=STATE_SIZE;
244		state_num=STATE_SIZE;
245		}
246	else if (state_num < STATE_SIZE)
247		{
248		if (state_index > state_num)
249			state_num=state_index;
250		}
251	/* state_index <= state_num <= STATE_SIZE */
252
253	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
254	 * are what we will use now, but other threads may use them
255	 * as well */
256
257	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
258
259	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
260
261	EVP_MD_CTX_init(&m);
262	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
263		{
264		j=(num-i);
265		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
266
267		MD_Init(&m);
268		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
269		k=(st_idx+j)-STATE_SIZE;
270		if (k > 0)
271			{
272			MD_Update(&m,&(state[st_idx]),j-k);
273			MD_Update(&m,&(state[0]),k);
274			}
275		else
276			MD_Update(&m,&(state[st_idx]),j);
277
278		MD_Update(&m,buf,j);
279		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
280		MD_Final(&m,local_md);
281		md_c[1]++;
282
283		buf=(const char *)buf + j;
284
285		for (k=0; k<j; k++)
286			{
287			/* Parallel threads may interfere with this,
288			 * but always each byte of the new state is
289			 * the XOR of some previous value of its
290			 * and local_md (itermediate values may be lost).
291			 * Alway using locking could hurt performance more
292			 * than necessary given that conflicts occur only
293			 * when the total seeding is longer than the random
294			 * state. */
295			state[st_idx++]^=local_md[k];
296			if (st_idx >= STATE_SIZE)
297				st_idx=0;
298			}
299		}
300	EVP_MD_CTX_cleanup(&m);
301
302	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
303	/* Don't just copy back local_md into md -- this could mean that
304	 * other thread's seeding remains without effect (except for
305	 * the incremented counter).  By XORing it we keep at least as
306	 * much entropy as fits into md. */
307	for (k = 0; k < (int)sizeof(md); k++)
308		{
309		md[k] ^= local_md[k];
310		}
311	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
312	    entropy += add;
313	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
314
315#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
316	assert(md_c[1] == md_count[1]);
317#endif
318	}
319
320static void ssleay_rand_seed(const void *buf, int num)
321	{
322	ssleay_rand_add(buf, num, (double)num);
323	}
324
325static int ssleay_rand_bytes(unsigned char *buf, int num)
326	{
327	static volatile int stirred_pool = 0;
328	int i,j,k,st_num,st_idx;
329	int num_ceil;
330	int ok;
331	long md_c[2];
332	unsigned char local_md[MD_DIGEST_LENGTH];
333	EVP_MD_CTX m;
334#ifndef GETPID_IS_MEANINGLESS
335	pid_t curr_pid = getpid();
336#endif
337	int do_stir_pool = 0;
338
339#ifdef OPENSSL_FIPS
340	if(FIPS_mode())
341	    {
342	    FIPSerr(FIPS_F_SSLEAY_RAND_BYTES,FIPS_R_NON_FIPS_METHOD);
343	    return 0;
344	    }
345#endif
346
347#ifdef PREDICT
348	if (rand_predictable)
349		{
350		static unsigned char val=0;
351
352		for (i=0; i<num; i++)
353			buf[i]=val++;
354		return(1);
355		}
356#endif
357
358	if (num <= 0)
359		return 1;
360
361	EVP_MD_CTX_init(&m);
362	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
363	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
364
365	/*
366	 * (Based on the rand(3) manpage:)
367	 *
368	 * For each group of 10 bytes (or less), we do the following:
369	 *
370	 * Input into the hash function the local 'md' (which is initialized from
371	 * the global 'md' before any bytes are generated), the bytes that are to
372	 * be overwritten by the random bytes, and bytes from the 'state'
373	 * (incrementing looping index). From this digest output (which is kept
374	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
375	 * bottom 10 bytes are xored into the 'state'.
376	 *
377	 * Finally, after we have finished 'num' random bytes for the
378	 * caller, 'count' (which is incremented) and the local and global 'md'
379	 * are fed into the hash function and the results are kept in the
380	 * global 'md'.
381	 */
382
383	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
384
385	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
386	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
387	locking_thread = CRYPTO_thread_id();
388	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
389	crypto_lock_rand = 1;
390
391	if (!initialized)
392		{
393		RAND_poll();
394		initialized = 1;
395		}
396
397	if (!stirred_pool)
398		do_stir_pool = 1;
399
400	ok = (entropy >= ENTROPY_NEEDED);
401	if (!ok)
402		{
403		/* If the PRNG state is not yet unpredictable, then seeing
404		 * the PRNG output may help attackers to determine the new
405		 * state; thus we have to decrease the entropy estimate.
406		 * Once we've had enough initial seeding we don't bother to
407		 * adjust the entropy count, though, because we're not ambitious
408		 * to provide *information-theoretic* randomness.
409		 *
410		 * NOTE: This approach fails if the program forks before
411		 * we have enough entropy. Entropy should be collected
412		 * in a separate input pool and be transferred to the
413		 * output pool only when the entropy limit has been reached.
414		 */
415		entropy -= num;
416		if (entropy < 0)
417			entropy = 0;
418		}
419
420	if (do_stir_pool)
421		{
422		/* In the output function only half of 'md' remains secret,
423		 * so we better make sure that the required entropy gets
424		 * 'evenly distributed' through 'state', our randomness pool.
425		 * The input function (ssleay_rand_add) chains all of 'md',
426		 * which makes it more suitable for this purpose.
427		 */
428
429		int n = STATE_SIZE; /* so that the complete pool gets accessed */
430		while (n > 0)
431			{
432#if MD_DIGEST_LENGTH > 20
433# error "Please adjust DUMMY_SEED."
434#endif
435#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
436			/* Note that the seed does not matter, it's just that
437			 * ssleay_rand_add expects to have something to hash. */
438			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
439			n -= MD_DIGEST_LENGTH;
440			}
441		if (ok)
442			stirred_pool = 1;
443		}
444
445	st_idx=state_index;
446	st_num=state_num;
447	md_c[0] = md_count[0];
448	md_c[1] = md_count[1];
449	memcpy(local_md, md, sizeof md);
450
451	state_index+=num_ceil;
452	if (state_index > state_num)
453		state_index %= state_num;
454
455	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
456	 * are now ours (but other threads may use them too) */
457
458	md_count[0] += 1;
459
460	/* before unlocking, we must clear 'crypto_lock_rand' */
461	crypto_lock_rand = 0;
462	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
463
464	while (num > 0)
465		{
466		/* num_ceil -= MD_DIGEST_LENGTH/2 */
467		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
468		num-=j;
469		MD_Init(&m);
470#ifndef GETPID_IS_MEANINGLESS
471		if (curr_pid) /* just in the first iteration to save time */
472			{
473			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
474			curr_pid = 0;
475			}
476#endif
477		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
478		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
479#ifndef PURIFY
480		MD_Update(&m,buf,j); /* purify complains */
481#endif
482		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
483		if (k > 0)
484			{
485			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
486			MD_Update(&m,&(state[0]),k);
487			}
488		else
489			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
490		MD_Final(&m,local_md);
491
492		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
493			{
494			state[st_idx++]^=local_md[i]; /* may compete with other threads */
495			if (st_idx >= st_num)
496				st_idx=0;
497			if (i < j)
498				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
499			}
500		}
501
502	MD_Init(&m);
503	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
504	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
505	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
506	MD_Update(&m,md,MD_DIGEST_LENGTH);
507	MD_Final(&m,md);
508	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
509
510	EVP_MD_CTX_cleanup(&m);
511	if (ok)
512		return(1);
513	else
514		{
515		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
516		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
517			"http://www.openssl.org/support/faq.html");
518		return(0);
519		}
520	}
521
522/* pseudo-random bytes that are guaranteed to be unique but not
523   unpredictable */
524static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
525	{
526	int ret;
527	unsigned long err;
528
529	ret = RAND_bytes(buf, num);
530	if (ret == 0)
531		{
532		err = ERR_peek_error();
533		if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
534		    ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
535			ERR_clear_error();
536		}
537	return (ret);
538	}
539
540static int ssleay_rand_status(void)
541	{
542	int ret;
543	int do_not_lock;
544
545	/* check if we already have the lock
546	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
547	if (crypto_lock_rand)
548		{
549		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
550		do_not_lock = (locking_thread == CRYPTO_thread_id());
551		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
552		}
553	else
554		do_not_lock = 0;
555
556	if (!do_not_lock)
557		{
558		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
559
560		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
561		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
562		locking_thread = CRYPTO_thread_id();
563		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
564		crypto_lock_rand = 1;
565		}
566
567	if (!initialized)
568		{
569		RAND_poll();
570		initialized = 1;
571		}
572
573	ret = entropy >= ENTROPY_NEEDED;
574
575	if (!do_not_lock)
576		{
577		/* before unlocking, we must clear 'crypto_lock_rand' */
578		crypto_lock_rand = 0;
579
580		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
581		}
582
583	return ret;
584	}
585