1/*	$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Portions Copyright (c) 2012 Apple Inc. All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Matt Thomas <matt@3am-software.com>.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/types.h>
35#include <stddef.h>
36#include <assert.h>
37#include <stdbool.h>
38#include <stdlib.h>
39
40#undef RBSMALL
41#undef RBDEBUG
42#undef RBSTATS
43#undef RBTEST
44
45#define _RBTREE_NO_OPAQUE_STRUCTS_
46
47#ifdef RBTEST
48#include "rbtree.h"
49#else
50#include <sys/rbtree.h>
51#endif
52
53#ifndef __predict_false
54#ifdef __GNUC__
55#define __predict_false(x)	((typeof(x))__builtin_expect((long)(x), 0l))
56#else
57#define __predict_false(x)      (x)
58#endif
59#endif
60
61#define	RB_DIR_OTHER		RB_DIR_RIGHT
62
63#define	rb_left			rb_nodes[RB_DIR_LEFT]
64#define	rb_right		rb_nodes[RB_DIR_RIGHT]
65
66#define	RB_FLAG_POSITION	0x2
67#define	RB_FLAG_RED		0x1
68#define	RB_FLAG_MASK		(RB_FLAG_POSITION|RB_FLAG_RED)
69#define	RB_FATHER(rb) \
70    ((struct rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
71#define	RB_SET_FATHER(rb, father) \
72    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
73
74#define	RB_SENTINEL_P(rb)	((rb) == NULL)
75#define	RB_LEFT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_left)
76#define	RB_RIGHT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_right)
77#define	RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
78#define	RB_CHILDLESS_P(rb) \
79    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
80#define	RB_TWOCHILDREN_P(rb) \
81    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
82
83#define	RB_POSITION(rb)	\
84    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
85#define	RB_RIGHT_P(rb)		(RB_POSITION(rb) == RB_DIR_RIGHT)
86#define	RB_LEFT_P(rb)		(RB_POSITION(rb) == RB_DIR_LEFT)
87#define	RB_RED_P(rb) 		(!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
88#define	RB_BLACK_P(rb) 		(RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
89#define	RB_MARK_RED(rb) 	((void)((rb)->rb_info |= RB_FLAG_RED))
90#define	RB_MARK_BLACK(rb) 	((void)((rb)->rb_info &= ~RB_FLAG_RED))
91#define	RB_INVERT_COLOR(rb) 	((void)((rb)->rb_info ^= RB_FLAG_RED))
92#define	RB_ROOT_P(rbt, rb)	((rbt)->rbt_root == (rb))
93#define	RB_SET_POSITION(rb, position) \
94    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
95    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
96#define	RB_ZERO_PROPERTIES(rb)	((void)((rb)->rb_info &= ~RB_FLAG_MASK))
97#define	RB_COPY_PROPERTIES(dst, src) \
98    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
99#define RB_SWAP_PROPERTIES(a, b) do { \
100    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
101    (a)->rb_info ^= xorinfo; \
102    (b)->rb_info ^= xorinfo; \
103  } while (/*CONSTCOND*/ 0)
104
105#ifndef static_assert
106#define _static_assert_concat_(a,b) a##b
107#define _static_assert_concat(a,b) _static_assert_concat_(a,b)
108#define static_assert(c, m) struct _static_assert_concat(static_assert_failure_, __LINE__) { int _static_assert_concat(static_assert_failure_, __LINE__)[(c)? 1 : -1]; }
109#endif
110
111/* The size of struct_rbnode must match:
112 * sizeof(struct rb_node { void * opaque[3] })
113 */
114typedef struct rb_node {
115	struct rb_node *rb_nodes[2];
116
117	/*
118	 * rb_info contains the two flags and the parent back pointer.
119	 * We put the two flags in the low two bits since we know that
120	 * rb_node will have an alignment of 4 or 8 bytes.
121	 */
122	uintptr_t rb_info;
123} rb_node_t;
124
125static_assert(sizeof(struct { void * opaque[3]; }) == sizeof(rb_node_t),
126			  "Mismatch in size between opaque and internal rb_node_t");
127
128typedef struct rb_tree {
129	struct rb_node *rbt_root;
130	const rb_tree_ops_t *rbt_ops;
131	struct rb_node *rbt_minmax[2];
132	uintptr_t rbt_count;
133	void *unused[3]; // Unused padding for possible future use
134} rb_tree_t;
135
136static_assert(sizeof(struct { void * opaque[8]; }) == sizeof(rb_tree_t),
137			  "Mismatch in size between opaque and internal rb_tree_t");
138
139static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
140static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
141	unsigned int);
142#ifdef RBDEBUG
143static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
144	const struct rb_node *, const unsigned int);
145static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
146	const struct rb_node *, bool);
147
148TAILQ_HEAD(rb_node_qh, rb_node);
149
150#define RB_TAILQ_REMOVE(a, b, c)                TAILQ_REMOVE(a, b, c)
151#define RB_TAILQ_INIT(a)                        TAILQ_INIT(a)
152#define RB_TAILQ_INSERT_HEAD(a, b, c)           TAILQ_INSERT_HEAD(a, b, c)
153#define RB_TAILQ_INSERT_BEFORE(a, b, c)         TAILQ_INSERT_BEFORE(a, b, c)
154#define RB_TAILQ_INSERT_AFTER(a, b, c, d)       TAILQ_INSERT_AFTER(a, b, c, d)
155
156#define	KASSERT(s)	assert(s)
157#else
158
159#define	rb_tree_check_node(a, b, c, d)	true
160
161#define RB_TAILQ_REMOVE(a, b, c)                do { } while (/*CONSTCOND*/0)
162#define RB_TAILQ_INIT(a)                        do { } while (/*CONSTCOND*/0)
163#define RB_TAILQ_INSERT_HEAD(a, b, c)           do { } while (/*CONSTCOND*/0)
164#define RB_TAILQ_INSERT_BEFORE(a, b, c)         do { } while (/*CONSTCOND*/0)
165#define RB_TAILQ_INSERT_AFTER(a, b, c, d)       do { } while (/*CONSTCOND*/0)
166
167#define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
168#endif
169
170#ifdef RBSTATS
171#define RBSTAT_INC(v)   ((void)((v)++))
172#define RBSTAT_DEC(v)   ((void)((v)--))
173#else
174#define RBSTAT_INC(v)   do { } while (/*CONSTCOND*/0)
175#define RBSTAT_DEC(v)   do { } while (/*CONSTCOND*/0)
176#endif
177
178#define	RB_NODETOITEM(rbto, rbn)	\
179    ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
180#define	RB_ITEMTONODE(rbto, rbn)	\
181    ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
182
183#define	RB_SENTINEL_NODE	NULL
184
185void
186rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
187{
188
189	rbt->rbt_ops = ops;
190	rbt->rbt_root = RB_SENTINEL_NODE;
191	RB_TAILQ_INIT(&rbt->rbt_nodes);
192#ifndef RBSMALL
193	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
194	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
195#endif
196	rbt->rbt_count = 0;
197#ifdef RBSTATS
198	rbt->rbt_insertions = 0;
199	rbt->rbt_removals = 0;
200	rbt->rbt_insertion_rebalance_calls = 0;
201	rbt->rbt_insertion_rebalance_passes = 0;
202	rbt->rbt_removal_rebalance_calls = 0;
203	rbt->rbt_removal_rebalance_passes = 0;
204#endif
205}
206
207void *
208rb_tree_find_node(struct rb_tree *rbt, const void *key)
209{
210	const rb_tree_ops_t *rbto = rbt->rbt_ops;
211	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
212	struct rb_node *parent = rbt->rbt_root;
213
214	while (!RB_SENTINEL_P(parent)) {
215		void *pobj = RB_NODETOITEM(rbto, parent);
216		const signed int diff = (*compare_key)(rbto->rbto_context,
217		    pobj, key);
218		if (diff == 0)
219			return pobj;
220		parent = parent->rb_nodes[diff < 0];
221	}
222
223	return NULL;
224}
225
226void *
227rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
228{
229	const rb_tree_ops_t *rbto = rbt->rbt_ops;
230	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
231	struct rb_node *parent = rbt->rbt_root, *last = NULL;
232
233	while (!RB_SENTINEL_P(parent)) {
234		void *pobj = RB_NODETOITEM(rbto, parent);
235		const signed int diff = (*compare_key)(rbto->rbto_context,
236		    pobj, key);
237		if (diff == 0)
238			return pobj;
239		if (diff > 0)
240			last = parent;
241		parent = parent->rb_nodes[diff < 0];
242	}
243
244	return RB_NODETOITEM(rbto, last);
245}
246
247void *
248rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
249{
250	const rb_tree_ops_t *rbto = rbt->rbt_ops;
251	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
252	struct rb_node *parent = rbt->rbt_root, *last = NULL;
253
254	while (!RB_SENTINEL_P(parent)) {
255		void *pobj = RB_NODETOITEM(rbto, parent);
256		const signed int diff = (*compare_key)(rbto->rbto_context,
257		    pobj, key);
258		if (diff == 0)
259			return pobj;
260		if (diff < 0)
261			last = parent;
262		parent = parent->rb_nodes[diff < 0];
263	}
264
265	return RB_NODETOITEM(rbto, last);
266}
267
268void *
269rb_tree_insert_node(struct rb_tree *rbt, void *object)
270{
271	const rb_tree_ops_t *rbto = rbt->rbt_ops;
272	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
273	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
274	unsigned int position;
275	bool rebalance;
276
277	RBSTAT_INC(rbt->rbt_insertions);
278
279	tmp = rbt->rbt_root;
280	/*
281	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
282	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
283	 * avoid a lot of tests for root and know that even at root,
284	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
285	 * update rbt->rbt_root.
286	 */
287	parent = (struct rb_node *)(void *)&rbt->rbt_root;
288	position = RB_DIR_LEFT;
289
290	/*
291	 * Find out where to place this new leaf.
292	 */
293	while (!RB_SENTINEL_P(tmp)) {
294		void *tobj = RB_NODETOITEM(rbto, tmp);
295		const signed int diff = (*compare_nodes)(rbto->rbto_context,
296		    tobj, object);
297		if (__predict_false(diff == 0)) {
298			/*
299			 * Node already exists; return it.
300			 */
301			return tobj;
302		}
303		parent = tmp;
304		position = (diff < 0);
305		tmp = parent->rb_nodes[position];
306	}
307
308#ifdef RBDEBUG
309	{
310		struct rb_node *prev = NULL, *next = NULL;
311
312		if (position == RB_DIR_RIGHT)
313			prev = parent;
314		else if (tmp != rbt->rbt_root)
315			next = parent;
316
317		/*
318		 * Verify our sequential position
319		 */
320		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
321		KASSERT(next == NULL || !RB_SENTINEL_P(next));
322		if (prev != NULL && next == NULL)
323			next = TAILQ_NEXT(prev, rb_link);
324		if (prev == NULL && next != NULL)
325			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
326		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
327		KASSERT(next == NULL || !RB_SENTINEL_P(next));
328		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
329		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
330		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
331		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
332	}
333#endif
334
335	/*
336	 * Initialize the node and insert as a leaf into the tree.
337	 */
338	RB_SET_FATHER(self, parent);
339	RB_SET_POSITION(self, position);
340	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
341		RB_MARK_BLACK(self);		/* root is always black */
342#ifndef RBSMALL
343		rbt->rbt_minmax[RB_DIR_LEFT] = self;
344		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
345#endif
346		rebalance = false;
347	} else {
348		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
349#ifndef RBSMALL
350		/*
351		 * Keep track of the minimum and maximum nodes.  If our
352		 * parent is a minmax node and we on their min/max side,
353		 * we must be the new min/max node.
354		 */
355		if (parent == rbt->rbt_minmax[position])
356			rbt->rbt_minmax[position] = self;
357#endif /* !RBSMALL */
358		/*
359		 * All new nodes are colored red.  We only need to rebalance
360		 * if our parent is also red.
361		 */
362		RB_MARK_RED(self);
363		rebalance = RB_RED_P(parent);
364	}
365	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
366	self->rb_left = parent->rb_nodes[position];
367	self->rb_right = parent->rb_nodes[position];
368	parent->rb_nodes[position] = self;
369	KASSERT(RB_CHILDLESS_P(self));
370
371	/*
372	 * Insert the new node into a sorted list for easy sequential access
373	 */
374        rbt->rbt_count++;
375#ifdef RBDEBUG
376	if (RB_ROOT_P(rbt, self)) {
377		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
378	} else if (position == RB_DIR_LEFT) {
379		KASSERT((*compare_nodes)(rbto->rbto_context,
380		    RB_NODETOITEM(rbto, self),
381		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
382		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
383	} else {
384		KASSERT((*compare_nodes)(rbto->rbto_context,
385		    RB_NODETOITEM(rbto, RB_FATHER(self)),
386		    RB_NODETOITEM(rbto, self)) < 0);
387		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
388		    self, rb_link);
389	}
390#endif
391	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
392
393	/*
394	 * Rebalance tree after insertion
395	 */
396	if (rebalance) {
397		rb_tree_insert_rebalance(rbt, self);
398		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
399	}
400
401	/* Succesfully inserted, return our node pointer. */
402	return object;
403}
404
405/*
406 * Swap the location and colors of 'self' and its child @ which.  The child
407 * can not be a sentinel node.  This is our rotation function.  However,
408 * since it preserves coloring, it great simplifies both insertion and
409 * removal since rotation almost always involves the exchanging of colors
410 * as a separate step.
411 */
412/*ARGSUSED*/
413static void
414rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
415	const unsigned int which)
416{
417	const unsigned int other = which ^ RB_DIR_OTHER;
418	struct rb_node * const grandpa = RB_FATHER(old_father);
419	struct rb_node * const old_child = old_father->rb_nodes[which];
420	struct rb_node * const new_father = old_child;
421	struct rb_node * const new_child = old_father;
422
423	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
424
425	KASSERT(!RB_SENTINEL_P(old_child));
426	KASSERT(RB_FATHER(old_child) == old_father);
427
428	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
429	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
430	KASSERT(RB_ROOT_P(rbt, old_father) ||
431	    rb_tree_check_node(rbt, grandpa, NULL, false));
432
433	/*
434	 * Exchange descendant linkages.
435	 */
436	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
437	new_child->rb_nodes[which] = old_child->rb_nodes[other];
438	new_father->rb_nodes[other] = new_child;
439
440	/*
441	 * Update ancestor linkages
442	 */
443	RB_SET_FATHER(new_father, grandpa);
444	RB_SET_FATHER(new_child, new_father);
445
446	/*
447	 * Exchange properties between new_father and new_child.  The only
448	 * change is that new_child's position is now on the other side.
449	 */
450#if 0
451	{
452		struct rb_node tmp;
453		tmp.rb_info = 0;
454		RB_COPY_PROPERTIES(&tmp, old_child);
455		RB_COPY_PROPERTIES(new_father, old_father);
456		RB_COPY_PROPERTIES(new_child, &tmp);
457	}
458#else
459	RB_SWAP_PROPERTIES(new_father, new_child);
460#endif
461	RB_SET_POSITION(new_child, other);
462
463	/*
464	 * Make sure to reparent the new child to ourself.
465	 */
466	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
467		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
468		RB_SET_POSITION(new_child->rb_nodes[which], which);
469	}
470
471	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
472	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
473	KASSERT(RB_ROOT_P(rbt, new_father) ||
474	    rb_tree_check_node(rbt, grandpa, NULL, false));
475}
476
477static void
478rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
479{
480	struct rb_node * father = RB_FATHER(self);
481	struct rb_node * grandpa = RB_FATHER(father);
482	struct rb_node * uncle;
483	unsigned int which;
484	unsigned int other;
485
486	KASSERT(!RB_ROOT_P(rbt, self));
487	KASSERT(RB_RED_P(self));
488	KASSERT(RB_RED_P(father));
489	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
490
491	for (;;) {
492		KASSERT(!RB_SENTINEL_P(self));
493
494		KASSERT(RB_RED_P(self));
495		KASSERT(RB_RED_P(father));
496		/*
497		 * We are red and our parent is red, therefore we must have a
498		 * grandfather and he must be black.
499		 */
500		grandpa = RB_FATHER(father);
501		KASSERT(RB_BLACK_P(grandpa));
502		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
503		which = (father == grandpa->rb_right);
504		other = which ^ RB_DIR_OTHER;
505		uncle = grandpa->rb_nodes[other];
506
507		if (RB_BLACK_P(uncle))
508			break;
509
510		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
511		/*
512		 * Case 1: our uncle is red
513		 *   Simply invert the colors of our parent and
514		 *   uncle and make our grandparent red.  And
515		 *   then solve the problem up at his level.
516		 */
517		RB_MARK_BLACK(uncle);
518		RB_MARK_BLACK(father);
519		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
520			/*
521			 * If our grandpa is root, don't bother
522			 * setting him to red, just return.
523			 */
524			KASSERT(RB_BLACK_P(grandpa));
525			return;
526		}
527		RB_MARK_RED(grandpa);
528		self = grandpa;
529		father = RB_FATHER(self);
530		KASSERT(RB_RED_P(self));
531		if (RB_BLACK_P(father)) {
532			/*
533			 * If our greatgrandpa is black, we're done.
534			 */
535			KASSERT(RB_BLACK_P(rbt->rbt_root));
536			return;
537		}
538	}
539
540	KASSERT(!RB_ROOT_P(rbt, self));
541	KASSERT(RB_RED_P(self));
542	KASSERT(RB_RED_P(father));
543	KASSERT(RB_BLACK_P(uncle));
544	KASSERT(RB_BLACK_P(grandpa));
545	/*
546	 * Case 2&3: our uncle is black.
547	 */
548	if (self == father->rb_nodes[other]) {
549		/*
550		 * Case 2: we are on the same side as our uncle
551		 *   Swap ourselves with our parent so this case
552		 *   becomes case 3.  Basically our parent becomes our
553		 *   child.
554		 */
555		rb_tree_reparent_nodes(rbt, father, other);
556		KASSERT(RB_FATHER(father) == self);
557		KASSERT(self->rb_nodes[which] == father);
558		KASSERT(RB_FATHER(self) == grandpa);
559		self = father;
560		father = RB_FATHER(self);
561	}
562	KASSERT(RB_RED_P(self) && RB_RED_P(father));
563	KASSERT(grandpa->rb_nodes[which] == father);
564	/*
565	 * Case 3: we are opposite a child of a black uncle.
566	 *   Swap our parent and grandparent.  Since our grandfather
567	 *   is black, our father will become black and our new sibling
568	 *   (former grandparent) will become red.
569	 */
570	rb_tree_reparent_nodes(rbt, grandpa, which);
571	KASSERT(RB_FATHER(self) == father);
572	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
573	KASSERT(RB_RED_P(self));
574	KASSERT(RB_BLACK_P(father));
575	KASSERT(RB_RED_P(grandpa));
576
577	/*
578	 * Final step: Set the root to black.
579	 */
580	RB_MARK_BLACK(rbt->rbt_root);
581}
582
583static void
584rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
585{
586	const unsigned int which = RB_POSITION(self);
587	struct rb_node *father = RB_FATHER(self);
588#ifndef RBSMALL
589	const bool was_root = RB_ROOT_P(rbt, self);
590#endif
591
592	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
593	KASSERT(!rebalance || RB_BLACK_P(self));
594	KASSERT(RB_CHILDLESS_P(self));
595	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
596
597	/*
598	 * Since we are childless, we know that self->rb_left is pointing
599	 * to the sentinel node.
600	 */
601	father->rb_nodes[which] = self->rb_left;
602
603	/*
604	 * Remove ourselves from the node list, decrement the count,
605	 * and update min/max.
606	 */
607	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
608	rbt->rbt_count--;
609#ifndef RBSMALL
610	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
611		rbt->rbt_minmax[RB_POSITION(self)] = father;
612		/*
613		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
614		 * updated automatically, but we also need to update
615		 * rbt->rbt_minmax[RB_DIR_RIGHT];
616		 */
617		if (__predict_false(was_root)) {
618			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
619		}
620	}
621	RB_SET_FATHER(self, NULL);
622#endif
623
624	/*
625	 * Rebalance if requested.
626	 */
627	if (rebalance)
628		rb_tree_removal_rebalance(rbt, father, which);
629	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
630}
631
632/*
633 * When deleting an interior node
634 */
635static void
636rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
637	struct rb_node *standin)
638{
639	const unsigned int standin_which = RB_POSITION(standin);
640	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
641	struct rb_node *standin_son;
642	struct rb_node *standin_father = RB_FATHER(standin);
643	bool rebalance = RB_BLACK_P(standin);
644
645	if (standin_father == self) {
646		/*
647		 * As a child of self, any childen would be opposite of
648		 * our parent.
649		 */
650		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
651		standin_son = standin->rb_nodes[standin_which];
652	} else {
653		/*
654		 * Since we aren't a child of self, any childen would be
655		 * on the same side as our parent.
656		 */
657		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
658		standin_son = standin->rb_nodes[standin_other];
659	}
660
661	/*
662	 * the node we are removing must have two children.
663	 */
664	KASSERT(RB_TWOCHILDREN_P(self));
665	/*
666	 * If standin has a child, it must be red.
667	 */
668	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
669
670	/*
671	 * Verify things are sane.
672	 */
673	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
674	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
675
676	if (__predict_false(RB_RED_P(standin_son))) {
677		/*
678		 * We know we have a red child so if we flip it to black
679		 * we don't have to rebalance.
680		 */
681		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
682		RB_MARK_BLACK(standin_son);
683		rebalance = false;
684
685		if (standin_father == self) {
686			KASSERT(RB_POSITION(standin_son) == standin_which);
687		} else {
688			KASSERT(RB_POSITION(standin_son) == standin_other);
689			/*
690			 * Change the son's parentage to point to his grandpa.
691			 */
692			RB_SET_FATHER(standin_son, standin_father);
693			RB_SET_POSITION(standin_son, standin_which);
694		}
695	}
696
697	if (standin_father == self) {
698		/*
699		 * If we are about to delete the standin's father, then when
700		 * we call rebalance, we need to use ourselves as our father.
701		 * Otherwise remember our original father.  Also, sincef we are
702		 * our standin's father we only need to reparent the standin's
703		 * brother.
704		 *
705		 * |    R      -->     S    |
706		 * |  Q   S    -->   Q   T  |
707		 * |        t  -->          |
708		 */
709		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
710		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
711		KASSERT(self->rb_nodes[standin_which] == standin);
712		/*
713		 * Have our son/standin adopt his brother as his new son.
714		 */
715		standin_father = standin;
716	} else {
717		/*
718		 * |    R          -->    S       .  |
719		 * |   / \  |   T  -->   / \  |  /   |
720		 * |  ..... | S    -->  ..... | T    |
721		 *
722		 * Sever standin's connection to his father.
723		 */
724		standin_father->rb_nodes[standin_which] = standin_son;
725		/*
726		 * Adopt the far son.
727		 */
728		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
729		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
730		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
731		/*
732		 * Use standin_other because we need to preserve standin_which
733		 * for the removal_rebalance.
734		 */
735		standin_other = standin_which;
736	}
737
738	/*
739	 * Move the only remaining son to our standin.  If our standin is our
740	 * son, this will be the only son needed to be moved.
741	 */
742	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
743	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
744	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
745
746	/*
747	 * Now copy the result of self to standin and then replace
748	 * self with standin in the tree.
749	 */
750	RB_COPY_PROPERTIES(standin, self);
751	RB_SET_FATHER(standin, RB_FATHER(self));
752	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
753
754	/*
755	 * Remove ourselves from the node list, decrement the count,
756	 * and update min/max.
757	 */
758	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
759	rbt->rbt_count--;
760#ifndef RBSMALL
761	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
762		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
763	RB_SET_FATHER(self, NULL);
764#endif
765
766	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
767	KASSERT(RB_FATHER_SENTINEL_P(standin)
768		|| rb_tree_check_node(rbt, standin_father, NULL, false));
769	KASSERT(RB_LEFT_SENTINEL_P(standin)
770		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
771	KASSERT(RB_RIGHT_SENTINEL_P(standin)
772		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
773
774	if (!rebalance)
775		return;
776
777	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
778	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
779}
780
781/*
782 * We could do this by doing
783 *	rb_tree_node_swap(rbt, self, which);
784 *	rb_tree_prune_node(rbt, self, false);
785 *
786 * But it's more efficient to just evalate and recolor the child.
787 */
788static void
789rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
790	unsigned int which)
791{
792	struct rb_node *father = RB_FATHER(self);
793	struct rb_node *son = self->rb_nodes[which];
794#ifndef RBSMALL
795	const bool was_root = RB_ROOT_P(rbt, self);
796#endif
797
798	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
799	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
800	KASSERT(!RB_TWOCHILDREN_P(son));
801	KASSERT(RB_CHILDLESS_P(son));
802	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
803	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
804
805	/*
806	 * Remove ourselves from the tree and give our former child our
807	 * properties (position, color, root).
808	 */
809	RB_COPY_PROPERTIES(son, self);
810	father->rb_nodes[RB_POSITION(son)] = son;
811	RB_SET_FATHER(son, father);
812
813	/*
814	 * Remove ourselves from the node list, decrement the count,
815	 * and update minmax.
816	 */
817	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
818	rbt->rbt_count--;
819#ifndef RBSMALL
820	if (__predict_false(was_root)) {
821		KASSERT(rbt->rbt_minmax[which] == son);
822		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
823	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
824		rbt->rbt_minmax[RB_POSITION(self)] = son;
825	}
826	RB_SET_FATHER(self, NULL);
827#endif
828
829	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
830	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
831}
832
833void
834rb_tree_remove_node(struct rb_tree *rbt, void *object)
835{
836	const rb_tree_ops_t *rbto = rbt->rbt_ops;
837	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
838	unsigned int which;
839
840	KASSERT(!RB_SENTINEL_P(self));
841	RBSTAT_INC(rbt->rbt_removals);
842
843	/*
844	 * In the following diagrams, we (the node to be removed) are S.  Red
845	 * nodes are lowercase.  T could be either red or black.
846	 *
847	 * Remember the major axiom of the red-black tree: the number of
848	 * black nodes from the root to each leaf is constant across all
849	 * leaves, only the number of red nodes varies.
850	 *
851	 * Thus removing a red leaf doesn't require any other changes to a
852	 * red-black tree.  So if we must remove a node, attempt to rearrange
853	 * the tree so we can remove a red node.
854	 *
855	 * The simpliest case is a childless red node or a childless root node:
856	 *
857	 * |    T  -->    T  |    or    |  R  -->  *  |
858	 * |  s    -->  *    |
859	 */
860	if (RB_CHILDLESS_P(self)) {
861		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
862		rb_tree_prune_node(rbt, self, rebalance);
863		return;
864	}
865	KASSERT(!RB_CHILDLESS_P(self));
866	if (!RB_TWOCHILDREN_P(self)) {
867		/*
868		 * The next simpliest case is the node we are deleting is
869		 * black and has one red child.
870		 *
871		 * |      T  -->      T  -->      T  |
872		 * |    S    -->  R      -->  R      |
873		 * |  r      -->    s    -->    *    |
874		 */
875		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
876		KASSERT(RB_BLACK_P(self));
877		KASSERT(RB_RED_P(self->rb_nodes[which]));
878		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
879		rb_tree_prune_blackred_branch(rbt, self, which);
880		return;
881	}
882	KASSERT(RB_TWOCHILDREN_P(self));
883
884	/*
885	 * We invert these because we prefer to remove from the inside of
886	 * the tree.
887	 */
888	which = RB_POSITION(self) ^ RB_DIR_OTHER;
889
890	/*
891	 * Let's find the node closes to us opposite of our parent
892	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
893	 */
894	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
895	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
896}
897
898static void
899rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
900	unsigned int which)
901{
902	KASSERT(!RB_SENTINEL_P(parent));
903	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
904	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
905	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
906
907	while (RB_BLACK_P(parent->rb_nodes[which])) {
908		unsigned int other = which ^ RB_DIR_OTHER;
909		struct rb_node *brother = parent->rb_nodes[other];
910
911		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
912
913		KASSERT(!RB_SENTINEL_P(brother));
914		/*
915		 * For cases 1, 2a, and 2b, our brother's children must
916		 * be black and our father must be black
917		 */
918		if (RB_BLACK_P(parent)
919		    && RB_BLACK_P(brother->rb_left)
920		    && RB_BLACK_P(brother->rb_right)) {
921			if (RB_RED_P(brother)) {
922				/*
923				 * Case 1: Our brother is red, swap its
924				 * position (and colors) with our parent.
925				 * This should now be case 2b (unless C or E
926				 * has a red child which is case 3; thus no
927				 * explicit branch to case 2b).
928				 *
929				 *    B         ->        D
930				 *  A     d     ->    b     E
931				 *      C   E   ->  A   C
932				 */
933				KASSERT(RB_BLACK_P(parent));
934				rb_tree_reparent_nodes(rbt, parent, other);
935				brother = parent->rb_nodes[other];
936				KASSERT(!RB_SENTINEL_P(brother));
937				KASSERT(RB_RED_P(parent));
938				KASSERT(RB_BLACK_P(brother));
939				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
940				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
941			} else {
942				/*
943				 * Both our parent and brother are black.
944				 * Change our brother to red, advance up rank
945				 * and go through the loop again.
946				 *
947				 *    B         ->   *B
948				 * *A     D     ->  A     d
949				 *      C   E   ->      C   E
950				 */
951				RB_MARK_RED(brother);
952				KASSERT(RB_BLACK_P(brother->rb_left));
953				KASSERT(RB_BLACK_P(brother->rb_right));
954				if (RB_ROOT_P(rbt, parent))
955					return;	/* root == parent == black */
956				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
957				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
958				which = RB_POSITION(parent);
959				parent = RB_FATHER(parent);
960				continue;
961			}
962		}
963		/*
964		 * Avoid an else here so that case 2a above can hit either
965		 * case 2b, 3, or 4.
966		 */
967		if (RB_RED_P(parent)
968		    && RB_BLACK_P(brother)
969		    && RB_BLACK_P(brother->rb_left)
970		    && RB_BLACK_P(brother->rb_right)) {
971			KASSERT(RB_RED_P(parent));
972			KASSERT(RB_BLACK_P(brother));
973			KASSERT(RB_BLACK_P(brother->rb_left));
974			KASSERT(RB_BLACK_P(brother->rb_right));
975			/*
976			 * We are black, our father is red, our brother and
977			 * both nephews are black.  Simply invert/exchange the
978			 * colors of our father and brother (to black and red
979			 * respectively).
980			 *
981			 *	|    f        -->    F        |
982			 *	|  *     B    -->  *     b    |
983			 *	|      N   N  -->      N   N  |
984			 */
985			RB_MARK_BLACK(parent);
986			RB_MARK_RED(brother);
987			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
988			break;		/* We're done! */
989		} else {
990			/*
991			 * Our brother must be black and have at least one
992			 * red child (it may have two).
993			 */
994			KASSERT(RB_BLACK_P(brother));
995			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
996				RB_RED_P(brother->rb_nodes[other]));
997			if (RB_BLACK_P(brother->rb_nodes[other])) {
998				/*
999				 * Case 3: our brother is black, our near
1000				 * nephew is red, and our far nephew is black.
1001				 * Swap our brother with our near nephew.
1002				 * This result in a tree that matches case 4.
1003				 * (Our father could be red or black).
1004				 *
1005				 *	|    F      -->    F      |
1006				 *	|  x     B  -->  x   B    |
1007				 *	|      n    -->        n  |
1008				 */
1009				KASSERT(RB_RED_P(brother->rb_nodes[which]));
1010				rb_tree_reparent_nodes(rbt, brother, which);
1011				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
1012				brother = parent->rb_nodes[other];
1013				KASSERT(RB_RED_P(brother->rb_nodes[other]));
1014			}
1015			/*
1016			 * Case 4: our brother is black and our far nephew
1017			 * is red.  Swap our father and brother locations and
1018			 * change our far nephew to black.  (these can be
1019			 * done in either order so we change the color first).
1020			 * The result is a valid red-black tree and is a
1021			 * terminal case.  (again we don't care about the
1022			 * father's color)
1023			 *
1024			 * If the father is red, we will get a red-black-black
1025			 * tree:
1026			 *	|  f      ->  f      -->    b    |
1027			 *	|    B    ->    B    -->  F   N  |
1028			 *	|      n  ->      N  -->         |
1029			 *
1030			 * If the father is black, we will get an all black
1031			 * tree:
1032			 *	|  F      ->  F      -->    B    |
1033			 *	|    B    ->    B    -->  F   N  |
1034			 *	|      n  ->      N  -->         |
1035			 *
1036			 * If we had two red nephews, then after the swap,
1037			 * our former father would have a red grandson.
1038			 */
1039			KASSERT(RB_BLACK_P(brother));
1040			KASSERT(RB_RED_P(brother->rb_nodes[other]));
1041			RB_MARK_BLACK(brother->rb_nodes[other]);
1042			rb_tree_reparent_nodes(rbt, parent, other);
1043			break;		/* We're done! */
1044		}
1045	}
1046	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
1047}
1048
1049void *
1050rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
1051{
1052	const rb_tree_ops_t *rbto = rbt->rbt_ops;
1053	const unsigned int other = direction ^ RB_DIR_OTHER;
1054	struct rb_node *self;
1055
1056	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1057
1058	if (object == NULL) {
1059#ifndef RBSMALL
1060		if (RB_SENTINEL_P(rbt->rbt_root))
1061			return NULL;
1062		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT]);
1063#else
1064		self = rbt->rbt_root;
1065		if (RB_SENTINEL_P(self))
1066			return NULL;
1067		while (!RB_SENTINEL_P(self->rb_nodes[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT]))
1068			self = self->rb_nodes[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT];
1069		return RB_NODETOITEM(rbto, self);
1070#endif /* !RBSMALL */
1071	}
1072	self = RB_ITEMTONODE(rbto, object);
1073	KASSERT(!RB_SENTINEL_P(self));
1074	/*
1075	 * We can't go any further in this direction.  We proceed up in the
1076	 * opposite direction until our parent is in direction we want to go.
1077	 */
1078	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1079		while (!RB_ROOT_P(rbt, self)) {
1080			if (other == RB_POSITION(self))
1081				return RB_NODETOITEM(rbto, RB_FATHER(self));
1082			self = RB_FATHER(self);
1083		}
1084		return NULL;
1085	}
1086
1087	/*
1088	 * Advance down one in current direction and go down as far as possible
1089	 * in the opposite direction.
1090	 */
1091	self = self->rb_nodes[direction];
1092	KASSERT(!RB_SENTINEL_P(self));
1093	while (!RB_SENTINEL_P(self->rb_nodes[other]))
1094		self = self->rb_nodes[other];
1095	return RB_NODETOITEM(rbto, self);
1096}
1097
1098#ifdef RBDEBUG
1099static const struct rb_node *
1100rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1101	const unsigned int direction)
1102{
1103	const unsigned int other = direction ^ RB_DIR_OTHER;
1104	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1105
1106	if (self == NULL) {
1107#ifndef RBSMALL
1108		if (RB_SENTINEL_P(rbt->rbt_root))
1109			return NULL;
1110		return rbt->rbt_minmax[direction];
1111#else
1112		self = rbt->rbt_root;
1113		if (RB_SENTINEL_P(self))
1114			return NULL;
1115		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1116			self = self->rb_nodes[direction];
1117		return self;
1118#endif /* !RBSMALL */
1119	}
1120	KASSERT(!RB_SENTINEL_P(self));
1121	/*
1122	 * We can't go any further in this direction.  We proceed up in the
1123	 * opposite direction until our parent is in direction we want to go.
1124	 */
1125	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1126		while (!RB_ROOT_P(rbt, self)) {
1127			if (other == RB_POSITION(self))
1128				return RB_FATHER(self);
1129			self = RB_FATHER(self);
1130		}
1131		return NULL;
1132	}
1133
1134	/*
1135	 * Advance down one in current direction and go down as far as possible
1136	 * in the opposite direction.
1137	 */
1138	self = self->rb_nodes[direction];
1139	KASSERT(!RB_SENTINEL_P(self));
1140	while (!RB_SENTINEL_P(self->rb_nodes[other]))
1141		self = self->rb_nodes[other];
1142	return self;
1143}
1144
1145static unsigned int
1146rb_tree_count_black(const struct rb_node *self)
1147{
1148	unsigned int left, right;
1149
1150	if (RB_SENTINEL_P(self))
1151		return 0;
1152
1153	left = rb_tree_count_black(self->rb_left);
1154	right = rb_tree_count_black(self->rb_right);
1155
1156	KASSERT(left == right);
1157
1158	return left + RB_BLACK_P(self);
1159}
1160
1161static bool
1162rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1163	const struct rb_node *prev, bool red_check)
1164{
1165	const rb_tree_ops_t *rbto = rbt->rbt_ops;
1166	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1167
1168	KASSERT(!RB_SENTINEL_P(self));
1169	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1170	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1171
1172	/*
1173	 * Verify our relationship to our parent.
1174	 */
1175	if (RB_ROOT_P(rbt, self)) {
1176		KASSERT(self == rbt->rbt_root);
1177		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1178		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1179		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1180	} else {
1181		int diff = (*compare_nodes)(rbto->rbto_context,
1182		    RB_NODETOITEM(rbto, self),
1183		    RB_NODETOITEM(rbto, RB_FATHER(self)));
1184
1185		KASSERT(self != rbt->rbt_root);
1186		KASSERT(!RB_FATHER_SENTINEL_P(self));
1187		if (RB_POSITION(self) == RB_DIR_LEFT) {
1188			KASSERT(diff < 0);
1189			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1190		} else {
1191			KASSERT(diff > 0);
1192			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1193		}
1194	}
1195
1196	/*
1197	 * Verify our position in the linked list against the tree itself.
1198	 */
1199	{
1200		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1201		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1202		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1203		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1204#ifndef RBSMALL
1205		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1206		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1207#endif
1208	}
1209
1210	/*
1211	 * The root must be black.
1212	 * There can never be two adjacent red nodes.
1213	 */
1214	if (red_check) {
1215		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1216		(void) rb_tree_count_black(self);
1217		if (RB_RED_P(self)) {
1218			const struct rb_node *brother;
1219			KASSERT(!RB_ROOT_P(rbt, self));
1220			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1221			KASSERT(RB_BLACK_P(RB_FATHER(self)));
1222			/*
1223			 * I'm red and have no children, then I must either
1224			 * have no brother or my brother also be red and
1225			 * also have no children.  (black count == 0)
1226			 */
1227			KASSERT(!RB_CHILDLESS_P(self)
1228				|| RB_SENTINEL_P(brother)
1229				|| RB_RED_P(brother)
1230				|| RB_CHILDLESS_P(brother));
1231			/*
1232			 * If I'm not childless, I must have two children
1233			 * and they must be both be black.
1234			 */
1235			KASSERT(RB_CHILDLESS_P(self)
1236				|| (RB_TWOCHILDREN_P(self)
1237				    && RB_BLACK_P(self->rb_left)
1238				    && RB_BLACK_P(self->rb_right)));
1239			/*
1240			 * If I'm not childless, thus I have black children,
1241			 * then my brother must either be black or have two
1242			 * black children.
1243			 */
1244			KASSERT(RB_CHILDLESS_P(self)
1245				|| RB_BLACK_P(brother)
1246				|| (RB_TWOCHILDREN_P(brother)
1247				    && RB_BLACK_P(brother->rb_left)
1248				    && RB_BLACK_P(brother->rb_right)));
1249		} else {
1250			/*
1251			 * If I'm black and have one child, that child must
1252			 * be red and childless.
1253			 */
1254			KASSERT(RB_CHILDLESS_P(self)
1255				|| RB_TWOCHILDREN_P(self)
1256				|| (!RB_LEFT_SENTINEL_P(self)
1257				    && RB_RIGHT_SENTINEL_P(self)
1258				    && RB_RED_P(self->rb_left)
1259				    && RB_CHILDLESS_P(self->rb_left))
1260				|| (!RB_RIGHT_SENTINEL_P(self)
1261				    && RB_LEFT_SENTINEL_P(self)
1262				    && RB_RED_P(self->rb_right)
1263				    && RB_CHILDLESS_P(self->rb_right)));
1264
1265			/*
1266			 * If I'm a childless black node and my parent is
1267			 * black, my 2nd closet relative away from my parent
1268			 * is either red or has a red parent or red children.
1269			 */
1270			if (!RB_ROOT_P(rbt, self)
1271			    && RB_CHILDLESS_P(self)
1272			    && RB_BLACK_P(RB_FATHER(self))) {
1273				const unsigned int which = RB_POSITION(self);
1274				const unsigned int other = which ^ RB_DIR_OTHER;
1275				const struct rb_node *relative0, *relative;
1276
1277				relative0 = rb_tree_iterate_const(rbt,
1278				    self, other);
1279				KASSERT(relative0 != NULL);
1280				relative = rb_tree_iterate_const(rbt,
1281				    relative0, other);
1282				KASSERT(relative != NULL);
1283				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1284#if 0
1285				KASSERT(RB_RED_P(relative)
1286					|| RB_RED_P(relative->rb_left)
1287					|| RB_RED_P(relative->rb_right)
1288					|| RB_RED_P(RB_FATHER(relative)));
1289#endif
1290			}
1291		}
1292		/*
1293		 * A grandparent's children must be real nodes and not
1294		 * sentinels.  First check out grandparent.
1295		 */
1296		KASSERT(RB_ROOT_P(rbt, self)
1297			|| RB_ROOT_P(rbt, RB_FATHER(self))
1298			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1299		/*
1300		 * If we are have grandchildren on our left, then
1301		 * we must have a child on our right.
1302		 */
1303		KASSERT(RB_LEFT_SENTINEL_P(self)
1304			|| RB_CHILDLESS_P(self->rb_left)
1305			|| !RB_RIGHT_SENTINEL_P(self));
1306		/*
1307		 * If we are have grandchildren on our right, then
1308		 * we must have a child on our left.
1309		 */
1310		KASSERT(RB_RIGHT_SENTINEL_P(self)
1311			|| RB_CHILDLESS_P(self->rb_right)
1312			|| !RB_LEFT_SENTINEL_P(self));
1313
1314		/*
1315		 * If we have a child on the left and it doesn't have two
1316		 * children make sure we don't have great-great-grandchildren on
1317		 * the right.
1318		 */
1319		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1320			|| RB_CHILDLESS_P(self->rb_right)
1321			|| RB_CHILDLESS_P(self->rb_right->rb_left)
1322			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1323			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1324			|| RB_CHILDLESS_P(self->rb_right->rb_right)
1325			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1326			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1327
1328		/*
1329		 * If we have a child on the right and it doesn't have two
1330		 * children make sure we don't have great-great-grandchildren on
1331		 * the left.
1332		 */
1333		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1334			|| RB_CHILDLESS_P(self->rb_left)
1335			|| RB_CHILDLESS_P(self->rb_left->rb_left)
1336			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1337			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1338			|| RB_CHILDLESS_P(self->rb_left->rb_right)
1339			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1340			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1341
1342		/*
1343		 * If we are fully interior node, then our predecessors and
1344		 * successors must have no children in our direction.
1345		 */
1346		if (RB_TWOCHILDREN_P(self)) {
1347			const struct rb_node *prev0;
1348			const struct rb_node *next0;
1349
1350			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1351			KASSERT(prev0 != NULL);
1352			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1353
1354			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1355			KASSERT(next0 != NULL);
1356			KASSERT(RB_LEFT_SENTINEL_P(next0));
1357		}
1358	}
1359
1360	return true;
1361}
1362
1363void
1364rb_tree_check(const struct rb_tree *rbt, bool red_check)
1365{
1366	const struct rb_node *self;
1367	const struct rb_node *prev;
1368#ifdef RBSTATS
1369	unsigned int count = 0;
1370#endif
1371
1372	KASSERT(rbt->rbt_root != NULL);
1373	KASSERT(RB_LEFT_P(rbt->rbt_root));
1374
1375#if defined(RBSTATS) && !defined(RBSMALL)
1376	KASSERT(rbt->rbt_count > 1
1377	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1378#endif
1379
1380	prev = NULL;
1381	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1382		rb_tree_check_node(rbt, self, prev, false);
1383#ifdef RBSTATS
1384		count++;
1385#endif
1386	}
1387#ifdef RBSTATS
1388	KASSERT(rbt->rbt_count == count);
1389#endif
1390	if (red_check) {
1391		KASSERT(RB_BLACK_P(rbt->rbt_root));
1392		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1393			|| rb_tree_count_black(rbt->rbt_root));
1394
1395		/*
1396		 * The root must be black.
1397		 * There can never be two adjacent red nodes.
1398		 */
1399		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1400			rb_tree_check_node(rbt, self, NULL, true);
1401		}
1402	}
1403}
1404#endif /* RBDEBUG */
1405
1406#ifdef RBSTATS
1407static void
1408rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1409	size_t *depths, size_t depth)
1410{
1411	if (RB_SENTINEL_P(self))
1412		return;
1413
1414	if (RB_TWOCHILDREN_P(self)) {
1415		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1416		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1417		return;
1418	}
1419	depths[depth]++;
1420	if (!RB_LEFT_SENTINEL_P(self)) {
1421		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1422	}
1423	if (!RB_RIGHT_SENTINEL_P(self)) {
1424		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1425	}
1426}
1427
1428void
1429rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1430{
1431	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1432}
1433#endif /* RBSTATS */
1434
1435size_t  rb_tree_count(rb_tree_t *rbt) {
1436	if (__predict_false(rbt == NULL))
1437		return 0;
1438
1439	return rbt->rbt_count;
1440}
1441