1/*
2******************************************************************************
3*
4*   Copyright (C) 2000-2013, International Business Machines
5*   Corporation and others.  All Rights Reserved.
6*
7******************************************************************************
8*   file name:  ucnvmbcs.c
9*   encoding:   US-ASCII
10*   tab size:   8 (not used)
11*   indentation:4
12*
13*   created on: 2000jul03
14*   created by: Markus W. Scherer
15*
16*   The current code in this file replaces the previous implementation
17*   of conversion code from multi-byte codepages to Unicode and back.
18*   This implementation supports the following:
19*   - legacy variable-length codepages with up to 4 bytes per character
20*   - all Unicode code points (up to 0x10ffff)
21*   - efficient distinction of unassigned vs. illegal byte sequences
22*   - it is possible in fromUnicode() to directly deal with simple
23*     stateful encodings (used for EBCDIC_STATEFUL)
24*   - it is possible to convert Unicode code points
25*     to a single zero byte (but not as a fallback except for SBCS)
26*
27*   Remaining limitations in fromUnicode:
28*   - byte sequences must not have leading zero bytes
29*   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
30*   - limitation to up to 4 bytes per character
31*
32*   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
33*   limitations and adds m:n character mappings and other features.
34*   See ucnv_ext.h for details.
35*
36*   Change history:
37*
38*    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
39*                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
40*                             macros to ucnvmbcs.h file
41*/
42
43#include "unicode/utypes.h"
44
45#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
46
47#include "unicode/ucnv.h"
48#include "unicode/ucnv_cb.h"
49#include "unicode/udata.h"
50#include "unicode/uset.h"
51#include "unicode/utf8.h"
52#include "unicode/utf16.h"
53#include "ucnv_bld.h"
54#include "ucnvmbcs.h"
55#include "ucnv_ext.h"
56#include "ucnv_cnv.h"
57#include "cmemory.h"
58#include "cstring.h"
59#include "cmutex.h"
60
61/* control optimizations according to the platform */
62#define MBCS_UNROLL_SINGLE_TO_BMP 1
63#define MBCS_UNROLL_SINGLE_FROM_BMP 0
64
65/*
66 * _MBCSHeader versions 5.3 & 4.3
67 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
68 *
69 * This version is optional. Version 5 is used for incompatible data format changes.
70 * makeconv will continue to generate version 4 files if possible.
71 *
72 * Changes from version 4:
73 *
74 * The main difference is an additional _MBCSHeader field with
75 * - the length (number of uint32_t) of the _MBCSHeader
76 * - flags for further incompatible data format changes
77 * - flags for further, backward compatible data format changes
78 *
79 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
80 * the file and needs to be reconstituted at load time.
81 * This requires a utf8Friendly format with an additional mbcsIndex table for fast
82 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
83 * (For details about these structures see below, and see ucnvmbcs.h.)
84 *
85 *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
86 *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
87 *   precision markers for all mappings.)
88 *
89 *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
90 *   omitted data that can be reconstituted from the toUnicode data.
91 *
92 *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
93 *   With only roundtrip mappings in the base fromUnicode data, this part is fully
94 *   redundant with the mbcsIndex and will be reconstituted from that (also using the
95 *   stage 1 table which contains the information about how stage 2 was compacted).
96 *
97 *   The rest of the stage 2 table, the part for code points above maxFastUChar,
98 *   is stored in the file and will be appended to the reconstituted part.
99 *
100 *   The entire fromUBytes array is omitted from the file and will be reconstitued.
101 *   This is done by enumerating all toUnicode roundtrip mappings, performing
102 *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
103 *   writing instead of reading the byte values.
104 *
105 * _MBCSHeader version 4.3
106 *
107 * Change from version 4.2:
108 * - Optional utf8Friendly data structures, with 64-entry stage 3 block
109 *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
110 *   files which can be used instead of stages 1 & 2.
111 *   Faster lookups for roundtrips from most commonly used characters,
112 *   and lookups from UTF-8 byte sequences with a natural bit distribution.
113 *   See ucnvmbcs.h for more details.
114 *
115 * Change from version 4.1:
116 * - Added an optional extension table structure at the end of the .cnv file.
117 *   It is present if the upper bits of the header flags field contains a non-zero
118 *   byte offset to it.
119 *   Files that contain only a conversion table and no base table
120 *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
121 *   These contain the base table name between the MBCS header and the extension
122 *   data.
123 *
124 * Change from version 4.0:
125 * - Replace header.reserved with header.fromUBytesLength so that all
126 *   fields in the data have length.
127 *
128 * Changes from version 3 (for performance improvements):
129 * - new bit distribution for state table entries
130 * - reordered action codes
131 * - new data structure for single-byte fromUnicode
132 *   + stage 2 only contains indexes
133 *   + stage 3 stores 16 bits per character with classification bits 15..8
134 * - no multiplier for stage 1 entries
135 * - stage 2 for non-single-byte codepages contains the index and the flags in
136 *   one 32-bit value
137 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
138 *
139 * For more details about old versions of the MBCS data structure, see
140 * the corresponding versions of this file.
141 *
142 * Converting stateless codepage data ---------------------------------------***
143 * (or codepage data with simple states) to Unicode.
144 *
145 * Data structure and algorithm for converting from complex legacy codepages
146 * to Unicode. (Designed before 2000-may-22.)
147 *
148 * The basic idea is that the structure of legacy codepages can be described
149 * with state tables.
150 * When reading a byte stream, each input byte causes a state transition.
151 * Some transitions result in the output of a code point, some result in
152 * "unassigned" or "illegal" output.
153 * This is used here for character conversion.
154 *
155 * The data structure begins with a state table consisting of a row
156 * per state, with 256 entries (columns) per row for each possible input
157 * byte value.
158 * Each entry is 32 bits wide, with two formats distinguished by
159 * the sign bit (bit 31):
160 *
161 * One format for transitional entries (bit 31 not set) for non-final bytes, and
162 * one format for final entries (bit 31 set).
163 * Both formats contain the number of the next state in the same bit
164 * positions.
165 * State 0 is the initial state.
166 *
167 * Most of the time, the offset values of subsequent states are added
168 * up to a scalar value. This value will eventually be the index of
169 * the Unicode code point in a table that follows the state table.
170 * The effect is that the code points for final state table rows
171 * are contiguous. The code points of final state rows follow each other
172 * in the order of the references to those final states by previous
173 * states, etc.
174 *
175 * For some terminal states, the offset is itself the output Unicode
176 * code point (16 bits for a BMP code point or 20 bits for a supplementary
177 * code point (stored as code point minus 0x10000 so that 20 bits are enough).
178 * For others, the code point in the Unicode table is stored with either
179 * one or two code units: one for BMP code points, two for a pair of
180 * surrogates.
181 * All code points for a final state entry take up the same number of code
182 * units, regardless of whether they all actually _use_ the same number
183 * of code units. This is necessary for simple array access.
184 *
185 * An additional feature comes in with what in ICU is called "fallback"
186 * mappings:
187 *
188 * In addition to round-trippable, precise, 1:1 mappings, there are often
189 * mappings defined between similar, though not the same, characters.
190 * Typically, such mappings occur only in fromUnicode mapping tables because
191 * Unicode has a superset repertoire of most other codepages. However, it
192 * is possible to provide such mappings in the toUnicode tables, too.
193 * In this case, the fallback mappings are partly integrated into the
194 * general state tables because the structure of the encoding includes their
195 * byte sequences.
196 * For final entries in an initial state, fallback mappings are stored in
197 * the entry itself like with roundtrip mappings.
198 * For other final entries, they are stored in the code units table if
199 * the entry is for a pair of code units.
200 * For single-unit results in the code units table, there is no space to
201 * alternatively hold a fallback mapping; in this case, the code unit
202 * is stored as U+fffe (unassigned), and the fallback mapping needs to
203 * be looked up by the scalar offset value in a separate table.
204 *
205 * "Unassigned" state entries really mean "structurally unassigned",
206 * i.e., such a byte sequence will never have a mapping result.
207 *
208 * The interpretation of the bits in each entry is as follows:
209 *
210 * Bit 31 not set, not a terminal entry ("transitional"):
211 * 30..24 next state
212 * 23..0  offset delta, to be added up
213 *
214 * Bit 31 set, terminal ("final") entry:
215 * 30..24 next state (regardless of action code)
216 * 23..20 action code:
217 *        action codes 0 and 1 result in precise-mapping Unicode code points
218 *        0  valid byte sequence
219 *           19..16 not used, 0
220 *           15..0  16-bit Unicode BMP code point
221 *                  never U+fffe or U+ffff
222 *        1  valid byte sequence
223 *           19..0  20-bit Unicode supplementary code point
224 *                  never U+fffe or U+ffff
225 *
226 *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
227 *        2  valid byte sequence (fallback)
228 *           19..16 not used, 0
229 *           15..0  16-bit Unicode BMP code point as fallback result
230 *        3  valid byte sequence (fallback)
231 *           19..0  20-bit Unicode supplementary code point as fallback result
232 *
233 *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
234 *        depending on the code units they result in
235 *        4  valid byte sequence
236 *           19..9  not used, 0
237 *            8..0  final offset delta
238 *                  pointing to one 16-bit code unit which may be
239 *                  fffe  unassigned -- look for a fallback for this offset
240 *                  ffff  illegal
241 *        5  valid byte sequence
242 *           19..9  not used, 0
243 *            8..0  final offset delta
244 *                  pointing to two 16-bit code units
245 *                  (typically UTF-16 surrogates)
246 *                  the result depends on the first code unit as follows:
247 *                  0000..d7ff  roundtrip BMP code point (1st alone)
248 *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
249 *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
250 *                  e000        roundtrip BMP code point (2nd alone)
251 *                  e001        fallback BMP code point (2nd alone)
252 *                  fffe        unassigned
253 *                  ffff        illegal
254 *           (the final offset deltas are at most 255 * 2,
255 *            times 2 because of storing code unit pairs)
256 *
257 *        6  unassigned byte sequence
258 *           19..16 not used, 0
259 *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
260 *                  this does not contain a final offset delta because the main
261 *                  purpose of this action code is to save scalar offset values;
262 *                  therefore, fallback values cannot be assigned to byte
263 *                  sequences that result in this action code
264 *        7  illegal byte sequence
265 *           19..16 not used, 0
266 *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
267 *        8  state change only
268 *           19..0  not used, 0
269 *           useful for state changes in simple stateful encodings,
270 *           at Shift-In/Shift-Out codes
271 *
272 *
273 *        9..15 reserved for future use
274 *           current implementations will only perform a state change
275 *           and ignore bits 19..0
276 *
277 * An encoding with contiguous ranges of unassigned byte sequences, like
278 * Shift-JIS and especially EUC-TW, can be stored efficiently by having
279 * at least two states for the trail bytes:
280 * One trail byte state that results in code points, and one that only
281 * has "unassigned" and "illegal" terminal states.
282 *
283 * Note: partly by accident, this data structure supports simple stateful
284 * encodings without any additional logic.
285 * Currently, only simple Shift-In/Shift-Out schemes are handled with
286 * appropriate state tables (especially EBCDIC_STATEFUL!).
287 *
288 * MBCS version 2 added:
289 * unassigned and illegal action codes have U+fffe and U+ffff
290 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
291 *
292 * Converting from Unicode to codepage bytes --------------------------------***
293 *
294 * The conversion data structure for fromUnicode is designed for the known
295 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
296 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
297 * a roundtrip mapping.
298 *
299 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
300 * like in the character properties table.
301 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
302 * with the resulting bytes is at offsetFromUBytes.
303 *
304 * Beginning with version 4, single-byte codepages have a significantly different
305 * trie compared to other codepages.
306 * In all cases, the entry in stage 1 is directly the index of the block of
307 * 64 entries in stage 2.
308 *
309 * Single-byte lookup:
310 *
311 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
312 * Stage 3 contains one 16-bit word per result:
313 * Bits 15..8 indicate the kind of result:
314 *    f  roundtrip result
315 *    c  fallback result from private-use code point
316 *    8  fallback result from other code points
317 *    0  unassigned
318 * Bits 7..0 contain the codepage byte. A zero byte is always possible.
319 *
320 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
321 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
322 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
323 * ASCII code points can be looked up with a linear array access into stage 3.
324 * See maxFastUChar and other details in ucnvmbcs.h.
325 *
326 * Multi-byte lookup:
327 *
328 * Stage 2 contains a 32-bit word for each 16-block in stage 3:
329 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
330 *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
331 *             If this test is false, then a non-zero result will be interpreted as
332 *             a fallback mapping.
333 * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
334 *
335 * Stage 3 contains 2, 3, or 4 bytes per result.
336 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
337 * while 3 bytes are stored as bytes in big-endian order.
338 * Leading zero bytes are ignored, and the number of bytes is counted.
339 * A zero byte mapping result is possible as a roundtrip result.
340 * For some output types, the actual result is processed from this;
341 * see ucnv_MBCSFromUnicodeWithOffsets().
342 *
343 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
344 * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
345 *
346 * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
347 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
348 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
349 * ASCII code points can be looked up with a linear array access into stage 3.
350 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
351 *
352 * In version 3, stage 2 blocks may overlap by multiples of the multiplier
353 * for compaction.
354 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
355 * may overlap by any number of entries.
356 *
357 * MBCS version 2 added:
358 * the converter checks for known output types, which allows
359 * adding new ones without crashing an unaware converter
360 */
361
362static const UConverterImpl _SBCSUTF8Impl;
363static const UConverterImpl _DBCSUTF8Impl;
364
365/* GB 18030 data ------------------------------------------------------------ */
366
367/* helper macros for linear values for GB 18030 four-byte sequences */
368#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
369
370#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
371
372#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
373
374/*
375 * Some ranges of GB 18030 where both the Unicode code points and the
376 * GB four-byte sequences are contiguous and are handled algorithmically by
377 * the special callback functions below.
378 * The values are start & end of Unicode & GB codes.
379 *
380 * Note that single surrogates are not mapped by GB 18030
381 * as of the re-released mapping tables from 2000-nov-30.
382 */
383static const uint32_t
384gb18030Ranges[14][4]={
385    {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
386    {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
387    {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
388    {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
389    {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
390    {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
391    {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
392    {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
393    {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
394    {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
395    {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
396    {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
397    {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
398    {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
399};
400
401/* bit flag for UConverter.options indicating GB 18030 special handling */
402#define _MBCS_OPTION_GB18030 0x8000
403
404/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
405#define _MBCS_OPTION_KEIS 0x01000
406#define _MBCS_OPTION_JEF  0x02000
407#define _MBCS_OPTION_JIPS 0x04000
408
409#define KEIS_SO_CHAR_1 0x0A
410#define KEIS_SO_CHAR_2 0x42
411#define KEIS_SI_CHAR_1 0x0A
412#define KEIS_SI_CHAR_2 0x41
413
414#define JEF_SO_CHAR 0x28
415#define JEF_SI_CHAR 0x29
416
417#define JIPS_SO_CHAR_1 0x1A
418#define JIPS_SO_CHAR_2 0x70
419#define JIPS_SI_CHAR_1 0x1A
420#define JIPS_SI_CHAR_2 0x71
421
422enum SISO_Option {
423    SI,
424    SO
425};
426typedef enum SISO_Option SISO_Option;
427
428static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
429    int32_t SISOLength = 0;
430
431    switch (option) {
432        case SI:
433            if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
434                value[0] = KEIS_SI_CHAR_1;
435                value[1] = KEIS_SI_CHAR_2;
436                SISOLength = 2;
437            } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
438                value[0] = JEF_SI_CHAR;
439                SISOLength = 1;
440            } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
441                value[0] = JIPS_SI_CHAR_1;
442                value[1] = JIPS_SI_CHAR_2;
443                SISOLength = 2;
444            } else {
445                value[0] = UCNV_SI;
446                SISOLength = 1;
447            }
448            break;
449        case SO:
450            if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
451                value[0] = KEIS_SO_CHAR_1;
452                value[1] = KEIS_SO_CHAR_2;
453                SISOLength = 2;
454            } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
455                value[0] = JEF_SO_CHAR;
456                SISOLength = 1;
457            } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
458                value[0] = JIPS_SO_CHAR_1;
459                value[1] = JIPS_SO_CHAR_2;
460                SISOLength = 2;
461            } else {
462                value[0] = UCNV_SO;
463                SISOLength = 1;
464            }
465            break;
466        default:
467            /* Should never happen. */
468            break;
469    }
470
471    return SISOLength;
472}
473
474/* Miscellaneous ------------------------------------------------------------ */
475
476/**
477 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
478 * consecutive sequences of bytes, starting from the one encoded in value,
479 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
480 * Does not currently support m:n mappings or reverse fallbacks.
481 * This function will not be called for sequences of bytes with leading zeros.
482 *
483 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
484 * @param value contains 1..4 bytes of the first byte sequence, right-aligned
485 * @param codePoints resulting Unicode code points, or negative if a byte sequence does
486 *        not map to anything
487 * @return TRUE to continue enumeration, FALSE to stop
488 */
489typedef UBool U_CALLCONV
490UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
491
492/* similar to ucnv_MBCSGetNextUChar() but recursive */
493static UBool
494enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
495        int32_t state, uint32_t offset,
496        uint32_t value,
497        UConverterEnumToUCallback *callback, const void *context,
498        UErrorCode *pErrorCode) {
499    UChar32 codePoints[32];
500    const int32_t *row;
501    const uint16_t *unicodeCodeUnits;
502    UChar32 anyCodePoints;
503    int32_t b, limit;
504
505    row=mbcsTable->stateTable[state];
506    unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
507
508    value<<=8;
509    anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
510
511    b=(stateProps[state]&0x38)<<2;
512    if(b==0 && stateProps[state]>=0x40) {
513        /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
514        codePoints[0]=U_SENTINEL;
515        b=1;
516    }
517    limit=((stateProps[state]&7)+1)<<5;
518    while(b<limit) {
519        int32_t entry=row[b];
520        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
521            int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
522            if(stateProps[nextState]>=0) {
523                /* recurse to a state with non-ignorable actions */
524                if(!enumToU(
525                        mbcsTable, stateProps, nextState,
526                        offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
527                        value|(uint32_t)b,
528                        callback, context,
529                        pErrorCode)) {
530                    return FALSE;
531                }
532            }
533            codePoints[b&0x1f]=U_SENTINEL;
534        } else {
535            UChar32 c;
536            int32_t action;
537
538            /*
539             * An if-else-if chain provides more reliable performance for
540             * the most common cases compared to a switch.
541             */
542            action=MBCS_ENTRY_FINAL_ACTION(entry);
543            if(action==MBCS_STATE_VALID_DIRECT_16) {
544                /* output BMP code point */
545                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
546            } else if(action==MBCS_STATE_VALID_16) {
547                int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
548                c=unicodeCodeUnits[finalOffset];
549                if(c<0xfffe) {
550                    /* output BMP code point */
551                } else {
552                    c=U_SENTINEL;
553                }
554            } else if(action==MBCS_STATE_VALID_16_PAIR) {
555                int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
556                c=unicodeCodeUnits[finalOffset++];
557                if(c<0xd800) {
558                    /* output BMP code point below 0xd800 */
559                } else if(c<=0xdbff) {
560                    /* output roundtrip or fallback supplementary code point */
561                    c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
562                } else if(c==0xe000) {
563                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
564                    c=unicodeCodeUnits[finalOffset];
565                } else {
566                    c=U_SENTINEL;
567                }
568            } else if(action==MBCS_STATE_VALID_DIRECT_20) {
569                /* output supplementary code point */
570                c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
571            } else {
572                c=U_SENTINEL;
573            }
574
575            codePoints[b&0x1f]=c;
576            anyCodePoints&=c;
577        }
578        if(((++b)&0x1f)==0) {
579            if(anyCodePoints>=0) {
580                if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
581                    return FALSE;
582                }
583                anyCodePoints=-1;
584            }
585        }
586    }
587    return TRUE;
588}
589
590/*
591 * Only called if stateProps[state]==-1.
592 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
593 * MBCS_STATE_CHANGE_ONLY.
594 */
595static int8_t
596getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
597    const int32_t *row;
598    int32_t min, max, entry, nextState;
599
600    row=stateTable[state];
601    stateProps[state]=0;
602
603    /* find first non-ignorable state */
604    for(min=0;; ++min) {
605        entry=row[min];
606        nextState=MBCS_ENTRY_STATE(entry);
607        if(stateProps[nextState]==-1) {
608            getStateProp(stateTable, stateProps, nextState);
609        }
610        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
611            if(stateProps[nextState]>=0) {
612                break;
613            }
614        } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
615            break;
616        }
617        if(min==0xff) {
618            stateProps[state]=-0x40;  /* (int8_t)0xc0 */
619            return stateProps[state];
620        }
621    }
622    stateProps[state]|=(int8_t)((min>>5)<<3);
623
624    /* find last non-ignorable state */
625    for(max=0xff; min<max; --max) {
626        entry=row[max];
627        nextState=MBCS_ENTRY_STATE(entry);
628        if(stateProps[nextState]==-1) {
629            getStateProp(stateTable, stateProps, nextState);
630        }
631        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
632            if(stateProps[nextState]>=0) {
633                break;
634            }
635        } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
636            break;
637        }
638    }
639    stateProps[state]|=(int8_t)(max>>5);
640
641    /* recurse further and collect direct-state information */
642    while(min<=max) {
643        entry=row[min];
644        nextState=MBCS_ENTRY_STATE(entry);
645        if(stateProps[nextState]==-1) {
646            getStateProp(stateTable, stateProps, nextState);
647        }
648        if(MBCS_ENTRY_IS_FINAL(entry)) {
649            stateProps[nextState]|=0x40;
650            if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
651                stateProps[state]|=0x40;
652            }
653        }
654        ++min;
655    }
656    return stateProps[state];
657}
658
659/*
660 * Internal function enumerating the toUnicode data of an MBCS converter.
661 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
662 * table, but could also be used for a future ucnv_getUnicodeSet() option
663 * that includes reverse fallbacks (after updating this function's implementation).
664 * Currently only handles roundtrip mappings.
665 * Does not currently handle extensions.
666 */
667static void
668ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
669                       UConverterEnumToUCallback *callback, const void *context,
670                       UErrorCode *pErrorCode) {
671    /*
672     * Properties for each state, to speed up the enumeration.
673     * Ignorable actions are unassigned/illegal/state-change-only:
674     * They do not lead to mappings.
675     *
676     * Bits 7..6:
677     * 1 direct/initial state (stateful converters have multiple)
678     * 0 non-initial state with transitions or with non-ignorable result actions
679     * -1 final state with only ignorable actions
680     *
681     * Bits 5..3:
682     * The lowest byte value with non-ignorable actions is
683     * value<<5 (rounded down).
684     *
685     * Bits 2..0:
686     * The highest byte value with non-ignorable actions is
687     * (value<<5)&0x1f (rounded up).
688     */
689    int8_t stateProps[MBCS_MAX_STATE_COUNT];
690    int32_t state;
691
692    uprv_memset(stateProps, -1, sizeof(stateProps));
693
694    /* recurse from state 0 and set all stateProps */
695    getStateProp(mbcsTable->stateTable, stateProps, 0);
696
697    for(state=0; state<mbcsTable->countStates; ++state) {
698        /*if(stateProps[state]==-1) {
699            printf("unused/unreachable <icu:state> %d\n", state);
700        }*/
701        if(stateProps[state]>=0x40) {
702            /* start from each direct state */
703            enumToU(
704                mbcsTable, stateProps, state, 0, 0,
705                callback, context,
706                pErrorCode);
707        }
708    }
709}
710
711U_CFUNC void
712ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
713                                         const USetAdder *sa,
714                                         UConverterUnicodeSet which,
715                                         UConverterSetFilter filter,
716                                         UErrorCode *pErrorCode) {
717    const UConverterMBCSTable *mbcsTable;
718    const uint16_t *table;
719
720    uint32_t st3;
721    uint16_t st1, maxStage1, st2;
722
723    UChar32 c;
724
725    /* enumerate the from-Unicode trie table */
726    mbcsTable=&sharedData->mbcs;
727    table=mbcsTable->fromUnicodeTable;
728    if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
729        maxStage1=0x440;
730    } else {
731        maxStage1=0x40;
732    }
733
734    c=0; /* keep track of the current code point while enumerating */
735
736    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
737        const uint16_t *stage2, *stage3, *results;
738        uint16_t minValue;
739
740        results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
741
742        /*
743         * Set a threshold variable for selecting which mappings to use.
744         * See ucnv_MBCSSingleFromBMPWithOffsets() and
745         * MBCS_SINGLE_RESULT_FROM_U() for details.
746         */
747        if(which==UCNV_ROUNDTRIP_SET) {
748            /* use only roundtrips */
749            minValue=0xf00;
750        } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
751            /* use all roundtrip and fallback results */
752            minValue=0x800;
753        }
754
755        for(st1=0; st1<maxStage1; ++st1) {
756            st2=table[st1];
757            if(st2>maxStage1) {
758                stage2=table+st2;
759                for(st2=0; st2<64; ++st2) {
760                    if((st3=stage2[st2])!=0) {
761                        /* read the stage 3 block */
762                        stage3=results+st3;
763
764                        do {
765                            if(*stage3++>=minValue) {
766                                sa->add(sa->set, c);
767                            }
768                        } while((++c&0xf)!=0);
769                    } else {
770                        c+=16; /* empty stage 3 block */
771                    }
772                }
773            } else {
774                c+=1024; /* empty stage 2 block */
775            }
776        }
777    } else {
778        const uint32_t *stage2;
779        const uint8_t *stage3, *bytes;
780        uint32_t st3Multiplier;
781        uint32_t value;
782        UBool useFallback;
783
784        bytes=mbcsTable->fromUnicodeBytes;
785
786        useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
787
788        switch(mbcsTable->outputType) {
789        case MBCS_OUTPUT_3:
790        case MBCS_OUTPUT_4_EUC:
791            st3Multiplier=3;
792            break;
793        case MBCS_OUTPUT_4:
794            st3Multiplier=4;
795            break;
796        default:
797            st3Multiplier=2;
798            break;
799        }
800
801        for(st1=0; st1<maxStage1; ++st1) {
802            st2=table[st1];
803            if(st2>(maxStage1>>1)) {
804                stage2=(const uint32_t *)table+st2;
805                for(st2=0; st2<64; ++st2) {
806                    if((st3=stage2[st2])!=0) {
807                        /* read the stage 3 block */
808                        stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
809
810                        /* get the roundtrip flags for the stage 3 block */
811                        st3>>=16;
812
813                        /*
814                         * Add code points for which the roundtrip flag is set,
815                         * or which map to non-zero bytes if we use fallbacks.
816                         * See ucnv_MBCSFromUnicodeWithOffsets() for details.
817                         */
818                        switch(filter) {
819                        case UCNV_SET_FILTER_NONE:
820                            do {
821                                if(st3&1) {
822                                    sa->add(sa->set, c);
823                                    stage3+=st3Multiplier;
824                                } else if(useFallback) {
825                                    uint8_t b=0;
826                                    switch(st3Multiplier) {
827                                    case 4:
828                                        b|=*stage3++;
829                                    case 3: /*fall through*/
830                                        b|=*stage3++;
831                                    case 2: /*fall through*/
832                                        b|=stage3[0]|stage3[1];
833                                        stage3+=2;
834                                    default:
835                                        break;
836                                    }
837                                    if(b!=0) {
838                                        sa->add(sa->set, c);
839                                    }
840                                }
841                                st3>>=1;
842                            } while((++c&0xf)!=0);
843                            break;
844                        case UCNV_SET_FILTER_DBCS_ONLY:
845                             /* Ignore single-byte results (<0x100). */
846                            do {
847                                if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
848                                    sa->add(sa->set, c);
849                                }
850                                st3>>=1;
851                                stage3+=2;  /* +=st3Multiplier */
852                            } while((++c&0xf)!=0);
853                            break;
854                        case UCNV_SET_FILTER_2022_CN:
855                             /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
856                            do {
857                                if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
858                                    sa->add(sa->set, c);
859                                }
860                                st3>>=1;
861                                stage3+=3;  /* +=st3Multiplier */
862                            } while((++c&0xf)!=0);
863                            break;
864                        case UCNV_SET_FILTER_SJIS:
865                             /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
866                            do {
867                                if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
868                                    sa->add(sa->set, c);
869                                }
870                                st3>>=1;
871                                stage3+=2;  /* +=st3Multiplier */
872                            } while((++c&0xf)!=0);
873                            break;
874                        case UCNV_SET_FILTER_GR94DBCS:
875                            /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
876                            do {
877                                if( ((st3&1)!=0 || useFallback) &&
878                                    (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
879                                    (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
880                                ) {
881                                    sa->add(sa->set, c);
882                                }
883                                st3>>=1;
884                                stage3+=2;  /* +=st3Multiplier */
885                            } while((++c&0xf)!=0);
886                            break;
887                        case UCNV_SET_FILTER_HZ:
888                            /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
889                            do {
890                                if( ((st3&1)!=0 || useFallback) &&
891                                    (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
892                                    (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
893                                ) {
894                                    sa->add(sa->set, c);
895                                }
896                                st3>>=1;
897                                stage3+=2;  /* +=st3Multiplier */
898                            } while((++c&0xf)!=0);
899                            break;
900                        default:
901                            *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
902                            return;
903                        }
904                    } else {
905                        c+=16; /* empty stage 3 block */
906                    }
907                }
908            } else {
909                c+=1024; /* empty stage 2 block */
910            }
911        }
912    }
913
914    ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
915}
916
917U_CFUNC void
918ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
919                                 const USetAdder *sa,
920                                 UConverterUnicodeSet which,
921                                 UErrorCode *pErrorCode) {
922    ucnv_MBCSGetFilteredUnicodeSetForUnicode(
923        sharedData, sa, which,
924        sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
925            UCNV_SET_FILTER_DBCS_ONLY :
926            UCNV_SET_FILTER_NONE,
927        pErrorCode);
928}
929
930static void
931ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
932                   const USetAdder *sa,
933                   UConverterUnicodeSet which,
934                   UErrorCode *pErrorCode) {
935    if(cnv->options&_MBCS_OPTION_GB18030) {
936        sa->addRange(sa->set, 0, 0xd7ff);
937        sa->addRange(sa->set, 0xe000, 0x10ffff);
938    } else {
939        ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
940    }
941}
942
943/* conversion extensions for input not in the main table -------------------- */
944
945/*
946 * Hardcoded extension handling for GB 18030.
947 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
948 *
949 * In the future, conversion extensions may handle m:n mappings and delta tables,
950 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
951 *
952 * If an input character cannot be mapped, then these functions set an error
953 * code. The framework will then call the callback function.
954 */
955
956/*
957 * @return if(U_FAILURE) return the code point for cnv->fromUChar32
958 *         else return 0 after output has been written to the target
959 */
960static UChar32
961_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
962          UChar32 cp,
963          const UChar **source, const UChar *sourceLimit,
964          uint8_t **target, const uint8_t *targetLimit,
965          int32_t **offsets, int32_t sourceIndex,
966          UBool flush,
967          UErrorCode *pErrorCode) {
968    const int32_t *cx;
969
970    cnv->useSubChar1=FALSE;
971
972    if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
973        ucnv_extInitialMatchFromU(
974            cnv, cx,
975            cp, source, sourceLimit,
976            (char **)target, (char *)targetLimit,
977            offsets, sourceIndex,
978            flush,
979            pErrorCode)
980    ) {
981        return 0; /* an extension mapping handled the input */
982    }
983
984    /* GB 18030 */
985    if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
986        const uint32_t *range;
987        int32_t i;
988
989        range=gb18030Ranges[0];
990        for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
991            if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
992                /* found the Unicode code point, output the four-byte sequence for it */
993                uint32_t linear;
994                char bytes[4];
995
996                /* get the linear value of the first GB 18030 code in this range */
997                linear=range[2]-LINEAR_18030_BASE;
998
999                /* add the offset from the beginning of the range */
1000                linear+=((uint32_t)cp-range[0]);
1001
1002                /* turn this into a four-byte sequence */
1003                bytes[3]=(char)(0x30+linear%10); linear/=10;
1004                bytes[2]=(char)(0x81+linear%126); linear/=126;
1005                bytes[1]=(char)(0x30+linear%10); linear/=10;
1006                bytes[0]=(char)(0x81+linear);
1007
1008                /* output this sequence */
1009                ucnv_fromUWriteBytes(cnv,
1010                                     bytes, 4, (char **)target, (char *)targetLimit,
1011                                     offsets, sourceIndex, pErrorCode);
1012                return 0;
1013            }
1014        }
1015    }
1016
1017    /* no mapping */
1018    *pErrorCode=U_INVALID_CHAR_FOUND;
1019    return cp;
1020}
1021
1022/*
1023 * Input sequence: cnv->toUBytes[0..length[
1024 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1025 *         else return 0 after output has been written to the target
1026 */
1027static int8_t
1028_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1029        int8_t length,
1030        const uint8_t **source, const uint8_t *sourceLimit,
1031        UChar **target, const UChar *targetLimit,
1032        int32_t **offsets, int32_t sourceIndex,
1033        UBool flush,
1034        UErrorCode *pErrorCode) {
1035    const int32_t *cx;
1036
1037    if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1038        ucnv_extInitialMatchToU(
1039            cnv, cx,
1040            length, (const char **)source, (const char *)sourceLimit,
1041            target, targetLimit,
1042            offsets, sourceIndex,
1043            flush,
1044            pErrorCode)
1045    ) {
1046        return 0; /* an extension mapping handled the input */
1047    }
1048
1049    /* GB 18030 */
1050    if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1051        const uint32_t *range;
1052        uint32_t linear;
1053        int32_t i;
1054
1055        linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1056        range=gb18030Ranges[0];
1057        for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
1058            if(range[2]<=linear && linear<=range[3]) {
1059                /* found the sequence, output the Unicode code point for it */
1060                *pErrorCode=U_ZERO_ERROR;
1061
1062                /* add the linear difference between the input and start sequences to the start code point */
1063                linear=range[0]+(linear-range[2]);
1064
1065                /* output this code point */
1066                ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1067
1068                return 0;
1069            }
1070        }
1071    }
1072
1073    /* no mapping */
1074    *pErrorCode=U_INVALID_CHAR_FOUND;
1075    return length;
1076}
1077
1078/* EBCDIC swap LF<->NL ------------------------------------------------------ */
1079
1080/*
1081 * This code modifies a standard EBCDIC<->Unicode mapping table for
1082 * OS/390 (z/OS) Unix System Services (Open Edition).
1083 * The difference is in the mapping of Line Feed and New Line control codes:
1084 * Standard EBCDIC maps
1085 *
1086 *   <U000A> \x25 |0
1087 *   <U0085> \x15 |0
1088 *
1089 * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1090 * mapping
1091 *
1092 *   <U000A> \x15 |0
1093 *   <U0085> \x25 |0
1094 *
1095 * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1096 * by copying it into allocated memory and swapping the LF and NL values.
1097 * It allows to support the same EBCDIC charset in both versions without
1098 * duplicating the entire installed table.
1099 */
1100
1101/* standard EBCDIC codes */
1102#define EBCDIC_LF 0x25
1103#define EBCDIC_NL 0x15
1104
1105/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1106#define EBCDIC_RT_LF 0xf25
1107#define EBCDIC_RT_NL 0xf15
1108
1109/* Unicode code points */
1110#define U_LF 0x0a
1111#define U_NL 0x85
1112
1113static UBool
1114_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1115    UConverterMBCSTable *mbcsTable;
1116
1117    const uint16_t *table, *results;
1118    const uint8_t *bytes;
1119
1120    int32_t (*newStateTable)[256];
1121    uint16_t *newResults;
1122    uint8_t *p;
1123    char *name;
1124
1125    uint32_t stage2Entry;
1126    uint32_t size, sizeofFromUBytes;
1127
1128    mbcsTable=&sharedData->mbcs;
1129
1130    table=mbcsTable->fromUnicodeTable;
1131    bytes=mbcsTable->fromUnicodeBytes;
1132    results=(const uint16_t *)bytes;
1133
1134    /*
1135     * Check that this is an EBCDIC table with SBCS portion -
1136     * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1137     *
1138     * If not, ignore the option. Options are always ignored if they do not apply.
1139     */
1140    if(!(
1141         (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1142         mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1143         mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1144    )) {
1145        return FALSE;
1146    }
1147
1148    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1149        if(!(
1150             EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1151             EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1152        )) {
1153            return FALSE;
1154        }
1155    } else /* MBCS_OUTPUT_2_SISO */ {
1156        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1157        if(!(
1158             MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1159             EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1160        )) {
1161            return FALSE;
1162        }
1163
1164        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1165        if(!(
1166             MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1167             EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1168        )) {
1169            return FALSE;
1170        }
1171    }
1172
1173    if(mbcsTable->fromUBytesLength>0) {
1174        /*
1175         * We _know_ the number of bytes in the fromUnicodeBytes array
1176         * starting with header.version 4.1.
1177         */
1178        sizeofFromUBytes=mbcsTable->fromUBytesLength;
1179    } else {
1180        /*
1181         * Otherwise:
1182         * There used to be code to enumerate the fromUnicode
1183         * trie and find the highest entry, but it was removed in ICU 3.2
1184         * because it was not tested and caused a low code coverage number.
1185         * See Jitterbug 3674.
1186         * This affects only some .cnv file formats with a header.version
1187         * below 4.1, and only when swaplfnl is requested.
1188         *
1189         * ucnvmbcs.c revision 1.99 is the last one with the
1190         * ucnv_MBCSSizeofFromUBytes() function.
1191         */
1192        *pErrorCode=U_INVALID_FORMAT_ERROR;
1193        return FALSE;
1194    }
1195
1196    /*
1197     * The table has an appropriate format.
1198     * Allocate and build
1199     * - a modified to-Unicode state table
1200     * - a modified from-Unicode output array
1201     * - a converter name string with the swap option appended
1202     */
1203    size=
1204        mbcsTable->countStates*1024+
1205        sizeofFromUBytes+
1206        UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1207    p=(uint8_t *)uprv_malloc(size);
1208    if(p==NULL) {
1209        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1210        return FALSE;
1211    }
1212
1213    /* copy and modify the to-Unicode state table */
1214    newStateTable=(int32_t (*)[256])p;
1215    uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1216
1217    newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1218    newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1219
1220    /* copy and modify the from-Unicode result table */
1221    newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1222    uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1223
1224    /* conveniently, the table access macros work on the left side of expressions */
1225    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1226        MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1227        MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1228    } else /* MBCS_OUTPUT_2_SISO */ {
1229        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1230        MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1231
1232        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1233        MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1234    }
1235
1236    /* set the canonical converter name */
1237    name=(char *)newResults+sizeofFromUBytes;
1238    uprv_strcpy(name, sharedData->staticData->name);
1239    uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1240
1241    /* set the pointers */
1242    umtx_lock(NULL);
1243    if(mbcsTable->swapLFNLStateTable==NULL) {
1244        mbcsTable->swapLFNLStateTable=newStateTable;
1245        mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1246        mbcsTable->swapLFNLName=name;
1247
1248        newStateTable=NULL;
1249    }
1250    umtx_unlock(NULL);
1251
1252    /* release the allocated memory if another thread beat us to it */
1253    if(newStateTable!=NULL) {
1254        uprv_free(newStateTable);
1255    }
1256    return TRUE;
1257}
1258
1259/* reconstitute omitted fromUnicode data ------------------------------------ */
1260
1261/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1262static UBool U_CALLCONV
1263writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1264    UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1265    const uint16_t *table;
1266    uint32_t *stage2;
1267    uint8_t *bytes, *p;
1268    UChar32 c;
1269    int32_t i, st3;
1270
1271    table=mbcsTable->fromUnicodeTable;
1272    bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1273
1274    /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1275    switch(mbcsTable->outputType) {
1276    case MBCS_OUTPUT_3_EUC:
1277        if(value<=0xffff) {
1278            /* short sequences are stored directly */
1279            /* code set 0 or 1 */
1280        } else if(value<=0x8effff) {
1281            /* code set 2 */
1282            value&=0x7fff;
1283        } else /* first byte is 0x8f */ {
1284            /* code set 3 */
1285            value&=0xff7f;
1286        }
1287        break;
1288    case MBCS_OUTPUT_4_EUC:
1289        if(value<=0xffffff) {
1290            /* short sequences are stored directly */
1291            /* code set 0 or 1 */
1292        } else if(value<=0x8effffff) {
1293            /* code set 2 */
1294            value&=0x7fffff;
1295        } else /* first byte is 0x8f */ {
1296            /* code set 3 */
1297            value&=0xff7fff;
1298        }
1299        break;
1300    default:
1301        break;
1302    }
1303
1304    for(i=0; i<=0x1f; ++value, ++i) {
1305        c=codePoints[i];
1306        if(c<0) {
1307            continue;
1308        }
1309
1310        /* locate the stage 2 & 3 data */
1311        stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1312        p=bytes;
1313        st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1314
1315        /* write the codepage bytes into stage 3 */
1316        switch(mbcsTable->outputType) {
1317        case MBCS_OUTPUT_3:
1318        case MBCS_OUTPUT_4_EUC:
1319            p+=st3*3;
1320            p[0]=(uint8_t)(value>>16);
1321            p[1]=(uint8_t)(value>>8);
1322            p[2]=(uint8_t)value;
1323            break;
1324        case MBCS_OUTPUT_4:
1325            ((uint32_t *)p)[st3]=value;
1326            break;
1327        default:
1328            /* 2 bytes per character */
1329            ((uint16_t *)p)[st3]=(uint16_t)value;
1330            break;
1331        }
1332
1333        /* set the roundtrip flag */
1334        *stage2|=(1UL<<(16+(c&0xf)));
1335    }
1336    return TRUE;
1337 }
1338
1339static void
1340reconstituteData(UConverterMBCSTable *mbcsTable,
1341                 uint32_t stage1Length, uint32_t stage2Length,
1342                 uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1343                 UErrorCode *pErrorCode) {
1344    uint16_t *stage1;
1345    uint32_t *stage2;
1346    uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1347    mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1348    if(mbcsTable->reconstitutedData==NULL) {
1349        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1350        return;
1351    }
1352    uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1353
1354    /* copy existing data and reroute the pointers */
1355    stage1=(uint16_t *)mbcsTable->reconstitutedData;
1356    uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1357
1358    stage2=(uint32_t *)(stage1+stage1Length);
1359    uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1360                mbcsTable->fromUnicodeTable+stage1Length,
1361                stage2Length*4);
1362
1363    mbcsTable->fromUnicodeTable=stage1;
1364    mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1365
1366    /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1367    stage2=(uint32_t *)stage1;
1368
1369    /* reconstitute the initial part of stage 2 from the mbcsIndex */
1370    {
1371        int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1372        int32_t stageUTF8Index=0;
1373        int32_t st1, st2, st3, i;
1374
1375        for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1376            st2=stage1[st1];
1377            if(st2!=stage1Length/2) {
1378                /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1379                for(i=0; i<16; ++i) {
1380                    st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1381                    if(st3!=0) {
1382                        /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1383                        st3>>=4;
1384                        /*
1385                         * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1386                         * allocated together as a single 64-block for access from the mbcsIndex
1387                         */
1388                        stage2[st2++]=st3++;
1389                        stage2[st2++]=st3++;
1390                        stage2[st2++]=st3++;
1391                        stage2[st2++]=st3;
1392                    } else {
1393                        /* no stage 3 block, skip */
1394                        st2+=4;
1395                    }
1396                }
1397            } else {
1398                /* no stage 2 block, skip */
1399                stageUTF8Index+=16;
1400            }
1401        }
1402    }
1403
1404    /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1405    ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1406}
1407
1408/* MBCS setup functions ----------------------------------------------------- */
1409
1410static void
1411ucnv_MBCSLoad(UConverterSharedData *sharedData,
1412          UConverterLoadArgs *pArgs,
1413          const uint8_t *raw,
1414          UErrorCode *pErrorCode) {
1415    UDataInfo info;
1416    UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1417    _MBCSHeader *header=(_MBCSHeader *)raw;
1418    uint32_t offset;
1419    uint32_t headerLength;
1420    UBool noFromU=FALSE;
1421
1422    if(header->version[0]==4) {
1423        headerLength=MBCS_HEADER_V4_LENGTH;
1424    } else if(header->version[0]==5 && header->version[1]>=3 &&
1425              (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1426        headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1427        noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1428    } else {
1429        *pErrorCode=U_INVALID_TABLE_FORMAT;
1430        return;
1431    }
1432
1433    mbcsTable->outputType=(uint8_t)header->flags;
1434    if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1435        *pErrorCode=U_INVALID_TABLE_FORMAT;
1436        return;
1437    }
1438
1439    /* extension data, header version 4.2 and higher */
1440    offset=header->flags>>8;
1441    if(offset!=0) {
1442        mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1443    }
1444
1445    if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1446        UConverterLoadArgs args={ 0 };
1447        UConverterSharedData *baseSharedData;
1448        const int32_t *extIndexes;
1449        const char *baseName;
1450
1451        /* extension-only file, load the base table and set values appropriately */
1452        if((extIndexes=mbcsTable->extIndexes)==NULL) {
1453            /* extension-only file without extension */
1454            *pErrorCode=U_INVALID_TABLE_FORMAT;
1455            return;
1456        }
1457
1458        if(pArgs->nestedLoads!=1) {
1459            /* an extension table must not be loaded as a base table */
1460            *pErrorCode=U_INVALID_TABLE_FILE;
1461            return;
1462        }
1463
1464        /* load the base table */
1465        baseName=(const char *)header+headerLength*4;
1466        if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1467            /* forbid loading this same extension-only file */
1468            *pErrorCode=U_INVALID_TABLE_FORMAT;
1469            return;
1470        }
1471
1472        /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1473        args.size=sizeof(UConverterLoadArgs);
1474        args.nestedLoads=2;
1475        args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1476        args.reserved=pArgs->reserved;
1477        args.options=pArgs->options;
1478        args.pkg=pArgs->pkg;
1479        args.name=baseName;
1480        baseSharedData=ucnv_load(&args, pErrorCode);
1481        if(U_FAILURE(*pErrorCode)) {
1482            return;
1483        }
1484        if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1485            baseSharedData->mbcs.baseSharedData!=NULL
1486        ) {
1487            ucnv_unload(baseSharedData);
1488            *pErrorCode=U_INVALID_TABLE_FORMAT;
1489            return;
1490        }
1491        if(pArgs->onlyTestIsLoadable) {
1492            /*
1493             * Exit as soon as we know that we can load the converter
1494             * and the format is valid and supported.
1495             * The worst that can happen in the following code is a memory
1496             * allocation error.
1497             */
1498            ucnv_unload(baseSharedData);
1499            return;
1500        }
1501
1502        /* copy the base table data */
1503        uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1504
1505        /* overwrite values with relevant ones for the extension converter */
1506        mbcsTable->baseSharedData=baseSharedData;
1507        mbcsTable->extIndexes=extIndexes;
1508
1509        /*
1510         * It would be possible to share the swapLFNL data with a base converter,
1511         * but the generated name would have to be different, and the memory
1512         * would have to be free'd only once.
1513         * It is easier to just create the data for the extension converter
1514         * separately when it is requested.
1515         */
1516        mbcsTable->swapLFNLStateTable=NULL;
1517        mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1518        mbcsTable->swapLFNLName=NULL;
1519
1520        /*
1521         * The reconstitutedData must be deleted only when the base converter
1522         * is unloaded.
1523         */
1524        mbcsTable->reconstitutedData=NULL;
1525
1526        /*
1527         * Set a special, runtime-only outputType if the extension converter
1528         * is a DBCS version of a base converter that also maps single bytes.
1529         */
1530        if( sharedData->staticData->conversionType==UCNV_DBCS ||
1531                (sharedData->staticData->conversionType==UCNV_MBCS &&
1532                 sharedData->staticData->minBytesPerChar>=2)
1533        ) {
1534            if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1535                /* the base converter is SI/SO-stateful */
1536                int32_t entry;
1537
1538                /* get the dbcs state from the state table entry for SO=0x0e */
1539                entry=mbcsTable->stateTable[0][0xe];
1540                if( MBCS_ENTRY_IS_FINAL(entry) &&
1541                    MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1542                    MBCS_ENTRY_FINAL_STATE(entry)!=0
1543                ) {
1544                    mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1545
1546                    mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1547                }
1548            } else if(
1549                baseSharedData->staticData->conversionType==UCNV_MBCS &&
1550                baseSharedData->staticData->minBytesPerChar==1 &&
1551                baseSharedData->staticData->maxBytesPerChar==2 &&
1552                mbcsTable->countStates<=127
1553            ) {
1554                /* non-stateful base converter, need to modify the state table */
1555                int32_t (*newStateTable)[256];
1556                int32_t *state;
1557                int32_t i, count;
1558
1559                /* allocate a new state table and copy the base state table contents */
1560                count=mbcsTable->countStates;
1561                newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1562                if(newStateTable==NULL) {
1563                    ucnv_unload(baseSharedData);
1564                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1565                    return;
1566                }
1567
1568                uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1569
1570                /* change all final single-byte entries to go to a new all-illegal state */
1571                state=newStateTable[0];
1572                for(i=0; i<256; ++i) {
1573                    if(MBCS_ENTRY_IS_FINAL(state[i])) {
1574                        state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1575                    }
1576                }
1577
1578                /* build the new all-illegal state */
1579                state=newStateTable[count];
1580                for(i=0; i<256; ++i) {
1581                    state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1582                }
1583                mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1584                mbcsTable->countStates=(uint8_t)(count+1);
1585                mbcsTable->stateTableOwned=TRUE;
1586
1587                mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1588            }
1589        }
1590
1591        /*
1592         * unlike below for files with base tables, do not get the unicodeMask
1593         * from the sharedData; instead, use the base table's unicodeMask,
1594         * which we copied in the memcpy above;
1595         * this is necessary because the static data unicodeMask, especially
1596         * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1597         */
1598    } else {
1599        /* conversion file with a base table; an additional extension table is optional */
1600        /* make sure that the output type is known */
1601        switch(mbcsTable->outputType) {
1602        case MBCS_OUTPUT_1:
1603        case MBCS_OUTPUT_2:
1604        case MBCS_OUTPUT_3:
1605        case MBCS_OUTPUT_4:
1606        case MBCS_OUTPUT_3_EUC:
1607        case MBCS_OUTPUT_4_EUC:
1608        case MBCS_OUTPUT_2_SISO:
1609            /* OK */
1610            break;
1611        default:
1612            *pErrorCode=U_INVALID_TABLE_FORMAT;
1613            return;
1614        }
1615        if(pArgs->onlyTestIsLoadable) {
1616            /*
1617             * Exit as soon as we know that we can load the converter
1618             * and the format is valid and supported.
1619             * The worst that can happen in the following code is a memory
1620             * allocation error.
1621             */
1622            return;
1623        }
1624
1625        mbcsTable->countStates=(uint8_t)header->countStates;
1626        mbcsTable->countToUFallbacks=header->countToUFallbacks;
1627        mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1628        mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1629        mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1630
1631        mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1632        mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1633        mbcsTable->fromUBytesLength=header->fromUBytesLength;
1634
1635        /*
1636         * converter versions 6.1 and up contain a unicodeMask that is
1637         * used here to select the most efficient function implementations
1638         */
1639        info.size=sizeof(UDataInfo);
1640        udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1641        if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1642            /* mask off possible future extensions to be safe */
1643            mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1644        } else {
1645            /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1646            mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1647        }
1648
1649        /*
1650         * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1651         * Check for the header version, SBCS vs. MBCS, and for whether the
1652         * data structures are optimized for code points as high as what the
1653         * runtime code is designed for.
1654         * The implementation does not handle mapping tables with entries for
1655         * unpaired surrogates.
1656         */
1657        if( header->version[1]>=3 &&
1658            (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1659            (mbcsTable->countStates==1 ?
1660                (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1661                (header->version[2]>=(MBCS_FAST_MAX>>8))
1662            )
1663        ) {
1664            mbcsTable->utf8Friendly=TRUE;
1665
1666            if(mbcsTable->countStates==1) {
1667                /*
1668                 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1669                 * Build a table with indexes to each block, to be used instead of
1670                 * the regular stage 1/2 table.
1671                 */
1672                int32_t i;
1673                for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1674                    mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1675                }
1676                /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1677                mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1678            } else {
1679                /*
1680                 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1681                 * The .cnv file is prebuilt with an additional stage table with indexes
1682                 * to each block.
1683                 */
1684                mbcsTable->mbcsIndex=(const uint16_t *)
1685                    (mbcsTable->fromUnicodeBytes+
1686                     (noFromU ? 0 : mbcsTable->fromUBytesLength));
1687                mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1688            }
1689        }
1690
1691        /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1692        {
1693            uint32_t asciiRoundtrips=0xffffffff;
1694            int32_t i;
1695
1696            for(i=0; i<0x80; ++i) {
1697                if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1698                    asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1699                }
1700            }
1701            mbcsTable->asciiRoundtrips=asciiRoundtrips;
1702        }
1703
1704        if(noFromU) {
1705            uint32_t stage1Length=
1706                mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1707                    0x440 : 0x40;
1708            uint32_t stage2Length=
1709                (header->offsetFromUBytes-header->offsetFromUTable)/4-
1710                stage1Length/2;
1711            reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1712        }
1713    }
1714
1715    /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1716    if(mbcsTable->utf8Friendly) {
1717        if(mbcsTable->countStates==1) {
1718            sharedData->impl=&_SBCSUTF8Impl;
1719        } else {
1720            if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1721                sharedData->impl=&_DBCSUTF8Impl;
1722            }
1723        }
1724    }
1725
1726    if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1727        /*
1728         * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1729         * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1730         */
1731        mbcsTable->asciiRoundtrips=0;
1732    }
1733}
1734
1735static void
1736ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1737    UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1738
1739    if(mbcsTable->swapLFNLStateTable!=NULL) {
1740        uprv_free(mbcsTable->swapLFNLStateTable);
1741    }
1742    if(mbcsTable->stateTableOwned) {
1743        uprv_free((void *)mbcsTable->stateTable);
1744    }
1745    if(mbcsTable->baseSharedData!=NULL) {
1746        ucnv_unload(mbcsTable->baseSharedData);
1747    }
1748    if(mbcsTable->reconstitutedData!=NULL) {
1749        uprv_free(mbcsTable->reconstitutedData);
1750    }
1751}
1752
1753static void
1754ucnv_MBCSOpen(UConverter *cnv,
1755              UConverterLoadArgs *pArgs,
1756              UErrorCode *pErrorCode) {
1757    UConverterMBCSTable *mbcsTable;
1758    const int32_t *extIndexes;
1759    uint8_t outputType;
1760    int8_t maxBytesPerUChar;
1761
1762    if(pArgs->onlyTestIsLoadable) {
1763        return;
1764    }
1765
1766    mbcsTable=&cnv->sharedData->mbcs;
1767    outputType=mbcsTable->outputType;
1768
1769    if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1770        /* the swaplfnl option does not apply, remove it */
1771        cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1772    }
1773
1774    if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1775        /* do this because double-checked locking is broken */
1776        UBool isCached;
1777
1778        umtx_lock(NULL);
1779        isCached=mbcsTable->swapLFNLStateTable!=NULL;
1780        umtx_unlock(NULL);
1781
1782        if(!isCached) {
1783            if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1784                if(U_FAILURE(*pErrorCode)) {
1785                    return; /* something went wrong */
1786                }
1787
1788                /* the option does not apply, remove it */
1789                cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1790            }
1791        }
1792    }
1793
1794    if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1795        if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1796            /* set a flag for GB 18030 mode, which changes the callback behavior */
1797            cnv->options|=_MBCS_OPTION_GB18030;
1798        }
1799    } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1800        /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1801        cnv->options|=_MBCS_OPTION_KEIS;
1802    } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1803        /* set a flag for JEF converter, which changes the SI/SO character sequence */
1804        cnv->options|=_MBCS_OPTION_JEF;
1805    } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1806        /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1807        cnv->options|=_MBCS_OPTION_JIPS;
1808    }
1809
1810    /* fix maxBytesPerUChar depending on outputType and options etc. */
1811    if(outputType==MBCS_OUTPUT_2_SISO) {
1812        cnv->maxBytesPerUChar=3; /* SO+DBCS */
1813    }
1814
1815    extIndexes=mbcsTable->extIndexes;
1816    if(extIndexes!=NULL) {
1817        maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1818        if(outputType==MBCS_OUTPUT_2_SISO) {
1819            ++maxBytesPerUChar; /* SO + multiple DBCS */
1820        }
1821
1822        if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1823            cnv->maxBytesPerUChar=maxBytesPerUChar;
1824        }
1825    }
1826
1827#if 0
1828    /*
1829     * documentation of UConverter fields used for status
1830     * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1831     */
1832
1833    /* toUnicode */
1834    cnv->toUnicodeStatus=0;     /* offset */
1835    cnv->mode=0;                /* state */
1836    cnv->toULength=0;           /* byteIndex */
1837
1838    /* fromUnicode */
1839    cnv->fromUChar32=0;
1840    cnv->fromUnicodeStatus=1;   /* prevLength */
1841#endif
1842}
1843
1844static const char *
1845ucnv_MBCSGetName(const UConverter *cnv) {
1846    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1847        return cnv->sharedData->mbcs.swapLFNLName;
1848    } else {
1849        return cnv->sharedData->staticData->name;
1850    }
1851}
1852
1853/* MBCS-to-Unicode conversion functions ------------------------------------- */
1854
1855static UChar32
1856ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
1857    const _MBCSToUFallback *toUFallbacks;
1858    uint32_t i, start, limit;
1859
1860    limit=mbcsTable->countToUFallbacks;
1861    if(limit>0) {
1862        /* do a binary search for the fallback mapping */
1863        toUFallbacks=mbcsTable->toUFallbacks;
1864        start=0;
1865        while(start<limit-1) {
1866            i=(start+limit)/2;
1867            if(offset<toUFallbacks[i].offset) {
1868                limit=i;
1869            } else {
1870                start=i;
1871            }
1872        }
1873
1874        /* did we really find it? */
1875        if(offset==toUFallbacks[start].offset) {
1876            return toUFallbacks[start].codePoint;
1877        }
1878    }
1879
1880    return 0xfffe;
1881}
1882
1883/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
1884static void
1885ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
1886                                UErrorCode *pErrorCode) {
1887    UConverter *cnv;
1888    const uint8_t *source, *sourceLimit;
1889    UChar *target;
1890    const UChar *targetLimit;
1891    int32_t *offsets;
1892
1893    const int32_t (*stateTable)[256];
1894
1895    int32_t sourceIndex;
1896
1897    int32_t entry;
1898    UChar c;
1899    uint8_t action;
1900
1901    /* set up the local pointers */
1902    cnv=pArgs->converter;
1903    source=(const uint8_t *)pArgs->source;
1904    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
1905    target=pArgs->target;
1906    targetLimit=pArgs->targetLimit;
1907    offsets=pArgs->offsets;
1908
1909    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1910        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
1911    } else {
1912        stateTable=cnv->sharedData->mbcs.stateTable;
1913    }
1914
1915    /* sourceIndex=-1 if the current character began in the previous buffer */
1916    sourceIndex=0;
1917
1918    /* conversion loop */
1919    while(source<sourceLimit) {
1920        /*
1921         * This following test is to see if available input would overflow the output.
1922         * It does not catch output of more than one code unit that
1923         * overflows as a result of a surrogate pair or callback output
1924         * from the last source byte.
1925         * Therefore, those situations also test for overflows and will
1926         * then break the loop, too.
1927         */
1928        if(target>=targetLimit) {
1929            /* target is full */
1930            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1931            break;
1932        }
1933
1934        entry=stateTable[0][*source++];
1935        /* MBCS_ENTRY_IS_FINAL(entry) */
1936
1937        /* test the most common case first */
1938        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
1939            /* output BMP code point */
1940            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1941            if(offsets!=NULL) {
1942                *offsets++=sourceIndex;
1943            }
1944
1945            /* normal end of action codes: prepare for a new character */
1946            ++sourceIndex;
1947            continue;
1948        }
1949
1950        /*
1951         * An if-else-if chain provides more reliable performance for
1952         * the most common cases compared to a switch.
1953         */
1954        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
1955        if(action==MBCS_STATE_VALID_DIRECT_20 ||
1956           (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
1957        ) {
1958            entry=MBCS_ENTRY_FINAL_VALUE(entry);
1959            /* output surrogate pair */
1960            *target++=(UChar)(0xd800|(UChar)(entry>>10));
1961            if(offsets!=NULL) {
1962                *offsets++=sourceIndex;
1963            }
1964            c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
1965            if(target<targetLimit) {
1966                *target++=c;
1967                if(offsets!=NULL) {
1968                    *offsets++=sourceIndex;
1969                }
1970            } else {
1971                /* target overflow */
1972                cnv->UCharErrorBuffer[0]=c;
1973                cnv->UCharErrorBufferLength=1;
1974                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1975                break;
1976            }
1977
1978            ++sourceIndex;
1979            continue;
1980        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
1981            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
1982                /* output BMP code point */
1983                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1984                if(offsets!=NULL) {
1985                    *offsets++=sourceIndex;
1986                }
1987
1988                ++sourceIndex;
1989                continue;
1990            }
1991        } else if(action==MBCS_STATE_UNASSIGNED) {
1992            /* just fall through */
1993        } else if(action==MBCS_STATE_ILLEGAL) {
1994            /* callback(illegal) */
1995            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
1996        } else {
1997            /* reserved, must never occur */
1998            ++sourceIndex;
1999            continue;
2000        }
2001
2002        if(U_FAILURE(*pErrorCode)) {
2003            /* callback(illegal) */
2004            break;
2005        } else /* unassigned sequences indicated with byteIndex>0 */ {
2006            /* try an extension mapping */
2007            pArgs->source=(const char *)source;
2008            cnv->toUBytes[0]=*(source-1);
2009            cnv->toULength=_extToU(cnv, cnv->sharedData,
2010                                    1, &source, sourceLimit,
2011                                    &target, targetLimit,
2012                                    &offsets, sourceIndex,
2013                                    pArgs->flush,
2014                                    pErrorCode);
2015            sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2016
2017            if(U_FAILURE(*pErrorCode)) {
2018                /* not mappable or buffer overflow */
2019                break;
2020            }
2021        }
2022    }
2023
2024    /* write back the updated pointers */
2025    pArgs->source=(const char *)source;
2026    pArgs->target=target;
2027    pArgs->offsets=offsets;
2028}
2029
2030/*
2031 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2032 * that only map to and from the BMP.
2033 * In addition to single-byte optimizations, the offset calculations
2034 * become much easier.
2035 */
2036static void
2037ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2038                            UErrorCode *pErrorCode) {
2039    UConverter *cnv;
2040    const uint8_t *source, *sourceLimit, *lastSource;
2041    UChar *target;
2042    int32_t targetCapacity, length;
2043    int32_t *offsets;
2044
2045    const int32_t (*stateTable)[256];
2046
2047    int32_t sourceIndex;
2048
2049    int32_t entry;
2050    uint8_t action;
2051
2052    /* set up the local pointers */
2053    cnv=pArgs->converter;
2054    source=(const uint8_t *)pArgs->source;
2055    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2056    target=pArgs->target;
2057    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2058    offsets=pArgs->offsets;
2059
2060    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2061        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2062    } else {
2063        stateTable=cnv->sharedData->mbcs.stateTable;
2064    }
2065
2066    /* sourceIndex=-1 if the current character began in the previous buffer */
2067    sourceIndex=0;
2068    lastSource=source;
2069
2070    /*
2071     * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2072     * for the minimum of the sourceLength and targetCapacity
2073     */
2074    length=(int32_t)(sourceLimit-source);
2075    if(length<targetCapacity) {
2076        targetCapacity=length;
2077    }
2078
2079#if MBCS_UNROLL_SINGLE_TO_BMP
2080    /* unrolling makes it faster on Pentium III/Windows 2000 */
2081    /* unroll the loop with the most common case */
2082unrolled:
2083    if(targetCapacity>=16) {
2084        int32_t count, loops, oredEntries;
2085
2086        loops=count=targetCapacity>>4;
2087        do {
2088            oredEntries=entry=stateTable[0][*source++];
2089            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2090            oredEntries|=entry=stateTable[0][*source++];
2091            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2092            oredEntries|=entry=stateTable[0][*source++];
2093            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2094            oredEntries|=entry=stateTable[0][*source++];
2095            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2096            oredEntries|=entry=stateTable[0][*source++];
2097            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2098            oredEntries|=entry=stateTable[0][*source++];
2099            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2100            oredEntries|=entry=stateTable[0][*source++];
2101            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2102            oredEntries|=entry=stateTable[0][*source++];
2103            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2104            oredEntries|=entry=stateTable[0][*source++];
2105            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2106            oredEntries|=entry=stateTable[0][*source++];
2107            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2108            oredEntries|=entry=stateTable[0][*source++];
2109            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2110            oredEntries|=entry=stateTable[0][*source++];
2111            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2112            oredEntries|=entry=stateTable[0][*source++];
2113            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2114            oredEntries|=entry=stateTable[0][*source++];
2115            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2116            oredEntries|=entry=stateTable[0][*source++];
2117            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2118            oredEntries|=entry=stateTable[0][*source++];
2119            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2120
2121            /* were all 16 entries really valid? */
2122            if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2123                /* no, return to the first of these 16 */
2124                source-=16;
2125                target-=16;
2126                break;
2127            }
2128        } while(--count>0);
2129        count=loops-count;
2130        targetCapacity-=16*count;
2131
2132        if(offsets!=NULL) {
2133            lastSource+=16*count;
2134            while(count>0) {
2135                *offsets++=sourceIndex++;
2136                *offsets++=sourceIndex++;
2137                *offsets++=sourceIndex++;
2138                *offsets++=sourceIndex++;
2139                *offsets++=sourceIndex++;
2140                *offsets++=sourceIndex++;
2141                *offsets++=sourceIndex++;
2142                *offsets++=sourceIndex++;
2143                *offsets++=sourceIndex++;
2144                *offsets++=sourceIndex++;
2145                *offsets++=sourceIndex++;
2146                *offsets++=sourceIndex++;
2147                *offsets++=sourceIndex++;
2148                *offsets++=sourceIndex++;
2149                *offsets++=sourceIndex++;
2150                *offsets++=sourceIndex++;
2151                --count;
2152            }
2153        }
2154    }
2155#endif
2156
2157    /* conversion loop */
2158    while(targetCapacity > 0 && source < sourceLimit) {
2159        entry=stateTable[0][*source++];
2160        /* MBCS_ENTRY_IS_FINAL(entry) */
2161
2162        /* test the most common case first */
2163        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2164            /* output BMP code point */
2165            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2166            --targetCapacity;
2167            continue;
2168        }
2169
2170        /*
2171         * An if-else-if chain provides more reliable performance for
2172         * the most common cases compared to a switch.
2173         */
2174        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2175        if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2176            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2177                /* output BMP code point */
2178                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2179                --targetCapacity;
2180                continue;
2181            }
2182        } else if(action==MBCS_STATE_UNASSIGNED) {
2183            /* just fall through */
2184        } else if(action==MBCS_STATE_ILLEGAL) {
2185            /* callback(illegal) */
2186            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2187        } else {
2188            /* reserved, must never occur */
2189            continue;
2190        }
2191
2192        /* set offsets since the start or the last extension */
2193        if(offsets!=NULL) {
2194            int32_t count=(int32_t)(source-lastSource);
2195
2196            /* predecrement: do not set the offset for the callback-causing character */
2197            while(--count>0) {
2198                *offsets++=sourceIndex++;
2199            }
2200            /* offset and sourceIndex are now set for the current character */
2201        }
2202
2203        if(U_FAILURE(*pErrorCode)) {
2204            /* callback(illegal) */
2205            break;
2206        } else /* unassigned sequences indicated with byteIndex>0 */ {
2207            /* try an extension mapping */
2208            lastSource=source;
2209            cnv->toUBytes[0]=*(source-1);
2210            cnv->toULength=_extToU(cnv, cnv->sharedData,
2211                                    1, &source, sourceLimit,
2212                                    &target, pArgs->targetLimit,
2213                                    &offsets, sourceIndex,
2214                                    pArgs->flush,
2215                                    pErrorCode);
2216            sourceIndex+=1+(int32_t)(source-lastSource);
2217
2218            if(U_FAILURE(*pErrorCode)) {
2219                /* not mappable or buffer overflow */
2220                break;
2221            }
2222
2223            /* recalculate the targetCapacity after an extension mapping */
2224            targetCapacity=(int32_t)(pArgs->targetLimit-target);
2225            length=(int32_t)(sourceLimit-source);
2226            if(length<targetCapacity) {
2227                targetCapacity=length;
2228            }
2229        }
2230
2231#if MBCS_UNROLL_SINGLE_TO_BMP
2232        /* unrolling makes it faster on Pentium III/Windows 2000 */
2233        goto unrolled;
2234#endif
2235    }
2236
2237    if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2238        /* target is full */
2239        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2240    }
2241
2242    /* set offsets since the start or the last callback */
2243    if(offsets!=NULL) {
2244        size_t count=source-lastSource;
2245        while(count>0) {
2246            *offsets++=sourceIndex++;
2247            --count;
2248        }
2249    }
2250
2251    /* write back the updated pointers */
2252    pArgs->source=(const char *)source;
2253    pArgs->target=target;
2254    pArgs->offsets=offsets;
2255}
2256
2257static UBool
2258hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2259    const int32_t *row=stateTable[state];
2260    int32_t b, entry;
2261    /* First test for final entries in this state for some commonly valid byte values. */
2262    entry=row[0xa1];
2263    if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2264        MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2265    ) {
2266        return TRUE;
2267    }
2268    entry=row[0x41];
2269    if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2270        MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2271    ) {
2272        return TRUE;
2273    }
2274    /* Then test for final entries in this state. */
2275    for(b=0; b<=0xff; ++b) {
2276        entry=row[b];
2277        if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2278            MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2279        ) {
2280            return TRUE;
2281        }
2282    }
2283    /* Then recurse for transition entries. */
2284    for(b=0; b<=0xff; ++b) {
2285        entry=row[b];
2286        if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2287            hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2288        ) {
2289            return TRUE;
2290        }
2291    }
2292    return FALSE;
2293}
2294
2295/*
2296 * Is byte b a single/lead byte in this state?
2297 * Recurse for transition states, because here we don't want to say that
2298 * b is a lead byte if all byte sequences that start with b are illegal.
2299 */
2300static UBool
2301isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2302    const int32_t *row=stateTable[state];
2303    int32_t entry=row[b];
2304    if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2305        return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2306    } else {
2307        uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2308        if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2309            return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2310        } else {
2311            return action!=MBCS_STATE_ILLEGAL;
2312        }
2313    }
2314}
2315
2316U_CFUNC void
2317ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2318                          UErrorCode *pErrorCode) {
2319    UConverter *cnv;
2320    const uint8_t *source, *sourceLimit;
2321    UChar *target;
2322    const UChar *targetLimit;
2323    int32_t *offsets;
2324
2325    const int32_t (*stateTable)[256];
2326    const uint16_t *unicodeCodeUnits;
2327
2328    uint32_t offset;
2329    uint8_t state;
2330    int8_t byteIndex;
2331    uint8_t *bytes;
2332
2333    int32_t sourceIndex, nextSourceIndex;
2334
2335    int32_t entry;
2336    UChar c;
2337    uint8_t action;
2338
2339    /* use optimized function if possible */
2340    cnv=pArgs->converter;
2341
2342    if(cnv->preToULength>0) {
2343        /*
2344         * pass sourceIndex=-1 because we continue from an earlier buffer
2345         * in the future, this may change with continuous offsets
2346         */
2347        ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2348
2349        if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2350            return;
2351        }
2352    }
2353
2354    if(cnv->sharedData->mbcs.countStates==1) {
2355        if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2356            ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2357        } else {
2358            ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2359        }
2360        return;
2361    }
2362
2363    /* set up the local pointers */
2364    source=(const uint8_t *)pArgs->source;
2365    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2366    target=pArgs->target;
2367    targetLimit=pArgs->targetLimit;
2368    offsets=pArgs->offsets;
2369
2370    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2371        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2372    } else {
2373        stateTable=cnv->sharedData->mbcs.stateTable;
2374    }
2375    unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2376
2377    /* get the converter state from UConverter */
2378    offset=cnv->toUnicodeStatus;
2379    byteIndex=cnv->toULength;
2380    bytes=cnv->toUBytes;
2381
2382    /*
2383     * if we are in the SBCS state for a DBCS-only converter,
2384     * then load the DBCS state from the MBCS data
2385     * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2386     */
2387    if((state=(uint8_t)(cnv->mode))==0) {
2388        state=cnv->sharedData->mbcs.dbcsOnlyState;
2389    }
2390
2391    /* sourceIndex=-1 if the current character began in the previous buffer */
2392    sourceIndex=byteIndex==0 ? 0 : -1;
2393    nextSourceIndex=0;
2394
2395    /* conversion loop */
2396    while(source<sourceLimit) {
2397        /*
2398         * This following test is to see if available input would overflow the output.
2399         * It does not catch output of more than one code unit that
2400         * overflows as a result of a surrogate pair or callback output
2401         * from the last source byte.
2402         * Therefore, those situations also test for overflows and will
2403         * then break the loop, too.
2404         */
2405        if(target>=targetLimit) {
2406            /* target is full */
2407            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2408            break;
2409        }
2410
2411        if(byteIndex==0) {
2412            /* optimized loop for 1/2-byte input and BMP output */
2413            if(offsets==NULL) {
2414                do {
2415                    entry=stateTable[state][*source];
2416                    if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2417                        state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2418                        offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2419
2420                        ++source;
2421                        if( source<sourceLimit &&
2422                            MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2423                            MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2424                            (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2425                        ) {
2426                            ++source;
2427                            *target++=c;
2428                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2429                            offset=0;
2430                        } else {
2431                            /* set the state and leave the optimized loop */
2432                            bytes[0]=*(source-1);
2433                            byteIndex=1;
2434                            break;
2435                        }
2436                    } else {
2437                        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2438                            /* output BMP code point */
2439                            ++source;
2440                            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2441                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2442                        } else {
2443                            /* leave the optimized loop */
2444                            break;
2445                        }
2446                    }
2447                } while(source<sourceLimit && target<targetLimit);
2448            } else /* offsets!=NULL */ {
2449                do {
2450                    entry=stateTable[state][*source];
2451                    if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2452                        state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2453                        offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2454
2455                        ++source;
2456                        if( source<sourceLimit &&
2457                            MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2458                            MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2459                            (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2460                        ) {
2461                            ++source;
2462                            *target++=c;
2463                            if(offsets!=NULL) {
2464                                *offsets++=sourceIndex;
2465                                sourceIndex=(nextSourceIndex+=2);
2466                            }
2467                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2468                            offset=0;
2469                        } else {
2470                            /* set the state and leave the optimized loop */
2471                            ++nextSourceIndex;
2472                            bytes[0]=*(source-1);
2473                            byteIndex=1;
2474                            break;
2475                        }
2476                    } else {
2477                        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2478                            /* output BMP code point */
2479                            ++source;
2480                            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2481                            if(offsets!=NULL) {
2482                                *offsets++=sourceIndex;
2483                                sourceIndex=++nextSourceIndex;
2484                            }
2485                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2486                        } else {
2487                            /* leave the optimized loop */
2488                            break;
2489                        }
2490                    }
2491                } while(source<sourceLimit && target<targetLimit);
2492            }
2493
2494            /*
2495             * these tests and break statements could be put inside the loop
2496             * if C had "break outerLoop" like Java
2497             */
2498            if(source>=sourceLimit) {
2499                break;
2500            }
2501            if(target>=targetLimit) {
2502                /* target is full */
2503                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2504                break;
2505            }
2506
2507            ++nextSourceIndex;
2508            bytes[byteIndex++]=*source++;
2509        } else /* byteIndex>0 */ {
2510            ++nextSourceIndex;
2511            entry=stateTable[state][bytes[byteIndex++]=*source++];
2512        }
2513
2514        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2515            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2516            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2517            continue;
2518        }
2519
2520        /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2521        cnv->mode=state;
2522
2523        /* set the next state early so that we can reuse the entry variable */
2524        state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2525
2526        /*
2527         * An if-else-if chain provides more reliable performance for
2528         * the most common cases compared to a switch.
2529         */
2530        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2531        if(action==MBCS_STATE_VALID_16) {
2532            offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2533            c=unicodeCodeUnits[offset];
2534            if(c<0xfffe) {
2535                /* output BMP code point */
2536                *target++=c;
2537                if(offsets!=NULL) {
2538                    *offsets++=sourceIndex;
2539                }
2540                byteIndex=0;
2541            } else if(c==0xfffe) {
2542                if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2543                    /* output fallback BMP code point */
2544                    *target++=(UChar)entry;
2545                    if(offsets!=NULL) {
2546                        *offsets++=sourceIndex;
2547                    }
2548                    byteIndex=0;
2549                }
2550            } else {
2551                /* callback(illegal) */
2552                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2553            }
2554        } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2555            /* output BMP code point */
2556            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2557            if(offsets!=NULL) {
2558                *offsets++=sourceIndex;
2559            }
2560            byteIndex=0;
2561        } else if(action==MBCS_STATE_VALID_16_PAIR) {
2562            offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2563            c=unicodeCodeUnits[offset++];
2564            if(c<0xd800) {
2565                /* output BMP code point below 0xd800 */
2566                *target++=c;
2567                if(offsets!=NULL) {
2568                    *offsets++=sourceIndex;
2569                }
2570                byteIndex=0;
2571            } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2572                /* output roundtrip or fallback surrogate pair */
2573                *target++=(UChar)(c&0xdbff);
2574                if(offsets!=NULL) {
2575                    *offsets++=sourceIndex;
2576                }
2577                byteIndex=0;
2578                if(target<targetLimit) {
2579                    *target++=unicodeCodeUnits[offset];
2580                    if(offsets!=NULL) {
2581                        *offsets++=sourceIndex;
2582                    }
2583                } else {
2584                    /* target overflow */
2585                    cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2586                    cnv->UCharErrorBufferLength=1;
2587                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2588
2589                    offset=0;
2590                    break;
2591                }
2592            } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2593                /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2594                *target++=unicodeCodeUnits[offset];
2595                if(offsets!=NULL) {
2596                    *offsets++=sourceIndex;
2597                }
2598                byteIndex=0;
2599            } else if(c==0xffff) {
2600                /* callback(illegal) */
2601                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2602            }
2603        } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2604                  (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2605        ) {
2606            entry=MBCS_ENTRY_FINAL_VALUE(entry);
2607            /* output surrogate pair */
2608            *target++=(UChar)(0xd800|(UChar)(entry>>10));
2609            if(offsets!=NULL) {
2610                *offsets++=sourceIndex;
2611            }
2612            byteIndex=0;
2613            c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2614            if(target<targetLimit) {
2615                *target++=c;
2616                if(offsets!=NULL) {
2617                    *offsets++=sourceIndex;
2618                }
2619            } else {
2620                /* target overflow */
2621                cnv->UCharErrorBuffer[0]=c;
2622                cnv->UCharErrorBufferLength=1;
2623                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2624
2625                offset=0;
2626                break;
2627            }
2628        } else if(action==MBCS_STATE_CHANGE_ONLY) {
2629            /*
2630             * This serves as a state change without any output.
2631             * It is useful for reading simple stateful encodings,
2632             * for example using just Shift-In/Shift-Out codes.
2633             * The 21 unused bits may later be used for more sophisticated
2634             * state transitions.
2635             */
2636            if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2637                byteIndex=0;
2638            } else {
2639                /* SI/SO are illegal for DBCS-only conversion */
2640                state=(uint8_t)(cnv->mode); /* restore the previous state */
2641
2642                /* callback(illegal) */
2643                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2644            }
2645        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2646            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2647                /* output BMP code point */
2648                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2649                if(offsets!=NULL) {
2650                    *offsets++=sourceIndex;
2651                }
2652                byteIndex=0;
2653            }
2654        } else if(action==MBCS_STATE_UNASSIGNED) {
2655            /* just fall through */
2656        } else if(action==MBCS_STATE_ILLEGAL) {
2657            /* callback(illegal) */
2658            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2659        } else {
2660            /* reserved, must never occur */
2661            byteIndex=0;
2662        }
2663
2664        /* end of action codes: prepare for a new character */
2665        offset=0;
2666
2667        if(byteIndex==0) {
2668            sourceIndex=nextSourceIndex;
2669        } else if(U_FAILURE(*pErrorCode)) {
2670            /* callback(illegal) */
2671            if(byteIndex>1) {
2672                /*
2673                 * Ticket 5691: consistent illegal sequences:
2674                 * - We include at least the first byte in the illegal sequence.
2675                 * - If any of the non-initial bytes could be the start of a character,
2676                 *   we stop the illegal sequence before the first one of those.
2677                 */
2678                UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2679                int8_t i;
2680                for(i=1;
2681                    i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2682                    ++i) {}
2683                if(i<byteIndex) {
2684                    /* Back out some bytes. */
2685                    int8_t backOutDistance=byteIndex-i;
2686                    int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2687                    byteIndex=i;  /* length of reported illegal byte sequence */
2688                    if(backOutDistance<=bytesFromThisBuffer) {
2689                        source-=backOutDistance;
2690                    } else {
2691                        /* Back out bytes from the previous buffer: Need to replay them. */
2692                        cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2693                        /* preToULength is negative! */
2694                        uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2695                        source=(const uint8_t *)pArgs->source;
2696                    }
2697                }
2698            }
2699            break;
2700        } else /* unassigned sequences indicated with byteIndex>0 */ {
2701            /* try an extension mapping */
2702            pArgs->source=(const char *)source;
2703            byteIndex=_extToU(cnv, cnv->sharedData,
2704                              byteIndex, &source, sourceLimit,
2705                              &target, targetLimit,
2706                              &offsets, sourceIndex,
2707                              pArgs->flush,
2708                              pErrorCode);
2709            sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2710
2711            if(U_FAILURE(*pErrorCode)) {
2712                /* not mappable or buffer overflow */
2713                break;
2714            }
2715        }
2716    }
2717
2718    /* set the converter state back into UConverter */
2719    cnv->toUnicodeStatus=offset;
2720    cnv->mode=state;
2721    cnv->toULength=byteIndex;
2722
2723    /* write back the updated pointers */
2724    pArgs->source=(const char *)source;
2725    pArgs->target=target;
2726    pArgs->offsets=offsets;
2727}
2728
2729/*
2730 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2731 * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2732 */
2733static UChar32
2734ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2735                        UErrorCode *pErrorCode) {
2736    UConverter *cnv;
2737    const int32_t (*stateTable)[256];
2738    const uint8_t *source, *sourceLimit;
2739
2740    int32_t entry;
2741    uint8_t action;
2742
2743    /* set up the local pointers */
2744    cnv=pArgs->converter;
2745    source=(const uint8_t *)pArgs->source;
2746    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2747    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2748        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2749    } else {
2750        stateTable=cnv->sharedData->mbcs.stateTable;
2751    }
2752
2753    /* conversion loop */
2754    while(source<sourceLimit) {
2755        entry=stateTable[0][*source++];
2756        /* MBCS_ENTRY_IS_FINAL(entry) */
2757
2758        /* write back the updated pointer early so that we can return directly */
2759        pArgs->source=(const char *)source;
2760
2761        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2762            /* output BMP code point */
2763            return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2764        }
2765
2766        /*
2767         * An if-else-if chain provides more reliable performance for
2768         * the most common cases compared to a switch.
2769         */
2770        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2771        if( action==MBCS_STATE_VALID_DIRECT_20 ||
2772            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2773        ) {
2774            /* output supplementary code point */
2775            return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2776        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2777            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2778                /* output BMP code point */
2779                return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2780            }
2781        } else if(action==MBCS_STATE_UNASSIGNED) {
2782            /* just fall through */
2783        } else if(action==MBCS_STATE_ILLEGAL) {
2784            /* callback(illegal) */
2785            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2786        } else {
2787            /* reserved, must never occur */
2788            continue;
2789        }
2790
2791        if(U_FAILURE(*pErrorCode)) {
2792            /* callback(illegal) */
2793            break;
2794        } else /* unassigned sequence */ {
2795            /* defer to the generic implementation */
2796            pArgs->source=(const char *)source-1;
2797            return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2798        }
2799    }
2800
2801    /* no output because of empty input or only state changes */
2802    *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2803    return 0xffff;
2804}
2805
2806/*
2807 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2808 * conversion without offset handling.
2809 *
2810 * When a character does not have a mapping to Unicode, then we return to the
2811 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2812 * handling.
2813 * We also defer to the generic code in other complicated cases and have them
2814 * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2815 *
2816 * All normal mappings and errors are handled here.
2817 */
2818static UChar32
2819ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2820                  UErrorCode *pErrorCode) {
2821    UConverter *cnv;
2822    const uint8_t *source, *sourceLimit, *lastSource;
2823
2824    const int32_t (*stateTable)[256];
2825    const uint16_t *unicodeCodeUnits;
2826
2827    uint32_t offset;
2828    uint8_t state;
2829
2830    int32_t entry;
2831    UChar32 c;
2832    uint8_t action;
2833
2834    /* use optimized function if possible */
2835    cnv=pArgs->converter;
2836
2837    if(cnv->preToULength>0) {
2838        /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2839        return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2840    }
2841
2842    if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2843        /*
2844         * Using the generic ucnv_getNextUChar() code lets us deal correctly
2845         * with the rare case of a codepage that maps single surrogates
2846         * without adding the complexity to this already complicated function here.
2847         */
2848        return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2849    } else if(cnv->sharedData->mbcs.countStates==1) {
2850        return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2851    }
2852
2853    /* set up the local pointers */
2854    source=lastSource=(const uint8_t *)pArgs->source;
2855    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2856
2857    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2858        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2859    } else {
2860        stateTable=cnv->sharedData->mbcs.stateTable;
2861    }
2862    unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2863
2864    /* get the converter state from UConverter */
2865    offset=cnv->toUnicodeStatus;
2866
2867    /*
2868     * if we are in the SBCS state for a DBCS-only converter,
2869     * then load the DBCS state from the MBCS data
2870     * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2871     */
2872    if((state=(uint8_t)(cnv->mode))==0) {
2873        state=cnv->sharedData->mbcs.dbcsOnlyState;
2874    }
2875
2876    /* conversion loop */
2877    c=U_SENTINEL;
2878    while(source<sourceLimit) {
2879        entry=stateTable[state][*source++];
2880        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2881            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2882            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2883
2884            /* optimization for 1/2-byte input and BMP output */
2885            if( source<sourceLimit &&
2886                MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2887                MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2888                (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2889            ) {
2890                ++source;
2891                state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2892                /* output BMP code point */
2893                break;
2894            }
2895        } else {
2896            /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2897            cnv->mode=state;
2898
2899            /* set the next state early so that we can reuse the entry variable */
2900            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2901
2902            /*
2903             * An if-else-if chain provides more reliable performance for
2904             * the most common cases compared to a switch.
2905             */
2906            action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2907            if(action==MBCS_STATE_VALID_DIRECT_16) {
2908                /* output BMP code point */
2909                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2910                break;
2911            } else if(action==MBCS_STATE_VALID_16) {
2912                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2913                c=unicodeCodeUnits[offset];
2914                if(c<0xfffe) {
2915                    /* output BMP code point */
2916                    break;
2917                } else if(c==0xfffe) {
2918                    if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2919                        break;
2920                    }
2921                } else {
2922                    /* callback(illegal) */
2923                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2924                }
2925            } else if(action==MBCS_STATE_VALID_16_PAIR) {
2926                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2927                c=unicodeCodeUnits[offset++];
2928                if(c<0xd800) {
2929                    /* output BMP code point below 0xd800 */
2930                    break;
2931                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2932                    /* output roundtrip or fallback supplementary code point */
2933                    c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
2934                    break;
2935                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2936                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2937                    c=unicodeCodeUnits[offset];
2938                    break;
2939                } else if(c==0xffff) {
2940                    /* callback(illegal) */
2941                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2942                }
2943            } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2944                      (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2945            ) {
2946                /* output supplementary code point */
2947                c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2948                break;
2949            } else if(action==MBCS_STATE_CHANGE_ONLY) {
2950                /*
2951                 * This serves as a state change without any output.
2952                 * It is useful for reading simple stateful encodings,
2953                 * for example using just Shift-In/Shift-Out codes.
2954                 * The 21 unused bits may later be used for more sophisticated
2955                 * state transitions.
2956                 */
2957                if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
2958                    /* SI/SO are illegal for DBCS-only conversion */
2959                    state=(uint8_t)(cnv->mode); /* restore the previous state */
2960
2961                    /* callback(illegal) */
2962                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2963                }
2964            } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2965                if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2966                    /* output BMP code point */
2967                    c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2968                    break;
2969                }
2970            } else if(action==MBCS_STATE_UNASSIGNED) {
2971                /* just fall through */
2972            } else if(action==MBCS_STATE_ILLEGAL) {
2973                /* callback(illegal) */
2974                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2975            } else {
2976                /* reserved (must never occur), or only state change */
2977                offset=0;
2978                lastSource=source;
2979                continue;
2980            }
2981
2982            /* end of action codes: prepare for a new character */
2983            offset=0;
2984
2985            if(U_FAILURE(*pErrorCode)) {
2986                /* callback(illegal) */
2987                break;
2988            } else /* unassigned sequence */ {
2989                /* defer to the generic implementation */
2990                cnv->toUnicodeStatus=0;
2991                cnv->mode=state;
2992                pArgs->source=(const char *)lastSource;
2993                return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2994            }
2995        }
2996    }
2997
2998    if(c<0) {
2999        if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3000            /* incomplete character byte sequence */
3001            uint8_t *bytes=cnv->toUBytes;
3002            cnv->toULength=(int8_t)(source-lastSource);
3003            do {
3004                *bytes++=*lastSource++;
3005            } while(lastSource<source);
3006            *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3007        } else if(U_FAILURE(*pErrorCode)) {
3008            /* callback(illegal) */
3009            /*
3010             * Ticket 5691: consistent illegal sequences:
3011             * - We include at least the first byte in the illegal sequence.
3012             * - If any of the non-initial bytes could be the start of a character,
3013             *   we stop the illegal sequence before the first one of those.
3014             */
3015            UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3016            uint8_t *bytes=cnv->toUBytes;
3017            *bytes++=*lastSource++;     /* first byte */
3018            if(lastSource==source) {
3019                cnv->toULength=1;
3020            } else /* lastSource<source: multi-byte character */ {
3021                int8_t i;
3022                for(i=1;
3023                    lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3024                    ++i
3025                ) {
3026                    *bytes++=*lastSource++;
3027                }
3028                cnv->toULength=i;
3029                source=lastSource;
3030            }
3031        } else {
3032            /* no output because of empty input or only state changes */
3033            *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3034        }
3035        c=0xffff;
3036    }
3037
3038    /* set the converter state back into UConverter, ready for a new character */
3039    cnv->toUnicodeStatus=0;
3040    cnv->mode=state;
3041
3042    /* write back the updated pointer */
3043    pArgs->source=(const char *)source;
3044    return c;
3045}
3046
3047#if 0
3048/*
3049 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3050 * Removal improves code coverage.
3051 */
3052/**
3053 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3054 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3055 * It does not handle conversion extensions (_extToU()).
3056 */
3057U_CFUNC UChar32
3058ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3059                              uint8_t b, UBool useFallback) {
3060    int32_t entry;
3061    uint8_t action;
3062
3063    entry=sharedData->mbcs.stateTable[0][b];
3064    /* MBCS_ENTRY_IS_FINAL(entry) */
3065
3066    if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3067        /* output BMP code point */
3068        return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3069    }
3070
3071    /*
3072     * An if-else-if chain provides more reliable performance for
3073     * the most common cases compared to a switch.
3074     */
3075    action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3076    if(action==MBCS_STATE_VALID_DIRECT_20) {
3077        /* output supplementary code point */
3078        return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3079    } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3080        if(!TO_U_USE_FALLBACK(useFallback)) {
3081            return 0xfffe;
3082        }
3083        /* output BMP code point */
3084        return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3085    } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3086        if(!TO_U_USE_FALLBACK(useFallback)) {
3087            return 0xfffe;
3088        }
3089        /* output supplementary code point */
3090        return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3091    } else if(action==MBCS_STATE_UNASSIGNED) {
3092        return 0xfffe;
3093    } else if(action==MBCS_STATE_ILLEGAL) {
3094        return 0xffff;
3095    } else {
3096        /* reserved, must never occur */
3097        return 0xffff;
3098    }
3099}
3100#endif
3101
3102/*
3103 * This is a simple version of _MBCSGetNextUChar() that is used
3104 * by other converter implementations.
3105 * It only returns an "assigned" result if it consumes the entire input.
3106 * It does not use state from the converter, nor error codes.
3107 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3108 * It handles conversion extensions but not GB 18030.
3109 *
3110 * Return value:
3111 * U+fffe   unassigned
3112 * U+ffff   illegal
3113 * otherwise the Unicode code point
3114 */
3115U_CFUNC UChar32
3116ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3117                        const char *source, int32_t length,
3118                        UBool useFallback) {
3119    const int32_t (*stateTable)[256];
3120    const uint16_t *unicodeCodeUnits;
3121
3122    uint32_t offset;
3123    uint8_t state, action;
3124
3125    UChar32 c;
3126    int32_t i, entry;
3127
3128    if(length<=0) {
3129        /* no input at all: "illegal" */
3130        return 0xffff;
3131    }
3132
3133#if 0
3134/*
3135 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3136 * TODO In future releases, verify that this function is never called for SBCS
3137 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3138 * Removal improves code coverage.
3139 */
3140    /* use optimized function if possible */
3141    if(sharedData->mbcs.countStates==1) {
3142        if(length==1) {
3143            return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3144        } else {
3145            return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3146        }
3147    }
3148#endif
3149
3150    /* set up the local pointers */
3151    stateTable=sharedData->mbcs.stateTable;
3152    unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3153
3154    /* converter state */
3155    offset=0;
3156    state=sharedData->mbcs.dbcsOnlyState;
3157
3158    /* conversion loop */
3159    for(i=0;;) {
3160        entry=stateTable[state][(uint8_t)source[i++]];
3161        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3162            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3163            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3164
3165            if(i==length) {
3166                return 0xffff; /* truncated character */
3167            }
3168        } else {
3169            /*
3170             * An if-else-if chain provides more reliable performance for
3171             * the most common cases compared to a switch.
3172             */
3173            action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3174            if(action==MBCS_STATE_VALID_16) {
3175                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3176                c=unicodeCodeUnits[offset];
3177                if(c!=0xfffe) {
3178                    /* done */
3179                } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3180                    c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3181                /* else done with 0xfffe */
3182                }
3183                break;
3184            } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3185                /* output BMP code point */
3186                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3187                break;
3188            } else if(action==MBCS_STATE_VALID_16_PAIR) {
3189                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3190                c=unicodeCodeUnits[offset++];
3191                if(c<0xd800) {
3192                    /* output BMP code point below 0xd800 */
3193                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3194                    /* output roundtrip or fallback supplementary code point */
3195                    c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3196                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3197                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3198                    c=unicodeCodeUnits[offset];
3199                } else if(c==0xffff) {
3200                    return 0xffff;
3201                } else {
3202                    c=0xfffe;
3203                }
3204                break;
3205            } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3206                /* output supplementary code point */
3207                c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3208                break;
3209            } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3210                if(!TO_U_USE_FALLBACK(useFallback)) {
3211                    c=0xfffe;
3212                    break;
3213                }
3214                /* output BMP code point */
3215                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3216                break;
3217            } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3218                if(!TO_U_USE_FALLBACK(useFallback)) {
3219                    c=0xfffe;
3220                    break;
3221                }
3222                /* output supplementary code point */
3223                c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3224                break;
3225            } else if(action==MBCS_STATE_UNASSIGNED) {
3226                c=0xfffe;
3227                break;
3228            }
3229
3230            /*
3231             * forbid MBCS_STATE_CHANGE_ONLY for this function,
3232             * and MBCS_STATE_ILLEGAL and reserved action codes
3233             */
3234            return 0xffff;
3235        }
3236    }
3237
3238    if(i!=length) {
3239        /* illegal for this function: not all input consumed */
3240        return 0xffff;
3241    }
3242
3243    if(c==0xfffe) {
3244        /* try an extension mapping */
3245        const int32_t *cx=sharedData->mbcs.extIndexes;
3246        if(cx!=NULL) {
3247            return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3248        }
3249    }
3250
3251    return c;
3252}
3253
3254/* MBCS-from-Unicode conversion functions ----------------------------------- */
3255
3256/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3257static void
3258ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3259                                  UErrorCode *pErrorCode) {
3260    UConverter *cnv;
3261    const UChar *source, *sourceLimit;
3262    uint8_t *target;
3263    int32_t targetCapacity;
3264    int32_t *offsets;
3265
3266    const uint16_t *table;
3267    const uint16_t *mbcsIndex;
3268    const uint8_t *bytes;
3269
3270    UChar32 c;
3271
3272    int32_t sourceIndex, nextSourceIndex;
3273
3274    uint32_t stage2Entry;
3275    uint32_t asciiRoundtrips;
3276    uint32_t value;
3277    uint8_t unicodeMask;
3278
3279    /* use optimized function if possible */
3280    cnv=pArgs->converter;
3281    unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3282
3283    /* set up the local pointers */
3284    source=pArgs->source;
3285    sourceLimit=pArgs->sourceLimit;
3286    target=(uint8_t *)pArgs->target;
3287    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3288    offsets=pArgs->offsets;
3289
3290    table=cnv->sharedData->mbcs.fromUnicodeTable;
3291    mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3292    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3293        bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3294    } else {
3295        bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3296    }
3297    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3298
3299    /* get the converter state from UConverter */
3300    c=cnv->fromUChar32;
3301
3302    /* sourceIndex=-1 if the current character began in the previous buffer */
3303    sourceIndex= c==0 ? 0 : -1;
3304    nextSourceIndex=0;
3305
3306    /* conversion loop */
3307    if(c!=0 && targetCapacity>0) {
3308        goto getTrail;
3309    }
3310
3311    while(source<sourceLimit) {
3312        /*
3313         * This following test is to see if available input would overflow the output.
3314         * It does not catch output of more than one byte that
3315         * overflows as a result of a multi-byte character or callback output
3316         * from the last source character.
3317         * Therefore, those situations also test for overflows and will
3318         * then break the loop, too.
3319         */
3320        if(targetCapacity>0) {
3321            /*
3322             * Get a correct Unicode code point:
3323             * a single UChar for a BMP code point or
3324             * a matched surrogate pair for a "supplementary code point".
3325             */
3326            c=*source++;
3327            ++nextSourceIndex;
3328            if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3329                *target++=(uint8_t)c;
3330                if(offsets!=NULL) {
3331                    *offsets++=sourceIndex;
3332                    sourceIndex=nextSourceIndex;
3333                }
3334                --targetCapacity;
3335                c=0;
3336                continue;
3337            }
3338            /*
3339             * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3340             * to avoid dealing with surrogates.
3341             * MBCS_FAST_MAX must be >=0xd7ff.
3342             */
3343            if(c<=0xd7ff) {
3344                value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3345                /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3346                if(value==0) {
3347                    goto unassigned;
3348                }
3349                /* output the value */
3350            } else {
3351                /*
3352                 * This also tests if the codepage maps single surrogates.
3353                 * If it does, then surrogates are not paired but mapped separately.
3354                 * Note that in this case unmatched surrogates are not detected.
3355                 */
3356                if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3357                    if(U16_IS_SURROGATE_LEAD(c)) {
3358getTrail:
3359                        if(source<sourceLimit) {
3360                            /* test the following code unit */
3361                            UChar trail=*source;
3362                            if(U16_IS_TRAIL(trail)) {
3363                                ++source;
3364                                ++nextSourceIndex;
3365                                c=U16_GET_SUPPLEMENTARY(c, trail);
3366                                if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3367                                    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3368                                    /* callback(unassigned) */
3369                                    goto unassigned;
3370                                }
3371                                /* convert this supplementary code point */
3372                                /* exit this condition tree */
3373                            } else {
3374                                /* this is an unmatched lead code unit (1st surrogate) */
3375                                /* callback(illegal) */
3376                                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3377                                break;
3378                            }
3379                        } else {
3380                            /* no more input */
3381                            break;
3382                        }
3383                    } else {
3384                        /* this is an unmatched trail code unit (2nd surrogate) */
3385                        /* callback(illegal) */
3386                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3387                        break;
3388                    }
3389                }
3390
3391                /* convert the Unicode code point in c into codepage bytes */
3392                stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3393
3394                /* get the bytes and the length for the output */
3395                /* MBCS_OUTPUT_2 */
3396                value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3397
3398                /* is this code point assigned, or do we use fallbacks? */
3399                if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3400                     (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3401                ) {
3402                    /*
3403                     * We allow a 0 byte output if the "assigned" bit is set for this entry.
3404                     * There is no way with this data structure for fallback output
3405                     * to be a zero byte.
3406                     */
3407
3408unassigned:
3409                    /* try an extension mapping */
3410                    pArgs->source=source;
3411                    c=_extFromU(cnv, cnv->sharedData,
3412                                c, &source, sourceLimit,
3413                                &target, target+targetCapacity,
3414                                &offsets, sourceIndex,
3415                                pArgs->flush,
3416                                pErrorCode);
3417                    nextSourceIndex+=(int32_t)(source-pArgs->source);
3418
3419                    if(U_FAILURE(*pErrorCode)) {
3420                        /* not mappable or buffer overflow */
3421                        break;
3422                    } else {
3423                        /* a mapping was written to the target, continue */
3424
3425                        /* recalculate the targetCapacity after an extension mapping */
3426                        targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3427
3428                        /* normal end of conversion: prepare for a new character */
3429                        sourceIndex=nextSourceIndex;
3430                        continue;
3431                    }
3432                }
3433            }
3434
3435            /* write the output character bytes from value and length */
3436            /* from the first if in the loop we know that targetCapacity>0 */
3437            if(value<=0xff) {
3438                /* this is easy because we know that there is enough space */
3439                *target++=(uint8_t)value;
3440                if(offsets!=NULL) {
3441                    *offsets++=sourceIndex;
3442                }
3443                --targetCapacity;
3444            } else /* length==2 */ {
3445                *target++=(uint8_t)(value>>8);
3446                if(2<=targetCapacity) {
3447                    *target++=(uint8_t)value;
3448                    if(offsets!=NULL) {
3449                        *offsets++=sourceIndex;
3450                        *offsets++=sourceIndex;
3451                    }
3452                    targetCapacity-=2;
3453                } else {
3454                    if(offsets!=NULL) {
3455                        *offsets++=sourceIndex;
3456                    }
3457                    cnv->charErrorBuffer[0]=(char)value;
3458                    cnv->charErrorBufferLength=1;
3459
3460                    /* target overflow */
3461                    targetCapacity=0;
3462                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3463                    c=0;
3464                    break;
3465                }
3466            }
3467
3468            /* normal end of conversion: prepare for a new character */
3469            c=0;
3470            sourceIndex=nextSourceIndex;
3471            continue;
3472        } else {
3473            /* target is full */
3474            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3475            break;
3476        }
3477    }
3478
3479    /* set the converter state back into UConverter */
3480    cnv->fromUChar32=c;
3481
3482    /* write back the updated pointers */
3483    pArgs->source=source;
3484    pArgs->target=(char *)target;
3485    pArgs->offsets=offsets;
3486}
3487
3488/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3489static void
3490ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3491                                  UErrorCode *pErrorCode) {
3492    UConverter *cnv;
3493    const UChar *source, *sourceLimit;
3494    uint8_t *target;
3495    int32_t targetCapacity;
3496    int32_t *offsets;
3497
3498    const uint16_t *table;
3499    const uint16_t *results;
3500
3501    UChar32 c;
3502
3503    int32_t sourceIndex, nextSourceIndex;
3504
3505    uint16_t value, minValue;
3506    UBool hasSupplementary;
3507
3508    /* set up the local pointers */
3509    cnv=pArgs->converter;
3510    source=pArgs->source;
3511    sourceLimit=pArgs->sourceLimit;
3512    target=(uint8_t *)pArgs->target;
3513    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3514    offsets=pArgs->offsets;
3515
3516    table=cnv->sharedData->mbcs.fromUnicodeTable;
3517    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3518        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3519    } else {
3520        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3521    }
3522
3523    if(cnv->useFallback) {
3524        /* use all roundtrip and fallback results */
3525        minValue=0x800;
3526    } else {
3527        /* use only roundtrips and fallbacks from private-use characters */
3528        minValue=0xc00;
3529    }
3530    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3531
3532    /* get the converter state from UConverter */
3533    c=cnv->fromUChar32;
3534
3535    /* sourceIndex=-1 if the current character began in the previous buffer */
3536    sourceIndex= c==0 ? 0 : -1;
3537    nextSourceIndex=0;
3538
3539    /* conversion loop */
3540    if(c!=0 && targetCapacity>0) {
3541        goto getTrail;
3542    }
3543
3544    while(source<sourceLimit) {
3545        /*
3546         * This following test is to see if available input would overflow the output.
3547         * It does not catch output of more than one byte that
3548         * overflows as a result of a multi-byte character or callback output
3549         * from the last source character.
3550         * Therefore, those situations also test for overflows and will
3551         * then break the loop, too.
3552         */
3553        if(targetCapacity>0) {
3554            /*
3555             * Get a correct Unicode code point:
3556             * a single UChar for a BMP code point or
3557             * a matched surrogate pair for a "supplementary code point".
3558             */
3559            c=*source++;
3560            ++nextSourceIndex;
3561            if(U16_IS_SURROGATE(c)) {
3562                if(U16_IS_SURROGATE_LEAD(c)) {
3563getTrail:
3564                    if(source<sourceLimit) {
3565                        /* test the following code unit */
3566                        UChar trail=*source;
3567                        if(U16_IS_TRAIL(trail)) {
3568                            ++source;
3569                            ++nextSourceIndex;
3570                            c=U16_GET_SUPPLEMENTARY(c, trail);
3571                            if(!hasSupplementary) {
3572                                /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3573                                /* callback(unassigned) */
3574                                goto unassigned;
3575                            }
3576                            /* convert this supplementary code point */
3577                            /* exit this condition tree */
3578                        } else {
3579                            /* this is an unmatched lead code unit (1st surrogate) */
3580                            /* callback(illegal) */
3581                            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3582                            break;
3583                        }
3584                    } else {
3585                        /* no more input */
3586                        break;
3587                    }
3588                } else {
3589                    /* this is an unmatched trail code unit (2nd surrogate) */
3590                    /* callback(illegal) */
3591                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3592                    break;
3593                }
3594            }
3595
3596            /* convert the Unicode code point in c into codepage bytes */
3597            value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3598
3599            /* is this code point assigned, or do we use fallbacks? */
3600            if(value>=minValue) {
3601                /* assigned, write the output character bytes from value and length */
3602                /* length==1 */
3603                /* this is easy because we know that there is enough space */
3604                *target++=(uint8_t)value;
3605                if(offsets!=NULL) {
3606                    *offsets++=sourceIndex;
3607                }
3608                --targetCapacity;
3609
3610                /* normal end of conversion: prepare for a new character */
3611                c=0;
3612                sourceIndex=nextSourceIndex;
3613            } else { /* unassigned */
3614unassigned:
3615                /* try an extension mapping */
3616                pArgs->source=source;
3617                c=_extFromU(cnv, cnv->sharedData,
3618                            c, &source, sourceLimit,
3619                            &target, target+targetCapacity,
3620                            &offsets, sourceIndex,
3621                            pArgs->flush,
3622                            pErrorCode);
3623                nextSourceIndex+=(int32_t)(source-pArgs->source);
3624
3625                if(U_FAILURE(*pErrorCode)) {
3626                    /* not mappable or buffer overflow */
3627                    break;
3628                } else {
3629                    /* a mapping was written to the target, continue */
3630
3631                    /* recalculate the targetCapacity after an extension mapping */
3632                    targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3633
3634                    /* normal end of conversion: prepare for a new character */
3635                    sourceIndex=nextSourceIndex;
3636                }
3637            }
3638        } else {
3639            /* target is full */
3640            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3641            break;
3642        }
3643    }
3644
3645    /* set the converter state back into UConverter */
3646    cnv->fromUChar32=c;
3647
3648    /* write back the updated pointers */
3649    pArgs->source=source;
3650    pArgs->target=(char *)target;
3651    pArgs->offsets=offsets;
3652}
3653
3654/*
3655 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3656 * that map only to and from the BMP.
3657 * In addition to single-byte/state optimizations, the offset calculations
3658 * become much easier.
3659 * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3660 * but measurements have shown that this diminishes performance
3661 * in more cases than it improves it.
3662 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3663 * for various MBCS and SBCS optimizations.
3664 */
3665static void
3666ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3667                              UErrorCode *pErrorCode) {
3668    UConverter *cnv;
3669    const UChar *source, *sourceLimit, *lastSource;
3670    uint8_t *target;
3671    int32_t targetCapacity, length;
3672    int32_t *offsets;
3673
3674    const uint16_t *table;
3675    const uint16_t *results;
3676
3677    UChar32 c;
3678
3679    int32_t sourceIndex;
3680
3681    uint32_t asciiRoundtrips;
3682    uint16_t value, minValue;
3683
3684    /* set up the local pointers */
3685    cnv=pArgs->converter;
3686    source=pArgs->source;
3687    sourceLimit=pArgs->sourceLimit;
3688    target=(uint8_t *)pArgs->target;
3689    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3690    offsets=pArgs->offsets;
3691
3692    table=cnv->sharedData->mbcs.fromUnicodeTable;
3693    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3694        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3695    } else {
3696        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3697    }
3698    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3699
3700    if(cnv->useFallback) {
3701        /* use all roundtrip and fallback results */
3702        minValue=0x800;
3703    } else {
3704        /* use only roundtrips and fallbacks from private-use characters */
3705        minValue=0xc00;
3706    }
3707
3708    /* get the converter state from UConverter */
3709    c=cnv->fromUChar32;
3710
3711    /* sourceIndex=-1 if the current character began in the previous buffer */
3712    sourceIndex= c==0 ? 0 : -1;
3713    lastSource=source;
3714
3715    /*
3716     * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3717     * for the minimum of the sourceLength and targetCapacity
3718     */
3719    length=(int32_t)(sourceLimit-source);
3720    if(length<targetCapacity) {
3721        targetCapacity=length;
3722    }
3723
3724    /* conversion loop */
3725    if(c!=0 && targetCapacity>0) {
3726        goto getTrail;
3727    }
3728
3729#if MBCS_UNROLL_SINGLE_FROM_BMP
3730    /* unrolling makes it slower on Pentium III/Windows 2000?! */
3731    /* unroll the loop with the most common case */
3732unrolled:
3733    if(targetCapacity>=4) {
3734        int32_t count, loops;
3735        uint16_t andedValues;
3736
3737        loops=count=targetCapacity>>2;
3738        do {
3739            c=*source++;
3740            andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3741            *target++=(uint8_t)value;
3742            c=*source++;
3743            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3744            *target++=(uint8_t)value;
3745            c=*source++;
3746            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3747            *target++=(uint8_t)value;
3748            c=*source++;
3749            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3750            *target++=(uint8_t)value;
3751
3752            /* were all 4 entries really valid? */
3753            if(andedValues<minValue) {
3754                /* no, return to the first of these 4 */
3755                source-=4;
3756                target-=4;
3757                break;
3758            }
3759        } while(--count>0);
3760        count=loops-count;
3761        targetCapacity-=4*count;
3762
3763        if(offsets!=NULL) {
3764            lastSource+=4*count;
3765            while(count>0) {
3766                *offsets++=sourceIndex++;
3767                *offsets++=sourceIndex++;
3768                *offsets++=sourceIndex++;
3769                *offsets++=sourceIndex++;
3770                --count;
3771            }
3772        }
3773
3774        c=0;
3775    }
3776#endif
3777
3778    while(targetCapacity>0) {
3779        /*
3780         * Get a correct Unicode code point:
3781         * a single UChar for a BMP code point or
3782         * a matched surrogate pair for a "supplementary code point".
3783         */
3784        c=*source++;
3785        /*
3786         * Do not immediately check for single surrogates:
3787         * Assume that they are unassigned and check for them in that case.
3788         * This speeds up the conversion of assigned characters.
3789         */
3790        /* convert the Unicode code point in c into codepage bytes */
3791        if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3792            *target++=(uint8_t)c;
3793            --targetCapacity;
3794            c=0;
3795            continue;
3796        }
3797        value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3798        /* is this code point assigned, or do we use fallbacks? */
3799        if(value>=minValue) {
3800            /* assigned, write the output character bytes from value and length */
3801            /* length==1 */
3802            /* this is easy because we know that there is enough space */
3803            *target++=(uint8_t)value;
3804            --targetCapacity;
3805
3806            /* normal end of conversion: prepare for a new character */
3807            c=0;
3808            continue;
3809        } else if(!U16_IS_SURROGATE(c)) {
3810            /* normal, unassigned BMP character */
3811        } else if(U16_IS_SURROGATE_LEAD(c)) {
3812getTrail:
3813            if(source<sourceLimit) {
3814                /* test the following code unit */
3815                UChar trail=*source;
3816                if(U16_IS_TRAIL(trail)) {
3817                    ++source;
3818                    c=U16_GET_SUPPLEMENTARY(c, trail);
3819                    /* this codepage does not map supplementary code points */
3820                    /* callback(unassigned) */
3821                } else {
3822                    /* this is an unmatched lead code unit (1st surrogate) */
3823                    /* callback(illegal) */
3824                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3825                    break;
3826                }
3827            } else {
3828                /* no more input */
3829                if (pArgs->flush) {
3830                    *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3831                }
3832                break;
3833            }
3834        } else {
3835            /* this is an unmatched trail code unit (2nd surrogate) */
3836            /* callback(illegal) */
3837            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3838            break;
3839        }
3840
3841        /* c does not have a mapping */
3842
3843        /* get the number of code units for c to correctly advance sourceIndex */
3844        length=U16_LENGTH(c);
3845
3846        /* set offsets since the start or the last extension */
3847        if(offsets!=NULL) {
3848            int32_t count=(int32_t)(source-lastSource);
3849
3850            /* do not set the offset for this character */
3851            count-=length;
3852
3853            while(count>0) {
3854                *offsets++=sourceIndex++;
3855                --count;
3856            }
3857            /* offsets and sourceIndex are now set for the current character */
3858        }
3859
3860        /* try an extension mapping */
3861        lastSource=source;
3862        c=_extFromU(cnv, cnv->sharedData,
3863                    c, &source, sourceLimit,
3864                    &target, (const uint8_t *)(pArgs->targetLimit),
3865                    &offsets, sourceIndex,
3866                    pArgs->flush,
3867                    pErrorCode);
3868        sourceIndex+=length+(int32_t)(source-lastSource);
3869        lastSource=source;
3870
3871        if(U_FAILURE(*pErrorCode)) {
3872            /* not mappable or buffer overflow */
3873            break;
3874        } else {
3875            /* a mapping was written to the target, continue */
3876
3877            /* recalculate the targetCapacity after an extension mapping */
3878            targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3879            length=(int32_t)(sourceLimit-source);
3880            if(length<targetCapacity) {
3881                targetCapacity=length;
3882            }
3883        }
3884
3885#if MBCS_UNROLL_SINGLE_FROM_BMP
3886        /* unrolling makes it slower on Pentium III/Windows 2000?! */
3887        goto unrolled;
3888#endif
3889    }
3890
3891    if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
3892        /* target is full */
3893        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3894    }
3895
3896    /* set offsets since the start or the last callback */
3897    if(offsets!=NULL) {
3898        size_t count=source-lastSource;
3899        if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
3900            /*
3901            Caller gave us a partial supplementary character,
3902            which this function couldn't convert in any case.
3903            The callback will handle the offset.
3904            */
3905            count--;
3906        }
3907        while(count>0) {
3908            *offsets++=sourceIndex++;
3909            --count;
3910        }
3911    }
3912
3913    /* set the converter state back into UConverter */
3914    cnv->fromUChar32=c;
3915
3916    /* write back the updated pointers */
3917    pArgs->source=source;
3918    pArgs->target=(char *)target;
3919    pArgs->offsets=offsets;
3920}
3921
3922U_CFUNC void
3923ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3924                            UErrorCode *pErrorCode) {
3925    UConverter *cnv;
3926    const UChar *source, *sourceLimit;
3927    uint8_t *target;
3928    int32_t targetCapacity;
3929    int32_t *offsets;
3930
3931    const uint16_t *table;
3932    const uint16_t *mbcsIndex;
3933    const uint8_t *p, *bytes;
3934    uint8_t outputType;
3935
3936    UChar32 c;
3937
3938    int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
3939
3940    uint32_t stage2Entry;
3941    uint32_t asciiRoundtrips;
3942    uint32_t value;
3943    /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
3944    uint8_t siBytes[2] = {0, 0};
3945    uint8_t soBytes[2] = {0, 0};
3946    uint8_t siLength, soLength;
3947    int32_t length = 0, prevLength;
3948    uint8_t unicodeMask;
3949
3950    cnv=pArgs->converter;
3951
3952    if(cnv->preFromUFirstCP>=0) {
3953        /*
3954         * pass sourceIndex=-1 because we continue from an earlier buffer
3955         * in the future, this may change with continuous offsets
3956         */
3957        ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
3958
3959        if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
3960            return;
3961        }
3962    }
3963
3964    /* use optimized function if possible */
3965    outputType=cnv->sharedData->mbcs.outputType;
3966    unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3967    if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3968        if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3969            ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
3970        } else {
3971            ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
3972        }
3973        return;
3974    } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
3975        ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
3976        return;
3977    }
3978
3979    /* set up the local pointers */
3980    source=pArgs->source;
3981    sourceLimit=pArgs->sourceLimit;
3982    target=(uint8_t *)pArgs->target;
3983    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3984    offsets=pArgs->offsets;
3985
3986    table=cnv->sharedData->mbcs.fromUnicodeTable;
3987    if(cnv->sharedData->mbcs.utf8Friendly) {
3988        mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3989    } else {
3990        mbcsIndex=NULL;
3991    }
3992    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3993        bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3994    } else {
3995        bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3996    }
3997    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3998
3999    /* get the converter state from UConverter */
4000    c=cnv->fromUChar32;
4001
4002    if(outputType==MBCS_OUTPUT_2_SISO) {
4003        prevLength=cnv->fromUnicodeStatus;
4004        if(prevLength==0) {
4005            /* set the real value */
4006            prevLength=1;
4007        }
4008    } else {
4009        /* prevent fromUnicodeStatus from being set to something non-0 */
4010        prevLength=0;
4011    }
4012
4013    /* sourceIndex=-1 if the current character began in the previous buffer */
4014    prevSourceIndex=-1;
4015    sourceIndex= c==0 ? 0 : -1;
4016    nextSourceIndex=0;
4017
4018    /* Get the SI/SO character for the converter */
4019    siLength = getSISOBytes(SI, cnv->options, siBytes);
4020    soLength = getSISOBytes(SO, cnv->options, soBytes);
4021
4022    /* conversion loop */
4023    /*
4024     * This is another piece of ugly code:
4025     * A goto into the loop if the converter state contains a first surrogate
4026     * from the previous function call.
4027     * It saves me to check in each loop iteration a check of if(c==0)
4028     * and duplicating the trail-surrogate-handling code in the else
4029     * branch of that check.
4030     * I could not find any other way to get around this other than
4031     * using a function call for the conversion and callback, which would
4032     * be even more inefficient.
4033     *
4034     * Markus Scherer 2000-jul-19
4035     */
4036    if(c!=0 && targetCapacity>0) {
4037        goto getTrail;
4038    }
4039
4040    while(source<sourceLimit) {
4041        /*
4042         * This following test is to see if available input would overflow the output.
4043         * It does not catch output of more than one byte that
4044         * overflows as a result of a multi-byte character or callback output
4045         * from the last source character.
4046         * Therefore, those situations also test for overflows and will
4047         * then break the loop, too.
4048         */
4049        if(targetCapacity>0) {
4050            /*
4051             * Get a correct Unicode code point:
4052             * a single UChar for a BMP code point or
4053             * a matched surrogate pair for a "supplementary code point".
4054             */
4055            c=*source++;
4056            ++nextSourceIndex;
4057            if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4058                *target++=(uint8_t)c;
4059                if(offsets!=NULL) {
4060                    *offsets++=sourceIndex;
4061                    prevSourceIndex=sourceIndex;
4062                    sourceIndex=nextSourceIndex;
4063                }
4064                --targetCapacity;
4065                c=0;
4066                continue;
4067            }
4068            /*
4069             * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4070             * to avoid dealing with surrogates.
4071             * MBCS_FAST_MAX must be >=0xd7ff.
4072             */
4073            if(c<=0xd7ff && mbcsIndex!=NULL) {
4074                value=mbcsIndex[c>>6];
4075
4076                /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4077                /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4078                switch(outputType) {
4079                case MBCS_OUTPUT_2:
4080                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4081                    if(value<=0xff) {
4082                        if(value==0) {
4083                            goto unassigned;
4084                        } else {
4085                            length=1;
4086                        }
4087                    } else {
4088                        length=2;
4089                    }
4090                    break;
4091                case MBCS_OUTPUT_2_SISO:
4092                    /* 1/2-byte stateful with Shift-In/Shift-Out */
4093                    /*
4094                     * Save the old state in the converter object
4095                     * right here, then change the local prevLength state variable if necessary.
4096                     * Then, if this character turns out to be unassigned or a fallback that
4097                     * is not taken, the callback code must not save the new state in the converter
4098                     * because the new state is for a character that is not output.
4099                     * However, the callback must still restore the state from the converter
4100                     * in case the callback function changed it for its output.
4101                     */
4102                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4103                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4104                    if(value<=0xff) {
4105                        if(value==0) {
4106                            goto unassigned;
4107                        } else if(prevLength<=1) {
4108                            length=1;
4109                        } else {
4110                            /* change from double-byte mode to single-byte */
4111                            if (siLength == 1) {
4112                                value|=(uint32_t)siBytes[0]<<8;
4113                                length = 2;
4114                            } else if (siLength == 2) {
4115                                value|=(uint32_t)siBytes[1]<<8;
4116                                value|=(uint32_t)siBytes[0]<<16;
4117                                length = 3;
4118                            }
4119                            prevLength=1;
4120                        }
4121                    } else {
4122                        if(prevLength==2) {
4123                            length=2;
4124                        } else {
4125                            /* change from single-byte mode to double-byte */
4126                            if (soLength == 1) {
4127                                value|=(uint32_t)soBytes[0]<<16;
4128                                length = 3;
4129                            } else if (soLength == 2) {
4130                                value|=(uint32_t)soBytes[1]<<16;
4131                                value|=(uint32_t)soBytes[0]<<24;
4132                                length = 4;
4133                            }
4134                            prevLength=2;
4135                        }
4136                    }
4137                    break;
4138                case MBCS_OUTPUT_DBCS_ONLY:
4139                    /* table with single-byte results, but only DBCS mappings used */
4140                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4141                    if(value<=0xff) {
4142                        /* no mapping or SBCS result, not taken for DBCS-only */
4143                        goto unassigned;
4144                    } else {
4145                        length=2;
4146                    }
4147                    break;
4148                case MBCS_OUTPUT_3:
4149                    p=bytes+(value+(c&0x3f))*3;
4150                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4151                    if(value<=0xff) {
4152                        if(value==0) {
4153                            goto unassigned;
4154                        } else {
4155                            length=1;
4156                        }
4157                    } else if(value<=0xffff) {
4158                        length=2;
4159                    } else {
4160                        length=3;
4161                    }
4162                    break;
4163                case MBCS_OUTPUT_4:
4164                    value=((const uint32_t *)bytes)[value +(c&0x3f)];
4165                    if(value<=0xff) {
4166                        if(value==0) {
4167                            goto unassigned;
4168                        } else {
4169                            length=1;
4170                        }
4171                    } else if(value<=0xffff) {
4172                        length=2;
4173                    } else if(value<=0xffffff) {
4174                        length=3;
4175                    } else {
4176                        length=4;
4177                    }
4178                    break;
4179                case MBCS_OUTPUT_3_EUC:
4180                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4181                    /* EUC 16-bit fixed-length representation */
4182                    if(value<=0xff) {
4183                        if(value==0) {
4184                            goto unassigned;
4185                        } else {
4186                            length=1;
4187                        }
4188                    } else if((value&0x8000)==0) {
4189                        value|=0x8e8000;
4190                        length=3;
4191                    } else if((value&0x80)==0) {
4192                        value|=0x8f0080;
4193                        length=3;
4194                    } else {
4195                        length=2;
4196                    }
4197                    break;
4198                case MBCS_OUTPUT_4_EUC:
4199                    p=bytes+(value+(c&0x3f))*3;
4200                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4201                    /* EUC 16-bit fixed-length representation applied to the first two bytes */
4202                    if(value<=0xff) {
4203                        if(value==0) {
4204                            goto unassigned;
4205                        } else {
4206                            length=1;
4207                        }
4208                    } else if(value<=0xffff) {
4209                        length=2;
4210                    } else if((value&0x800000)==0) {
4211                        value|=0x8e800000;
4212                        length=4;
4213                    } else if((value&0x8000)==0) {
4214                        value|=0x8f008000;
4215                        length=4;
4216                    } else {
4217                        length=3;
4218                    }
4219                    break;
4220                default:
4221                    /* must not occur */
4222                    /*
4223                     * To avoid compiler warnings that value & length may be
4224                     * used without having been initialized, we set them here.
4225                     * In reality, this is unreachable code.
4226                     * Not having a default branch also causes warnings with
4227                     * some compilers.
4228                     */
4229                    value=0;
4230                    length=0;
4231                    break;
4232                }
4233                /* output the value */
4234            } else {
4235                /*
4236                 * This also tests if the codepage maps single surrogates.
4237                 * If it does, then surrogates are not paired but mapped separately.
4238                 * Note that in this case unmatched surrogates are not detected.
4239                 */
4240                if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4241                    if(U16_IS_SURROGATE_LEAD(c)) {
4242getTrail:
4243                        if(source<sourceLimit) {
4244                            /* test the following code unit */
4245                            UChar trail=*source;
4246                            if(U16_IS_TRAIL(trail)) {
4247                                ++source;
4248                                ++nextSourceIndex;
4249                                c=U16_GET_SUPPLEMENTARY(c, trail);
4250                                if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4251                                    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4252                                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4253                                    /* callback(unassigned) */
4254                                    goto unassigned;
4255                                }
4256                                /* convert this supplementary code point */
4257                                /* exit this condition tree */
4258                            } else {
4259                                /* this is an unmatched lead code unit (1st surrogate) */
4260                                /* callback(illegal) */
4261                                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4262                                break;
4263                            }
4264                        } else {
4265                            /* no more input */
4266                            break;
4267                        }
4268                    } else {
4269                        /* this is an unmatched trail code unit (2nd surrogate) */
4270                        /* callback(illegal) */
4271                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4272                        break;
4273                    }
4274                }
4275
4276                /* convert the Unicode code point in c into codepage bytes */
4277
4278                /*
4279                 * The basic lookup is a triple-stage compact array (trie) lookup.
4280                 * For details see the beginning of this file.
4281                 *
4282                 * Single-byte codepages are handled with a different data structure
4283                 * by _MBCSSingle... functions.
4284                 *
4285                 * The result consists of a 32-bit value from stage 2 and
4286                 * a pointer to as many bytes as are stored per character.
4287                 * The pointer points to the character's bytes in stage 3.
4288                 * Bits 15..0 of the stage 2 entry contain the stage 3 index
4289                 * for that pointer, while bits 31..16 are flags for which of
4290                 * the 16 characters in the block are roundtrip-assigned.
4291                 *
4292                 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4293                 * respectively as uint32_t, in the platform encoding.
4294                 * For 3-byte codepages, the bytes are always stored in big-endian order.
4295                 *
4296                 * For EUC encodings that use only either 0x8e or 0x8f as the first
4297                 * byte of their longest byte sequences, the first two bytes in
4298                 * this third stage indicate with their 7th bits whether these bytes
4299                 * are to be written directly or actually need to be preceeded by
4300                 * one of the two Single-Shift codes. With this, the third stage
4301                 * stores one byte fewer per character than the actual maximum length of
4302                 * EUC byte sequences.
4303                 *
4304                 * Other than that, leading zero bytes are removed and the other
4305                 * bytes output. A single zero byte may be output if the "assigned"
4306                 * bit in stage 2 was on.
4307                 * The data structure does not support zero byte output as a fallback,
4308                 * and also does not allow output of leading zeros.
4309                 */
4310                stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4311
4312                /* get the bytes and the length for the output */
4313                switch(outputType) {
4314                case MBCS_OUTPUT_2:
4315                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4316                    if(value<=0xff) {
4317                        length=1;
4318                    } else {
4319                        length=2;
4320                    }
4321                    break;
4322                case MBCS_OUTPUT_2_SISO:
4323                    /* 1/2-byte stateful with Shift-In/Shift-Out */
4324                    /*
4325                     * Save the old state in the converter object
4326                     * right here, then change the local prevLength state variable if necessary.
4327                     * Then, if this character turns out to be unassigned or a fallback that
4328                     * is not taken, the callback code must not save the new state in the converter
4329                     * because the new state is for a character that is not output.
4330                     * However, the callback must still restore the state from the converter
4331                     * in case the callback function changed it for its output.
4332                     */
4333                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4334                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4335                    if(value<=0xff) {
4336                        if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4337                            /* no mapping, leave value==0 */
4338                            length=0;
4339                        } else if(prevLength<=1) {
4340                            length=1;
4341                        } else {
4342                            /* change from double-byte mode to single-byte */
4343                            if (siLength == 1) {
4344                                value|=(uint32_t)siBytes[0]<<8;
4345                                length = 2;
4346                            } else if (siLength == 2) {
4347                                value|=(uint32_t)siBytes[1]<<8;
4348                                value|=(uint32_t)siBytes[0]<<16;
4349                                length = 3;
4350                            }
4351                            prevLength=1;
4352                        }
4353                    } else {
4354                        if(prevLength==2) {
4355                            length=2;
4356                        } else {
4357                            /* change from single-byte mode to double-byte */
4358                            if (soLength == 1) {
4359                                value|=(uint32_t)soBytes[0]<<16;
4360                                length = 3;
4361                            } else if (soLength == 2) {
4362                                value|=(uint32_t)soBytes[1]<<16;
4363                                value|=(uint32_t)soBytes[0]<<24;
4364                                length = 4;
4365                            }
4366                            prevLength=2;
4367                        }
4368                    }
4369                    break;
4370                case MBCS_OUTPUT_DBCS_ONLY:
4371                    /* table with single-byte results, but only DBCS mappings used */
4372                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4373                    if(value<=0xff) {
4374                        /* no mapping or SBCS result, not taken for DBCS-only */
4375                        value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4376                        length=0;
4377                    } else {
4378                        length=2;
4379                    }
4380                    break;
4381                case MBCS_OUTPUT_3:
4382                    p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4383                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4384                    if(value<=0xff) {
4385                        length=1;
4386                    } else if(value<=0xffff) {
4387                        length=2;
4388                    } else {
4389                        length=3;
4390                    }
4391                    break;
4392                case MBCS_OUTPUT_4:
4393                    value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4394                    if(value<=0xff) {
4395                        length=1;
4396                    } else if(value<=0xffff) {
4397                        length=2;
4398                    } else if(value<=0xffffff) {
4399                        length=3;
4400                    } else {
4401                        length=4;
4402                    }
4403                    break;
4404                case MBCS_OUTPUT_3_EUC:
4405                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4406                    /* EUC 16-bit fixed-length representation */
4407                    if(value<=0xff) {
4408                        length=1;
4409                    } else if((value&0x8000)==0) {
4410                        value|=0x8e8000;
4411                        length=3;
4412                    } else if((value&0x80)==0) {
4413                        value|=0x8f0080;
4414                        length=3;
4415                    } else {
4416                        length=2;
4417                    }
4418                    break;
4419                case MBCS_OUTPUT_4_EUC:
4420                    p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4421                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4422                    /* EUC 16-bit fixed-length representation applied to the first two bytes */
4423                    if(value<=0xff) {
4424                        length=1;
4425                    } else if(value<=0xffff) {
4426                        length=2;
4427                    } else if((value&0x800000)==0) {
4428                        value|=0x8e800000;
4429                        length=4;
4430                    } else if((value&0x8000)==0) {
4431                        value|=0x8f008000;
4432                        length=4;
4433                    } else {
4434                        length=3;
4435                    }
4436                    break;
4437                default:
4438                    /* must not occur */
4439                    /*
4440                     * To avoid compiler warnings that value & length may be
4441                     * used without having been initialized, we set them here.
4442                     * In reality, this is unreachable code.
4443                     * Not having a default branch also causes warnings with
4444                     * some compilers.
4445                     */
4446                    value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4447                    length=0;
4448                    break;
4449                }
4450
4451                /* is this code point assigned, or do we use fallbacks? */
4452                if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4453                     (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4454                ) {
4455                    /*
4456                     * We allow a 0 byte output if the "assigned" bit is set for this entry.
4457                     * There is no way with this data structure for fallback output
4458                     * to be a zero byte.
4459                     */
4460
4461unassigned:
4462                    /* try an extension mapping */
4463                    pArgs->source=source;
4464                    c=_extFromU(cnv, cnv->sharedData,
4465                                c, &source, sourceLimit,
4466                                &target, target+targetCapacity,
4467                                &offsets, sourceIndex,
4468                                pArgs->flush,
4469                                pErrorCode);
4470                    nextSourceIndex+=(int32_t)(source-pArgs->source);
4471                    prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4472
4473                    if(U_FAILURE(*pErrorCode)) {
4474                        /* not mappable or buffer overflow */
4475                        break;
4476                    } else {
4477                        /* a mapping was written to the target, continue */
4478
4479                        /* recalculate the targetCapacity after an extension mapping */
4480                        targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4481
4482                        /* normal end of conversion: prepare for a new character */
4483                        if(offsets!=NULL) {
4484                            prevSourceIndex=sourceIndex;
4485                            sourceIndex=nextSourceIndex;
4486                        }
4487                        continue;
4488                    }
4489                }
4490            }
4491
4492            /* write the output character bytes from value and length */
4493            /* from the first if in the loop we know that targetCapacity>0 */
4494            if(length<=targetCapacity) {
4495                if(offsets==NULL) {
4496                    switch(length) {
4497                        /* each branch falls through to the next one */
4498                    case 4:
4499                        *target++=(uint8_t)(value>>24);
4500                    case 3: /*fall through*/
4501                        *target++=(uint8_t)(value>>16);
4502                    case 2: /*fall through*/
4503                        *target++=(uint8_t)(value>>8);
4504                    case 1: /*fall through*/
4505                        *target++=(uint8_t)value;
4506                    default:
4507                        /* will never occur */
4508                        break;
4509                    }
4510                } else {
4511                    switch(length) {
4512                        /* each branch falls through to the next one */
4513                    case 4:
4514                        *target++=(uint8_t)(value>>24);
4515                        *offsets++=sourceIndex;
4516                    case 3: /*fall through*/
4517                        *target++=(uint8_t)(value>>16);
4518                        *offsets++=sourceIndex;
4519                    case 2: /*fall through*/
4520                        *target++=(uint8_t)(value>>8);
4521                        *offsets++=sourceIndex;
4522                    case 1: /*fall through*/
4523                        *target++=(uint8_t)value;
4524                        *offsets++=sourceIndex;
4525                    default:
4526                        /* will never occur */
4527                        break;
4528                    }
4529                }
4530                targetCapacity-=length;
4531            } else {
4532                uint8_t *charErrorBuffer;
4533
4534                /*
4535                 * We actually do this backwards here:
4536                 * In order to save an intermediate variable, we output
4537                 * first to the overflow buffer what does not fit into the
4538                 * regular target.
4539                 */
4540                /* we know that 1<=targetCapacity<length<=4 */
4541                length-=targetCapacity;
4542                charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4543                switch(length) {
4544                    /* each branch falls through to the next one */
4545                case 3:
4546                    *charErrorBuffer++=(uint8_t)(value>>16);
4547                case 2: /*fall through*/
4548                    *charErrorBuffer++=(uint8_t)(value>>8);
4549                case 1: /*fall through*/
4550                    *charErrorBuffer=(uint8_t)value;
4551                default:
4552                    /* will never occur */
4553                    break;
4554                }
4555                cnv->charErrorBufferLength=(int8_t)length;
4556
4557                /* now output what fits into the regular target */
4558                value>>=8*length; /* length was reduced by targetCapacity */
4559                switch(targetCapacity) {
4560                    /* each branch falls through to the next one */
4561                case 3:
4562                    *target++=(uint8_t)(value>>16);
4563                    if(offsets!=NULL) {
4564                        *offsets++=sourceIndex;
4565                    }
4566                case 2: /*fall through*/
4567                    *target++=(uint8_t)(value>>8);
4568                    if(offsets!=NULL) {
4569                        *offsets++=sourceIndex;
4570                    }
4571                case 1: /*fall through*/
4572                    *target++=(uint8_t)value;
4573                    if(offsets!=NULL) {
4574                        *offsets++=sourceIndex;
4575                    }
4576                default:
4577                    /* will never occur */
4578                    break;
4579                }
4580
4581                /* target overflow */
4582                targetCapacity=0;
4583                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4584                c=0;
4585                break;
4586            }
4587
4588            /* normal end of conversion: prepare for a new character */
4589            c=0;
4590            if(offsets!=NULL) {
4591                prevSourceIndex=sourceIndex;
4592                sourceIndex=nextSourceIndex;
4593            }
4594            continue;
4595        } else {
4596            /* target is full */
4597            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4598            break;
4599        }
4600    }
4601
4602    /*
4603     * the end of the input stream and detection of truncated input
4604     * are handled by the framework, but for EBCDIC_STATEFUL conversion
4605     * we need to emit an SI at the very end
4606     *
4607     * conditions:
4608     *   successful
4609     *   EBCDIC_STATEFUL in DBCS mode
4610     *   end of input and no truncated input
4611     */
4612    if( U_SUCCESS(*pErrorCode) &&
4613        outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4614        pArgs->flush && source>=sourceLimit && c==0
4615    ) {
4616        /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4617        if(targetCapacity>0) {
4618            *target++=(uint8_t)siBytes[0];
4619            if (siLength == 2) {
4620                if (targetCapacity<2) {
4621                    cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4622                    cnv->charErrorBufferLength=1;
4623                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4624                } else {
4625                    *target++=(uint8_t)siBytes[1];
4626                }
4627            }
4628            if(offsets!=NULL) {
4629                /* set the last source character's index (sourceIndex points at sourceLimit now) */
4630                *offsets++=prevSourceIndex;
4631            }
4632        } else {
4633            /* target is full */
4634            cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4635            if (siLength == 2) {
4636                cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4637            }
4638            cnv->charErrorBufferLength=siLength;
4639            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4640        }
4641        prevLength=1; /* we switched into SBCS */
4642    }
4643
4644    /* set the converter state back into UConverter */
4645    cnv->fromUChar32=c;
4646    cnv->fromUnicodeStatus=prevLength;
4647
4648    /* write back the updated pointers */
4649    pArgs->source=source;
4650    pArgs->target=(char *)target;
4651    pArgs->offsets=offsets;
4652}
4653
4654/*
4655 * This is another simple conversion function for internal use by other
4656 * conversion implementations.
4657 * It does not use the converter state nor call callbacks.
4658 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4659 * It handles conversion extensions but not GB 18030.
4660 *
4661 * It converts one single Unicode code point into codepage bytes, encoded
4662 * as one 32-bit value. The function returns the number of bytes in *pValue:
4663 * 1..4 the number of bytes in *pValue
4664 * 0    unassigned (*pValue undefined)
4665 * -1   illegal (currently not used, *pValue undefined)
4666 *
4667 * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4668 * the second to last byte in bits 15..8, etc.
4669 * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4670 */
4671U_CFUNC int32_t
4672ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4673                 UChar32 c, uint32_t *pValue,
4674                 UBool useFallback) {
4675    const int32_t *cx;
4676    const uint16_t *table;
4677#if 0
4678/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4679    const uint8_t *p;
4680#endif
4681    uint32_t stage2Entry;
4682    uint32_t value;
4683    int32_t length;
4684
4685    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4686    if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4687        table=sharedData->mbcs.fromUnicodeTable;
4688
4689        /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4690        if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4691            value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4692            /* is this code point assigned, or do we use fallbacks? */
4693            if(useFallback ? value>=0x800 : value>=0xc00) {
4694                *pValue=value&0xff;
4695                return 1;
4696            }
4697        } else /* outputType!=MBCS_OUTPUT_1 */ {
4698            stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4699
4700            /* get the bytes and the length for the output */
4701            switch(sharedData->mbcs.outputType) {
4702            case MBCS_OUTPUT_2:
4703                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4704                if(value<=0xff) {
4705                    length=1;
4706                } else {
4707                    length=2;
4708                }
4709                break;
4710#if 0
4711/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4712            case MBCS_OUTPUT_DBCS_ONLY:
4713                /* table with single-byte results, but only DBCS mappings used */
4714                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4715                if(value<=0xff) {
4716                    /* no mapping or SBCS result, not taken for DBCS-only */
4717                    value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4718                    length=0;
4719                } else {
4720                    length=2;
4721                }
4722                break;
4723            case MBCS_OUTPUT_3:
4724                p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4725                value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4726                if(value<=0xff) {
4727                    length=1;
4728                } else if(value<=0xffff) {
4729                    length=2;
4730                } else {
4731                    length=3;
4732                }
4733                break;
4734            case MBCS_OUTPUT_4:
4735                value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4736                if(value<=0xff) {
4737                    length=1;
4738                } else if(value<=0xffff) {
4739                    length=2;
4740                } else if(value<=0xffffff) {
4741                    length=3;
4742                } else {
4743                    length=4;
4744                }
4745                break;
4746            case MBCS_OUTPUT_3_EUC:
4747                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4748                /* EUC 16-bit fixed-length representation */
4749                if(value<=0xff) {
4750                    length=1;
4751                } else if((value&0x8000)==0) {
4752                    value|=0x8e8000;
4753                    length=3;
4754                } else if((value&0x80)==0) {
4755                    value|=0x8f0080;
4756                    length=3;
4757                } else {
4758                    length=2;
4759                }
4760                break;
4761            case MBCS_OUTPUT_4_EUC:
4762                p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4763                value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4764                /* EUC 16-bit fixed-length representation applied to the first two bytes */
4765                if(value<=0xff) {
4766                    length=1;
4767                } else if(value<=0xffff) {
4768                    length=2;
4769                } else if((value&0x800000)==0) {
4770                    value|=0x8e800000;
4771                    length=4;
4772                } else if((value&0x8000)==0) {
4773                    value|=0x8f008000;
4774                    length=4;
4775                } else {
4776                    length=3;
4777                }
4778                break;
4779#endif
4780            default:
4781                /* must not occur */
4782                return -1;
4783            }
4784
4785            /* is this code point assigned, or do we use fallbacks? */
4786            if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4787                (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4788            ) {
4789                /*
4790                 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4791                 * There is no way with this data structure for fallback output
4792                 * to be a zero byte.
4793                 */
4794                /* assigned */
4795                *pValue=value;
4796                return length;
4797            }
4798        }
4799    }
4800
4801    cx=sharedData->mbcs.extIndexes;
4802    if(cx!=NULL) {
4803        length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4804        return length>=0 ? length : -length;  /* return abs(length); */
4805    }
4806
4807    /* unassigned */
4808    return 0;
4809}
4810
4811
4812#if 0
4813/*
4814 * This function has been moved to ucnv2022.c for inlining.
4815 * This implementation is here only for documentation purposes
4816 */
4817
4818/**
4819 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4820 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4821 * It does not handle conversion extensions (_extFromU()).
4822 *
4823 * It returns the codepage byte for the code point, or -1 if it is unassigned.
4824 */
4825U_CFUNC int32_t
4826ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4827                       UChar32 c,
4828                       UBool useFallback) {
4829    const uint16_t *table;
4830    int32_t value;
4831
4832    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4833    if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4834        return -1;
4835    }
4836
4837    /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4838    table=sharedData->mbcs.fromUnicodeTable;
4839
4840    /* get the byte for the output */
4841    value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4842    /* is this code point assigned, or do we use fallbacks? */
4843    if(useFallback ? value>=0x800 : value>=0xc00) {
4844        return value&0xff;
4845    } else {
4846        return -1;
4847    }
4848}
4849#endif
4850
4851/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
4852
4853/* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
4854static const UChar32
4855utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
4856
4857/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
4858static const UChar32
4859utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
4860
4861static void
4862ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
4863                  UConverterToUnicodeArgs *pToUArgs,
4864                  UErrorCode *pErrorCode) {
4865    UConverter *utf8, *cnv;
4866    const uint8_t *source, *sourceLimit;
4867    uint8_t *target;
4868    int32_t targetCapacity;
4869
4870    const uint16_t *table, *sbcsIndex;
4871    const uint16_t *results;
4872
4873    int8_t oldToULength, toULength, toULimit;
4874
4875    UChar32 c;
4876    uint8_t b, t1, t2;
4877
4878    uint32_t asciiRoundtrips;
4879    uint16_t value, minValue;
4880    UBool hasSupplementary;
4881
4882    /* set up the local pointers */
4883    utf8=pToUArgs->converter;
4884    cnv=pFromUArgs->converter;
4885    source=(uint8_t *)pToUArgs->source;
4886    sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
4887    target=(uint8_t *)pFromUArgs->target;
4888    targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
4889
4890    table=cnv->sharedData->mbcs.fromUnicodeTable;
4891    sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
4892    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4893        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4894    } else {
4895        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
4896    }
4897    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4898
4899    if(cnv->useFallback) {
4900        /* use all roundtrip and fallback results */
4901        minValue=0x800;
4902    } else {
4903        /* use only roundtrips and fallbacks from private-use characters */
4904        minValue=0xc00;
4905    }
4906    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
4907
4908    /* get the converter state from the UTF-8 UConverter */
4909    c=(UChar32)utf8->toUnicodeStatus;
4910    if(c!=0) {
4911        toULength=oldToULength=utf8->toULength;
4912        toULimit=(int8_t)utf8->mode;
4913    } else {
4914        toULength=oldToULength=toULimit=0;
4915    }
4916
4917    /*
4918     * Make sure that the last byte sequence before sourceLimit is complete
4919     * or runs into a lead byte.
4920     * Do not go back into the bytes that will be read for finishing a partial
4921     * sequence from the previous buffer.
4922     * In the conversion loop compare source with sourceLimit only once
4923     * per multi-byte character.
4924     */
4925    {
4926        int32_t i, length;
4927
4928        length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
4929        for(i=0; i<3 && i<length;) {
4930            b=*(sourceLimit-i-1);
4931            if(U8_IS_TRAIL(b)) {
4932                ++i;
4933            } else {
4934                if(i<U8_COUNT_TRAIL_BYTES(b)) {
4935                    /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
4936                    sourceLimit-=i+1;
4937                }
4938                break;
4939            }
4940        }
4941    }
4942
4943    if(c!=0 && targetCapacity>0) {
4944        utf8->toUnicodeStatus=0;
4945        utf8->toULength=0;
4946        goto moreBytes;
4947        /*
4948         * Note: We could avoid the goto by duplicating some of the moreBytes
4949         * code, but only up to the point of collecting a complete UTF-8
4950         * sequence; then recurse for the toUBytes[toULength]
4951         * and then continue with normal conversion.
4952         *
4953         * If so, move this code to just after initializing the minimum
4954         * set of local variables for reading the UTF-8 input
4955         * (utf8, source, target, limits but not cnv, table, minValue, etc.).
4956         *
4957         * Potential advantages:
4958         * - avoid the goto
4959         * - oldToULength could become a local variable in just those code blocks
4960         *   that deal with buffer boundaries
4961         * - possibly faster if the goto prevents some compiler optimizations
4962         *   (this would need measuring to confirm)
4963         * Disadvantage:
4964         * - code duplication
4965         */
4966    }
4967
4968    /* conversion loop */
4969    while(source<sourceLimit) {
4970        if(targetCapacity>0) {
4971            b=*source++;
4972            if((int8_t)b>=0) {
4973                /* convert ASCII */
4974                if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
4975                    *target++=(uint8_t)b;
4976                    --targetCapacity;
4977                    continue;
4978                } else {
4979                    c=b;
4980                    value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
4981                }
4982            } else {
4983                if(b<0xe0) {
4984                    if( /* handle U+0080..U+07FF inline */
4985                        b>=0xc2 &&
4986                        (t1=(uint8_t)(*source-0x80)) <= 0x3f
4987                    ) {
4988                        c=b&0x1f;
4989                        ++source;
4990                        value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
4991                        if(value>=minValue) {
4992                            *target++=(uint8_t)value;
4993                            --targetCapacity;
4994                            continue;
4995                        } else {
4996                            c=(c<<6)|t1;
4997                        }
4998                    } else {
4999                        c=-1;
5000                    }
5001                } else if(b==0xe0) {
5002                    if( /* handle U+0800..U+0FFF inline */
5003                        (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5004                        (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5005                    ) {
5006                        c=t1;
5007                        source+=2;
5008                        value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5009                        if(value>=minValue) {
5010                            *target++=(uint8_t)value;
5011                            --targetCapacity;
5012                            continue;
5013                        } else {
5014                            c=(c<<6)|t2;
5015                        }
5016                    } else {
5017                        c=-1;
5018                    }
5019                } else {
5020                    c=-1;
5021                }
5022
5023                if(c<0) {
5024                    /* handle "complicated" and error cases, and continuing partial characters */
5025                    oldToULength=0;
5026                    toULength=1;
5027                    toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5028                    c=b;
5029moreBytes:
5030                    while(toULength<toULimit) {
5031                        /*
5032                         * The sourceLimit may have been adjusted before the conversion loop
5033                         * to stop before a truncated sequence.
5034                         * Here we need to use the real limit in case we have two truncated
5035                         * sequences at the end.
5036                         * See ticket #7492.
5037                         */
5038                        if(source<(uint8_t *)pToUArgs->sourceLimit) {
5039                            b=*source;
5040                            if(U8_IS_TRAIL(b)) {
5041                                ++source;
5042                                ++toULength;
5043                                c=(c<<6)+b;
5044                            } else {
5045                                break; /* sequence too short, stop with toULength<toULimit */
5046                            }
5047                        } else {
5048                            /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5049                            source-=(toULength-oldToULength);
5050                            while(oldToULength<toULength) {
5051                                utf8->toUBytes[oldToULength++]=*source++;
5052                            }
5053                            utf8->toUnicodeStatus=c;
5054                            utf8->toULength=toULength;
5055                            utf8->mode=toULimit;
5056                            pToUArgs->source=(char *)source;
5057                            pFromUArgs->target=(char *)target;
5058                            return;
5059                        }
5060                    }
5061
5062                    if( toULength==toULimit &&      /* consumed all trail bytes */
5063                        (toULength==3 || toULength==2) &&             /* BMP */
5064                        (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5065                        (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5066                    ) {
5067                        value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5068                    } else if(
5069                        toULength==toULimit && toULength==4 &&
5070                        (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5071                    ) {
5072                        /* supplementary code point */
5073                        if(!hasSupplementary) {
5074                            /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5075                            value=0;
5076                        } else {
5077                            value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5078                        }
5079                    } else {
5080                        /* error handling: illegal UTF-8 byte sequence */
5081                        source-=(toULength-oldToULength);
5082                        while(oldToULength<toULength) {
5083                            utf8->toUBytes[oldToULength++]=*source++;
5084                        }
5085                        utf8->toULength=toULength;
5086                        pToUArgs->source=(char *)source;
5087                        pFromUArgs->target=(char *)target;
5088                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5089                        return;
5090                    }
5091                }
5092            }
5093
5094            if(value>=minValue) {
5095                /* output the mapping for c */
5096                *target++=(uint8_t)value;
5097                --targetCapacity;
5098            } else {
5099                /* value<minValue means c is unassigned (unmappable) */
5100                /*
5101                 * Try an extension mapping.
5102                 * Pass in no source because we don't have UTF-16 input.
5103                 * If we have a partial match on c, we will return and revert
5104                 * to UTF-8->UTF-16->charset conversion.
5105                 */
5106                static const UChar nul=0;
5107                const UChar *noSource=&nul;
5108                c=_extFromU(cnv, cnv->sharedData,
5109                            c, &noSource, noSource,
5110                            &target, target+targetCapacity,
5111                            NULL, -1,
5112                            pFromUArgs->flush,
5113                            pErrorCode);
5114
5115                if(U_FAILURE(*pErrorCode)) {
5116                    /* not mappable or buffer overflow */
5117                    cnv->fromUChar32=c;
5118                    break;
5119                } else if(cnv->preFromUFirstCP>=0) {
5120                    /*
5121                     * Partial match, return and revert to pivoting.
5122                     * In normal from-UTF-16 conversion, we would just continue
5123                     * but then exit the loop because the extension match would
5124                     * have consumed the source.
5125                     */
5126                    *pErrorCode=U_USING_DEFAULT_WARNING;
5127                    break;
5128                } else {
5129                    /* a mapping was written to the target, continue */
5130
5131                    /* recalculate the targetCapacity after an extension mapping */
5132                    targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5133                }
5134            }
5135        } else {
5136            /* target is full */
5137            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5138            break;
5139        }
5140    }
5141
5142    /*
5143     * The sourceLimit may have been adjusted before the conversion loop
5144     * to stop before a truncated sequence.
5145     * If so, then collect the truncated sequence now.
5146     */
5147    if(U_SUCCESS(*pErrorCode) &&
5148            cnv->preFromUFirstCP<0 &&
5149            source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5150        c=utf8->toUBytes[0]=b=*source++;
5151        toULength=1;
5152        toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5153        while(source<sourceLimit) {
5154            utf8->toUBytes[toULength++]=b=*source++;
5155            c=(c<<6)+b;
5156        }
5157        utf8->toUnicodeStatus=c;
5158        utf8->toULength=toULength;
5159        utf8->mode=toULimit;
5160    }
5161
5162    /* write back the updated pointers */
5163    pToUArgs->source=(char *)source;
5164    pFromUArgs->target=(char *)target;
5165}
5166
5167static void
5168ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5169                  UConverterToUnicodeArgs *pToUArgs,
5170                  UErrorCode *pErrorCode) {
5171    UConverter *utf8, *cnv;
5172    const uint8_t *source, *sourceLimit;
5173    uint8_t *target;
5174    int32_t targetCapacity;
5175
5176    const uint16_t *table, *mbcsIndex;
5177    const uint16_t *results;
5178
5179    int8_t oldToULength, toULength, toULimit;
5180
5181    UChar32 c;
5182    uint8_t b, t1, t2;
5183
5184    uint32_t stage2Entry;
5185    uint32_t asciiRoundtrips;
5186    uint16_t value;
5187    UBool hasSupplementary;
5188
5189    /* set up the local pointers */
5190    utf8=pToUArgs->converter;
5191    cnv=pFromUArgs->converter;
5192    source=(uint8_t *)pToUArgs->source;
5193    sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5194    target=(uint8_t *)pFromUArgs->target;
5195    targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5196
5197    table=cnv->sharedData->mbcs.fromUnicodeTable;
5198    mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5199    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5200        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5201    } else {
5202        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5203    }
5204    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5205
5206    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5207
5208    /* get the converter state from the UTF-8 UConverter */
5209    c=(UChar32)utf8->toUnicodeStatus;
5210    if(c!=0) {
5211        toULength=oldToULength=utf8->toULength;
5212        toULimit=(int8_t)utf8->mode;
5213    } else {
5214        toULength=oldToULength=toULimit=0;
5215    }
5216
5217    /*
5218     * Make sure that the last byte sequence before sourceLimit is complete
5219     * or runs into a lead byte.
5220     * Do not go back into the bytes that will be read for finishing a partial
5221     * sequence from the previous buffer.
5222     * In the conversion loop compare source with sourceLimit only once
5223     * per multi-byte character.
5224     */
5225    {
5226        int32_t i, length;
5227
5228        length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5229        for(i=0; i<3 && i<length;) {
5230            b=*(sourceLimit-i-1);
5231            if(U8_IS_TRAIL(b)) {
5232                ++i;
5233            } else {
5234                if(i<U8_COUNT_TRAIL_BYTES(b)) {
5235                    /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5236                    sourceLimit-=i+1;
5237                }
5238                break;
5239            }
5240        }
5241    }
5242
5243    if(c!=0 && targetCapacity>0) {
5244        utf8->toUnicodeStatus=0;
5245        utf8->toULength=0;
5246        goto moreBytes;
5247        /* See note in ucnv_SBCSFromUTF8() about this goto. */
5248    }
5249
5250    /* conversion loop */
5251    while(source<sourceLimit) {
5252        if(targetCapacity>0) {
5253            b=*source++;
5254            if((int8_t)b>=0) {
5255                /* convert ASCII */
5256                if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5257                    *target++=b;
5258                    --targetCapacity;
5259                    continue;
5260                } else {
5261                    value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5262                    if(value==0) {
5263                        c=b;
5264                        goto unassigned;
5265                    }
5266                }
5267            } else {
5268                if(b>0xe0) {
5269                    if( /* handle U+1000..U+D7FF inline */
5270                        (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5271                                                        (b==0xed && (t1 <= 0x1f))) &&
5272                        (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5273                    ) {
5274                        c=((b&0xf)<<6)|t1;
5275                        source+=2;
5276                        value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5277                        if(value==0) {
5278                            c=(c<<6)|t2;
5279                            goto unassigned;
5280                        }
5281                    } else {
5282                        c=-1;
5283                    }
5284                } else if(b<0xe0) {
5285                    if( /* handle U+0080..U+07FF inline */
5286                        b>=0xc2 &&
5287                        (t1=(uint8_t)(*source-0x80)) <= 0x3f
5288                    ) {
5289                        c=b&0x1f;
5290                        ++source;
5291                        value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5292                        if(value==0) {
5293                            c=(c<<6)|t1;
5294                            goto unassigned;
5295                        }
5296                    } else {
5297                        c=-1;
5298                    }
5299                } else {
5300                    c=-1;
5301                }
5302
5303                if(c<0) {
5304                    /* handle "complicated" and error cases, and continuing partial characters */
5305                    oldToULength=0;
5306                    toULength=1;
5307                    toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5308                    c=b;
5309moreBytes:
5310                    while(toULength<toULimit) {
5311                        /*
5312                         * The sourceLimit may have been adjusted before the conversion loop
5313                         * to stop before a truncated sequence.
5314                         * Here we need to use the real limit in case we have two truncated
5315                         * sequences at the end.
5316                         * See ticket #7492.
5317                         */
5318                        if(source<(uint8_t *)pToUArgs->sourceLimit) {
5319                            b=*source;
5320                            if(U8_IS_TRAIL(b)) {
5321                                ++source;
5322                                ++toULength;
5323                                c=(c<<6)+b;
5324                            } else {
5325                                break; /* sequence too short, stop with toULength<toULimit */
5326                            }
5327                        } else {
5328                            /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5329                            source-=(toULength-oldToULength);
5330                            while(oldToULength<toULength) {
5331                                utf8->toUBytes[oldToULength++]=*source++;
5332                            }
5333                            utf8->toUnicodeStatus=c;
5334                            utf8->toULength=toULength;
5335                            utf8->mode=toULimit;
5336                            pToUArgs->source=(char *)source;
5337                            pFromUArgs->target=(char *)target;
5338                            return;
5339                        }
5340                    }
5341
5342                    if( toULength==toULimit &&      /* consumed all trail bytes */
5343                        (toULength==3 || toULength==2) &&             /* BMP */
5344                        (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5345                        (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5346                    ) {
5347                        stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5348                    } else if(
5349                        toULength==toULimit && toULength==4 &&
5350                        (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5351                    ) {
5352                        /* supplementary code point */
5353                        if(!hasSupplementary) {
5354                            /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5355                            stage2Entry=0;
5356                        } else {
5357                            stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5358                        }
5359                    } else {
5360                        /* error handling: illegal UTF-8 byte sequence */
5361                        source-=(toULength-oldToULength);
5362                        while(oldToULength<toULength) {
5363                            utf8->toUBytes[oldToULength++]=*source++;
5364                        }
5365                        utf8->toULength=toULength;
5366                        pToUArgs->source=(char *)source;
5367                        pFromUArgs->target=(char *)target;
5368                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5369                        return;
5370                    }
5371
5372                    /* get the bytes and the length for the output */
5373                    /* MBCS_OUTPUT_2 */
5374                    value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5375
5376                    /* is this code point assigned, or do we use fallbacks? */
5377                    if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5378                         (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5379                    ) {
5380                        goto unassigned;
5381                    }
5382                }
5383            }
5384
5385            /* write the output character bytes from value and length */
5386            /* from the first if in the loop we know that targetCapacity>0 */
5387            if(value<=0xff) {
5388                /* this is easy because we know that there is enough space */
5389                *target++=(uint8_t)value;
5390                --targetCapacity;
5391            } else /* length==2 */ {
5392                *target++=(uint8_t)(value>>8);
5393                if(2<=targetCapacity) {
5394                    *target++=(uint8_t)value;
5395                    targetCapacity-=2;
5396                } else {
5397                    cnv->charErrorBuffer[0]=(char)value;
5398                    cnv->charErrorBufferLength=1;
5399
5400                    /* target overflow */
5401                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5402                    break;
5403                }
5404            }
5405            continue;
5406
5407unassigned:
5408            {
5409                /*
5410                 * Try an extension mapping.
5411                 * Pass in no source because we don't have UTF-16 input.
5412                 * If we have a partial match on c, we will return and revert
5413                 * to UTF-8->UTF-16->charset conversion.
5414                 */
5415                static const UChar nul=0;
5416                const UChar *noSource=&nul;
5417                c=_extFromU(cnv, cnv->sharedData,
5418                            c, &noSource, noSource,
5419                            &target, target+targetCapacity,
5420                            NULL, -1,
5421                            pFromUArgs->flush,
5422                            pErrorCode);
5423
5424                if(U_FAILURE(*pErrorCode)) {
5425                    /* not mappable or buffer overflow */
5426                    cnv->fromUChar32=c;
5427                    break;
5428                } else if(cnv->preFromUFirstCP>=0) {
5429                    /*
5430                     * Partial match, return and revert to pivoting.
5431                     * In normal from-UTF-16 conversion, we would just continue
5432                     * but then exit the loop because the extension match would
5433                     * have consumed the source.
5434                     */
5435                    *pErrorCode=U_USING_DEFAULT_WARNING;
5436                    break;
5437                } else {
5438                    /* a mapping was written to the target, continue */
5439
5440                    /* recalculate the targetCapacity after an extension mapping */
5441                    targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5442                    continue;
5443                }
5444            }
5445        } else {
5446            /* target is full */
5447            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5448            break;
5449        }
5450    }
5451
5452    /*
5453     * The sourceLimit may have been adjusted before the conversion loop
5454     * to stop before a truncated sequence.
5455     * If so, then collect the truncated sequence now.
5456     */
5457    if(U_SUCCESS(*pErrorCode) &&
5458            cnv->preFromUFirstCP<0 &&
5459            source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5460        c=utf8->toUBytes[0]=b=*source++;
5461        toULength=1;
5462        toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5463        while(source<sourceLimit) {
5464            utf8->toUBytes[toULength++]=b=*source++;
5465            c=(c<<6)+b;
5466        }
5467        utf8->toUnicodeStatus=c;
5468        utf8->toULength=toULength;
5469        utf8->mode=toULimit;
5470    }
5471
5472    /* write back the updated pointers */
5473    pToUArgs->source=(char *)source;
5474    pFromUArgs->target=(char *)target;
5475}
5476
5477/* miscellaneous ------------------------------------------------------------ */
5478
5479static void
5480ucnv_MBCSGetStarters(const UConverter* cnv,
5481                 UBool starters[256],
5482                 UErrorCode *pErrorCode) {
5483    const int32_t *state0;
5484    int i;
5485
5486    state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5487    for(i=0; i<256; ++i) {
5488        /* all bytes that cause a state transition from state 0 are lead bytes */
5489        starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5490    }
5491}
5492
5493/*
5494 * This is an internal function that allows other converter implementations
5495 * to check whether a byte is a lead byte.
5496 */
5497U_CFUNC UBool
5498ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5499    return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5500}
5501
5502static void
5503ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5504              int32_t offsetIndex,
5505              UErrorCode *pErrorCode) {
5506    UConverter *cnv=pArgs->converter;
5507    char *p, *subchar;
5508    char buffer[4];
5509    int32_t length;
5510
5511    /* first, select between subChar and subChar1 */
5512    if( cnv->subChar1!=0 &&
5513        (cnv->sharedData->mbcs.extIndexes!=NULL ?
5514            cnv->useSubChar1 :
5515            (cnv->invalidUCharBuffer[0]<=0xff))
5516    ) {
5517        /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5518        subchar=(char *)&cnv->subChar1;
5519        length=1;
5520    } else {
5521        /* select subChar in all other cases */
5522        subchar=(char *)cnv->subChars;
5523        length=cnv->subCharLen;
5524    }
5525
5526    /* reset the selector for the next code point */
5527    cnv->useSubChar1=FALSE;
5528
5529    if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5530        p=buffer;
5531
5532        /* fromUnicodeStatus contains prevLength */
5533        switch(length) {
5534        case 1:
5535            if(cnv->fromUnicodeStatus==2) {
5536                /* DBCS mode and SBCS sub char: change to SBCS */
5537                cnv->fromUnicodeStatus=1;
5538                *p++=UCNV_SI;
5539            }
5540            *p++=subchar[0];
5541            break;
5542        case 2:
5543            if(cnv->fromUnicodeStatus<=1) {
5544                /* SBCS mode and DBCS sub char: change to DBCS */
5545                cnv->fromUnicodeStatus=2;
5546                *p++=UCNV_SO;
5547            }
5548            *p++=subchar[0];
5549            *p++=subchar[1];
5550            break;
5551        default:
5552            *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5553            return;
5554        }
5555        subchar=buffer;
5556        length=(int32_t)(p-buffer);
5557    }
5558
5559    ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5560}
5561
5562U_CFUNC UConverterType
5563ucnv_MBCSGetType(const UConverter* converter) {
5564    /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5565    if(converter->sharedData->mbcs.countStates==1) {
5566        return (UConverterType)UCNV_SBCS;
5567    } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5568        return (UConverterType)UCNV_EBCDIC_STATEFUL;
5569    } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5570        return (UConverterType)UCNV_DBCS;
5571    }
5572    return (UConverterType)UCNV_MBCS;
5573}
5574
5575static const UConverterImpl _SBCSUTF8Impl={
5576    UCNV_MBCS,
5577
5578    ucnv_MBCSLoad,
5579    ucnv_MBCSUnload,
5580
5581    ucnv_MBCSOpen,
5582    NULL,
5583    NULL,
5584
5585    ucnv_MBCSToUnicodeWithOffsets,
5586    ucnv_MBCSToUnicodeWithOffsets,
5587    ucnv_MBCSFromUnicodeWithOffsets,
5588    ucnv_MBCSFromUnicodeWithOffsets,
5589    ucnv_MBCSGetNextUChar,
5590
5591    ucnv_MBCSGetStarters,
5592    ucnv_MBCSGetName,
5593    ucnv_MBCSWriteSub,
5594    NULL,
5595    ucnv_MBCSGetUnicodeSet,
5596
5597    NULL,
5598    ucnv_SBCSFromUTF8
5599};
5600
5601static const UConverterImpl _DBCSUTF8Impl={
5602    UCNV_MBCS,
5603
5604    ucnv_MBCSLoad,
5605    ucnv_MBCSUnload,
5606
5607    ucnv_MBCSOpen,
5608    NULL,
5609    NULL,
5610
5611    ucnv_MBCSToUnicodeWithOffsets,
5612    ucnv_MBCSToUnicodeWithOffsets,
5613    ucnv_MBCSFromUnicodeWithOffsets,
5614    ucnv_MBCSFromUnicodeWithOffsets,
5615    ucnv_MBCSGetNextUChar,
5616
5617    ucnv_MBCSGetStarters,
5618    ucnv_MBCSGetName,
5619    ucnv_MBCSWriteSub,
5620    NULL,
5621    ucnv_MBCSGetUnicodeSet,
5622
5623    NULL,
5624    ucnv_DBCSFromUTF8
5625};
5626
5627static const UConverterImpl _MBCSImpl={
5628    UCNV_MBCS,
5629
5630    ucnv_MBCSLoad,
5631    ucnv_MBCSUnload,
5632
5633    ucnv_MBCSOpen,
5634    NULL,
5635    NULL,
5636
5637    ucnv_MBCSToUnicodeWithOffsets,
5638    ucnv_MBCSToUnicodeWithOffsets,
5639    ucnv_MBCSFromUnicodeWithOffsets,
5640    ucnv_MBCSFromUnicodeWithOffsets,
5641    ucnv_MBCSGetNextUChar,
5642
5643    ucnv_MBCSGetStarters,
5644    ucnv_MBCSGetName,
5645    ucnv_MBCSWriteSub,
5646    NULL,
5647    ucnv_MBCSGetUnicodeSet
5648};
5649
5650
5651/* Static data is in tools/makeconv/ucnvstat.c for data-based
5652 * converters. Be sure to update it as well.
5653 */
5654
5655const UConverterSharedData _MBCSData={
5656    sizeof(UConverterSharedData), 1,
5657    NULL, NULL, NULL, FALSE, &_MBCSImpl,
5658    0
5659};
5660
5661#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5662