1/*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2009 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains Huffman entropy decoding routines.
10 * Both sequential and progressive modes are supported in this single module.
11 *
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU.  To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22
23
24/* Derived data constructed for each Huffman table */
25
26#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
27
28typedef struct {
29  /* Basic tables: (element [0] of each array is unused) */
30  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
31  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
32  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
33  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
34   * the smallest code of length k; so given a code of length k, the
35   * corresponding symbol is huffval[code + valoffset[k]]
36   */
37
38  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
39  JHUFF_TBL *pub;
40
41  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
42   * the input data stream.  If the next Huffman code is no more
43   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
44   * the corresponding symbol directly from these tables.
45   */
46  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
47  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
48} d_derived_tbl;
49
50
51/*
52 * Fetching the next N bits from the input stream is a time-critical operation
53 * for the Huffman decoders.  We implement it with a combination of inline
54 * macros and out-of-line subroutines.  Note that N (the number of bits
55 * demanded at one time) never exceeds 15 for JPEG use.
56 *
57 * We read source bytes into get_buffer and dole out bits as needed.
58 * If get_buffer already contains enough bits, they are fetched in-line
59 * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
60 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
61 * as full as possible (not just to the number of bits needed; this
62 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
63 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
64 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
65 * at least the requested number of bits --- dummy zeroes are inserted if
66 * necessary.
67 */
68
69typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
70#define BIT_BUF_SIZE  32	/* size of buffer in bits */
71
72/* If long is > 32 bits on your machine, and shifting/masking longs is
73 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
74 * appropriately should be a win.  Unfortunately we can't define the size
75 * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
76 * because not all machines measure sizeof in 8-bit bytes.
77 */
78
79typedef struct {		/* Bitreading state saved across MCUs */
80  bit_buf_type get_buffer;	/* current bit-extraction buffer */
81  int bits_left;		/* # of unused bits in it */
82} bitread_perm_state;
83
84typedef struct {		/* Bitreading working state within an MCU */
85  /* Current data source location */
86  /* We need a copy, rather than munging the original, in case of suspension */
87  const JOCTET * next_input_byte; /* => next byte to read from source */
88  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
89  /* Bit input buffer --- note these values are kept in register variables,
90   * not in this struct, inside the inner loops.
91   */
92  bit_buf_type get_buffer;	/* current bit-extraction buffer */
93  int bits_left;		/* # of unused bits in it */
94  /* Pointer needed by jpeg_fill_bit_buffer. */
95  j_decompress_ptr cinfo;	/* back link to decompress master record */
96} bitread_working_state;
97
98/* Macros to declare and load/save bitread local variables. */
99#define BITREAD_STATE_VARS  \
100	register bit_buf_type get_buffer;  \
101	register int bits_left;  \
102	bitread_working_state br_state
103
104#define BITREAD_LOAD_STATE(cinfop,permstate)  \
105	br_state.cinfo = cinfop; \
106	br_state.next_input_byte = cinfop->src->next_input_byte; \
107	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
108	get_buffer = permstate.get_buffer; \
109	bits_left = permstate.bits_left;
110
111#define BITREAD_SAVE_STATE(cinfop,permstate)  \
112	cinfop->src->next_input_byte = br_state.next_input_byte; \
113	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
114	permstate.get_buffer = get_buffer; \
115	permstate.bits_left = bits_left
116
117/*
118 * These macros provide the in-line portion of bit fetching.
119 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
120 * before using GET_BITS, PEEK_BITS, or DROP_BITS.
121 * The variables get_buffer and bits_left are assumed to be locals,
122 * but the state struct might not be (jpeg_huff_decode needs this).
123 *	CHECK_BIT_BUFFER(state,n,action);
124 *		Ensure there are N bits in get_buffer; if suspend, take action.
125 *      val = GET_BITS(n);
126 *		Fetch next N bits.
127 *      val = PEEK_BITS(n);
128 *		Fetch next N bits without removing them from the buffer.
129 *	DROP_BITS(n);
130 *		Discard next N bits.
131 * The value N should be a simple variable, not an expression, because it
132 * is evaluated multiple times.
133 */
134
135#define CHECK_BIT_BUFFER(state,nbits,action) \
136	{ if (bits_left < (nbits)) {  \
137	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
138	      { action; }  \
139	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
140
141#define GET_BITS(nbits) \
142	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
143
144#define PEEK_BITS(nbits) \
145	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))
146
147#define DROP_BITS(nbits) \
148	(bits_left -= (nbits))
149
150
151/*
152 * Code for extracting next Huffman-coded symbol from input bit stream.
153 * Again, this is time-critical and we make the main paths be macros.
154 *
155 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
156 * without looping.  Usually, more than 95% of the Huffman codes will be 8
157 * or fewer bits long.  The few overlength codes are handled with a loop,
158 * which need not be inline code.
159 *
160 * Notes about the HUFF_DECODE macro:
161 * 1. Near the end of the data segment, we may fail to get enough bits
162 *    for a lookahead.  In that case, we do it the hard way.
163 * 2. If the lookahead table contains no entry, the next code must be
164 *    more than HUFF_LOOKAHEAD bits long.
165 * 3. jpeg_huff_decode returns -1 if forced to suspend.
166 */
167
168#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
169{ register int nb, look; \
170  if (bits_left < HUFF_LOOKAHEAD) { \
171    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
172    get_buffer = state.get_buffer; bits_left = state.bits_left; \
173    if (bits_left < HUFF_LOOKAHEAD) { \
174      nb = 1; goto slowlabel; \
175    } \
176  } \
177  look = PEEK_BITS(HUFF_LOOKAHEAD); \
178  if ((nb = htbl->look_nbits[look]) != 0) { \
179    DROP_BITS(nb); \
180    result = htbl->look_sym[look]; \
181  } else { \
182    nb = HUFF_LOOKAHEAD+1; \
183slowlabel: \
184    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
185	{ failaction; } \
186    get_buffer = state.get_buffer; bits_left = state.bits_left; \
187  } \
188}
189
190
191/*
192 * Expanded entropy decoder object for Huffman decoding.
193 *
194 * The savable_state subrecord contains fields that change within an MCU,
195 * but must not be updated permanently until we complete the MCU.
196 */
197
198typedef struct {
199  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
200  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
201} savable_state;
202
203/* This macro is to work around compilers with missing or broken
204 * structure assignment.  You'll need to fix this code if you have
205 * such a compiler and you change MAX_COMPS_IN_SCAN.
206 */
207
208#ifndef NO_STRUCT_ASSIGN
209#define ASSIGN_STATE(dest,src)  ((dest) = (src))
210#else
211#if MAX_COMPS_IN_SCAN == 4
212#define ASSIGN_STATE(dest,src)  \
213	((dest).EOBRUN = (src).EOBRUN, \
214	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
215	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
216	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
217	 (dest).last_dc_val[3] = (src).last_dc_val[3])
218#endif
219#endif
220
221
222typedef struct {
223  struct jpeg_entropy_decoder pub; /* public fields */
224
225  /* These fields are loaded into local variables at start of each MCU.
226   * In case of suspension, we exit WITHOUT updating them.
227   */
228  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
229  savable_state saved;		/* Other state at start of MCU */
230
231  /* These fields are NOT loaded into local working state. */
232  boolean insufficient_data;	/* set TRUE after emitting warning */
233  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
234
235  /* Following two fields used only in progressive mode */
236
237  /* Pointers to derived tables (these workspaces have image lifespan) */
238  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
239
240  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
241
242  /* Following fields used only in sequential mode */
243
244  /* Pointers to derived tables (these workspaces have image lifespan) */
245  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
246  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
247
248  /* Precalculated info set up by start_pass for use in decode_mcu: */
249
250  /* Pointers to derived tables to be used for each block within an MCU */
251  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
252  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
253  /* Whether we care about the DC and AC coefficient values for each block */
254  int coef_limit[D_MAX_BLOCKS_IN_MCU];
255} huff_entropy_decoder;
256
257typedef huff_entropy_decoder * huff_entropy_ptr;
258
259
260static const int jpeg_zigzag_order[8][8] = {
261  {  0,  1,  5,  6, 14, 15, 27, 28 },
262  {  2,  4,  7, 13, 16, 26, 29, 42 },
263  {  3,  8, 12, 17, 25, 30, 41, 43 },
264  {  9, 11, 18, 24, 31, 40, 44, 53 },
265  { 10, 19, 23, 32, 39, 45, 52, 54 },
266  { 20, 22, 33, 38, 46, 51, 55, 60 },
267  { 21, 34, 37, 47, 50, 56, 59, 61 },
268  { 35, 36, 48, 49, 57, 58, 62, 63 }
269};
270
271static const int jpeg_zigzag_order7[7][7] = {
272  {  0,  1,  5,  6, 14, 15, 27 },
273  {  2,  4,  7, 13, 16, 26, 28 },
274  {  3,  8, 12, 17, 25, 29, 38 },
275  {  9, 11, 18, 24, 30, 37, 39 },
276  { 10, 19, 23, 31, 36, 40, 45 },
277  { 20, 22, 32, 35, 41, 44, 46 },
278  { 21, 33, 34, 42, 43, 47, 48 }
279};
280
281static const int jpeg_zigzag_order6[6][6] = {
282  {  0,  1,  5,  6, 14, 15 },
283  {  2,  4,  7, 13, 16, 25 },
284  {  3,  8, 12, 17, 24, 26 },
285  {  9, 11, 18, 23, 27, 32 },
286  { 10, 19, 22, 28, 31, 33 },
287  { 20, 21, 29, 30, 34, 35 }
288};
289
290static const int jpeg_zigzag_order5[5][5] = {
291  {  0,  1,  5,  6, 14 },
292  {  2,  4,  7, 13, 15 },
293  {  3,  8, 12, 16, 21 },
294  {  9, 11, 17, 20, 22 },
295  { 10, 18, 19, 23, 24 }
296};
297
298static const int jpeg_zigzag_order4[4][4] = {
299  { 0,  1,  5,  6 },
300  { 2,  4,  7, 12 },
301  { 3,  8, 11, 13 },
302  { 9, 10, 14, 15 }
303};
304
305static const int jpeg_zigzag_order3[3][3] = {
306  { 0, 1, 5 },
307  { 2, 4, 6 },
308  { 3, 7, 8 }
309};
310
311static const int jpeg_zigzag_order2[2][2] = {
312  { 0, 1 },
313  { 2, 3 }
314};
315
316
317/*
318 * Compute the derived values for a Huffman table.
319 * This routine also performs some validation checks on the table.
320 */
321
322LOCAL(void)
323jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
324			 d_derived_tbl ** pdtbl)
325{
326  JHUFF_TBL *htbl;
327  d_derived_tbl *dtbl;
328  int p, i, l, si, numsymbols;
329  int lookbits, ctr;
330  char huffsize[257];
331  unsigned int huffcode[257];
332  unsigned int code;
333
334  /* Note that huffsize[] and huffcode[] are filled in code-length order,
335   * paralleling the order of the symbols themselves in htbl->huffval[].
336   */
337
338  /* Find the input Huffman table */
339  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
340    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
341  htbl =
342    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
343  if (htbl == NULL)
344    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
345
346  /* Allocate a workspace if we haven't already done so. */
347  if (*pdtbl == NULL)
348    *pdtbl = (d_derived_tbl *)
349      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
350				  SIZEOF(d_derived_tbl));
351  dtbl = *pdtbl;
352  dtbl->pub = htbl;		/* fill in back link */
353
354  /* Figure C.1: make table of Huffman code length for each symbol */
355
356  p = 0;
357  for (l = 1; l <= 16; l++) {
358    i = (int) htbl->bits[l];
359    if (i < 0 || p + i > 256)	/* protect against table overrun */
360      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
361    while (i--)
362      huffsize[p++] = (char) l;
363  }
364  huffsize[p] = 0;
365  numsymbols = p;
366
367  /* Figure C.2: generate the codes themselves */
368  /* We also validate that the counts represent a legal Huffman code tree. */
369
370  code = 0;
371  si = huffsize[0];
372  p = 0;
373  while (huffsize[p]) {
374    while (((int) huffsize[p]) == si) {
375      huffcode[p++] = code;
376      code++;
377    }
378    /* code is now 1 more than the last code used for codelength si; but
379     * it must still fit in si bits, since no code is allowed to be all ones.
380     */
381    if (((INT32) code) >= (((INT32) 1) << si))
382      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
383    code <<= 1;
384    si++;
385  }
386
387  /* Figure F.15: generate decoding tables for bit-sequential decoding */
388
389  p = 0;
390  for (l = 1; l <= 16; l++) {
391    if (htbl->bits[l]) {
392      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
393       * minus the minimum code of length l
394       */
395      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
396      p += htbl->bits[l];
397      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
398    } else {
399      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
400    }
401  }
402  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
403
404  /* Compute lookahead tables to speed up decoding.
405   * First we set all the table entries to 0, indicating "too long";
406   * then we iterate through the Huffman codes that are short enough and
407   * fill in all the entries that correspond to bit sequences starting
408   * with that code.
409   */
410
411  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
412
413  p = 0;
414  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
415    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
416      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
417      /* Generate left-justified code followed by all possible bit sequences */
418      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
419      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
420	dtbl->look_nbits[lookbits] = l;
421	dtbl->look_sym[lookbits] = htbl->huffval[p];
422	lookbits++;
423      }
424    }
425  }
426
427  /* Validate symbols as being reasonable.
428   * For AC tables, we make no check, but accept all byte values 0..255.
429   * For DC tables, we require the symbols to be in range 0..15.
430   * (Tighter bounds could be applied depending on the data depth and mode,
431   * but this is sufficient to ensure safe decoding.)
432   */
433  if (isDC) {
434    for (i = 0; i < numsymbols; i++) {
435      int sym = htbl->huffval[i];
436      if (sym < 0 || sym > 15)
437	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
438    }
439  }
440}
441
442
443/*
444 * Out-of-line code for bit fetching.
445 * Note: current values of get_buffer and bits_left are passed as parameters,
446 * but are returned in the corresponding fields of the state struct.
447 *
448 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
449 * of get_buffer to be used.  (On machines with wider words, an even larger
450 * buffer could be used.)  However, on some machines 32-bit shifts are
451 * quite slow and take time proportional to the number of places shifted.
452 * (This is true with most PC compilers, for instance.)  In this case it may
453 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
454 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
455 */
456
457#ifdef SLOW_SHIFT_32
458#define MIN_GET_BITS  15	/* minimum allowable value */
459#else
460#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
461#endif
462
463
464LOCAL(boolean)
465jpeg_fill_bit_buffer (bitread_working_state * state,
466		      register bit_buf_type get_buffer, register int bits_left,
467		      int nbits)
468/* Load up the bit buffer to a depth of at least nbits */
469{
470  /* Copy heavily used state fields into locals (hopefully registers) */
471  register const JOCTET * next_input_byte = state->next_input_byte;
472  register size_t bytes_in_buffer = state->bytes_in_buffer;
473  j_decompress_ptr cinfo = state->cinfo;
474
475  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
476  /* (It is assumed that no request will be for more than that many bits.) */
477  /* We fail to do so only if we hit a marker or are forced to suspend. */
478
479  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
480    while (bits_left < MIN_GET_BITS) {
481      register int c;
482
483      /* Attempt to read a byte */
484      if (bytes_in_buffer == 0) {
485	if (! (*cinfo->src->fill_input_buffer) (cinfo))
486	  return FALSE;
487	next_input_byte = cinfo->src->next_input_byte;
488	bytes_in_buffer = cinfo->src->bytes_in_buffer;
489      }
490      bytes_in_buffer--;
491      c = GETJOCTET(*next_input_byte++);
492
493      /* If it's 0xFF, check and discard stuffed zero byte */
494      if (c == 0xFF) {
495	/* Loop here to discard any padding FF's on terminating marker,
496	 * so that we can save a valid unread_marker value.  NOTE: we will
497	 * accept multiple FF's followed by a 0 as meaning a single FF data
498	 * byte.  This data pattern is not valid according to the standard.
499	 */
500	do {
501	  if (bytes_in_buffer == 0) {
502	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
503	      return FALSE;
504	    next_input_byte = cinfo->src->next_input_byte;
505	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
506	  }
507	  bytes_in_buffer--;
508	  c = GETJOCTET(*next_input_byte++);
509	} while (c == 0xFF);
510
511	if (c == 0) {
512	  /* Found FF/00, which represents an FF data byte */
513	  c = 0xFF;
514	} else {
515	  /* Oops, it's actually a marker indicating end of compressed data.
516	   * Save the marker code for later use.
517	   * Fine point: it might appear that we should save the marker into
518	   * bitread working state, not straight into permanent state.  But
519	   * once we have hit a marker, we cannot need to suspend within the
520	   * current MCU, because we will read no more bytes from the data
521	   * source.  So it is OK to update permanent state right away.
522	   */
523	  cinfo->unread_marker = c;
524	  /* See if we need to insert some fake zero bits. */
525	  goto no_more_bytes;
526	}
527      }
528
529      /* OK, load c into get_buffer */
530      get_buffer = (get_buffer << 8) | c;
531      bits_left += 8;
532    } /* end while */
533  } else {
534  no_more_bytes:
535    /* We get here if we've read the marker that terminates the compressed
536     * data segment.  There should be enough bits in the buffer register
537     * to satisfy the request; if so, no problem.
538     */
539    if (nbits > bits_left) {
540      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
541       * the data stream, so that we can produce some kind of image.
542       * We use a nonvolatile flag to ensure that only one warning message
543       * appears per data segment.
544       */
545      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
546	WARNMS(cinfo, JWRN_HIT_MARKER);
547	((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
548      }
549      /* Fill the buffer with zero bits */
550      get_buffer <<= MIN_GET_BITS - bits_left;
551      bits_left = MIN_GET_BITS;
552    }
553  }
554
555  /* Unload the local registers */
556  state->next_input_byte = next_input_byte;
557  state->bytes_in_buffer = bytes_in_buffer;
558  state->get_buffer = get_buffer;
559  state->bits_left = bits_left;
560
561  return TRUE;
562}
563
564
565/*
566 * Figure F.12: extend sign bit.
567 * On some machines, a shift and sub will be faster than a table lookup.
568 */
569
570#ifdef AVOID_TABLES
571
572#define BIT_MASK(nbits)   ((1<<(nbits))-1)
573#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
574
575#else
576
577#define BIT_MASK(nbits)   bmask[nbits]
578#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
579
580static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */
581  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
582    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
583
584#endif /* AVOID_TABLES */
585
586
587/*
588 * Out-of-line code for Huffman code decoding.
589 */
590
591LOCAL(int)
592jpeg_huff_decode (bitread_working_state * state,
593		  register bit_buf_type get_buffer, register int bits_left,
594		  d_derived_tbl * htbl, int min_bits)
595{
596  register int l = min_bits;
597  register INT32 code;
598
599  /* HUFF_DECODE has determined that the code is at least min_bits */
600  /* bits long, so fetch that many bits in one swoop. */
601
602  CHECK_BIT_BUFFER(*state, l, return -1);
603  code = GET_BITS(l);
604
605  /* Collect the rest of the Huffman code one bit at a time. */
606  /* This is per Figure F.16 in the JPEG spec. */
607
608  while (code > htbl->maxcode[l]) {
609    code <<= 1;
610    CHECK_BIT_BUFFER(*state, 1, return -1);
611    code |= GET_BITS(1);
612    l++;
613  }
614
615  /* Unload the local registers */
616  state->get_buffer = get_buffer;
617  state->bits_left = bits_left;
618
619  /* With garbage input we may reach the sentinel value l = 17. */
620
621  if (l > 16) {
622    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
623    return 0;			/* fake a zero as the safest result */
624  }
625
626  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
627}
628
629
630/*
631 * Check for a restart marker & resynchronize decoder.
632 * Returns FALSE if must suspend.
633 */
634
635LOCAL(boolean)
636process_restart (j_decompress_ptr cinfo)
637{
638  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
639  int ci;
640
641  /* Throw away any unused bits remaining in bit buffer; */
642  /* include any full bytes in next_marker's count of discarded bytes */
643  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
644  entropy->bitstate.bits_left = 0;
645
646  /* Advance past the RSTn marker */
647  if (! (*cinfo->marker->read_restart_marker) (cinfo))
648    return FALSE;
649
650  /* Re-initialize DC predictions to 0 */
651  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
652    entropy->saved.last_dc_val[ci] = 0;
653  /* Re-init EOB run count, too */
654  entropy->saved.EOBRUN = 0;
655
656  /* Reset restart counter */
657  entropy->restarts_to_go = cinfo->restart_interval;
658
659  /* Reset out-of-data flag, unless read_restart_marker left us smack up
660   * against a marker.  In that case we will end up treating the next data
661   * segment as empty, and we can avoid producing bogus output pixels by
662   * leaving the flag set.
663   */
664  if (cinfo->unread_marker == 0)
665    entropy->insufficient_data = FALSE;
666
667  return TRUE;
668}
669
670
671/*
672 * Huffman MCU decoding.
673 * Each of these routines decodes and returns one MCU's worth of
674 * Huffman-compressed coefficients.
675 * The coefficients are reordered from zigzag order into natural array order,
676 * but are not dequantized.
677 *
678 * The i'th block of the MCU is stored into the block pointed to by
679 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
680 * (Wholesale zeroing is usually a little faster than retail...)
681 *
682 * We return FALSE if data source requested suspension.  In that case no
683 * changes have been made to permanent state.  (Exception: some output
684 * coefficients may already have been assigned.  This is harmless for
685 * spectral selection, since we'll just re-assign them on the next call.
686 * Successive approximation AC refinement has to be more careful, however.)
687 */
688
689/*
690 * MCU decoding for DC initial scan (either spectral selection,
691 * or first pass of successive approximation).
692 */
693
694METHODDEF(boolean)
695decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
696{
697  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
698  int Al = cinfo->Al;
699  register int s, r;
700  int blkn, ci;
701  JBLOCKROW block;
702  BITREAD_STATE_VARS;
703  savable_state state;
704  d_derived_tbl * tbl;
705  jpeg_component_info * compptr;
706
707  /* Process restart marker if needed; may have to suspend */
708  if (cinfo->restart_interval) {
709    if (entropy->restarts_to_go == 0)
710      if (! process_restart(cinfo))
711	return FALSE;
712  }
713
714  /* If we've run out of data, just leave the MCU set to zeroes.
715   * This way, we return uniform gray for the remainder of the segment.
716   */
717  if (! entropy->insufficient_data) {
718
719    /* Load up working state */
720    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
721    ASSIGN_STATE(state, entropy->saved);
722
723    /* Outer loop handles each block in the MCU */
724
725    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
726      block = MCU_data[blkn];
727      ci = cinfo->MCU_membership[blkn];
728      compptr = cinfo->cur_comp_info[ci];
729      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
730
731      /* Decode a single block's worth of coefficients */
732
733      /* Section F.2.2.1: decode the DC coefficient difference */
734      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
735      if (s) {
736	CHECK_BIT_BUFFER(br_state, s, return FALSE);
737	r = GET_BITS(s);
738	s = HUFF_EXTEND(r, s);
739      }
740
741      /* Convert DC difference to actual value, update last_dc_val */
742      s += state.last_dc_val[ci];
743      state.last_dc_val[ci] = s;
744      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
745      (*block)[0] = (JCOEF) (s << Al);
746    }
747
748    /* Completed MCU, so update state */
749    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
750    ASSIGN_STATE(entropy->saved, state);
751  }
752
753  /* Account for restart interval (no-op if not using restarts) */
754  entropy->restarts_to_go--;
755
756  return TRUE;
757}
758
759
760/*
761 * MCU decoding for AC initial scan (either spectral selection,
762 * or first pass of successive approximation).
763 */
764
765METHODDEF(boolean)
766decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
767{
768  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
769  register int s, k, r;
770  unsigned int EOBRUN;
771  int Se, Al;
772  const int * natural_order;
773  JBLOCKROW block;
774  BITREAD_STATE_VARS;
775  d_derived_tbl * tbl;
776
777  /* Process restart marker if needed; may have to suspend */
778  if (cinfo->restart_interval) {
779    if (entropy->restarts_to_go == 0)
780      if (! process_restart(cinfo))
781	return FALSE;
782  }
783
784  /* If we've run out of data, just leave the MCU set to zeroes.
785   * This way, we return uniform gray for the remainder of the segment.
786   */
787  if (! entropy->insufficient_data) {
788
789    Se = cinfo->Se;
790    Al = cinfo->Al;
791    natural_order = cinfo->natural_order;
792
793    /* Load up working state.
794     * We can avoid loading/saving bitread state if in an EOB run.
795     */
796    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
797
798    /* There is always only one block per MCU */
799
800    if (EOBRUN > 0)		/* if it's a band of zeroes... */
801      EOBRUN--;			/* ...process it now (we do nothing) */
802    else {
803      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
804      block = MCU_data[0];
805      tbl = entropy->ac_derived_tbl;
806
807      for (k = cinfo->Ss; k <= Se; k++) {
808	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
809	r = s >> 4;
810	s &= 15;
811	if (s) {
812	  k += r;
813	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
814	  r = GET_BITS(s);
815	  s = HUFF_EXTEND(r, s);
816	  /* Scale and output coefficient in natural (dezigzagged) order */
817	  (*block)[natural_order[k]] = (JCOEF) (s << Al);
818	} else {
819	  if (r == 15) {	/* ZRL */
820	    k += 15;		/* skip 15 zeroes in band */
821	  } else {		/* EOBr, run length is 2^r + appended bits */
822	    EOBRUN = 1 << r;
823	    if (r) {		/* EOBr, r > 0 */
824	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
825	      r = GET_BITS(r);
826	      EOBRUN += r;
827	    }
828	    EOBRUN--;		/* this band is processed at this moment */
829	    break;		/* force end-of-band */
830	  }
831	}
832      }
833
834      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
835    }
836
837    /* Completed MCU, so update state */
838    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
839  }
840
841  /* Account for restart interval (no-op if not using restarts) */
842  entropy->restarts_to_go--;
843
844  return TRUE;
845}
846
847
848/*
849 * MCU decoding for DC successive approximation refinement scan.
850 * Note: we assume such scans can be multi-component, although the spec
851 * is not very clear on the point.
852 */
853
854METHODDEF(boolean)
855decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
856{
857  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
858  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
859  int blkn;
860  JBLOCKROW block;
861  BITREAD_STATE_VARS;
862
863  /* Process restart marker if needed; may have to suspend */
864  if (cinfo->restart_interval) {
865    if (entropy->restarts_to_go == 0)
866      if (! process_restart(cinfo))
867	return FALSE;
868  }
869
870  /* Not worth the cycles to check insufficient_data here,
871   * since we will not change the data anyway if we read zeroes.
872   */
873
874  /* Load up working state */
875  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
876
877  /* Outer loop handles each block in the MCU */
878
879  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
880    block = MCU_data[blkn];
881
882    /* Encoded data is simply the next bit of the two's-complement DC value */
883    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
884    if (GET_BITS(1))
885      (*block)[0] |= p1;
886    /* Note: since we use |=, repeating the assignment later is safe */
887  }
888
889  /* Completed MCU, so update state */
890  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
891
892  /* Account for restart interval (no-op if not using restarts) */
893  entropy->restarts_to_go--;
894
895  return TRUE;
896}
897
898
899/*
900 * MCU decoding for AC successive approximation refinement scan.
901 */
902
903METHODDEF(boolean)
904decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
905{
906  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
907  register int s, k, r;
908  unsigned int EOBRUN;
909  int Se, p1, m1;
910  const int * natural_order;
911  JBLOCKROW block;
912  JCOEFPTR thiscoef;
913  BITREAD_STATE_VARS;
914  d_derived_tbl * tbl;
915  int num_newnz;
916  int newnz_pos[DCTSIZE2];
917
918  /* Process restart marker if needed; may have to suspend */
919  if (cinfo->restart_interval) {
920    if (entropy->restarts_to_go == 0)
921      if (! process_restart(cinfo))
922	return FALSE;
923  }
924
925  /* If we've run out of data, don't modify the MCU.
926   */
927  if (! entropy->insufficient_data) {
928
929    Se = cinfo->Se;
930    p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
931    m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
932    natural_order = cinfo->natural_order;
933
934    /* Load up working state */
935    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
936    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
937
938    /* There is always only one block per MCU */
939    block = MCU_data[0];
940    tbl = entropy->ac_derived_tbl;
941
942    /* If we are forced to suspend, we must undo the assignments to any newly
943     * nonzero coefficients in the block, because otherwise we'd get confused
944     * next time about which coefficients were already nonzero.
945     * But we need not undo addition of bits to already-nonzero coefficients;
946     * instead, we can test the current bit to see if we already did it.
947     */
948    num_newnz = 0;
949
950    /* initialize coefficient loop counter to start of band */
951    k = cinfo->Ss;
952
953    if (EOBRUN == 0) {
954      for (; k <= Se; k++) {
955	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
956	r = s >> 4;
957	s &= 15;
958	if (s) {
959	  if (s != 1)		/* size of new coef should always be 1 */
960	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
961	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
962	  if (GET_BITS(1))
963	    s = p1;		/* newly nonzero coef is positive */
964	  else
965	    s = m1;		/* newly nonzero coef is negative */
966	} else {
967	  if (r != 15) {
968	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
969	    if (r) {
970	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
971	      r = GET_BITS(r);
972	      EOBRUN += r;
973	    }
974	    break;		/* rest of block is handled by EOB logic */
975	  }
976	  /* note s = 0 for processing ZRL */
977	}
978	/* Advance over already-nonzero coefs and r still-zero coefs,
979	 * appending correction bits to the nonzeroes.  A correction bit is 1
980	 * if the absolute value of the coefficient must be increased.
981	 */
982	do {
983	  thiscoef = *block + natural_order[k];
984	  if (*thiscoef != 0) {
985	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
986	    if (GET_BITS(1)) {
987	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
988		if (*thiscoef >= 0)
989		  *thiscoef += p1;
990		else
991		  *thiscoef += m1;
992	      }
993	    }
994	  } else {
995	    if (--r < 0)
996	      break;		/* reached target zero coefficient */
997	  }
998	  k++;
999	} while (k <= Se);
1000	if (s) {
1001	  int pos = natural_order[k];
1002	  /* Output newly nonzero coefficient */
1003	  (*block)[pos] = (JCOEF) s;
1004	  /* Remember its position in case we have to suspend */
1005	  newnz_pos[num_newnz++] = pos;
1006	}
1007      }
1008    }
1009
1010    if (EOBRUN > 0) {
1011      /* Scan any remaining coefficient positions after the end-of-band
1012       * (the last newly nonzero coefficient, if any).  Append a correction
1013       * bit to each already-nonzero coefficient.  A correction bit is 1
1014       * if the absolute value of the coefficient must be increased.
1015       */
1016      for (; k <= Se; k++) {
1017	thiscoef = *block + natural_order[k];
1018	if (*thiscoef != 0) {
1019	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
1020	  if (GET_BITS(1)) {
1021	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
1022	      if (*thiscoef >= 0)
1023		*thiscoef += p1;
1024	      else
1025		*thiscoef += m1;
1026	    }
1027	  }
1028	}
1029      }
1030      /* Count one block completed in EOB run */
1031      EOBRUN--;
1032    }
1033
1034    /* Completed MCU, so update state */
1035    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1036    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
1037  }
1038
1039  /* Account for restart interval (no-op if not using restarts) */
1040  entropy->restarts_to_go--;
1041
1042  return TRUE;
1043
1044undoit:
1045  /* Re-zero any output coefficients that we made newly nonzero */
1046  while (num_newnz > 0)
1047    (*block)[newnz_pos[--num_newnz]] = 0;
1048
1049  return FALSE;
1050}
1051
1052
1053/*
1054 * Decode one MCU's worth of Huffman-compressed coefficients,
1055 * partial blocks.
1056 */
1057
1058METHODDEF(boolean)
1059decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1060{
1061  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1062  const int * natural_order;
1063  int Se, blkn;
1064  BITREAD_STATE_VARS;
1065  savable_state state;
1066
1067  /* Process restart marker if needed; may have to suspend */
1068  if (cinfo->restart_interval) {
1069    if (entropy->restarts_to_go == 0)
1070      if (! process_restart(cinfo))
1071	return FALSE;
1072  }
1073
1074  /* If we've run out of data, just leave the MCU set to zeroes.
1075   * This way, we return uniform gray for the remainder of the segment.
1076   */
1077  if (! entropy->insufficient_data) {
1078
1079    natural_order = cinfo->natural_order;
1080    Se = cinfo->lim_Se;
1081
1082    /* Load up working state */
1083    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1084    ASSIGN_STATE(state, entropy->saved);
1085
1086    /* Outer loop handles each block in the MCU */
1087
1088    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1089      JBLOCKROW block = MCU_data[blkn];
1090      d_derived_tbl * htbl;
1091      register int s, k, r;
1092      int coef_limit, ci;
1093
1094      /* Decode a single block's worth of coefficients */
1095
1096      /* Section F.2.2.1: decode the DC coefficient difference */
1097      htbl = entropy->dc_cur_tbls[blkn];
1098      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1099
1100      htbl = entropy->ac_cur_tbls[blkn];
1101      k = 1;
1102      coef_limit = entropy->coef_limit[blkn];
1103      if (coef_limit) {
1104	/* Convert DC difference to actual value, update last_dc_val */
1105	if (s) {
1106	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1107	  r = GET_BITS(s);
1108	  s = HUFF_EXTEND(r, s);
1109	}
1110	ci = cinfo->MCU_membership[blkn];
1111	s += state.last_dc_val[ci];
1112	state.last_dc_val[ci] = s;
1113	/* Output the DC coefficient */
1114	(*block)[0] = (JCOEF) s;
1115
1116	/* Section F.2.2.2: decode the AC coefficients */
1117	/* Since zeroes are skipped, output area must be cleared beforehand */
1118	for (; k < coef_limit; k++) {
1119	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1120
1121	  r = s >> 4;
1122	  s &= 15;
1123
1124	  if (s) {
1125	    k += r;
1126	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
1127	    r = GET_BITS(s);
1128	    s = HUFF_EXTEND(r, s);
1129	    /* Output coefficient in natural (dezigzagged) order.
1130	     * Note: the extra entries in natural_order[] will save us
1131	     * if k > Se, which could happen if the data is corrupted.
1132	     */
1133	    (*block)[natural_order[k]] = (JCOEF) s;
1134	  } else {
1135	    if (r != 15)
1136	      goto EndOfBlock;
1137	    k += 15;
1138	  }
1139	}
1140      } else {
1141	if (s) {
1142	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1143	  DROP_BITS(s);
1144	}
1145      }
1146
1147      /* Section F.2.2.2: decode the AC coefficients */
1148      /* In this path we just discard the values */
1149      for (; k <= Se; k++) {
1150	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1151
1152	r = s >> 4;
1153	s &= 15;
1154
1155	if (s) {
1156	  k += r;
1157	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1158	  DROP_BITS(s);
1159	} else {
1160	  if (r != 15)
1161	    break;
1162	  k += 15;
1163	}
1164      }
1165
1166      EndOfBlock: ;
1167    }
1168
1169    /* Completed MCU, so update state */
1170    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1171    ASSIGN_STATE(entropy->saved, state);
1172  }
1173
1174  /* Account for restart interval (no-op if not using restarts) */
1175  entropy->restarts_to_go--;
1176
1177  return TRUE;
1178}
1179
1180
1181/*
1182 * Decode one MCU's worth of Huffman-compressed coefficients,
1183 * full-size blocks.
1184 */
1185
1186METHODDEF(boolean)
1187decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1188{
1189  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1190  int blkn;
1191  BITREAD_STATE_VARS;
1192  savable_state state;
1193
1194  /* Process restart marker if needed; may have to suspend */
1195  if (cinfo->restart_interval) {
1196    if (entropy->restarts_to_go == 0)
1197      if (! process_restart(cinfo))
1198	return FALSE;
1199  }
1200
1201  /* If we've run out of data, just leave the MCU set to zeroes.
1202   * This way, we return uniform gray for the remainder of the segment.
1203   */
1204  if (! entropy->insufficient_data) {
1205
1206    /* Load up working state */
1207    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1208    ASSIGN_STATE(state, entropy->saved);
1209
1210    /* Outer loop handles each block in the MCU */
1211
1212    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1213      JBLOCKROW block = MCU_data[blkn];
1214      d_derived_tbl * htbl;
1215      register int s, k, r;
1216      int coef_limit, ci;
1217
1218      /* Decode a single block's worth of coefficients */
1219
1220      /* Section F.2.2.1: decode the DC coefficient difference */
1221      htbl = entropy->dc_cur_tbls[blkn];
1222      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1223
1224      htbl = entropy->ac_cur_tbls[blkn];
1225      k = 1;
1226      coef_limit = entropy->coef_limit[blkn];
1227      if (coef_limit) {
1228	/* Convert DC difference to actual value, update last_dc_val */
1229	if (s) {
1230	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1231	  r = GET_BITS(s);
1232	  s = HUFF_EXTEND(r, s);
1233	}
1234	ci = cinfo->MCU_membership[blkn];
1235	s += state.last_dc_val[ci];
1236	state.last_dc_val[ci] = s;
1237	/* Output the DC coefficient */
1238	(*block)[0] = (JCOEF) s;
1239
1240	/* Section F.2.2.2: decode the AC coefficients */
1241	/* Since zeroes are skipped, output area must be cleared beforehand */
1242	for (; k < coef_limit; k++) {
1243	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1244
1245	  r = s >> 4;
1246	  s &= 15;
1247
1248	  if (s) {
1249	    k += r;
1250	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
1251	    r = GET_BITS(s);
1252	    s = HUFF_EXTEND(r, s);
1253	    /* Output coefficient in natural (dezigzagged) order.
1254	     * Note: the extra entries in jpeg_natural_order[] will save us
1255	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
1256	     */
1257	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
1258	  } else {
1259	    if (r != 15)
1260	      goto EndOfBlock;
1261	    k += 15;
1262	  }
1263	}
1264      } else {
1265	if (s) {
1266	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1267	  DROP_BITS(s);
1268	}
1269      }
1270
1271      /* Section F.2.2.2: decode the AC coefficients */
1272      /* In this path we just discard the values */
1273      for (; k < DCTSIZE2; k++) {
1274	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1275
1276	r = s >> 4;
1277	s &= 15;
1278
1279	if (s) {
1280	  k += r;
1281	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1282	  DROP_BITS(s);
1283	} else {
1284	  if (r != 15)
1285	    break;
1286	  k += 15;
1287	}
1288      }
1289
1290      EndOfBlock: ;
1291    }
1292
1293    /* Completed MCU, so update state */
1294    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1295    ASSIGN_STATE(entropy->saved, state);
1296  }
1297
1298  /* Account for restart interval (no-op if not using restarts) */
1299  entropy->restarts_to_go--;
1300
1301  return TRUE;
1302}
1303
1304
1305/*
1306 * Initialize for a Huffman-compressed scan.
1307 */
1308
1309METHODDEF(void)
1310start_pass_huff_decoder (j_decompress_ptr cinfo)
1311{
1312  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1313  int ci, blkn, tbl, i;
1314  jpeg_component_info * compptr;
1315
1316  if (cinfo->progressive_mode) {
1317    /* Validate progressive scan parameters */
1318    if (cinfo->Ss == 0) {
1319      if (cinfo->Se != 0)
1320	goto bad;
1321    } else {
1322      /* need not check Ss/Se < 0 since they came from unsigned bytes */
1323      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
1324	goto bad;
1325      /* AC scans may have only one component */
1326      if (cinfo->comps_in_scan != 1)
1327	goto bad;
1328    }
1329    if (cinfo->Ah != 0) {
1330      /* Successive approximation refinement scan: must have Al = Ah-1. */
1331      if (cinfo->Ah-1 != cinfo->Al)
1332	goto bad;
1333    }
1334    if (cinfo->Al > 13) {	/* need not check for < 0 */
1335      /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1336       * but the spec doesn't say so, and we try to be liberal about what we
1337       * accept.  Note: large Al values could result in out-of-range DC
1338       * coefficients during early scans, leading to bizarre displays due to
1339       * overflows in the IDCT math.  But we won't crash.
1340       */
1341      bad:
1342      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1343	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
1344    }
1345    /* Update progression status, and verify that scan order is legal.
1346     * Note that inter-scan inconsistencies are treated as warnings
1347     * not fatal errors ... not clear if this is right way to behave.
1348     */
1349    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1350      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
1351      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
1352      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
1353	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
1354      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
1355	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
1356	if (cinfo->Ah != expected)
1357	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
1358	coef_bit_ptr[coefi] = cinfo->Al;
1359      }
1360    }
1361
1362    /* Select MCU decoding routine */
1363    if (cinfo->Ah == 0) {
1364      if (cinfo->Ss == 0)
1365	entropy->pub.decode_mcu = decode_mcu_DC_first;
1366      else
1367	entropy->pub.decode_mcu = decode_mcu_AC_first;
1368    } else {
1369      if (cinfo->Ss == 0)
1370	entropy->pub.decode_mcu = decode_mcu_DC_refine;
1371      else
1372	entropy->pub.decode_mcu = decode_mcu_AC_refine;
1373    }
1374
1375    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1376      compptr = cinfo->cur_comp_info[ci];
1377      /* Make sure requested tables are present, and compute derived tables.
1378       * We may build same derived table more than once, but it's not expensive.
1379       */
1380      if (cinfo->Ss == 0) {
1381	if (cinfo->Ah == 0) {	/* DC refinement needs no table */
1382	  tbl = compptr->dc_tbl_no;
1383	  jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1384				  & entropy->derived_tbls[tbl]);
1385	}
1386      } else {
1387	tbl = compptr->ac_tbl_no;
1388	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1389				& entropy->derived_tbls[tbl]);
1390	/* remember the single active table */
1391	entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
1392      }
1393      /* Initialize DC predictions to 0 */
1394      entropy->saved.last_dc_val[ci] = 0;
1395    }
1396
1397    /* Initialize private state variables */
1398    entropy->saved.EOBRUN = 0;
1399  } else {
1400    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1401     * This ought to be an error condition, but we make it a warning because
1402     * there are some baseline files out there with all zeroes in these bytes.
1403     */
1404    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
1405	((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
1406	cinfo->Se != cinfo->lim_Se))
1407      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1408
1409    /* Select MCU decoding routine */
1410    /* We retain the hard-coded case for full-size blocks.
1411     * This is not necessary, but it appears that this version is slightly
1412     * more performant in the given implementation.
1413     * With an improved implementation we would prefer a single optimized
1414     * function.
1415     */
1416    if (cinfo->lim_Se != DCTSIZE2-1)
1417      entropy->pub.decode_mcu = decode_mcu_sub;
1418    else
1419      entropy->pub.decode_mcu = decode_mcu;
1420
1421    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1422      compptr = cinfo->cur_comp_info[ci];
1423      /* Compute derived values for Huffman tables */
1424      /* We may do this more than once for a table, but it's not expensive */
1425      tbl = compptr->dc_tbl_no;
1426      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1427			      & entropy->dc_derived_tbls[tbl]);
1428      if (cinfo->lim_Se) {	/* AC needs no table when not present */
1429	tbl = compptr->ac_tbl_no;
1430	jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1431				& entropy->ac_derived_tbls[tbl]);
1432      }
1433      /* Initialize DC predictions to 0 */
1434      entropy->saved.last_dc_val[ci] = 0;
1435    }
1436
1437    /* Precalculate decoding info for each block in an MCU of this scan */
1438    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1439      ci = cinfo->MCU_membership[blkn];
1440      compptr = cinfo->cur_comp_info[ci];
1441      /* Precalculate which table to use for each block */
1442      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1443      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
1444      /* Decide whether we really care about the coefficient values */
1445      if (compptr->component_needed) {
1446	ci = compptr->DCT_v_scaled_size;
1447	i = compptr->DCT_h_scaled_size;
1448	switch (cinfo->lim_Se) {
1449	case (1*1-1):
1450	  entropy->coef_limit[blkn] = 1;
1451	  break;
1452	case (2*2-1):
1453	  if (ci <= 0 || ci > 2) ci = 2;
1454	  if (i <= 0 || i > 2) i = 2;
1455	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
1456	  break;
1457	case (3*3-1):
1458	  if (ci <= 0 || ci > 3) ci = 3;
1459	  if (i <= 0 || i > 3) i = 3;
1460	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
1461	  break;
1462	case (4*4-1):
1463	  if (ci <= 0 || ci > 4) ci = 4;
1464	  if (i <= 0 || i > 4) i = 4;
1465	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
1466	  break;
1467	case (5*5-1):
1468	  if (ci <= 0 || ci > 5) ci = 5;
1469	  if (i <= 0 || i > 5) i = 5;
1470	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
1471	  break;
1472	case (6*6-1):
1473	  if (ci <= 0 || ci > 6) ci = 6;
1474	  if (i <= 0 || i > 6) i = 6;
1475	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
1476	  break;
1477	case (7*7-1):
1478	  if (ci <= 0 || ci > 7) ci = 7;
1479	  if (i <= 0 || i > 7) i = 7;
1480	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
1481	  break;
1482	default:
1483	  if (ci <= 0 || ci > 8) ci = 8;
1484	  if (i <= 0 || i > 8) i = 8;
1485	  entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
1486	  break;
1487	}
1488      } else {
1489	entropy->coef_limit[blkn] = 0;
1490      }
1491    }
1492  }
1493
1494  /* Initialize bitread state variables */
1495  entropy->bitstate.bits_left = 0;
1496  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1497  entropy->insufficient_data = FALSE;
1498
1499  /* Initialize restart counter */
1500  entropy->restarts_to_go = cinfo->restart_interval;
1501}
1502
1503
1504/*
1505 * Module initialization routine for Huffman entropy decoding.
1506 */
1507
1508GLOBAL(void)
1509jinit_huff_decoder (j_decompress_ptr cinfo)
1510{
1511  huff_entropy_ptr entropy;
1512  int i;
1513
1514  entropy = (huff_entropy_ptr)
1515    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1516				SIZEOF(huff_entropy_decoder));
1517  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
1518  entropy->pub.start_pass = start_pass_huff_decoder;
1519
1520  if (cinfo->progressive_mode) {
1521    /* Create progression status table */
1522    int *coef_bit_ptr, ci;
1523    cinfo->coef_bits = (int (*)[DCTSIZE2])
1524      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1525				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
1526    coef_bit_ptr = & cinfo->coef_bits[0][0];
1527    for (ci = 0; ci < cinfo->num_components; ci++)
1528      for (i = 0; i < DCTSIZE2; i++)
1529	*coef_bit_ptr++ = -1;
1530
1531    /* Mark derived tables unallocated */
1532    for (i = 0; i < NUM_HUFF_TBLS; i++) {
1533      entropy->derived_tbls[i] = NULL;
1534    }
1535  } else {
1536    /* Mark tables unallocated */
1537    for (i = 0; i < NUM_HUFF_TBLS; i++) {
1538      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1539    }
1540  }
1541}
1542