1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel-opt"
15#include "DAGISelMatcher.h"
16#include "CodeGenDAGPatterns.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/StringSet.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21using namespace llvm;
22
23/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24/// into single compound nodes like RecordChild.
25static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
26                          const CodeGenDAGPatterns &CGP) {
27  // If we reached the end of the chain, we're done.
28  Matcher *N = MatcherPtr.get();
29  if (N == 0) return;
30
31  // If we have a scope node, walk down all of the children.
32  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
33    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
34      OwningPtr<Matcher> Child(Scope->takeChild(i));
35      ContractNodes(Child, CGP);
36      Scope->resetChild(i, Child.take());
37    }
38    return;
39  }
40
41  // If we found a movechild node with a node that comes in a 'foochild' form,
42  // transform it.
43  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
44    Matcher *New = 0;
45    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
46      if (MC->getChildNo() < 8)  // Only have RecordChild0...7
47        New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48                                     RM->getResultNo());
49
50    if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
51      if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
52          CT->getResNo() == 0)     // CheckChildType checks res #0
53        New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
54
55    if (New) {
56      // Insert the new node.
57      New->setNext(MatcherPtr.take());
58      MatcherPtr.reset(New);
59      // Remove the old one.
60      MC->setNext(MC->getNext()->takeNext());
61      return ContractNodes(MatcherPtr, CGP);
62    }
63  }
64
65  // Zap movechild -> moveparent.
66  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
67    if (MoveParentMatcher *MP =
68          dyn_cast<MoveParentMatcher>(MC->getNext())) {
69      MatcherPtr.reset(MP->takeNext());
70      return ContractNodes(MatcherPtr, CGP);
71    }
72
73  // Turn EmitNode->MarkFlagResults->CompleteMatch into
74  // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
75  // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
76  // to the root of the pattern.
77  if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
78      isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
79    // Unlink the two nodes from the list.
80    Matcher *EmitNode = MatcherPtr.take();
81    Matcher *MFR = EmitNode->takeNext();
82    Matcher *Tail = MFR->takeNext();
83
84    // Relink them.
85    MatcherPtr.reset(MFR);
86    MFR->setNext(EmitNode);
87    EmitNode->setNext(Tail);
88    return ContractNodes(MatcherPtr, CGP);
89  }
90
91  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
92  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
93    if (CompleteMatchMatcher *CM =
94          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
95      // We can only use MorphNodeTo if the result values match up.
96      unsigned RootResultFirst = EN->getFirstResultSlot();
97      bool ResultsMatch = true;
98      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
99        if (CM->getResult(i) != RootResultFirst+i)
100          ResultsMatch = false;
101
102      // If the selected node defines a subset of the glue/chain results, we
103      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
104      // matched pattern has a chain but the root node doesn't.
105      const PatternToMatch &Pattern = CM->getPattern();
106
107      if (!EN->hasChain() &&
108          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
109        ResultsMatch = false;
110
111      // If the matched node has glue and the output root doesn't, we can't
112      // use MorphNodeTo.
113      //
114      // NOTE: Strictly speaking, we don't have to check for glue here
115      // because the code in the pattern generator doesn't handle it right.  We
116      // do it anyway for thoroughness.
117      if (!EN->hasOutFlag() &&
118          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
119        ResultsMatch = false;
120
121
122      // If the root result node defines more results than the source root node
123      // *and* has a chain or glue input, then we can't match it because it
124      // would end up replacing the extra result with the chain/glue.
125#if 0
126      if ((EN->hasGlue() || EN->hasChain()) &&
127          EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
128        ResultMatch = false;
129#endif
130
131      if (ResultsMatch) {
132        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
133        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
134        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
135                                                VTs.data(), VTs.size(),
136                                                Operands.data(),Operands.size(),
137                                                EN->hasChain(), EN->hasInFlag(),
138                                                EN->hasOutFlag(),
139                                                EN->hasMemRefs(),
140                                                EN->getNumFixedArityOperands(),
141                                                Pattern));
142        return;
143      }
144
145      // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
146      // variants.
147    }
148
149  ContractNodes(N->getNextPtr(), CGP);
150
151
152  // If we have a CheckType/CheckChildType/Record node followed by a
153  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
154  // before type checks, as this opens opportunities for factoring on targets
155  // like X86 where many operations are valid on multiple types.
156  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
157       isa<RecordMatcher>(N)) &&
158      isa<CheckOpcodeMatcher>(N->getNext())) {
159    // Unlink the two nodes from the list.
160    Matcher *CheckType = MatcherPtr.take();
161    Matcher *CheckOpcode = CheckType->takeNext();
162    Matcher *Tail = CheckOpcode->takeNext();
163
164    // Relink them.
165    MatcherPtr.reset(CheckOpcode);
166    CheckOpcode->setNext(CheckType);
167    CheckType->setNext(Tail);
168    return ContractNodes(MatcherPtr, CGP);
169  }
170}
171
172/// SinkPatternPredicates - Pattern predicates can be checked at any level of
173/// the matching tree.  The generator dumps them at the top level of the pattern
174/// though, which prevents factoring from being able to see past them.  This
175/// optimization sinks them as far down into the pattern as possible.
176///
177/// Conceptually, we'd like to sink these predicates all the way to the last
178/// matcher predicate in the series.  However, it turns out that some
179/// ComplexPatterns have side effects on the graph, so we really don't want to
180/// run a the complex pattern if the pattern predicate will fail.  For this
181/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
182///
183static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
184  // Recursively scan for a PatternPredicate.
185  // If we reached the end of the chain, we're done.
186  Matcher *N = MatcherPtr.get();
187  if (N == 0) return;
188
189  // Walk down all members of a scope node.
190  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
191    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
192      OwningPtr<Matcher> Child(Scope->takeChild(i));
193      SinkPatternPredicates(Child);
194      Scope->resetChild(i, Child.take());
195    }
196    return;
197  }
198
199  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
200  // we find one.
201  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
202  if (CPPM == 0)
203    return SinkPatternPredicates(N->getNextPtr());
204
205  // Ok, we found one, lets try to sink it. Check if we can sink it past the
206  // next node in the chain.  If not, we won't be able to change anything and
207  // might as well bail.
208  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
209    return;
210
211  // Okay, we know we can sink it past at least one node.  Unlink it from the
212  // chain and scan for the new insertion point.
213  MatcherPtr.take();  // Don't delete CPPM.
214  MatcherPtr.reset(CPPM->takeNext());
215
216  N = MatcherPtr.get();
217  while (N->getNext()->isSafeToReorderWithPatternPredicate())
218    N = N->getNext();
219
220  // At this point, we want to insert CPPM after N.
221  CPPM->setNext(N->takeNext());
222  N->setNext(CPPM);
223}
224
225/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
226/// specified kind.  Return null if we didn't find one otherwise return the
227/// matcher.
228static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
229  for (; M; M = M->getNext())
230    if (M->getKind() == Kind)
231      return M;
232  return 0;
233}
234
235
236/// FactorNodes - Turn matches like this:
237///   Scope
238///     OPC_CheckType i32
239///       ABC
240///     OPC_CheckType i32
241///       XYZ
242/// into:
243///   OPC_CheckType i32
244///     Scope
245///       ABC
246///       XYZ
247///
248static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
249  // If we reached the end of the chain, we're done.
250  Matcher *N = MatcherPtr.get();
251  if (N == 0) return;
252
253  // If this is not a push node, just scan for one.
254  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
255  if (Scope == 0)
256    return FactorNodes(N->getNextPtr());
257
258  // Okay, pull together the children of the scope node into a vector so we can
259  // inspect it more easily.  While we're at it, bucket them up by the hash
260  // code of their first predicate.
261  SmallVector<Matcher*, 32> OptionsToMatch;
262
263  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
264    // Factor the subexpression.
265    OwningPtr<Matcher> Child(Scope->takeChild(i));
266    FactorNodes(Child);
267
268    if (Matcher *N = Child.take())
269      OptionsToMatch.push_back(N);
270  }
271
272  SmallVector<Matcher*, 32> NewOptionsToMatch;
273
274  // Loop over options to match, merging neighboring patterns with identical
275  // starting nodes into a shared matcher.
276  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
277    // Find the set of matchers that start with this node.
278    Matcher *Optn = OptionsToMatch[OptionIdx++];
279
280    if (OptionIdx == e) {
281      NewOptionsToMatch.push_back(Optn);
282      continue;
283    }
284
285    // See if the next option starts with the same matcher.  If the two
286    // neighbors *do* start with the same matcher, we can factor the matcher out
287    // of at least these two patterns.  See what the maximal set we can merge
288    // together is.
289    SmallVector<Matcher*, 8> EqualMatchers;
290    EqualMatchers.push_back(Optn);
291
292    // Factor all of the known-equal matchers after this one into the same
293    // group.
294    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
295      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
296
297    // If we found a non-equal matcher, see if it is contradictory with the
298    // current node.  If so, we know that the ordering relation between the
299    // current sets of nodes and this node don't matter.  Look past it to see if
300    // we can merge anything else into this matching group.
301    unsigned Scan = OptionIdx;
302    while (1) {
303      // If we ran out of stuff to scan, we're done.
304      if (Scan == e) break;
305
306      Matcher *ScanMatcher = OptionsToMatch[Scan];
307
308      // If we found an entry that matches out matcher, merge it into the set to
309      // handle.
310      if (Optn->isEqual(ScanMatcher)) {
311        // If is equal after all, add the option to EqualMatchers and remove it
312        // from OptionsToMatch.
313        EqualMatchers.push_back(ScanMatcher);
314        OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
315        --e;
316        continue;
317      }
318
319      // If the option we're checking for contradicts the start of the list,
320      // skip over it.
321      if (Optn->isContradictory(ScanMatcher)) {
322        ++Scan;
323        continue;
324      }
325
326      // If we're scanning for a simple node, see if it occurs later in the
327      // sequence.  If so, and if we can move it up, it might be contradictory
328      // or the same as what we're looking for.  If so, reorder it.
329      if (Optn->isSimplePredicateOrRecordNode()) {
330        Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
331        if (M2 != 0 && M2 != ScanMatcher &&
332            M2->canMoveBefore(ScanMatcher) &&
333            (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
334          Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
335          M2->setNext(MatcherWithoutM2);
336          OptionsToMatch[Scan] = M2;
337          continue;
338        }
339      }
340
341      // Otherwise, we don't know how to handle this entry, we have to bail.
342      break;
343    }
344
345    if (Scan != e &&
346        // Don't print it's obvious nothing extra could be merged anyway.
347        Scan+1 != e) {
348      DEBUG(errs() << "Couldn't merge this:\n";
349            Optn->print(errs(), 4);
350            errs() << "into this:\n";
351            OptionsToMatch[Scan]->print(errs(), 4);
352            if (Scan+1 != e)
353              OptionsToMatch[Scan+1]->printOne(errs());
354            if (Scan+2 < e)
355              OptionsToMatch[Scan+2]->printOne(errs());
356            errs() << "\n");
357    }
358
359    // If we only found one option starting with this matcher, no factoring is
360    // possible.
361    if (EqualMatchers.size() == 1) {
362      NewOptionsToMatch.push_back(EqualMatchers[0]);
363      continue;
364    }
365
366    // Factor these checks by pulling the first node off each entry and
367    // discarding it.  Take the first one off the first entry to reuse.
368    Matcher *Shared = Optn;
369    Optn = Optn->takeNext();
370    EqualMatchers[0] = Optn;
371
372    // Remove and delete the first node from the other matchers we're factoring.
373    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
374      Matcher *Tmp = EqualMatchers[i]->takeNext();
375      delete EqualMatchers[i];
376      EqualMatchers[i] = Tmp;
377    }
378
379    Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
380
381    // Recursively factor the newly created node.
382    FactorNodes(Shared->getNextPtr());
383
384    NewOptionsToMatch.push_back(Shared);
385  }
386
387  // If we're down to a single pattern to match, then we don't need this scope
388  // anymore.
389  if (NewOptionsToMatch.size() == 1) {
390    MatcherPtr.reset(NewOptionsToMatch[0]);
391    return;
392  }
393
394  if (NewOptionsToMatch.empty()) {
395    MatcherPtr.reset(0);
396    return;
397  }
398
399  // If our factoring failed (didn't achieve anything) see if we can simplify in
400  // other ways.
401
402  // Check to see if all of the leading entries are now opcode checks.  If so,
403  // we can convert this Scope to be a OpcodeSwitch instead.
404  bool AllOpcodeChecks = true, AllTypeChecks = true;
405  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
406    // Check to see if this breaks a series of CheckOpcodeMatchers.
407    if (AllOpcodeChecks &&
408        !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
409#if 0
410      if (i > 3) {
411        errs() << "FAILING OPC #" << i << "\n";
412        NewOptionsToMatch[i]->dump();
413      }
414#endif
415      AllOpcodeChecks = false;
416    }
417
418    // Check to see if this breaks a series of CheckTypeMatcher's.
419    if (AllTypeChecks) {
420      CheckTypeMatcher *CTM =
421        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
422                                                        Matcher::CheckType));
423      if (CTM == 0 ||
424          // iPTR checks could alias any other case without us knowing, don't
425          // bother with them.
426          CTM->getType() == MVT::iPTR ||
427          // SwitchType only works for result #0.
428          CTM->getResNo() != 0 ||
429          // If the CheckType isn't at the start of the list, see if we can move
430          // it there.
431          !CTM->canMoveBefore(NewOptionsToMatch[i])) {
432#if 0
433        if (i > 3 && AllTypeChecks) {
434          errs() << "FAILING TYPE #" << i << "\n";
435          NewOptionsToMatch[i]->dump();
436        }
437#endif
438        AllTypeChecks = false;
439      }
440    }
441  }
442
443  // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
444  if (AllOpcodeChecks) {
445    StringSet<> Opcodes;
446    SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
447    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
448      CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
449      assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
450             "Duplicate opcodes not factored?");
451      Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
452    }
453
454    MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
455    return;
456  }
457
458  // If all the options are CheckType's, we can form the SwitchType, woot.
459  if (AllTypeChecks) {
460    DenseMap<unsigned, unsigned> TypeEntry;
461    SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
462    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
463      CheckTypeMatcher *CTM =
464        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
465                                                        Matcher::CheckType));
466      Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
467      MVT::SimpleValueType CTMTy = CTM->getType();
468      delete CTM;
469
470      unsigned &Entry = TypeEntry[CTMTy];
471      if (Entry != 0) {
472        // If we have unfactored duplicate types, then we should factor them.
473        Matcher *PrevMatcher = Cases[Entry-1].second;
474        if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
475          SM->setNumChildren(SM->getNumChildren()+1);
476          SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
477          continue;
478        }
479
480        Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
481        Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
482        continue;
483      }
484
485      Entry = Cases.size()+1;
486      Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
487    }
488
489    if (Cases.size() != 1) {
490      MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
491    } else {
492      // If we factored and ended up with one case, create it now.
493      MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
494      MatcherPtr->setNext(Cases[0].second);
495    }
496    return;
497  }
498
499
500  // Reassemble the Scope node with the adjusted children.
501  Scope->setNumChildren(NewOptionsToMatch.size());
502  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
503    Scope->resetChild(i, NewOptionsToMatch[i]);
504}
505
506Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
507                               const CodeGenDAGPatterns &CGP) {
508  OwningPtr<Matcher> MatcherPtr(TheMatcher);
509  ContractNodes(MatcherPtr, CGP);
510  SinkPatternPredicates(MatcherPtr);
511  FactorNodes(MatcherPtr);
512  return MatcherPtr.take();
513}
514