1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "LLVMContextImpl.h"
16#include "ConstantFold.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalValue.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/ADT/FoldingSet.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Otherwise, just use +0.0.
51  return isNullValue();
52}
53
54bool Constant::isNullValue() const {
55  // 0 is null.
56  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
57    return CI->isZero();
58
59  // +0.0 is null.
60  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
61    return CFP->isZero() && !CFP->isNegative();
62
63  // constant zero is zero for aggregates and cpnull is null for pointers.
64  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
65}
66
67bool Constant::isAllOnesValue() const {
68  // Check for -1 integers
69  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
70    return CI->isMinusOne();
71
72  // Check for FP which are bitcasted from -1 integers
73  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
75
76  // Check for constant vectors which are splats of -1 values.
77  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78    if (Constant *Splat = CV->getSplatValue())
79      return Splat->isAllOnesValue();
80
81  // Check for constant vectors which are splats of -1 values.
82  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
83    if (Constant *Splat = CV->getSplatValue())
84      return Splat->isAllOnesValue();
85
86  return false;
87}
88
89// Constructor to create a '0' constant of arbitrary type...
90Constant *Constant::getNullValue(Type *Ty) {
91  switch (Ty->getTypeID()) {
92  case Type::IntegerTyID:
93    return ConstantInt::get(Ty, 0);
94  case Type::HalfTyID:
95    return ConstantFP::get(Ty->getContext(),
96                           APFloat::getZero(APFloat::IEEEhalf));
97  case Type::FloatTyID:
98    return ConstantFP::get(Ty->getContext(),
99                           APFloat::getZero(APFloat::IEEEsingle));
100  case Type::DoubleTyID:
101    return ConstantFP::get(Ty->getContext(),
102                           APFloat::getZero(APFloat::IEEEdouble));
103  case Type::X86_FP80TyID:
104    return ConstantFP::get(Ty->getContext(),
105                           APFloat::getZero(APFloat::x87DoubleExtended));
106  case Type::FP128TyID:
107    return ConstantFP::get(Ty->getContext(),
108                           APFloat::getZero(APFloat::IEEEquad));
109  case Type::PPC_FP128TyID:
110    return ConstantFP::get(Ty->getContext(),
111                           APFloat(APInt::getNullValue(128)));
112  case Type::PointerTyID:
113    return ConstantPointerNull::get(cast<PointerType>(Ty));
114  case Type::StructTyID:
115  case Type::ArrayTyID:
116  case Type::VectorTyID:
117    return ConstantAggregateZero::get(Ty);
118  default:
119    // Function, Label, or Opaque type?
120    llvm_unreachable("Cannot create a null constant of that type!");
121  }
122}
123
124Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
125  Type *ScalarTy = Ty->getScalarType();
126
127  // Create the base integer constant.
128  Constant *C = ConstantInt::get(Ty->getContext(), V);
129
130  // Convert an integer to a pointer, if necessary.
131  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
132    C = ConstantExpr::getIntToPtr(C, PTy);
133
134  // Broadcast a scalar to a vector, if necessary.
135  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
136    C = ConstantVector::getSplat(VTy->getNumElements(), C);
137
138  return C;
139}
140
141Constant *Constant::getAllOnesValue(Type *Ty) {
142  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
143    return ConstantInt::get(Ty->getContext(),
144                            APInt::getAllOnesValue(ITy->getBitWidth()));
145
146  if (Ty->isFloatingPointTy()) {
147    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
148                                          !Ty->isPPC_FP128Ty());
149    return ConstantFP::get(Ty->getContext(), FL);
150  }
151
152  VectorType *VTy = cast<VectorType>(Ty);
153  return ConstantVector::getSplat(VTy->getNumElements(),
154                                  getAllOnesValue(VTy->getElementType()));
155}
156
157/// getAggregateElement - For aggregates (struct/array/vector) return the
158/// constant that corresponds to the specified element if possible, or null if
159/// not.  This can return null if the element index is a ConstantExpr, or if
160/// 'this' is a constant expr.
161Constant *Constant::getAggregateElement(unsigned Elt) const {
162  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
163    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
164
165  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
166    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
167
168  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
169    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
170
171  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
172    return CAZ->getElementValue(Elt);
173
174  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
175    return UV->getElementValue(Elt);
176
177  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
178    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
179  return 0;
180}
181
182Constant *Constant::getAggregateElement(Constant *Elt) const {
183  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
184  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
185    return getAggregateElement(CI->getZExtValue());
186  return 0;
187}
188
189
190void Constant::destroyConstantImpl() {
191  // When a Constant is destroyed, there may be lingering
192  // references to the constant by other constants in the constant pool.  These
193  // constants are implicitly dependent on the module that is being deleted,
194  // but they don't know that.  Because we only find out when the CPV is
195  // deleted, we must now notify all of our users (that should only be
196  // Constants) that they are, in fact, invalid now and should be deleted.
197  //
198  while (!use_empty()) {
199    Value *V = use_back();
200#ifndef NDEBUG      // Only in -g mode...
201    if (!isa<Constant>(V)) {
202      dbgs() << "While deleting: " << *this
203             << "\n\nUse still stuck around after Def is destroyed: "
204             << *V << "\n\n";
205    }
206#endif
207    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
208    cast<Constant>(V)->destroyConstant();
209
210    // The constant should remove itself from our use list...
211    assert((use_empty() || use_back() != V) && "Constant not removed!");
212  }
213
214  // Value has no outstanding references it is safe to delete it now...
215  delete this;
216}
217
218/// canTrap - Return true if evaluation of this constant could trap.  This is
219/// true for things like constant expressions that could divide by zero.
220bool Constant::canTrap() const {
221  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
222  // The only thing that could possibly trap are constant exprs.
223  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
224  if (!CE) return false;
225
226  // ConstantExpr traps if any operands can trap.
227  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
228    if (CE->getOperand(i)->canTrap())
229      return true;
230
231  // Otherwise, only specific operations can trap.
232  switch (CE->getOpcode()) {
233  default:
234    return false;
235  case Instruction::UDiv:
236  case Instruction::SDiv:
237  case Instruction::FDiv:
238  case Instruction::URem:
239  case Instruction::SRem:
240  case Instruction::FRem:
241    // Div and rem can trap if the RHS is not known to be non-zero.
242    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
243      return true;
244    return false;
245  }
246}
247
248/// isConstantUsed - Return true if the constant has users other than constant
249/// exprs and other dangling things.
250bool Constant::isConstantUsed() const {
251  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
252    const Constant *UC = dyn_cast<Constant>(*UI);
253    if (UC == 0 || isa<GlobalValue>(UC))
254      return true;
255
256    if (UC->isConstantUsed())
257      return true;
258  }
259  return false;
260}
261
262
263
264/// getRelocationInfo - This method classifies the entry according to
265/// whether or not it may generate a relocation entry.  This must be
266/// conservative, so if it might codegen to a relocatable entry, it should say
267/// so.  The return values are:
268///
269///  NoRelocation: This constant pool entry is guaranteed to never have a
270///     relocation applied to it (because it holds a simple constant like
271///     '4').
272///  LocalRelocation: This entry has relocations, but the entries are
273///     guaranteed to be resolvable by the static linker, so the dynamic
274///     linker will never see them.
275///  GlobalRelocations: This entry may have arbitrary relocations.
276///
277/// FIXME: This really should not be in VMCore.
278Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
279  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
280    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
281      return LocalRelocation;  // Local to this file/library.
282    return GlobalRelocations;    // Global reference.
283  }
284
285  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
286    return BA->getFunction()->getRelocationInfo();
287
288  // While raw uses of blockaddress need to be relocated, differences between
289  // two of them don't when they are for labels in the same function.  This is a
290  // common idiom when creating a table for the indirect goto extension, so we
291  // handle it efficiently here.
292  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
293    if (CE->getOpcode() == Instruction::Sub) {
294      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
295      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
296      if (LHS && RHS &&
297          LHS->getOpcode() == Instruction::PtrToInt &&
298          RHS->getOpcode() == Instruction::PtrToInt &&
299          isa<BlockAddress>(LHS->getOperand(0)) &&
300          isa<BlockAddress>(RHS->getOperand(0)) &&
301          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
302            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
303        return NoRelocation;
304    }
305
306  PossibleRelocationsTy Result = NoRelocation;
307  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308    Result = std::max(Result,
309                      cast<Constant>(getOperand(i))->getRelocationInfo());
310
311  return Result;
312}
313
314/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
315/// it.  This involves recursively eliminating any dead users of the
316/// constantexpr.
317static bool removeDeadUsersOfConstant(const Constant *C) {
318  if (isa<GlobalValue>(C)) return false; // Cannot remove this
319
320  while (!C->use_empty()) {
321    const Constant *User = dyn_cast<Constant>(C->use_back());
322    if (!User) return false; // Non-constant usage;
323    if (!removeDeadUsersOfConstant(User))
324      return false; // Constant wasn't dead
325  }
326
327  const_cast<Constant*>(C)->destroyConstant();
328  return true;
329}
330
331
332/// removeDeadConstantUsers - If there are any dead constant users dangling
333/// off of this constant, remove them.  This method is useful for clients
334/// that want to check to see if a global is unused, but don't want to deal
335/// with potentially dead constants hanging off of the globals.
336void Constant::removeDeadConstantUsers() const {
337  Value::const_use_iterator I = use_begin(), E = use_end();
338  Value::const_use_iterator LastNonDeadUser = E;
339  while (I != E) {
340    const Constant *User = dyn_cast<Constant>(*I);
341    if (User == 0) {
342      LastNonDeadUser = I;
343      ++I;
344      continue;
345    }
346
347    if (!removeDeadUsersOfConstant(User)) {
348      // If the constant wasn't dead, remember that this was the last live use
349      // and move on to the next constant.
350      LastNonDeadUser = I;
351      ++I;
352      continue;
353    }
354
355    // If the constant was dead, then the iterator is invalidated.
356    if (LastNonDeadUser == E) {
357      I = use_begin();
358      if (I == E) break;
359    } else {
360      I = LastNonDeadUser;
361      ++I;
362    }
363  }
364}
365
366
367
368//===----------------------------------------------------------------------===//
369//                                ConstantInt
370//===----------------------------------------------------------------------===//
371
372void ConstantInt::anchor() { }
373
374ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
375  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
376  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
377}
378
379ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
380  LLVMContextImpl *pImpl = Context.pImpl;
381  if (!pImpl->TheTrueVal)
382    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
383  return pImpl->TheTrueVal;
384}
385
386ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
387  LLVMContextImpl *pImpl = Context.pImpl;
388  if (!pImpl->TheFalseVal)
389    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
390  return pImpl->TheFalseVal;
391}
392
393Constant *ConstantInt::getTrue(Type *Ty) {
394  VectorType *VTy = dyn_cast<VectorType>(Ty);
395  if (!VTy) {
396    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
397    return ConstantInt::getTrue(Ty->getContext());
398  }
399  assert(VTy->getElementType()->isIntegerTy(1) &&
400         "True must be vector of i1 or i1.");
401  return ConstantVector::getSplat(VTy->getNumElements(),
402                                  ConstantInt::getTrue(Ty->getContext()));
403}
404
405Constant *ConstantInt::getFalse(Type *Ty) {
406  VectorType *VTy = dyn_cast<VectorType>(Ty);
407  if (!VTy) {
408    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
409    return ConstantInt::getFalse(Ty->getContext());
410  }
411  assert(VTy->getElementType()->isIntegerTy(1) &&
412         "False must be vector of i1 or i1.");
413  return ConstantVector::getSplat(VTy->getNumElements(),
414                                  ConstantInt::getFalse(Ty->getContext()));
415}
416
417
418// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
419// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
420// operator== and operator!= to ensure that the DenseMap doesn't attempt to
421// compare APInt's of different widths, which would violate an APInt class
422// invariant which generates an assertion.
423ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
424  // Get the corresponding integer type for the bit width of the value.
425  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
426  // get an existing value or the insertion position
427  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
428  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
429  if (!Slot) Slot = new ConstantInt(ITy, V);
430  return Slot;
431}
432
433Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
434  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
435
436  // For vectors, broadcast the value.
437  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
438    return ConstantVector::getSplat(VTy->getNumElements(), C);
439
440  return C;
441}
442
443ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
444                              bool isSigned) {
445  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
446}
447
448ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
449  return get(Ty, V, true);
450}
451
452Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
453  return get(Ty, V, true);
454}
455
456Constant *ConstantInt::get(Type *Ty, const APInt& V) {
457  ConstantInt *C = get(Ty->getContext(), V);
458  assert(C->getType() == Ty->getScalarType() &&
459         "ConstantInt type doesn't match the type implied by its value!");
460
461  // For vectors, broadcast the value.
462  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
463    return ConstantVector::getSplat(VTy->getNumElements(), C);
464
465  return C;
466}
467
468ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
469                              uint8_t radix) {
470  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
471}
472
473//===----------------------------------------------------------------------===//
474//                                ConstantFP
475//===----------------------------------------------------------------------===//
476
477static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
478  if (Ty->isHalfTy())
479    return &APFloat::IEEEhalf;
480  if (Ty->isFloatTy())
481    return &APFloat::IEEEsingle;
482  if (Ty->isDoubleTy())
483    return &APFloat::IEEEdouble;
484  if (Ty->isX86_FP80Ty())
485    return &APFloat::x87DoubleExtended;
486  else if (Ty->isFP128Ty())
487    return &APFloat::IEEEquad;
488
489  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
490  return &APFloat::PPCDoubleDouble;
491}
492
493void ConstantFP::anchor() { }
494
495/// get() - This returns a constant fp for the specified value in the
496/// specified type.  This should only be used for simple constant values like
497/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
498Constant *ConstantFP::get(Type *Ty, double V) {
499  LLVMContext &Context = Ty->getContext();
500
501  APFloat FV(V);
502  bool ignored;
503  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
504             APFloat::rmNearestTiesToEven, &ignored);
505  Constant *C = get(Context, FV);
506
507  // For vectors, broadcast the value.
508  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
509    return ConstantVector::getSplat(VTy->getNumElements(), C);
510
511  return C;
512}
513
514
515Constant *ConstantFP::get(Type *Ty, StringRef Str) {
516  LLVMContext &Context = Ty->getContext();
517
518  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
519  Constant *C = get(Context, FV);
520
521  // For vectors, broadcast the value.
522  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
523    return ConstantVector::getSplat(VTy->getNumElements(), C);
524
525  return C;
526}
527
528
529ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
530  LLVMContext &Context = Ty->getContext();
531  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
532  apf.changeSign();
533  return get(Context, apf);
534}
535
536
537Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
538  Type *ScalarTy = Ty->getScalarType();
539  if (ScalarTy->isFloatingPointTy()) {
540    Constant *C = getNegativeZero(ScalarTy);
541    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
542      return ConstantVector::getSplat(VTy->getNumElements(), C);
543    return C;
544  }
545
546  return Constant::getNullValue(Ty);
547}
548
549
550// ConstantFP accessors.
551ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
552  DenseMapAPFloatKeyInfo::KeyTy Key(V);
553
554  LLVMContextImpl* pImpl = Context.pImpl;
555
556  ConstantFP *&Slot = pImpl->FPConstants[Key];
557
558  if (!Slot) {
559    Type *Ty;
560    if (&V.getSemantics() == &APFloat::IEEEhalf)
561      Ty = Type::getHalfTy(Context);
562    else if (&V.getSemantics() == &APFloat::IEEEsingle)
563      Ty = Type::getFloatTy(Context);
564    else if (&V.getSemantics() == &APFloat::IEEEdouble)
565      Ty = Type::getDoubleTy(Context);
566    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
567      Ty = Type::getX86_FP80Ty(Context);
568    else if (&V.getSemantics() == &APFloat::IEEEquad)
569      Ty = Type::getFP128Ty(Context);
570    else {
571      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
572             "Unknown FP format");
573      Ty = Type::getPPC_FP128Ty(Context);
574    }
575    Slot = new ConstantFP(Ty, V);
576  }
577
578  return Slot;
579}
580
581ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
582  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
583  return ConstantFP::get(Ty->getContext(),
584                         APFloat::getInf(Semantics, Negative));
585}
586
587ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
588  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
589  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
590         "FP type Mismatch");
591}
592
593bool ConstantFP::isExactlyValue(const APFloat &V) const {
594  return Val.bitwiseIsEqual(V);
595}
596
597//===----------------------------------------------------------------------===//
598//                   ConstantAggregateZero Implementation
599//===----------------------------------------------------------------------===//
600
601/// getSequentialElement - If this CAZ has array or vector type, return a zero
602/// with the right element type.
603Constant *ConstantAggregateZero::getSequentialElement() const {
604  return Constant::getNullValue(getType()->getSequentialElementType());
605}
606
607/// getStructElement - If this CAZ has struct type, return a zero with the
608/// right element type for the specified element.
609Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
610  return Constant::getNullValue(getType()->getStructElementType(Elt));
611}
612
613/// getElementValue - Return a zero of the right value for the specified GEP
614/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
615Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
616  if (isa<SequentialType>(getType()))
617    return getSequentialElement();
618  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
619}
620
621/// getElementValue - Return a zero of the right value for the specified GEP
622/// index.
623Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
624  if (isa<SequentialType>(getType()))
625    return getSequentialElement();
626  return getStructElement(Idx);
627}
628
629
630//===----------------------------------------------------------------------===//
631//                         UndefValue Implementation
632//===----------------------------------------------------------------------===//
633
634/// getSequentialElement - If this undef has array or vector type, return an
635/// undef with the right element type.
636UndefValue *UndefValue::getSequentialElement() const {
637  return UndefValue::get(getType()->getSequentialElementType());
638}
639
640/// getStructElement - If this undef has struct type, return a zero with the
641/// right element type for the specified element.
642UndefValue *UndefValue::getStructElement(unsigned Elt) const {
643  return UndefValue::get(getType()->getStructElementType(Elt));
644}
645
646/// getElementValue - Return an undef of the right value for the specified GEP
647/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
648UndefValue *UndefValue::getElementValue(Constant *C) const {
649  if (isa<SequentialType>(getType()))
650    return getSequentialElement();
651  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
652}
653
654/// getElementValue - Return an undef of the right value for the specified GEP
655/// index.
656UndefValue *UndefValue::getElementValue(unsigned Idx) const {
657  if (isa<SequentialType>(getType()))
658    return getSequentialElement();
659  return getStructElement(Idx);
660}
661
662
663
664//===----------------------------------------------------------------------===//
665//                            ConstantXXX Classes
666//===----------------------------------------------------------------------===//
667
668template <typename ItTy, typename EltTy>
669static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
670  for (; Start != End; ++Start)
671    if (*Start != Elt)
672      return false;
673  return true;
674}
675
676ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
677  : Constant(T, ConstantArrayVal,
678             OperandTraits<ConstantArray>::op_end(this) - V.size(),
679             V.size()) {
680  assert(V.size() == T->getNumElements() &&
681         "Invalid initializer vector for constant array");
682  for (unsigned i = 0, e = V.size(); i != e; ++i)
683    assert(V[i]->getType() == T->getElementType() &&
684           "Initializer for array element doesn't match array element type!");
685  std::copy(V.begin(), V.end(), op_begin());
686}
687
688Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
689  // Empty arrays are canonicalized to ConstantAggregateZero.
690  if (V.empty())
691    return ConstantAggregateZero::get(Ty);
692
693  for (unsigned i = 0, e = V.size(); i != e; ++i) {
694    assert(V[i]->getType() == Ty->getElementType() &&
695           "Wrong type in array element initializer");
696  }
697  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
698
699  // If this is an all-zero array, return a ConstantAggregateZero object.  If
700  // all undef, return an UndefValue, if "all simple", then return a
701  // ConstantDataArray.
702  Constant *C = V[0];
703  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
704    return UndefValue::get(Ty);
705
706  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
707    return ConstantAggregateZero::get(Ty);
708
709  // Check to see if all of the elements are ConstantFP or ConstantInt and if
710  // the element type is compatible with ConstantDataVector.  If so, use it.
711  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
712    // We speculatively build the elements here even if it turns out that there
713    // is a constantexpr or something else weird in the array, since it is so
714    // uncommon for that to happen.
715    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
716      if (CI->getType()->isIntegerTy(8)) {
717        SmallVector<uint8_t, 16> Elts;
718        for (unsigned i = 0, e = V.size(); i != e; ++i)
719          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
720            Elts.push_back(CI->getZExtValue());
721          else
722            break;
723        if (Elts.size() == V.size())
724          return ConstantDataArray::get(C->getContext(), Elts);
725      } else if (CI->getType()->isIntegerTy(16)) {
726        SmallVector<uint16_t, 16> Elts;
727        for (unsigned i = 0, e = V.size(); i != e; ++i)
728          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
729            Elts.push_back(CI->getZExtValue());
730          else
731            break;
732        if (Elts.size() == V.size())
733          return ConstantDataArray::get(C->getContext(), Elts);
734      } else if (CI->getType()->isIntegerTy(32)) {
735        SmallVector<uint32_t, 16> Elts;
736        for (unsigned i = 0, e = V.size(); i != e; ++i)
737          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
738            Elts.push_back(CI->getZExtValue());
739          else
740            break;
741        if (Elts.size() == V.size())
742          return ConstantDataArray::get(C->getContext(), Elts);
743      } else if (CI->getType()->isIntegerTy(64)) {
744        SmallVector<uint64_t, 16> Elts;
745        for (unsigned i = 0, e = V.size(); i != e; ++i)
746          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
747            Elts.push_back(CI->getZExtValue());
748          else
749            break;
750        if (Elts.size() == V.size())
751          return ConstantDataArray::get(C->getContext(), Elts);
752      }
753    }
754
755    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
756      if (CFP->getType()->isFloatTy()) {
757        SmallVector<float, 16> Elts;
758        for (unsigned i = 0, e = V.size(); i != e; ++i)
759          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
760            Elts.push_back(CFP->getValueAPF().convertToFloat());
761          else
762            break;
763        if (Elts.size() == V.size())
764          return ConstantDataArray::get(C->getContext(), Elts);
765      } else if (CFP->getType()->isDoubleTy()) {
766        SmallVector<double, 16> Elts;
767        for (unsigned i = 0, e = V.size(); i != e; ++i)
768          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
769            Elts.push_back(CFP->getValueAPF().convertToDouble());
770          else
771            break;
772        if (Elts.size() == V.size())
773          return ConstantDataArray::get(C->getContext(), Elts);
774      }
775    }
776  }
777
778  // Otherwise, we really do want to create a ConstantArray.
779  return pImpl->ArrayConstants.getOrCreate(Ty, V);
780}
781
782/// getTypeForElements - Return an anonymous struct type to use for a constant
783/// with the specified set of elements.  The list must not be empty.
784StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
785                                               ArrayRef<Constant*> V,
786                                               bool Packed) {
787  unsigned VecSize = V.size();
788  SmallVector<Type*, 16> EltTypes(VecSize);
789  for (unsigned i = 0; i != VecSize; ++i)
790    EltTypes[i] = V[i]->getType();
791
792  return StructType::get(Context, EltTypes, Packed);
793}
794
795
796StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
797                                               bool Packed) {
798  assert(!V.empty() &&
799         "ConstantStruct::getTypeForElements cannot be called on empty list");
800  return getTypeForElements(V[0]->getContext(), V, Packed);
801}
802
803
804ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
805  : Constant(T, ConstantStructVal,
806             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
807             V.size()) {
808  assert(V.size() == T->getNumElements() &&
809         "Invalid initializer vector for constant structure");
810  for (unsigned i = 0, e = V.size(); i != e; ++i)
811    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
812           "Initializer for struct element doesn't match struct element type!");
813  std::copy(V.begin(), V.end(), op_begin());
814}
815
816// ConstantStruct accessors.
817Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
818  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
819         "Incorrect # elements specified to ConstantStruct::get");
820
821  // Create a ConstantAggregateZero value if all elements are zeros.
822  bool isZero = true;
823  bool isUndef = false;
824
825  if (!V.empty()) {
826    isUndef = isa<UndefValue>(V[0]);
827    isZero = V[0]->isNullValue();
828    if (isUndef || isZero) {
829      for (unsigned i = 0, e = V.size(); i != e; ++i) {
830        if (!V[i]->isNullValue())
831          isZero = false;
832        if (!isa<UndefValue>(V[i]))
833          isUndef = false;
834      }
835    }
836  }
837  if (isZero)
838    return ConstantAggregateZero::get(ST);
839  if (isUndef)
840    return UndefValue::get(ST);
841
842  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
843}
844
845Constant *ConstantStruct::get(StructType *T, ...) {
846  va_list ap;
847  SmallVector<Constant*, 8> Values;
848  va_start(ap, T);
849  while (Constant *Val = va_arg(ap, llvm::Constant*))
850    Values.push_back(Val);
851  va_end(ap);
852  return get(T, Values);
853}
854
855ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
856  : Constant(T, ConstantVectorVal,
857             OperandTraits<ConstantVector>::op_end(this) - V.size(),
858             V.size()) {
859  for (size_t i = 0, e = V.size(); i != e; i++)
860    assert(V[i]->getType() == T->getElementType() &&
861           "Initializer for vector element doesn't match vector element type!");
862  std::copy(V.begin(), V.end(), op_begin());
863}
864
865// ConstantVector accessors.
866Constant *ConstantVector::get(ArrayRef<Constant*> V) {
867  assert(!V.empty() && "Vectors can't be empty");
868  VectorType *T = VectorType::get(V.front()->getType(), V.size());
869  LLVMContextImpl *pImpl = T->getContext().pImpl;
870
871  // If this is an all-undef or all-zero vector, return a
872  // ConstantAggregateZero or UndefValue.
873  Constant *C = V[0];
874  bool isZero = C->isNullValue();
875  bool isUndef = isa<UndefValue>(C);
876
877  if (isZero || isUndef) {
878    for (unsigned i = 1, e = V.size(); i != e; ++i)
879      if (V[i] != C) {
880        isZero = isUndef = false;
881        break;
882      }
883  }
884
885  if (isZero)
886    return ConstantAggregateZero::get(T);
887  if (isUndef)
888    return UndefValue::get(T);
889
890  // Check to see if all of the elements are ConstantFP or ConstantInt and if
891  // the element type is compatible with ConstantDataVector.  If so, use it.
892  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
893    // We speculatively build the elements here even if it turns out that there
894    // is a constantexpr or something else weird in the array, since it is so
895    // uncommon for that to happen.
896    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
897      if (CI->getType()->isIntegerTy(8)) {
898        SmallVector<uint8_t, 16> Elts;
899        for (unsigned i = 0, e = V.size(); i != e; ++i)
900          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
901            Elts.push_back(CI->getZExtValue());
902          else
903            break;
904        if (Elts.size() == V.size())
905          return ConstantDataVector::get(C->getContext(), Elts);
906      } else if (CI->getType()->isIntegerTy(16)) {
907        SmallVector<uint16_t, 16> Elts;
908        for (unsigned i = 0, e = V.size(); i != e; ++i)
909          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
910            Elts.push_back(CI->getZExtValue());
911          else
912            break;
913        if (Elts.size() == V.size())
914          return ConstantDataVector::get(C->getContext(), Elts);
915      } else if (CI->getType()->isIntegerTy(32)) {
916        SmallVector<uint32_t, 16> Elts;
917        for (unsigned i = 0, e = V.size(); i != e; ++i)
918          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
919            Elts.push_back(CI->getZExtValue());
920          else
921            break;
922        if (Elts.size() == V.size())
923          return ConstantDataVector::get(C->getContext(), Elts);
924      } else if (CI->getType()->isIntegerTy(64)) {
925        SmallVector<uint64_t, 16> Elts;
926        for (unsigned i = 0, e = V.size(); i != e; ++i)
927          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
928            Elts.push_back(CI->getZExtValue());
929          else
930            break;
931        if (Elts.size() == V.size())
932          return ConstantDataVector::get(C->getContext(), Elts);
933      }
934    }
935
936    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
937      if (CFP->getType()->isFloatTy()) {
938        SmallVector<float, 16> Elts;
939        for (unsigned i = 0, e = V.size(); i != e; ++i)
940          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
941            Elts.push_back(CFP->getValueAPF().convertToFloat());
942          else
943            break;
944        if (Elts.size() == V.size())
945          return ConstantDataVector::get(C->getContext(), Elts);
946      } else if (CFP->getType()->isDoubleTy()) {
947        SmallVector<double, 16> Elts;
948        for (unsigned i = 0, e = V.size(); i != e; ++i)
949          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
950            Elts.push_back(CFP->getValueAPF().convertToDouble());
951          else
952            break;
953        if (Elts.size() == V.size())
954          return ConstantDataVector::get(C->getContext(), Elts);
955      }
956    }
957  }
958
959  // Otherwise, the element type isn't compatible with ConstantDataVector, or
960  // the operand list constants a ConstantExpr or something else strange.
961  return pImpl->VectorConstants.getOrCreate(T, V);
962}
963
964Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
965  // If this splat is compatible with ConstantDataVector, use it instead of
966  // ConstantVector.
967  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
968      ConstantDataSequential::isElementTypeCompatible(V->getType()))
969    return ConstantDataVector::getSplat(NumElts, V);
970
971  SmallVector<Constant*, 32> Elts(NumElts, V);
972  return get(Elts);
973}
974
975
976// Utility function for determining if a ConstantExpr is a CastOp or not. This
977// can't be inline because we don't want to #include Instruction.h into
978// Constant.h
979bool ConstantExpr::isCast() const {
980  return Instruction::isCast(getOpcode());
981}
982
983bool ConstantExpr::isCompare() const {
984  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
985}
986
987bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
988  if (getOpcode() != Instruction::GetElementPtr) return false;
989
990  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
991  User::const_op_iterator OI = llvm::next(this->op_begin());
992
993  // Skip the first index, as it has no static limit.
994  ++GEPI;
995  ++OI;
996
997  // The remaining indices must be compile-time known integers within the
998  // bounds of the corresponding notional static array types.
999  for (; GEPI != E; ++GEPI, ++OI) {
1000    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1001    if (!CI) return false;
1002    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1003      if (CI->getValue().getActiveBits() > 64 ||
1004          CI->getZExtValue() >= ATy->getNumElements())
1005        return false;
1006  }
1007
1008  // All the indices checked out.
1009  return true;
1010}
1011
1012bool ConstantExpr::hasIndices() const {
1013  return getOpcode() == Instruction::ExtractValue ||
1014         getOpcode() == Instruction::InsertValue;
1015}
1016
1017ArrayRef<unsigned> ConstantExpr::getIndices() const {
1018  if (const ExtractValueConstantExpr *EVCE =
1019        dyn_cast<ExtractValueConstantExpr>(this))
1020    return EVCE->Indices;
1021
1022  return cast<InsertValueConstantExpr>(this)->Indices;
1023}
1024
1025unsigned ConstantExpr::getPredicate() const {
1026  assert(isCompare());
1027  return ((const CompareConstantExpr*)this)->predicate;
1028}
1029
1030/// getWithOperandReplaced - Return a constant expression identical to this
1031/// one, but with the specified operand set to the specified value.
1032Constant *
1033ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1034  assert(Op->getType() == getOperand(OpNo)->getType() &&
1035         "Replacing operand with value of different type!");
1036  if (getOperand(OpNo) == Op)
1037    return const_cast<ConstantExpr*>(this);
1038
1039  SmallVector<Constant*, 8> NewOps;
1040  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1041    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1042
1043  return getWithOperands(NewOps);
1044}
1045
1046/// getWithOperands - This returns the current constant expression with the
1047/// operands replaced with the specified values.  The specified array must
1048/// have the same number of operands as our current one.
1049Constant *ConstantExpr::
1050getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1051  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1052  bool AnyChange = Ty != getType();
1053  for (unsigned i = 0; i != Ops.size(); ++i)
1054    AnyChange |= Ops[i] != getOperand(i);
1055
1056  if (!AnyChange)  // No operands changed, return self.
1057    return const_cast<ConstantExpr*>(this);
1058
1059  switch (getOpcode()) {
1060  case Instruction::Trunc:
1061  case Instruction::ZExt:
1062  case Instruction::SExt:
1063  case Instruction::FPTrunc:
1064  case Instruction::FPExt:
1065  case Instruction::UIToFP:
1066  case Instruction::SIToFP:
1067  case Instruction::FPToUI:
1068  case Instruction::FPToSI:
1069  case Instruction::PtrToInt:
1070  case Instruction::IntToPtr:
1071  case Instruction::BitCast:
1072    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1073  case Instruction::Select:
1074    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1075  case Instruction::InsertElement:
1076    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1077  case Instruction::ExtractElement:
1078    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1079  case Instruction::InsertValue:
1080    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1081  case Instruction::ExtractValue:
1082    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1083  case Instruction::ShuffleVector:
1084    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1085  case Instruction::GetElementPtr:
1086    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1087                                      cast<GEPOperator>(this)->isInBounds());
1088  case Instruction::ICmp:
1089  case Instruction::FCmp:
1090    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1091  default:
1092    assert(getNumOperands() == 2 && "Must be binary operator?");
1093    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1094  }
1095}
1096
1097
1098//===----------------------------------------------------------------------===//
1099//                      isValueValidForType implementations
1100
1101bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1102  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1103  if (Ty->isIntegerTy(1))
1104    return Val == 0 || Val == 1;
1105  if (NumBits >= 64)
1106    return true; // always true, has to fit in largest type
1107  uint64_t Max = (1ll << NumBits) - 1;
1108  return Val <= Max;
1109}
1110
1111bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1112  unsigned NumBits = Ty->getIntegerBitWidth();
1113  if (Ty->isIntegerTy(1))
1114    return Val == 0 || Val == 1 || Val == -1;
1115  if (NumBits >= 64)
1116    return true; // always true, has to fit in largest type
1117  int64_t Min = -(1ll << (NumBits-1));
1118  int64_t Max = (1ll << (NumBits-1)) - 1;
1119  return (Val >= Min && Val <= Max);
1120}
1121
1122bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1123  // convert modifies in place, so make a copy.
1124  APFloat Val2 = APFloat(Val);
1125  bool losesInfo;
1126  switch (Ty->getTypeID()) {
1127  default:
1128    return false;         // These can't be represented as floating point!
1129
1130  // FIXME rounding mode needs to be more flexible
1131  case Type::HalfTyID: {
1132    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1133      return true;
1134    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1135    return !losesInfo;
1136  }
1137  case Type::FloatTyID: {
1138    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1139      return true;
1140    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1141    return !losesInfo;
1142  }
1143  case Type::DoubleTyID: {
1144    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1145        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1146        &Val2.getSemantics() == &APFloat::IEEEdouble)
1147      return true;
1148    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1149    return !losesInfo;
1150  }
1151  case Type::X86_FP80TyID:
1152    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1153           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1154           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1155           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1156  case Type::FP128TyID:
1157    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1158           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1159           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1160           &Val2.getSemantics() == &APFloat::IEEEquad;
1161  case Type::PPC_FP128TyID:
1162    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1163           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1164           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1165           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1166  }
1167}
1168
1169
1170//===----------------------------------------------------------------------===//
1171//                      Factory Function Implementation
1172
1173ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1174  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1175         "Cannot create an aggregate zero of non-aggregate type!");
1176
1177  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1178  if (Entry == 0)
1179    Entry = new ConstantAggregateZero(Ty);
1180
1181  return Entry;
1182}
1183
1184/// destroyConstant - Remove the constant from the constant table.
1185///
1186void ConstantAggregateZero::destroyConstant() {
1187  getContext().pImpl->CAZConstants.erase(getType());
1188  destroyConstantImpl();
1189}
1190
1191/// destroyConstant - Remove the constant from the constant table...
1192///
1193void ConstantArray::destroyConstant() {
1194  getType()->getContext().pImpl->ArrayConstants.remove(this);
1195  destroyConstantImpl();
1196}
1197
1198
1199//---- ConstantStruct::get() implementation...
1200//
1201
1202// destroyConstant - Remove the constant from the constant table...
1203//
1204void ConstantStruct::destroyConstant() {
1205  getType()->getContext().pImpl->StructConstants.remove(this);
1206  destroyConstantImpl();
1207}
1208
1209// destroyConstant - Remove the constant from the constant table...
1210//
1211void ConstantVector::destroyConstant() {
1212  getType()->getContext().pImpl->VectorConstants.remove(this);
1213  destroyConstantImpl();
1214}
1215
1216/// getSplatValue - If this is a splat constant, where all of the
1217/// elements have the same value, return that value. Otherwise return null.
1218Constant *ConstantVector::getSplatValue() const {
1219  // Check out first element.
1220  Constant *Elt = getOperand(0);
1221  // Then make sure all remaining elements point to the same value.
1222  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1223    if (getOperand(I) != Elt)
1224      return 0;
1225  return Elt;
1226}
1227
1228//---- ConstantPointerNull::get() implementation.
1229//
1230
1231ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1232  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1233  if (Entry == 0)
1234    Entry = new ConstantPointerNull(Ty);
1235
1236  return Entry;
1237}
1238
1239// destroyConstant - Remove the constant from the constant table...
1240//
1241void ConstantPointerNull::destroyConstant() {
1242  getContext().pImpl->CPNConstants.erase(getType());
1243  // Free the constant and any dangling references to it.
1244  destroyConstantImpl();
1245}
1246
1247
1248//---- UndefValue::get() implementation.
1249//
1250
1251UndefValue *UndefValue::get(Type *Ty) {
1252  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1253  if (Entry == 0)
1254    Entry = new UndefValue(Ty);
1255
1256  return Entry;
1257}
1258
1259// destroyConstant - Remove the constant from the constant table.
1260//
1261void UndefValue::destroyConstant() {
1262  // Free the constant and any dangling references to it.
1263  getContext().pImpl->UVConstants.erase(getType());
1264  destroyConstantImpl();
1265}
1266
1267//---- BlockAddress::get() implementation.
1268//
1269
1270BlockAddress *BlockAddress::get(BasicBlock *BB) {
1271  assert(BB->getParent() != 0 && "Block must have a parent");
1272  return get(BB->getParent(), BB);
1273}
1274
1275BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1276  BlockAddress *&BA =
1277    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1278  if (BA == 0)
1279    BA = new BlockAddress(F, BB);
1280
1281  assert(BA->getFunction() == F && "Basic block moved between functions");
1282  return BA;
1283}
1284
1285BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1286: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1287           &Op<0>(), 2) {
1288  setOperand(0, F);
1289  setOperand(1, BB);
1290  BB->AdjustBlockAddressRefCount(1);
1291}
1292
1293
1294// destroyConstant - Remove the constant from the constant table.
1295//
1296void BlockAddress::destroyConstant() {
1297  getFunction()->getType()->getContext().pImpl
1298    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1299  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1300  destroyConstantImpl();
1301}
1302
1303void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1304  // This could be replacing either the Basic Block or the Function.  In either
1305  // case, we have to remove the map entry.
1306  Function *NewF = getFunction();
1307  BasicBlock *NewBB = getBasicBlock();
1308
1309  if (U == &Op<0>())
1310    NewF = cast<Function>(To);
1311  else
1312    NewBB = cast<BasicBlock>(To);
1313
1314  // See if the 'new' entry already exists, if not, just update this in place
1315  // and return early.
1316  BlockAddress *&NewBA =
1317    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1318  if (NewBA == 0) {
1319    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1320
1321    // Remove the old entry, this can't cause the map to rehash (just a
1322    // tombstone will get added).
1323    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1324                                                            getBasicBlock()));
1325    NewBA = this;
1326    setOperand(0, NewF);
1327    setOperand(1, NewBB);
1328    getBasicBlock()->AdjustBlockAddressRefCount(1);
1329    return;
1330  }
1331
1332  // Otherwise, I do need to replace this with an existing value.
1333  assert(NewBA != this && "I didn't contain From!");
1334
1335  // Everyone using this now uses the replacement.
1336  replaceAllUsesWith(NewBA);
1337
1338  destroyConstant();
1339}
1340
1341//---- ConstantExpr::get() implementations.
1342//
1343
1344/// This is a utility function to handle folding of casts and lookup of the
1345/// cast in the ExprConstants map. It is used by the various get* methods below.
1346static inline Constant *getFoldedCast(
1347  Instruction::CastOps opc, Constant *C, Type *Ty) {
1348  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1349  // Fold a few common cases
1350  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1351    return FC;
1352
1353  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1354
1355  // Look up the constant in the table first to ensure uniqueness
1356  std::vector<Constant*> argVec(1, C);
1357  ExprMapKeyType Key(opc, argVec);
1358
1359  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1360}
1361
1362Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1363  Instruction::CastOps opc = Instruction::CastOps(oc);
1364  assert(Instruction::isCast(opc) && "opcode out of range");
1365  assert(C && Ty && "Null arguments to getCast");
1366  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1367
1368  switch (opc) {
1369  default:
1370    llvm_unreachable("Invalid cast opcode");
1371  case Instruction::Trunc:    return getTrunc(C, Ty);
1372  case Instruction::ZExt:     return getZExt(C, Ty);
1373  case Instruction::SExt:     return getSExt(C, Ty);
1374  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1375  case Instruction::FPExt:    return getFPExtend(C, Ty);
1376  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1377  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1378  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1379  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1380  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1381  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1382  case Instruction::BitCast:  return getBitCast(C, Ty);
1383  }
1384}
1385
1386Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1387  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1388    return getBitCast(C, Ty);
1389  return getZExt(C, Ty);
1390}
1391
1392Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1393  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1394    return getBitCast(C, Ty);
1395  return getSExt(C, Ty);
1396}
1397
1398Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1399  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1400    return getBitCast(C, Ty);
1401  return getTrunc(C, Ty);
1402}
1403
1404Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1405  assert(S->getType()->isPointerTy() && "Invalid cast");
1406  assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1407
1408  if (Ty->isIntegerTy())
1409    return getPtrToInt(S, Ty);
1410  return getBitCast(S, Ty);
1411}
1412
1413Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1414                                       bool isSigned) {
1415  assert(C->getType()->isIntOrIntVectorTy() &&
1416         Ty->isIntOrIntVectorTy() && "Invalid cast");
1417  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1418  unsigned DstBits = Ty->getScalarSizeInBits();
1419  Instruction::CastOps opcode =
1420    (SrcBits == DstBits ? Instruction::BitCast :
1421     (SrcBits > DstBits ? Instruction::Trunc :
1422      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1423  return getCast(opcode, C, Ty);
1424}
1425
1426Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1427  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1428         "Invalid cast");
1429  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1430  unsigned DstBits = Ty->getScalarSizeInBits();
1431  if (SrcBits == DstBits)
1432    return C; // Avoid a useless cast
1433  Instruction::CastOps opcode =
1434    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1435  return getCast(opcode, C, Ty);
1436}
1437
1438Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1439#ifndef NDEBUG
1440  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1441  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1442#endif
1443  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1444  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1445  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1446  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1447         "SrcTy must be larger than DestTy for Trunc!");
1448
1449  return getFoldedCast(Instruction::Trunc, C, Ty);
1450}
1451
1452Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1453#ifndef NDEBUG
1454  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1455  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1456#endif
1457  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1458  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1459  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1460  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1461         "SrcTy must be smaller than DestTy for SExt!");
1462
1463  return getFoldedCast(Instruction::SExt, C, Ty);
1464}
1465
1466Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1467#ifndef NDEBUG
1468  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1469  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1470#endif
1471  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1472  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1473  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1474  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1475         "SrcTy must be smaller than DestTy for ZExt!");
1476
1477  return getFoldedCast(Instruction::ZExt, C, Ty);
1478}
1479
1480Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1481#ifndef NDEBUG
1482  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1483  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1484#endif
1485  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1486  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1487         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1488         "This is an illegal floating point truncation!");
1489  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1490}
1491
1492Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1493#ifndef NDEBUG
1494  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1495  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1496#endif
1497  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1498  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1499         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1500         "This is an illegal floating point extension!");
1501  return getFoldedCast(Instruction::FPExt, C, Ty);
1502}
1503
1504Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1505#ifndef NDEBUG
1506  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1507  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1508#endif
1509  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1510  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1511         "This is an illegal uint to floating point cast!");
1512  return getFoldedCast(Instruction::UIToFP, C, Ty);
1513}
1514
1515Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1516#ifndef NDEBUG
1517  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519#endif
1520  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1522         "This is an illegal sint to floating point cast!");
1523  return getFoldedCast(Instruction::SIToFP, C, Ty);
1524}
1525
1526Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1527#ifndef NDEBUG
1528  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1529  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1530#endif
1531  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1532  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1533         "This is an illegal floating point to uint cast!");
1534  return getFoldedCast(Instruction::FPToUI, C, Ty);
1535}
1536
1537Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1538#ifndef NDEBUG
1539  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1540  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1541#endif
1542  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1543  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1544         "This is an illegal floating point to sint cast!");
1545  return getFoldedCast(Instruction::FPToSI, C, Ty);
1546}
1547
1548Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1549  assert(C->getType()->getScalarType()->isPointerTy() &&
1550         "PtrToInt source must be pointer or pointer vector");
1551  assert(DstTy->getScalarType()->isIntegerTy() &&
1552         "PtrToInt destination must be integer or integer vector");
1553  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1554  if (isa<VectorType>(C->getType()))
1555    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1556           "Invalid cast between a different number of vector elements");
1557  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1558}
1559
1560Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1561  assert(C->getType()->getScalarType()->isIntegerTy() &&
1562         "IntToPtr source must be integer or integer vector");
1563  assert(DstTy->getScalarType()->isPointerTy() &&
1564         "IntToPtr destination must be a pointer or pointer vector");
1565  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1566  if (isa<VectorType>(C->getType()))
1567    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1568           "Invalid cast between a different number of vector elements");
1569  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1570}
1571
1572Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1573  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1574         "Invalid constantexpr bitcast!");
1575
1576  // It is common to ask for a bitcast of a value to its own type, handle this
1577  // speedily.
1578  if (C->getType() == DstTy) return C;
1579
1580  return getFoldedCast(Instruction::BitCast, C, DstTy);
1581}
1582
1583Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1584                            unsigned Flags) {
1585  // Check the operands for consistency first.
1586  assert(Opcode >= Instruction::BinaryOpsBegin &&
1587         Opcode <  Instruction::BinaryOpsEnd   &&
1588         "Invalid opcode in binary constant expression");
1589  assert(C1->getType() == C2->getType() &&
1590         "Operand types in binary constant expression should match");
1591
1592#ifndef NDEBUG
1593  switch (Opcode) {
1594  case Instruction::Add:
1595  case Instruction::Sub:
1596  case Instruction::Mul:
1597    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1598    assert(C1->getType()->isIntOrIntVectorTy() &&
1599           "Tried to create an integer operation on a non-integer type!");
1600    break;
1601  case Instruction::FAdd:
1602  case Instruction::FSub:
1603  case Instruction::FMul:
1604    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1605    assert(C1->getType()->isFPOrFPVectorTy() &&
1606           "Tried to create a floating-point operation on a "
1607           "non-floating-point type!");
1608    break;
1609  case Instruction::UDiv:
1610  case Instruction::SDiv:
1611    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1612    assert(C1->getType()->isIntOrIntVectorTy() &&
1613           "Tried to create an arithmetic operation on a non-arithmetic type!");
1614    break;
1615  case Instruction::FDiv:
1616    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1617    assert(C1->getType()->isFPOrFPVectorTy() &&
1618           "Tried to create an arithmetic operation on a non-arithmetic type!");
1619    break;
1620  case Instruction::URem:
1621  case Instruction::SRem:
1622    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1623    assert(C1->getType()->isIntOrIntVectorTy() &&
1624           "Tried to create an arithmetic operation on a non-arithmetic type!");
1625    break;
1626  case Instruction::FRem:
1627    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1628    assert(C1->getType()->isFPOrFPVectorTy() &&
1629           "Tried to create an arithmetic operation on a non-arithmetic type!");
1630    break;
1631  case Instruction::And:
1632  case Instruction::Or:
1633  case Instruction::Xor:
1634    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1635    assert(C1->getType()->isIntOrIntVectorTy() &&
1636           "Tried to create a logical operation on a non-integral type!");
1637    break;
1638  case Instruction::Shl:
1639  case Instruction::LShr:
1640  case Instruction::AShr:
1641    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1642    assert(C1->getType()->isIntOrIntVectorTy() &&
1643           "Tried to create a shift operation on a non-integer type!");
1644    break;
1645  default:
1646    break;
1647  }
1648#endif
1649
1650  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1651    return FC;          // Fold a few common cases.
1652
1653  std::vector<Constant*> argVec(1, C1);
1654  argVec.push_back(C2);
1655  ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1656
1657  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1658  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1659}
1660
1661Constant *ConstantExpr::getSizeOf(Type* Ty) {
1662  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1663  // Note that a non-inbounds gep is used, as null isn't within any object.
1664  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1665  Constant *GEP = getGetElementPtr(
1666                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1667  return getPtrToInt(GEP,
1668                     Type::getInt64Ty(Ty->getContext()));
1669}
1670
1671Constant *ConstantExpr::getAlignOf(Type* Ty) {
1672  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1673  // Note that a non-inbounds gep is used, as null isn't within any object.
1674  Type *AligningTy =
1675    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1676  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1677  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1678  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1679  Constant *Indices[2] = { Zero, One };
1680  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1681  return getPtrToInt(GEP,
1682                     Type::getInt64Ty(Ty->getContext()));
1683}
1684
1685Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1686  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1687                                           FieldNo));
1688}
1689
1690Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1691  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1692  // Note that a non-inbounds gep is used, as null isn't within any object.
1693  Constant *GEPIdx[] = {
1694    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1695    FieldNo
1696  };
1697  Constant *GEP = getGetElementPtr(
1698                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1699  return getPtrToInt(GEP,
1700                     Type::getInt64Ty(Ty->getContext()));
1701}
1702
1703Constant *ConstantExpr::getCompare(unsigned short Predicate,
1704                                   Constant *C1, Constant *C2) {
1705  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1706
1707  switch (Predicate) {
1708  default: llvm_unreachable("Invalid CmpInst predicate");
1709  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1710  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1711  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1712  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1713  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1714  case CmpInst::FCMP_TRUE:
1715    return getFCmp(Predicate, C1, C2);
1716
1717  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1718  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1719  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1720  case CmpInst::ICMP_SLE:
1721    return getICmp(Predicate, C1, C2);
1722  }
1723}
1724
1725Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1726  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1727
1728  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1729    return SC;        // Fold common cases
1730
1731  std::vector<Constant*> argVec(3, C);
1732  argVec[1] = V1;
1733  argVec[2] = V2;
1734  ExprMapKeyType Key(Instruction::Select, argVec);
1735
1736  LLVMContextImpl *pImpl = C->getContext().pImpl;
1737  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1738}
1739
1740Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1741                                         bool InBounds) {
1742  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1743    return FC;          // Fold a few common cases.
1744
1745  // Get the result type of the getelementptr!
1746  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1747  assert(Ty && "GEP indices invalid!");
1748  unsigned AS = C->getType()->getPointerAddressSpace();
1749  Type *ReqTy = Ty->getPointerTo(AS);
1750
1751  assert(C->getType()->isPointerTy() &&
1752         "Non-pointer type for constant GetElementPtr expression");
1753  // Look up the constant in the table first to ensure uniqueness
1754  std::vector<Constant*> ArgVec;
1755  ArgVec.reserve(1 + Idxs.size());
1756  ArgVec.push_back(C);
1757  for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1758    ArgVec.push_back(cast<Constant>(Idxs[i]));
1759  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1760                           InBounds ? GEPOperator::IsInBounds : 0);
1761
1762  LLVMContextImpl *pImpl = C->getContext().pImpl;
1763  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1764}
1765
1766Constant *
1767ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1768  assert(LHS->getType() == RHS->getType());
1769  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1770         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1771
1772  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1773    return FC;          // Fold a few common cases...
1774
1775  // Look up the constant in the table first to ensure uniqueness
1776  std::vector<Constant*> ArgVec;
1777  ArgVec.push_back(LHS);
1778  ArgVec.push_back(RHS);
1779  // Get the key type with both the opcode and predicate
1780  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1781
1782  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1783  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1784    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1785
1786  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1787  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1788}
1789
1790Constant *
1791ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1792  assert(LHS->getType() == RHS->getType());
1793  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1794
1795  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1796    return FC;          // Fold a few common cases...
1797
1798  // Look up the constant in the table first to ensure uniqueness
1799  std::vector<Constant*> ArgVec;
1800  ArgVec.push_back(LHS);
1801  ArgVec.push_back(RHS);
1802  // Get the key type with both the opcode and predicate
1803  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1804
1805  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1806  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1807    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1808
1809  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1810  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1811}
1812
1813Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1814  assert(Val->getType()->isVectorTy() &&
1815         "Tried to create extractelement operation on non-vector type!");
1816  assert(Idx->getType()->isIntegerTy(32) &&
1817         "Extractelement index must be i32 type!");
1818
1819  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1820    return FC;          // Fold a few common cases.
1821
1822  // Look up the constant in the table first to ensure uniqueness
1823  std::vector<Constant*> ArgVec(1, Val);
1824  ArgVec.push_back(Idx);
1825  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1826
1827  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1828  Type *ReqTy = Val->getType()->getVectorElementType();
1829  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1830}
1831
1832Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1833                                         Constant *Idx) {
1834  assert(Val->getType()->isVectorTy() &&
1835         "Tried to create insertelement operation on non-vector type!");
1836  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1837         "Insertelement types must match!");
1838  assert(Idx->getType()->isIntegerTy(32) &&
1839         "Insertelement index must be i32 type!");
1840
1841  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1842    return FC;          // Fold a few common cases.
1843  // Look up the constant in the table first to ensure uniqueness
1844  std::vector<Constant*> ArgVec(1, Val);
1845  ArgVec.push_back(Elt);
1846  ArgVec.push_back(Idx);
1847  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1848
1849  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1850  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1851}
1852
1853Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1854                                         Constant *Mask) {
1855  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1856         "Invalid shuffle vector constant expr operands!");
1857
1858  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1859    return FC;          // Fold a few common cases.
1860
1861  unsigned NElts = Mask->getType()->getVectorNumElements();
1862  Type *EltTy = V1->getType()->getVectorElementType();
1863  Type *ShufTy = VectorType::get(EltTy, NElts);
1864
1865  // Look up the constant in the table first to ensure uniqueness
1866  std::vector<Constant*> ArgVec(1, V1);
1867  ArgVec.push_back(V2);
1868  ArgVec.push_back(Mask);
1869  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1870
1871  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1872  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1873}
1874
1875Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1876                                       ArrayRef<unsigned> Idxs) {
1877  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1878                                          Idxs) == Val->getType() &&
1879         "insertvalue indices invalid!");
1880  assert(Agg->getType()->isFirstClassType() &&
1881         "Non-first-class type for constant insertvalue expression");
1882  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1883  assert(FC && "insertvalue constant expr couldn't be folded!");
1884  return FC;
1885}
1886
1887Constant *ConstantExpr::getExtractValue(Constant *Agg,
1888                                        ArrayRef<unsigned> Idxs) {
1889  assert(Agg->getType()->isFirstClassType() &&
1890         "Tried to create extractelement operation on non-first-class type!");
1891
1892  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1893  (void)ReqTy;
1894  assert(ReqTy && "extractvalue indices invalid!");
1895
1896  assert(Agg->getType()->isFirstClassType() &&
1897         "Non-first-class type for constant extractvalue expression");
1898  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1899  assert(FC && "ExtractValue constant expr couldn't be folded!");
1900  return FC;
1901}
1902
1903Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1904  assert(C->getType()->isIntOrIntVectorTy() &&
1905         "Cannot NEG a nonintegral value!");
1906  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1907                C, HasNUW, HasNSW);
1908}
1909
1910Constant *ConstantExpr::getFNeg(Constant *C) {
1911  assert(C->getType()->isFPOrFPVectorTy() &&
1912         "Cannot FNEG a non-floating-point value!");
1913  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1914}
1915
1916Constant *ConstantExpr::getNot(Constant *C) {
1917  assert(C->getType()->isIntOrIntVectorTy() &&
1918         "Cannot NOT a nonintegral value!");
1919  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1920}
1921
1922Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1923                               bool HasNUW, bool HasNSW) {
1924  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1925                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1926  return get(Instruction::Add, C1, C2, Flags);
1927}
1928
1929Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1930  return get(Instruction::FAdd, C1, C2);
1931}
1932
1933Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1934                               bool HasNUW, bool HasNSW) {
1935  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1936                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1937  return get(Instruction::Sub, C1, C2, Flags);
1938}
1939
1940Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1941  return get(Instruction::FSub, C1, C2);
1942}
1943
1944Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1945                               bool HasNUW, bool HasNSW) {
1946  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1947                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1948  return get(Instruction::Mul, C1, C2, Flags);
1949}
1950
1951Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1952  return get(Instruction::FMul, C1, C2);
1953}
1954
1955Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1956  return get(Instruction::UDiv, C1, C2,
1957             isExact ? PossiblyExactOperator::IsExact : 0);
1958}
1959
1960Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1961  return get(Instruction::SDiv, C1, C2,
1962             isExact ? PossiblyExactOperator::IsExact : 0);
1963}
1964
1965Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1966  return get(Instruction::FDiv, C1, C2);
1967}
1968
1969Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1970  return get(Instruction::URem, C1, C2);
1971}
1972
1973Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1974  return get(Instruction::SRem, C1, C2);
1975}
1976
1977Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1978  return get(Instruction::FRem, C1, C2);
1979}
1980
1981Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1982  return get(Instruction::And, C1, C2);
1983}
1984
1985Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1986  return get(Instruction::Or, C1, C2);
1987}
1988
1989Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1990  return get(Instruction::Xor, C1, C2);
1991}
1992
1993Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1994                               bool HasNUW, bool HasNSW) {
1995  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1996                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1997  return get(Instruction::Shl, C1, C2, Flags);
1998}
1999
2000Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2001  return get(Instruction::LShr, C1, C2,
2002             isExact ? PossiblyExactOperator::IsExact : 0);
2003}
2004
2005Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2006  return get(Instruction::AShr, C1, C2,
2007             isExact ? PossiblyExactOperator::IsExact : 0);
2008}
2009
2010/// getBinOpIdentity - Return the identity for the given binary operation,
2011/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2012/// returns null if the operator doesn't have an identity.
2013Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2014  switch (Opcode) {
2015  default:
2016    // Doesn't have an identity.
2017    return 0;
2018
2019  case Instruction::Add:
2020  case Instruction::Or:
2021  case Instruction::Xor:
2022    return Constant::getNullValue(Ty);
2023
2024  case Instruction::Mul:
2025    return ConstantInt::get(Ty, 1);
2026
2027  case Instruction::And:
2028    return Constant::getAllOnesValue(Ty);
2029  }
2030}
2031
2032/// getBinOpAbsorber - Return the absorbing element for the given binary
2033/// operation, i.e. a constant C such that X op C = C and C op X = C for
2034/// every X.  For example, this returns zero for integer multiplication.
2035/// It returns null if the operator doesn't have an absorbing element.
2036Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2037  switch (Opcode) {
2038  default:
2039    // Doesn't have an absorber.
2040    return 0;
2041
2042  case Instruction::Or:
2043    return Constant::getAllOnesValue(Ty);
2044
2045  case Instruction::And:
2046  case Instruction::Mul:
2047    return Constant::getNullValue(Ty);
2048  }
2049}
2050
2051// destroyConstant - Remove the constant from the constant table...
2052//
2053void ConstantExpr::destroyConstant() {
2054  getType()->getContext().pImpl->ExprConstants.remove(this);
2055  destroyConstantImpl();
2056}
2057
2058const char *ConstantExpr::getOpcodeName() const {
2059  return Instruction::getOpcodeName(getOpcode());
2060}
2061
2062
2063
2064GetElementPtrConstantExpr::
2065GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2066                          Type *DestTy)
2067  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2068                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2069                 - (IdxList.size()+1), IdxList.size()+1) {
2070  OperandList[0] = C;
2071  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2072    OperandList[i+1] = IdxList[i];
2073}
2074
2075//===----------------------------------------------------------------------===//
2076//                       ConstantData* implementations
2077
2078void ConstantDataArray::anchor() {}
2079void ConstantDataVector::anchor() {}
2080
2081/// getElementType - Return the element type of the array/vector.
2082Type *ConstantDataSequential::getElementType() const {
2083  return getType()->getElementType();
2084}
2085
2086StringRef ConstantDataSequential::getRawDataValues() const {
2087  return StringRef(DataElements, getNumElements()*getElementByteSize());
2088}
2089
2090/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2091/// formed with a vector or array of the specified element type.
2092/// ConstantDataArray only works with normal float and int types that are
2093/// stored densely in memory, not with things like i42 or x86_f80.
2094bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2095  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2096  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2097    switch (IT->getBitWidth()) {
2098    case 8:
2099    case 16:
2100    case 32:
2101    case 64:
2102      return true;
2103    default: break;
2104    }
2105  }
2106  return false;
2107}
2108
2109/// getNumElements - Return the number of elements in the array or vector.
2110unsigned ConstantDataSequential::getNumElements() const {
2111  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2112    return AT->getNumElements();
2113  return getType()->getVectorNumElements();
2114}
2115
2116
2117/// getElementByteSize - Return the size in bytes of the elements in the data.
2118uint64_t ConstantDataSequential::getElementByteSize() const {
2119  return getElementType()->getPrimitiveSizeInBits()/8;
2120}
2121
2122/// getElementPointer - Return the start of the specified element.
2123const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2124  assert(Elt < getNumElements() && "Invalid Elt");
2125  return DataElements+Elt*getElementByteSize();
2126}
2127
2128
2129/// isAllZeros - return true if the array is empty or all zeros.
2130static bool isAllZeros(StringRef Arr) {
2131  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2132    if (*I != 0)
2133      return false;
2134  return true;
2135}
2136
2137/// getImpl - This is the underlying implementation of all of the
2138/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2139/// the correct element type.  We take the bytes in as a StringRef because
2140/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2141Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2142  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2143  // If the elements are all zero or there are no elements, return a CAZ, which
2144  // is more dense and canonical.
2145  if (isAllZeros(Elements))
2146    return ConstantAggregateZero::get(Ty);
2147
2148  // Do a lookup to see if we have already formed one of these.
2149  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2150    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2151
2152  // The bucket can point to a linked list of different CDS's that have the same
2153  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2154  // of i8, or a 1-element array of i32.  They'll both end up in the same
2155  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2156  ConstantDataSequential **Entry = &Slot.getValue();
2157  for (ConstantDataSequential *Node = *Entry; Node != 0;
2158       Entry = &Node->Next, Node = *Entry)
2159    if (Node->getType() == Ty)
2160      return Node;
2161
2162  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2163  // and return it.
2164  if (isa<ArrayType>(Ty))
2165    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2166
2167  assert(isa<VectorType>(Ty));
2168  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2169}
2170
2171void ConstantDataSequential::destroyConstant() {
2172  // Remove the constant from the StringMap.
2173  StringMap<ConstantDataSequential*> &CDSConstants =
2174    getType()->getContext().pImpl->CDSConstants;
2175
2176  StringMap<ConstantDataSequential*>::iterator Slot =
2177    CDSConstants.find(getRawDataValues());
2178
2179  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2180
2181  ConstantDataSequential **Entry = &Slot->getValue();
2182
2183  // Remove the entry from the hash table.
2184  if ((*Entry)->Next == 0) {
2185    // If there is only one value in the bucket (common case) it must be this
2186    // entry, and removing the entry should remove the bucket completely.
2187    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2188    getContext().pImpl->CDSConstants.erase(Slot);
2189  } else {
2190    // Otherwise, there are multiple entries linked off the bucket, unlink the
2191    // node we care about but keep the bucket around.
2192    for (ConstantDataSequential *Node = *Entry; ;
2193         Entry = &Node->Next, Node = *Entry) {
2194      assert(Node && "Didn't find entry in its uniquing hash table!");
2195      // If we found our entry, unlink it from the list and we're done.
2196      if (Node == this) {
2197        *Entry = Node->Next;
2198        break;
2199      }
2200    }
2201  }
2202
2203  // If we were part of a list, make sure that we don't delete the list that is
2204  // still owned by the uniquing map.
2205  Next = 0;
2206
2207  // Finally, actually delete it.
2208  destroyConstantImpl();
2209}
2210
2211/// get() constructors - Return a constant with array type with an element
2212/// count and element type matching the ArrayRef passed in.  Note that this
2213/// can return a ConstantAggregateZero object.
2214Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2215  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2216  const char *Data = reinterpret_cast<const char *>(Elts.data());
2217  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2218}
2219Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2220  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2221  const char *Data = reinterpret_cast<const char *>(Elts.data());
2222  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2223}
2224Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2225  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2226  const char *Data = reinterpret_cast<const char *>(Elts.data());
2227  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2228}
2229Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2230  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2231  const char *Data = reinterpret_cast<const char *>(Elts.data());
2232  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2233}
2234Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2235  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2236  const char *Data = reinterpret_cast<const char *>(Elts.data());
2237  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2238}
2239Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2240  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2241  const char *Data = reinterpret_cast<const char *>(Elts.data());
2242  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2243}
2244
2245/// getString - This method constructs a CDS and initializes it with a text
2246/// string. The default behavior (AddNull==true) causes a null terminator to
2247/// be placed at the end of the array (increasing the length of the string by
2248/// one more than the StringRef would normally indicate.  Pass AddNull=false
2249/// to disable this behavior.
2250Constant *ConstantDataArray::getString(LLVMContext &Context,
2251                                       StringRef Str, bool AddNull) {
2252  if (!AddNull) {
2253    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2254    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2255               Str.size()));
2256  }
2257
2258  SmallVector<uint8_t, 64> ElementVals;
2259  ElementVals.append(Str.begin(), Str.end());
2260  ElementVals.push_back(0);
2261  return get(Context, ElementVals);
2262}
2263
2264/// get() constructors - Return a constant with vector type with an element
2265/// count and element type matching the ArrayRef passed in.  Note that this
2266/// can return a ConstantAggregateZero object.
2267Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2268  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2269  const char *Data = reinterpret_cast<const char *>(Elts.data());
2270  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2271}
2272Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2273  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2274  const char *Data = reinterpret_cast<const char *>(Elts.data());
2275  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2276}
2277Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2278  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2279  const char *Data = reinterpret_cast<const char *>(Elts.data());
2280  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2281}
2282Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2283  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2284  const char *Data = reinterpret_cast<const char *>(Elts.data());
2285  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2286}
2287Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2288  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2289  const char *Data = reinterpret_cast<const char *>(Elts.data());
2290  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2291}
2292Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2293  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2294  const char *Data = reinterpret_cast<const char *>(Elts.data());
2295  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2296}
2297
2298Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2299  assert(isElementTypeCompatible(V->getType()) &&
2300         "Element type not compatible with ConstantData");
2301  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2302    if (CI->getType()->isIntegerTy(8)) {
2303      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2304      return get(V->getContext(), Elts);
2305    }
2306    if (CI->getType()->isIntegerTy(16)) {
2307      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2308      return get(V->getContext(), Elts);
2309    }
2310    if (CI->getType()->isIntegerTy(32)) {
2311      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2312      return get(V->getContext(), Elts);
2313    }
2314    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2315    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2316    return get(V->getContext(), Elts);
2317  }
2318
2319  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2320    if (CFP->getType()->isFloatTy()) {
2321      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2322      return get(V->getContext(), Elts);
2323    }
2324    if (CFP->getType()->isDoubleTy()) {
2325      SmallVector<double, 16> Elts(NumElts,
2326                                   CFP->getValueAPF().convertToDouble());
2327      return get(V->getContext(), Elts);
2328    }
2329  }
2330  return ConstantVector::getSplat(NumElts, V);
2331}
2332
2333
2334/// getElementAsInteger - If this is a sequential container of integers (of
2335/// any size), return the specified element in the low bits of a uint64_t.
2336uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2337  assert(isa<IntegerType>(getElementType()) &&
2338         "Accessor can only be used when element is an integer");
2339  const char *EltPtr = getElementPointer(Elt);
2340
2341  // The data is stored in host byte order, make sure to cast back to the right
2342  // type to load with the right endianness.
2343  switch (getElementType()->getIntegerBitWidth()) {
2344  default: llvm_unreachable("Invalid bitwidth for CDS");
2345  case 8:
2346    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2347  case 16:
2348    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2349  case 32:
2350    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2351  case 64:
2352    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2353  }
2354}
2355
2356/// getElementAsAPFloat - If this is a sequential container of floating point
2357/// type, return the specified element as an APFloat.
2358APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2359  const char *EltPtr = getElementPointer(Elt);
2360
2361  switch (getElementType()->getTypeID()) {
2362  default:
2363    llvm_unreachable("Accessor can only be used when element is float/double!");
2364  case Type::FloatTyID: {
2365      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2366      return APFloat(*const_cast<float *>(FloatPrt));
2367    }
2368  case Type::DoubleTyID: {
2369      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2370      return APFloat(*const_cast<double *>(DoublePtr));
2371    }
2372  }
2373}
2374
2375/// getElementAsFloat - If this is an sequential container of floats, return
2376/// the specified element as a float.
2377float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2378  assert(getElementType()->isFloatTy() &&
2379         "Accessor can only be used when element is a 'float'");
2380  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2381  return *const_cast<float *>(EltPtr);
2382}
2383
2384/// getElementAsDouble - If this is an sequential container of doubles, return
2385/// the specified element as a float.
2386double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2387  assert(getElementType()->isDoubleTy() &&
2388         "Accessor can only be used when element is a 'float'");
2389  const double *EltPtr =
2390      reinterpret_cast<const double *>(getElementPointer(Elt));
2391  return *const_cast<double *>(EltPtr);
2392}
2393
2394/// getElementAsConstant - Return a Constant for a specified index's element.
2395/// Note that this has to compute a new constant to return, so it isn't as
2396/// efficient as getElementAsInteger/Float/Double.
2397Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2398  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2399    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2400
2401  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2402}
2403
2404/// isString - This method returns true if this is an array of i8.
2405bool ConstantDataSequential::isString() const {
2406  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2407}
2408
2409/// isCString - This method returns true if the array "isString", ends with a
2410/// nul byte, and does not contains any other nul bytes.
2411bool ConstantDataSequential::isCString() const {
2412  if (!isString())
2413    return false;
2414
2415  StringRef Str = getAsString();
2416
2417  // The last value must be nul.
2418  if (Str.back() != 0) return false;
2419
2420  // Other elements must be non-nul.
2421  return Str.drop_back().find(0) == StringRef::npos;
2422}
2423
2424/// getSplatValue - If this is a splat constant, meaning that all of the
2425/// elements have the same value, return that value. Otherwise return NULL.
2426Constant *ConstantDataVector::getSplatValue() const {
2427  const char *Base = getRawDataValues().data();
2428
2429  // Compare elements 1+ to the 0'th element.
2430  unsigned EltSize = getElementByteSize();
2431  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2432    if (memcmp(Base, Base+i*EltSize, EltSize))
2433      return 0;
2434
2435  // If they're all the same, return the 0th one as a representative.
2436  return getElementAsConstant(0);
2437}
2438
2439//===----------------------------------------------------------------------===//
2440//                replaceUsesOfWithOnConstant implementations
2441
2442/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2443/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2444/// etc.
2445///
2446/// Note that we intentionally replace all uses of From with To here.  Consider
2447/// a large array that uses 'From' 1000 times.  By handling this case all here,
2448/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2449/// single invocation handles all 1000 uses.  Handling them one at a time would
2450/// work, but would be really slow because it would have to unique each updated
2451/// array instance.
2452///
2453void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2454                                                Use *U) {
2455  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2456  Constant *ToC = cast<Constant>(To);
2457
2458  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2459
2460  SmallVector<Constant*, 8> Values;
2461  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2462  Lookup.first = cast<ArrayType>(getType());
2463  Values.reserve(getNumOperands());  // Build replacement array.
2464
2465  // Fill values with the modified operands of the constant array.  Also,
2466  // compute whether this turns into an all-zeros array.
2467  unsigned NumUpdated = 0;
2468
2469  // Keep track of whether all the values in the array are "ToC".
2470  bool AllSame = true;
2471  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2472    Constant *Val = cast<Constant>(O->get());
2473    if (Val == From) {
2474      Val = ToC;
2475      ++NumUpdated;
2476    }
2477    Values.push_back(Val);
2478    AllSame &= Val == ToC;
2479  }
2480
2481  Constant *Replacement = 0;
2482  if (AllSame && ToC->isNullValue()) {
2483    Replacement = ConstantAggregateZero::get(getType());
2484  } else if (AllSame && isa<UndefValue>(ToC)) {
2485    Replacement = UndefValue::get(getType());
2486  } else {
2487    // Check to see if we have this array type already.
2488    Lookup.second = makeArrayRef(Values);
2489    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2490      pImpl->ArrayConstants.find(Lookup);
2491
2492    if (I != pImpl->ArrayConstants.map_end()) {
2493      Replacement = I->first;
2494    } else {
2495      // Okay, the new shape doesn't exist in the system yet.  Instead of
2496      // creating a new constant array, inserting it, replaceallusesof'ing the
2497      // old with the new, then deleting the old... just update the current one
2498      // in place!
2499      pImpl->ArrayConstants.remove(this);
2500
2501      // Update to the new value.  Optimize for the case when we have a single
2502      // operand that we're changing, but handle bulk updates efficiently.
2503      if (NumUpdated == 1) {
2504        unsigned OperandToUpdate = U - OperandList;
2505        assert(getOperand(OperandToUpdate) == From &&
2506               "ReplaceAllUsesWith broken!");
2507        setOperand(OperandToUpdate, ToC);
2508      } else {
2509        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2510          if (getOperand(i) == From)
2511            setOperand(i, ToC);
2512      }
2513      pImpl->ArrayConstants.insert(this);
2514      return;
2515    }
2516  }
2517
2518  // Otherwise, I do need to replace this with an existing value.
2519  assert(Replacement != this && "I didn't contain From!");
2520
2521  // Everyone using this now uses the replacement.
2522  replaceAllUsesWith(Replacement);
2523
2524  // Delete the old constant!
2525  destroyConstant();
2526}
2527
2528void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2529                                                 Use *U) {
2530  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2531  Constant *ToC = cast<Constant>(To);
2532
2533  unsigned OperandToUpdate = U-OperandList;
2534  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2535
2536  SmallVector<Constant*, 8> Values;
2537  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2538  Lookup.first = cast<StructType>(getType());
2539  Values.reserve(getNumOperands());  // Build replacement struct.
2540
2541  // Fill values with the modified operands of the constant struct.  Also,
2542  // compute whether this turns into an all-zeros struct.
2543  bool isAllZeros = false;
2544  bool isAllUndef = false;
2545  if (ToC->isNullValue()) {
2546    isAllZeros = true;
2547    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2548      Constant *Val = cast<Constant>(O->get());
2549      Values.push_back(Val);
2550      if (isAllZeros) isAllZeros = Val->isNullValue();
2551    }
2552  } else if (isa<UndefValue>(ToC)) {
2553    isAllUndef = true;
2554    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2555      Constant *Val = cast<Constant>(O->get());
2556      Values.push_back(Val);
2557      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2558    }
2559  } else {
2560    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2561      Values.push_back(cast<Constant>(O->get()));
2562  }
2563  Values[OperandToUpdate] = ToC;
2564
2565  LLVMContextImpl *pImpl = getContext().pImpl;
2566
2567  Constant *Replacement = 0;
2568  if (isAllZeros) {
2569    Replacement = ConstantAggregateZero::get(getType());
2570  } else if (isAllUndef) {
2571    Replacement = UndefValue::get(getType());
2572  } else {
2573    // Check to see if we have this struct type already.
2574    Lookup.second = makeArrayRef(Values);
2575    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2576      pImpl->StructConstants.find(Lookup);
2577
2578    if (I != pImpl->StructConstants.map_end()) {
2579      Replacement = I->first;
2580    } else {
2581      // Okay, the new shape doesn't exist in the system yet.  Instead of
2582      // creating a new constant struct, inserting it, replaceallusesof'ing the
2583      // old with the new, then deleting the old... just update the current one
2584      // in place!
2585      pImpl->StructConstants.remove(this);
2586
2587      // Update to the new value.
2588      setOperand(OperandToUpdate, ToC);
2589      pImpl->StructConstants.insert(this);
2590      return;
2591    }
2592  }
2593
2594  assert(Replacement != this && "I didn't contain From!");
2595
2596  // Everyone using this now uses the replacement.
2597  replaceAllUsesWith(Replacement);
2598
2599  // Delete the old constant!
2600  destroyConstant();
2601}
2602
2603void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2604                                                 Use *U) {
2605  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2606
2607  SmallVector<Constant*, 8> Values;
2608  Values.reserve(getNumOperands());  // Build replacement array...
2609  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2610    Constant *Val = getOperand(i);
2611    if (Val == From) Val = cast<Constant>(To);
2612    Values.push_back(Val);
2613  }
2614
2615  Constant *Replacement = get(Values);
2616  assert(Replacement != this && "I didn't contain From!");
2617
2618  // Everyone using this now uses the replacement.
2619  replaceAllUsesWith(Replacement);
2620
2621  // Delete the old constant!
2622  destroyConstant();
2623}
2624
2625void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2626                                               Use *U) {
2627  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2628  Constant *To = cast<Constant>(ToV);
2629
2630  SmallVector<Constant*, 8> NewOps;
2631  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2632    Constant *Op = getOperand(i);
2633    NewOps.push_back(Op == From ? To : Op);
2634  }
2635
2636  Constant *Replacement = getWithOperands(NewOps);
2637  assert(Replacement != this && "I didn't contain From!");
2638
2639  // Everyone using this now uses the replacement.
2640  replaceAllUsesWith(Replacement);
2641
2642  // Delete the old constant!
2643  destroyConstant();
2644}
2645