1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DIBuilder.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/IRBuilder.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/MDBuilder.h"
27#include "llvm/Metadata.h"
28#include "llvm/Operator.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Analysis/MemoryBuiltins.h"
34#include "llvm/Analysis/ProfileInfo.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46//  Local constant propagation.
47//
48
49/// ConstantFoldTerminator - If a terminator instruction is predicated on a
50/// constant value, convert it into an unconditional branch to the constant
51/// destination.  This is a nontrivial operation because the successors of this
52/// basic block must have their PHI nodes updated.
53/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
54/// conditions and indirectbr addresses this might make dead if
55/// DeleteDeadConditions is true.
56bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
57                                  const TargetLibraryInfo *TLI) {
58  TerminatorInst *T = BB->getTerminator();
59  IRBuilder<> Builder(T);
60
61  // Branch - See if we are conditional jumping on constant
62  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
63    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
64    BasicBlock *Dest1 = BI->getSuccessor(0);
65    BasicBlock *Dest2 = BI->getSuccessor(1);
66
67    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
68      // Are we branching on constant?
69      // YES.  Change to unconditional branch...
70      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
71      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
72
73      //cerr << "Function: " << T->getParent()->getParent()
74      //     << "\nRemoving branch from " << T->getParent()
75      //     << "\n\nTo: " << OldDest << endl;
76
77      // Let the basic block know that we are letting go of it.  Based on this,
78      // it will adjust it's PHI nodes.
79      OldDest->removePredecessor(BB);
80
81      // Replace the conditional branch with an unconditional one.
82      Builder.CreateBr(Destination);
83      BI->eraseFromParent();
84      return true;
85    }
86
87    if (Dest2 == Dest1) {       // Conditional branch to same location?
88      // This branch matches something like this:
89      //     br bool %cond, label %Dest, label %Dest
90      // and changes it into:  br label %Dest
91
92      // Let the basic block know that we are letting go of one copy of it.
93      assert(BI->getParent() && "Terminator not inserted in block!");
94      Dest1->removePredecessor(BI->getParent());
95
96      // Replace the conditional branch with an unconditional one.
97      Builder.CreateBr(Dest1);
98      Value *Cond = BI->getCondition();
99      BI->eraseFromParent();
100      if (DeleteDeadConditions)
101        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
102      return true;
103    }
104    return false;
105  }
106
107  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
108    // If we are switching on a constant, we can convert the switch into a
109    // single branch instruction!
110    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
111    BasicBlock *TheOnlyDest = SI->getDefaultDest();
112    BasicBlock *DefaultDest = TheOnlyDest;
113
114    // Figure out which case it goes to.
115    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
116         i != e; ++i) {
117      // Found case matching a constant operand?
118      if (i.getCaseValue() == CI) {
119        TheOnlyDest = i.getCaseSuccessor();
120        break;
121      }
122
123      // Check to see if this branch is going to the same place as the default
124      // dest.  If so, eliminate it as an explicit compare.
125      if (i.getCaseSuccessor() == DefaultDest) {
126        MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
127        // MD should have 2 + NumCases operands.
128        if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
129          // Collect branch weights into a vector.
130          SmallVector<uint32_t, 8> Weights;
131          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
132               ++MD_i) {
133            ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
134            assert(CI);
135            Weights.push_back(CI->getValue().getZExtValue());
136          }
137          // Merge weight of this case to the default weight.
138          unsigned idx = i.getCaseIndex();
139          Weights[0] += Weights[idx+1];
140          // Remove weight for this case.
141          std::swap(Weights[idx+1], Weights.back());
142          Weights.pop_back();
143          SI->setMetadata(LLVMContext::MD_prof,
144                          MDBuilder(BB->getContext()).
145                          createBranchWeights(Weights));
146        }
147        // Remove this entry.
148        DefaultDest->removePredecessor(SI->getParent());
149        SI->removeCase(i);
150        --i; --e;
151        continue;
152      }
153
154      // Otherwise, check to see if the switch only branches to one destination.
155      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
156      // destinations.
157      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
158    }
159
160    if (CI && !TheOnlyDest) {
161      // Branching on a constant, but not any of the cases, go to the default
162      // successor.
163      TheOnlyDest = SI->getDefaultDest();
164    }
165
166    // If we found a single destination that we can fold the switch into, do so
167    // now.
168    if (TheOnlyDest) {
169      // Insert the new branch.
170      Builder.CreateBr(TheOnlyDest);
171      BasicBlock *BB = SI->getParent();
172
173      // Remove entries from PHI nodes which we no longer branch to...
174      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
175        // Found case matching a constant operand?
176        BasicBlock *Succ = SI->getSuccessor(i);
177        if (Succ == TheOnlyDest)
178          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
179        else
180          Succ->removePredecessor(BB);
181      }
182
183      // Delete the old switch.
184      Value *Cond = SI->getCondition();
185      SI->eraseFromParent();
186      if (DeleteDeadConditions)
187        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
188      return true;
189    }
190
191    if (SI->getNumCases() == 1) {
192      // Otherwise, we can fold this switch into a conditional branch
193      // instruction if it has only one non-default destination.
194      SwitchInst::CaseIt FirstCase = SI->case_begin();
195      IntegersSubset& Case = FirstCase.getCaseValueEx();
196      if (Case.isSingleNumber()) {
197        // FIXME: Currently work with ConstantInt based numbers.
198        Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
199             Case.getSingleNumber(0).toConstantInt(),
200            "cond");
201
202        // Insert the new branch.
203        BranchInst *NewBr = Builder.CreateCondBr(Cond,
204                                FirstCase.getCaseSuccessor(),
205                                SI->getDefaultDest());
206        MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
207        if (MD && MD->getNumOperands() == 3) {
208          ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
209          ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
210          assert(SICase && SIDef);
211          // The TrueWeight should be the weight for the single case of SI.
212          NewBr->setMetadata(LLVMContext::MD_prof,
213                 MDBuilder(BB->getContext()).
214                 createBranchWeights(SICase->getValue().getZExtValue(),
215                                     SIDef->getValue().getZExtValue()));
216        }
217
218        // Delete the old switch.
219        SI->eraseFromParent();
220        return true;
221      }
222    }
223    return false;
224  }
225
226  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
227    // indirectbr blockaddress(@F, @BB) -> br label @BB
228    if (BlockAddress *BA =
229          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
230      BasicBlock *TheOnlyDest = BA->getBasicBlock();
231      // Insert the new branch.
232      Builder.CreateBr(TheOnlyDest);
233
234      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
235        if (IBI->getDestination(i) == TheOnlyDest)
236          TheOnlyDest = 0;
237        else
238          IBI->getDestination(i)->removePredecessor(IBI->getParent());
239      }
240      Value *Address = IBI->getAddress();
241      IBI->eraseFromParent();
242      if (DeleteDeadConditions)
243        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
244
245      // If we didn't find our destination in the IBI successor list, then we
246      // have undefined behavior.  Replace the unconditional branch with an
247      // 'unreachable' instruction.
248      if (TheOnlyDest) {
249        BB->getTerminator()->eraseFromParent();
250        new UnreachableInst(BB->getContext(), BB);
251      }
252
253      return true;
254    }
255  }
256
257  return false;
258}
259
260
261//===----------------------------------------------------------------------===//
262//  Local dead code elimination.
263//
264
265/// isInstructionTriviallyDead - Return true if the result produced by the
266/// instruction is not used, and the instruction has no side effects.
267///
268bool llvm::isInstructionTriviallyDead(Instruction *I,
269                                      const TargetLibraryInfo *TLI) {
270  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
271
272  // We don't want the landingpad instruction removed by anything this general.
273  if (isa<LandingPadInst>(I))
274    return false;
275
276  // We don't want debug info removed by anything this general, unless
277  // debug info is empty.
278  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
279    if (DDI->getAddress())
280      return false;
281    return true;
282  }
283  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
284    if (DVI->getValue())
285      return false;
286    return true;
287  }
288
289  if (!I->mayHaveSideEffects()) return true;
290
291  // Special case intrinsics that "may have side effects" but can be deleted
292  // when dead.
293  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
294    // Safe to delete llvm.stacksave if dead.
295    if (II->getIntrinsicID() == Intrinsic::stacksave)
296      return true;
297
298    // Lifetime intrinsics are dead when their right-hand is undef.
299    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
300        II->getIntrinsicID() == Intrinsic::lifetime_end)
301      return isa<UndefValue>(II->getArgOperand(1));
302  }
303
304  if (isAllocLikeFn(I, TLI)) return true;
305
306  if (CallInst *CI = isFreeCall(I, TLI))
307    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
308      return C->isNullValue() || isa<UndefValue>(C);
309
310  return false;
311}
312
313/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
314/// trivially dead instruction, delete it.  If that makes any of its operands
315/// trivially dead, delete them too, recursively.  Return true if any
316/// instructions were deleted.
317bool
318llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
319                                                 const TargetLibraryInfo *TLI) {
320  Instruction *I = dyn_cast<Instruction>(V);
321  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
322    return false;
323
324  SmallVector<Instruction*, 16> DeadInsts;
325  DeadInsts.push_back(I);
326
327  do {
328    I = DeadInsts.pop_back_val();
329
330    // Null out all of the instruction's operands to see if any operand becomes
331    // dead as we go.
332    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
333      Value *OpV = I->getOperand(i);
334      I->setOperand(i, 0);
335
336      if (!OpV->use_empty()) continue;
337
338      // If the operand is an instruction that became dead as we nulled out the
339      // operand, and if it is 'trivially' dead, delete it in a future loop
340      // iteration.
341      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
342        if (isInstructionTriviallyDead(OpI, TLI))
343          DeadInsts.push_back(OpI);
344    }
345
346    I->eraseFromParent();
347  } while (!DeadInsts.empty());
348
349  return true;
350}
351
352/// areAllUsesEqual - Check whether the uses of a value are all the same.
353/// This is similar to Instruction::hasOneUse() except this will also return
354/// true when there are no uses or multiple uses that all refer to the same
355/// value.
356static bool areAllUsesEqual(Instruction *I) {
357  Value::use_iterator UI = I->use_begin();
358  Value::use_iterator UE = I->use_end();
359  if (UI == UE)
360    return true;
361
362  User *TheUse = *UI;
363  for (++UI; UI != UE; ++UI) {
364    if (*UI != TheUse)
365      return false;
366  }
367  return true;
368}
369
370/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
371/// dead PHI node, due to being a def-use chain of single-use nodes that
372/// either forms a cycle or is terminated by a trivially dead instruction,
373/// delete it.  If that makes any of its operands trivially dead, delete them
374/// too, recursively.  Return true if a change was made.
375bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
376                                        const TargetLibraryInfo *TLI) {
377  SmallPtrSet<Instruction*, 4> Visited;
378  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
379       I = cast<Instruction>(*I->use_begin())) {
380    if (I->use_empty())
381      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
382
383    // If we find an instruction more than once, we're on a cycle that
384    // won't prove fruitful.
385    if (!Visited.insert(I)) {
386      // Break the cycle and delete the instruction and its operands.
387      I->replaceAllUsesWith(UndefValue::get(I->getType()));
388      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
389      return true;
390    }
391  }
392  return false;
393}
394
395/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
396/// simplify any instructions in it and recursively delete dead instructions.
397///
398/// This returns true if it changed the code, note that it can delete
399/// instructions in other blocks as well in this block.
400bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
401                                       const TargetLibraryInfo *TLI) {
402  bool MadeChange = false;
403
404#ifndef NDEBUG
405  // In debug builds, ensure that the terminator of the block is never replaced
406  // or deleted by these simplifications. The idea of simplification is that it
407  // cannot introduce new instructions, and there is no way to replace the
408  // terminator of a block without introducing a new instruction.
409  AssertingVH<Instruction> TerminatorVH(--BB->end());
410#endif
411
412  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
413    assert(!BI->isTerminator());
414    Instruction *Inst = BI++;
415
416    WeakVH BIHandle(BI);
417    if (recursivelySimplifyInstruction(Inst, TD)) {
418      MadeChange = true;
419      if (BIHandle != BI)
420        BI = BB->begin();
421      continue;
422    }
423
424    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
425    if (BIHandle != BI)
426      BI = BB->begin();
427  }
428  return MadeChange;
429}
430
431//===----------------------------------------------------------------------===//
432//  Control Flow Graph Restructuring.
433//
434
435
436/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
437/// method is called when we're about to delete Pred as a predecessor of BB.  If
438/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
439///
440/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
441/// nodes that collapse into identity values.  For example, if we have:
442///   x = phi(1, 0, 0, 0)
443///   y = and x, z
444///
445/// .. and delete the predecessor corresponding to the '1', this will attempt to
446/// recursively fold the and to 0.
447void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
448                                        TargetData *TD) {
449  // This only adjusts blocks with PHI nodes.
450  if (!isa<PHINode>(BB->begin()))
451    return;
452
453  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
454  // them down.  This will leave us with single entry phi nodes and other phis
455  // that can be removed.
456  BB->removePredecessor(Pred, true);
457
458  WeakVH PhiIt = &BB->front();
459  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
460    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
461    Value *OldPhiIt = PhiIt;
462
463    if (!recursivelySimplifyInstruction(PN, TD))
464      continue;
465
466    // If recursive simplification ended up deleting the next PHI node we would
467    // iterate to, then our iterator is invalid, restart scanning from the top
468    // of the block.
469    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
470  }
471}
472
473
474/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
475/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
476/// between them, moving the instructions in the predecessor into DestBB and
477/// deleting the predecessor block.
478///
479void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
480  // If BB has single-entry PHI nodes, fold them.
481  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
482    Value *NewVal = PN->getIncomingValue(0);
483    // Replace self referencing PHI with undef, it must be dead.
484    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
485    PN->replaceAllUsesWith(NewVal);
486    PN->eraseFromParent();
487  }
488
489  BasicBlock *PredBB = DestBB->getSinglePredecessor();
490  assert(PredBB && "Block doesn't have a single predecessor!");
491
492  // Zap anything that took the address of DestBB.  Not doing this will give the
493  // address an invalid value.
494  if (DestBB->hasAddressTaken()) {
495    BlockAddress *BA = BlockAddress::get(DestBB);
496    Constant *Replacement =
497      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
498    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
499                                                     BA->getType()));
500    BA->destroyConstant();
501  }
502
503  // Anything that branched to PredBB now branches to DestBB.
504  PredBB->replaceAllUsesWith(DestBB);
505
506  // Splice all the instructions from PredBB to DestBB.
507  PredBB->getTerminator()->eraseFromParent();
508  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
509
510  if (P) {
511    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
512    if (DT) {
513      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
514      DT->changeImmediateDominator(DestBB, PredBBIDom);
515      DT->eraseNode(PredBB);
516    }
517    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
518    if (PI) {
519      PI->replaceAllUses(PredBB, DestBB);
520      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
521    }
522  }
523  // Nuke BB.
524  PredBB->eraseFromParent();
525}
526
527/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
528/// almost-empty BB ending in an unconditional branch to Succ, into succ.
529///
530/// Assumption: Succ is the single successor for BB.
531///
532static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
533  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
534
535  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
536        << Succ->getName() << "\n");
537  // Shortcut, if there is only a single predecessor it must be BB and merging
538  // is always safe
539  if (Succ->getSinglePredecessor()) return true;
540
541  // Make a list of the predecessors of BB
542  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
543
544  // Look at all the phi nodes in Succ, to see if they present a conflict when
545  // merging these blocks
546  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
547    PHINode *PN = cast<PHINode>(I);
548
549    // If the incoming value from BB is again a PHINode in
550    // BB which has the same incoming value for *PI as PN does, we can
551    // merge the phi nodes and then the blocks can still be merged
552    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
553    if (BBPN && BBPN->getParent() == BB) {
554      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
555        BasicBlock *IBB = PN->getIncomingBlock(PI);
556        if (BBPreds.count(IBB) &&
557            BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
558          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
559                << Succ->getName() << " is conflicting with "
560                << BBPN->getName() << " with regard to common predecessor "
561                << IBB->getName() << "\n");
562          return false;
563        }
564      }
565    } else {
566      Value* Val = PN->getIncomingValueForBlock(BB);
567      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
568        // See if the incoming value for the common predecessor is equal to the
569        // one for BB, in which case this phi node will not prevent the merging
570        // of the block.
571        BasicBlock *IBB = PN->getIncomingBlock(PI);
572        if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
573          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
574                << Succ->getName() << " is conflicting with regard to common "
575                << "predecessor " << IBB->getName() << "\n");
576          return false;
577        }
578      }
579    }
580  }
581
582  return true;
583}
584
585/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
586/// unconditional branch, and contains no instructions other than PHI nodes,
587/// potential side-effect free intrinsics and the branch.  If possible,
588/// eliminate BB by rewriting all the predecessors to branch to the successor
589/// block and return true.  If we can't transform, return false.
590bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
591  assert(BB != &BB->getParent()->getEntryBlock() &&
592         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
593
594  // We can't eliminate infinite loops.
595  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
596  if (BB == Succ) return false;
597
598  // Check to see if merging these blocks would cause conflicts for any of the
599  // phi nodes in BB or Succ. If not, we can safely merge.
600  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
601
602  // Check for cases where Succ has multiple predecessors and a PHI node in BB
603  // has uses which will not disappear when the PHI nodes are merged.  It is
604  // possible to handle such cases, but difficult: it requires checking whether
605  // BB dominates Succ, which is non-trivial to calculate in the case where
606  // Succ has multiple predecessors.  Also, it requires checking whether
607  // constructing the necessary self-referential PHI node doesn't intoduce any
608  // conflicts; this isn't too difficult, but the previous code for doing this
609  // was incorrect.
610  //
611  // Note that if this check finds a live use, BB dominates Succ, so BB is
612  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
613  // folding the branch isn't profitable in that case anyway.
614  if (!Succ->getSinglePredecessor()) {
615    BasicBlock::iterator BBI = BB->begin();
616    while (isa<PHINode>(*BBI)) {
617      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
618           UI != E; ++UI) {
619        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
620          if (PN->getIncomingBlock(UI) != BB)
621            return false;
622        } else {
623          return false;
624        }
625      }
626      ++BBI;
627    }
628  }
629
630  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
631
632  if (isa<PHINode>(Succ->begin())) {
633    // If there is more than one pred of succ, and there are PHI nodes in
634    // the successor, then we need to add incoming edges for the PHI nodes
635    //
636    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
637
638    // Loop over all of the PHI nodes in the successor of BB.
639    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
640      PHINode *PN = cast<PHINode>(I);
641      Value *OldVal = PN->removeIncomingValue(BB, false);
642      assert(OldVal && "No entry in PHI for Pred BB!");
643
644      // If this incoming value is one of the PHI nodes in BB, the new entries
645      // in the PHI node are the entries from the old PHI.
646      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
647        PHINode *OldValPN = cast<PHINode>(OldVal);
648        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
649          // Note that, since we are merging phi nodes and BB and Succ might
650          // have common predecessors, we could end up with a phi node with
651          // identical incoming branches. This will be cleaned up later (and
652          // will trigger asserts if we try to clean it up now, without also
653          // simplifying the corresponding conditional branch).
654          PN->addIncoming(OldValPN->getIncomingValue(i),
655                          OldValPN->getIncomingBlock(i));
656      } else {
657        // Add an incoming value for each of the new incoming values.
658        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
659          PN->addIncoming(OldVal, BBPreds[i]);
660      }
661    }
662  }
663
664  if (Succ->getSinglePredecessor()) {
665    // BB is the only predecessor of Succ, so Succ will end up with exactly
666    // the same predecessors BB had.
667
668    // Copy over any phi, debug or lifetime instruction.
669    BB->getTerminator()->eraseFromParent();
670    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
671  } else {
672    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
673      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
674      assert(PN->use_empty() && "There shouldn't be any uses here!");
675      PN->eraseFromParent();
676    }
677  }
678
679  // Everything that jumped to BB now goes to Succ.
680  BB->replaceAllUsesWith(Succ);
681  if (!Succ->hasName()) Succ->takeName(BB);
682  BB->eraseFromParent();              // Delete the old basic block.
683  return true;
684}
685
686/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
687/// nodes in this block. This doesn't try to be clever about PHI nodes
688/// which differ only in the order of the incoming values, but instcombine
689/// orders them so it usually won't matter.
690///
691bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
692  bool Changed = false;
693
694  // This implementation doesn't currently consider undef operands
695  // specially. Theoretically, two phis which are identical except for
696  // one having an undef where the other doesn't could be collapsed.
697
698  // Map from PHI hash values to PHI nodes. If multiple PHIs have
699  // the same hash value, the element is the first PHI in the
700  // linked list in CollisionMap.
701  DenseMap<uintptr_t, PHINode *> HashMap;
702
703  // Maintain linked lists of PHI nodes with common hash values.
704  DenseMap<PHINode *, PHINode *> CollisionMap;
705
706  // Examine each PHI.
707  for (BasicBlock::iterator I = BB->begin();
708       PHINode *PN = dyn_cast<PHINode>(I++); ) {
709    // Compute a hash value on the operands. Instcombine will likely have sorted
710    // them, which helps expose duplicates, but we have to check all the
711    // operands to be safe in case instcombine hasn't run.
712    uintptr_t Hash = 0;
713    // This hash algorithm is quite weak as hash functions go, but it seems
714    // to do a good enough job for this particular purpose, and is very quick.
715    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
716      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
717      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
718    }
719    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
720         I != E; ++I) {
721      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
722      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
723    }
724    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
725    Hash >>= 1;
726    // If we've never seen this hash value before, it's a unique PHI.
727    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
728      HashMap.insert(std::make_pair(Hash, PN));
729    if (Pair.second) continue;
730    // Otherwise it's either a duplicate or a hash collision.
731    for (PHINode *OtherPN = Pair.first->second; ; ) {
732      if (OtherPN->isIdenticalTo(PN)) {
733        // A duplicate. Replace this PHI with its duplicate.
734        PN->replaceAllUsesWith(OtherPN);
735        PN->eraseFromParent();
736        Changed = true;
737        break;
738      }
739      // A non-duplicate hash collision.
740      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
741      if (I == CollisionMap.end()) {
742        // Set this PHI to be the head of the linked list of colliding PHIs.
743        PHINode *Old = Pair.first->second;
744        Pair.first->second = PN;
745        CollisionMap[PN] = Old;
746        break;
747      }
748      // Proceed to the next PHI in the list.
749      OtherPN = I->second;
750    }
751  }
752
753  return Changed;
754}
755
756/// enforceKnownAlignment - If the specified pointer points to an object that
757/// we control, modify the object's alignment to PrefAlign. This isn't
758/// often possible though. If alignment is important, a more reliable approach
759/// is to simply align all global variables and allocation instructions to
760/// their preferred alignment from the beginning.
761///
762static unsigned enforceKnownAlignment(Value *V, unsigned Align,
763                                      unsigned PrefAlign, const TargetData *TD) {
764  V = V->stripPointerCasts();
765
766  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
767    // If the preferred alignment is greater than the natural stack alignment
768    // then don't round up. This avoids dynamic stack realignment.
769    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
770      return Align;
771    // If there is a requested alignment and if this is an alloca, round up.
772    if (AI->getAlignment() >= PrefAlign)
773      return AI->getAlignment();
774    AI->setAlignment(PrefAlign);
775    return PrefAlign;
776  }
777
778  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
779    // If there is a large requested alignment and we can, bump up the alignment
780    // of the global.
781    if (GV->isDeclaration()) return Align;
782    // If the memory we set aside for the global may not be the memory used by
783    // the final program then it is impossible for us to reliably enforce the
784    // preferred alignment.
785    if (GV->isWeakForLinker()) return Align;
786
787    if (GV->getAlignment() >= PrefAlign)
788      return GV->getAlignment();
789    // We can only increase the alignment of the global if it has no alignment
790    // specified or if it is not assigned a section.  If it is assigned a
791    // section, the global could be densely packed with other objects in the
792    // section, increasing the alignment could cause padding issues.
793    if (!GV->hasSection() || GV->getAlignment() == 0)
794      GV->setAlignment(PrefAlign);
795    return GV->getAlignment();
796  }
797
798  return Align;
799}
800
801/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
802/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
803/// and it is more than the alignment of the ultimate object, see if we can
804/// increase the alignment of the ultimate object, making this check succeed.
805unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
806                                          const TargetData *TD) {
807  assert(V->getType()->isPointerTy() &&
808         "getOrEnforceKnownAlignment expects a pointer!");
809  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
810  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
811  ComputeMaskedBits(V, KnownZero, KnownOne, TD);
812  unsigned TrailZ = KnownZero.countTrailingOnes();
813
814  // Avoid trouble with rediculously large TrailZ values, such as
815  // those computed from a null pointer.
816  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
817
818  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
819
820  // LLVM doesn't support alignments larger than this currently.
821  Align = std::min(Align, +Value::MaximumAlignment);
822
823  if (PrefAlign > Align)
824    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
825
826  // We don't need to make any adjustment.
827  return Align;
828}
829
830///===---------------------------------------------------------------------===//
831///  Dbg Intrinsic utilities
832///
833
834/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
835/// that has an associated llvm.dbg.decl intrinsic.
836bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
837                                           StoreInst *SI, DIBuilder &Builder) {
838  DIVariable DIVar(DDI->getVariable());
839  if (!DIVar.Verify())
840    return false;
841
842  Instruction *DbgVal = NULL;
843  // If an argument is zero extended then use argument directly. The ZExt
844  // may be zapped by an optimization pass in future.
845  Argument *ExtendedArg = NULL;
846  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
847    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
848  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
849    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
850  if (ExtendedArg)
851    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
852  else
853    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
854
855  // Propagate any debug metadata from the store onto the dbg.value.
856  DebugLoc SIDL = SI->getDebugLoc();
857  if (!SIDL.isUnknown())
858    DbgVal->setDebugLoc(SIDL);
859  // Otherwise propagate debug metadata from dbg.declare.
860  else
861    DbgVal->setDebugLoc(DDI->getDebugLoc());
862  return true;
863}
864
865/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
866/// that has an associated llvm.dbg.decl intrinsic.
867bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
868                                           LoadInst *LI, DIBuilder &Builder) {
869  DIVariable DIVar(DDI->getVariable());
870  if (!DIVar.Verify())
871    return false;
872
873  Instruction *DbgVal =
874    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
875                                    DIVar, LI);
876
877  // Propagate any debug metadata from the store onto the dbg.value.
878  DebugLoc LIDL = LI->getDebugLoc();
879  if (!LIDL.isUnknown())
880    DbgVal->setDebugLoc(LIDL);
881  // Otherwise propagate debug metadata from dbg.declare.
882  else
883    DbgVal->setDebugLoc(DDI->getDebugLoc());
884  return true;
885}
886
887/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
888/// of llvm.dbg.value intrinsics.
889bool llvm::LowerDbgDeclare(Function &F) {
890  DIBuilder DIB(*F.getParent());
891  SmallVector<DbgDeclareInst *, 4> Dbgs;
892  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
893    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
894      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
895        Dbgs.push_back(DDI);
896    }
897  if (Dbgs.empty())
898    return false;
899
900  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
901         E = Dbgs.end(); I != E; ++I) {
902    DbgDeclareInst *DDI = *I;
903    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
904      bool RemoveDDI = true;
905      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
906           UI != E; ++UI)
907        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
908          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
909        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
910          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
911        else
912          RemoveDDI = false;
913      if (RemoveDDI)
914        DDI->eraseFromParent();
915    }
916  }
917  return true;
918}
919
920/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
921/// alloca 'V', if any.
922DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
923  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
924    for (Value::use_iterator UI = DebugNode->use_begin(),
925         E = DebugNode->use_end(); UI != E; ++UI)
926      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
927        return DDI;
928
929  return 0;
930}
931