1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
33#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetData.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas,      "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted,        "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted,         "Number of instructions deleted");
65STATISTIC(NumVectorized,      "Number of vectorized aggregates");
66
67/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
72namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
79/// structure can capture the relevant information needed both to decide about
80/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83  /// \brief A common base class for representing a half-open byte range.
84  struct ByteRange {
85    /// \brief The beginning offset of the range.
86    uint64_t BeginOffset;
87
88    /// \brief The ending offset, not included in the range.
89    uint64_t EndOffset;
90
91    ByteRange() : BeginOffset(), EndOffset() {}
92    ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93        : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95    /// \brief Support for ordering ranges.
96    ///
97    /// This provides an ordering over ranges such that start offsets are
98    /// always increasing, and within equal start offsets, the end offsets are
99    /// decreasing. Thus the spanning range comes first in a cluster with the
100    /// same start position.
101    bool operator<(const ByteRange &RHS) const {
102      if (BeginOffset < RHS.BeginOffset) return true;
103      if (BeginOffset > RHS.BeginOffset) return false;
104      if (EndOffset > RHS.EndOffset) return true;
105      return false;
106    }
107
108    /// \brief Support comparison with a single offset to allow binary searches.
109    friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110      return LHS.BeginOffset < RHSOffset;
111    }
112
113    friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114                                                const ByteRange &RHS) {
115      return LHSOffset < RHS.BeginOffset;
116    }
117
118    bool operator==(const ByteRange &RHS) const {
119      return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120    }
121    bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122  };
123
124  /// \brief A partition of an alloca.
125  ///
126  /// This structure represents a contiguous partition of the alloca. These are
127  /// formed by examining the uses of the alloca. During formation, they may
128  /// overlap but once an AllocaPartitioning is built, the Partitions within it
129  /// are all disjoint.
130  struct Partition : public ByteRange {
131    /// \brief Whether this partition is splittable into smaller partitions.
132    ///
133    /// We flag partitions as splittable when they are formed entirely due to
134    /// accesses by trivially splittable operations such as memset and memcpy.
135    ///
136    /// FIXME: At some point we should consider loads and stores of FCAs to be
137    /// splittable and eagerly split them into scalar values.
138    bool IsSplittable;
139
140    Partition() : ByteRange(), IsSplittable() {}
141    Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
142        : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
143  };
144
145  /// \brief A particular use of a partition of the alloca.
146  ///
147  /// This structure is used to associate uses of a partition with it. They
148  /// mark the range of bytes which are referenced by a particular instruction,
149  /// and includes a handle to the user itself and the pointer value in use.
150  /// The bounds of these uses are determined by intersecting the bounds of the
151  /// memory use itself with a particular partition. As a consequence there is
152  /// intentionally overlap between various uses of the same partition.
153  struct PartitionUse : public ByteRange {
154    /// \brief The use in question. Provides access to both user and used value.
155    Use* U;
156
157    PartitionUse() : ByteRange(), U() {}
158    PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
159        : ByteRange(BeginOffset, EndOffset), U(U) {}
160  };
161
162  /// \brief Construct a partitioning of a particular alloca.
163  ///
164  /// Construction does most of the work for partitioning the alloca. This
165  /// performs the necessary walks of users and builds a partitioning from it.
166  AllocaPartitioning(const TargetData &TD, AllocaInst &AI);
167
168  /// \brief Test whether a pointer to the allocation escapes our analysis.
169  ///
170  /// If this is true, the partitioning is never fully built and should be
171  /// ignored.
172  bool isEscaped() const { return PointerEscapingInstr; }
173
174  /// \brief Support for iterating over the partitions.
175  /// @{
176  typedef SmallVectorImpl<Partition>::iterator iterator;
177  iterator begin() { return Partitions.begin(); }
178  iterator end() { return Partitions.end(); }
179
180  typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
181  const_iterator begin() const { return Partitions.begin(); }
182  const_iterator end() const { return Partitions.end(); }
183  /// @}
184
185  /// \brief Support for iterating over and manipulating a particular
186  /// partition's uses.
187  ///
188  /// The iteration support provided for uses is more limited, but also
189  /// includes some manipulation routines to support rewriting the uses of
190  /// partitions during SROA.
191  /// @{
192  typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
193  use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
194  use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
195  use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
196  use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
197  void use_push_back(unsigned Idx, const PartitionUse &PU) {
198    Uses[Idx].push_back(PU);
199  }
200  void use_push_back(const_iterator I, const PartitionUse &PU) {
201    Uses[I - begin()].push_back(PU);
202  }
203  void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); }
204  void use_erase(const_iterator I, use_iterator UI) {
205    Uses[I - begin()].erase(UI);
206  }
207
208  typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
209  const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
210  const_use_iterator use_begin(const_iterator I) const {
211    return Uses[I - begin()].begin();
212  }
213  const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
214  const_use_iterator use_end(const_iterator I) const {
215    return Uses[I - begin()].end();
216  }
217  /// @}
218
219  /// \brief Allow iterating the dead users for this alloca.
220  ///
221  /// These are instructions which will never actually use the alloca as they
222  /// are outside the allocated range. They are safe to replace with undef and
223  /// delete.
224  /// @{
225  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
226  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
227  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
228  /// @}
229
230  /// \brief Allow iterating the dead expressions referring to this alloca.
231  ///
232  /// These are operands which have cannot actually be used to refer to the
233  /// alloca as they are outside its range and the user doesn't correct for
234  /// that. These mostly consist of PHI node inputs and the like which we just
235  /// need to replace with undef.
236  /// @{
237  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
238  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
239  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
240  /// @}
241
242  /// \brief MemTransferInst auxiliary data.
243  /// This struct provides some auxiliary data about memory transfer
244  /// intrinsics such as memcpy and memmove. These intrinsics can use two
245  /// different ranges within the same alloca, and provide other challenges to
246  /// correctly represent. We stash extra data to help us untangle this
247  /// after the partitioning is complete.
248  struct MemTransferOffsets {
249    uint64_t DestBegin, DestEnd;
250    uint64_t SourceBegin, SourceEnd;
251    bool IsSplittable;
252  };
253  MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
254    return MemTransferInstData.lookup(&II);
255  }
256
257  /// \brief Map from a PHI or select operand back to a partition.
258  ///
259  /// When manipulating PHI nodes or selects, they can use more than one
260  /// partition of an alloca. We store a special mapping to allow finding the
261  /// partition referenced by each of these operands, if any.
262  iterator findPartitionForPHIOrSelectOperand(Use *U) {
263    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
264      = PHIOrSelectOpMap.find(U);
265    if (MapIt == PHIOrSelectOpMap.end())
266      return end();
267
268    return begin() + MapIt->second.first;
269  }
270
271  /// \brief Map from a PHI or select operand back to the specific use of
272  /// a partition.
273  ///
274  /// Similar to mapping these operands back to the partitions, this maps
275  /// directly to the use structure of that partition.
276  use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
277    SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
278      = PHIOrSelectOpMap.find(U);
279    assert(MapIt != PHIOrSelectOpMap.end());
280    return Uses[MapIt->second.first].begin() + MapIt->second.second;
281  }
282
283  /// \brief Compute a common type among the uses of a particular partition.
284  ///
285  /// This routines walks all of the uses of a particular partition and tries
286  /// to find a common type between them. Untyped operations such as memset and
287  /// memcpy are ignored.
288  Type *getCommonType(iterator I) const;
289
290#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
292  void printUsers(raw_ostream &OS, const_iterator I,
293                  StringRef Indent = "  ") const;
294  void print(raw_ostream &OS) const;
295  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
296  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
297#endif
298
299private:
300  template <typename DerivedT, typename RetT = void> class BuilderBase;
301  class PartitionBuilder;
302  friend class AllocaPartitioning::PartitionBuilder;
303  class UseBuilder;
304  friend class AllocaPartitioning::UseBuilder;
305
306#ifndef NDEBUG
307  /// \brief Handle to alloca instruction to simplify method interfaces.
308  AllocaInst &AI;
309#endif
310
311  /// \brief The instruction responsible for this alloca having no partitioning.
312  ///
313  /// When an instruction (potentially) escapes the pointer to the alloca, we
314  /// store a pointer to that here and abort trying to partition the alloca.
315  /// This will be null if the alloca is partitioned successfully.
316  Instruction *PointerEscapingInstr;
317
318  /// \brief The partitions of the alloca.
319  ///
320  /// We store a vector of the partitions over the alloca here. This vector is
321  /// sorted by increasing begin offset, and then by decreasing end offset. See
322  /// the Partition inner class for more details. Initially (during
323  /// construction) there are overlaps, but we form a disjoint sequence of
324  /// partitions while finishing construction and a fully constructed object is
325  /// expected to always have this as a disjoint space.
326  SmallVector<Partition, 8> Partitions;
327
328  /// \brief The uses of the partitions.
329  ///
330  /// This is essentially a mapping from each partition to a list of uses of
331  /// that partition. The mapping is done with a Uses vector that has the exact
332  /// same number of entries as the partition vector. Each entry is itself
333  /// a vector of the uses.
334  SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
335
336  /// \brief Instructions which will become dead if we rewrite the alloca.
337  ///
338  /// Note that these are not separated by partition. This is because we expect
339  /// a partitioned alloca to be completely rewritten or not rewritten at all.
340  /// If rewritten, all these instructions can simply be removed and replaced
341  /// with undef as they come from outside of the allocated space.
342  SmallVector<Instruction *, 8> DeadUsers;
343
344  /// \brief Operands which will become dead if we rewrite the alloca.
345  ///
346  /// These are operands that in their particular use can be replaced with
347  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
348  /// to PHI nodes and the like. They aren't entirely dead (there might be
349  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
350  /// want to swap this particular input for undef to simplify the use lists of
351  /// the alloca.
352  SmallVector<Use *, 8> DeadOperands;
353
354  /// \brief The underlying storage for auxiliary memcpy and memset info.
355  SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
356
357  /// \brief A side datastructure used when building up the partitions and uses.
358  ///
359  /// This mapping is only really used during the initial building of the
360  /// partitioning so that we can retain information about PHI and select nodes
361  /// processed.
362  SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
363
364  /// \brief Auxiliary information for particular PHI or select operands.
365  SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
366
367  /// \brief A utility routine called from the constructor.
368  ///
369  /// This does what it says on the tin. It is the key of the alloca partition
370  /// splitting and merging. After it is called we have the desired disjoint
371  /// collection of partitions.
372  void splitAndMergePartitions();
373};
374}
375
376template <typename DerivedT, typename RetT>
377class AllocaPartitioning::BuilderBase
378    : public InstVisitor<DerivedT, RetT> {
379public:
380  BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
381      : TD(TD),
382        AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
383        P(P) {
384    enqueueUsers(AI, 0);
385  }
386
387protected:
388  const TargetData &TD;
389  const uint64_t AllocSize;
390  AllocaPartitioning &P;
391
392  SmallPtrSet<Use *, 8> VisitedUses;
393
394  struct OffsetUse {
395    Use *U;
396    int64_t Offset;
397  };
398  SmallVector<OffsetUse, 8> Queue;
399
400  // The active offset and use while visiting.
401  Use *U;
402  int64_t Offset;
403
404  void enqueueUsers(Instruction &I, int64_t UserOffset) {
405    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
406         UI != UE; ++UI) {
407      if (VisitedUses.insert(&UI.getUse())) {
408        OffsetUse OU = { &UI.getUse(), UserOffset };
409        Queue.push_back(OU);
410      }
411    }
412  }
413
414  bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
415    GEPOffset = Offset;
416    for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
417         GTI != GTE; ++GTI) {
418      ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
419      if (!OpC)
420        return false;
421      if (OpC->isZero())
422        continue;
423
424      // Handle a struct index, which adds its field offset to the pointer.
425      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
426        unsigned ElementIdx = OpC->getZExtValue();
427        const StructLayout *SL = TD.getStructLayout(STy);
428        uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
429        // Check that we can continue to model this GEP in a signed 64-bit offset.
430        if (ElementOffset > INT64_MAX ||
431            (GEPOffset >= 0 &&
432             ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
433          DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
434                       << "what can be represented in an int64_t!\n"
435                       << "  alloca: " << P.AI << "\n");
436          return false;
437        }
438        if (GEPOffset < 0)
439          GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
440        else
441          GEPOffset += ElementOffset;
442        continue;
443      }
444
445      APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
446      Index *= APInt(Index.getBitWidth(),
447                     TD.getTypeAllocSize(GTI.getIndexedType()));
448      Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
449                     /*isSigned*/true);
450      // Check if the result can be stored in our int64_t offset.
451      if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
452        DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
453                     << "what can be represented in an int64_t!\n"
454                     << "  alloca: " << P.AI << "\n");
455        return false;
456      }
457
458      GEPOffset = Index.getSExtValue();
459    }
460    return true;
461  }
462
463  Value *foldSelectInst(SelectInst &SI) {
464    // If the condition being selected on is a constant or the same value is
465    // being selected between, fold the select. Yes this does (rarely) happen
466    // early on.
467    if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
468      return SI.getOperand(1+CI->isZero());
469    if (SI.getOperand(1) == SI.getOperand(2)) {
470      assert(*U == SI.getOperand(1));
471      return SI.getOperand(1);
472    }
473    return 0;
474  }
475};
476
477/// \brief Builder for the alloca partitioning.
478///
479/// This class builds an alloca partitioning by recursively visiting the uses
480/// of an alloca and splitting the partitions for each load and store at each
481/// offset.
482class AllocaPartitioning::PartitionBuilder
483    : public BuilderBase<PartitionBuilder, bool> {
484  friend class InstVisitor<PartitionBuilder, bool>;
485
486  SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
487
488public:
489  PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
490      : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
491
492  /// \brief Run the builder over the allocation.
493  bool operator()() {
494    // Note that we have to re-evaluate size on each trip through the loop as
495    // the queue grows at the tail.
496    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
497      U = Queue[Idx].U;
498      Offset = Queue[Idx].Offset;
499      if (!visit(cast<Instruction>(U->getUser())))
500        return false;
501    }
502    return true;
503  }
504
505private:
506  bool markAsEscaping(Instruction &I) {
507    P.PointerEscapingInstr = &I;
508    return false;
509  }
510
511  void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
512                 bool IsSplittable = false) {
513    // Completely skip uses which have a zero size or don't overlap the
514    // allocation.
515    if (Size == 0 ||
516        (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
517        (Offset < 0 && (uint64_t)-Offset >= Size)) {
518      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
519                   << " which starts past the end of the " << AllocSize
520                   << " byte alloca:\n"
521                   << "    alloca: " << P.AI << "\n"
522                   << "       use: " << I << "\n");
523      return;
524    }
525
526    // Clamp the start to the beginning of the allocation.
527    if (Offset < 0) {
528      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
529                   << " to start at the beginning of the alloca:\n"
530                   << "    alloca: " << P.AI << "\n"
531                   << "       use: " << I << "\n");
532      Size -= (uint64_t)-Offset;
533      Offset = 0;
534    }
535
536    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
537
538    // Clamp the end offset to the end of the allocation. Note that this is
539    // formulated to handle even the case where "BeginOffset + Size" overflows.
540    assert(AllocSize >= BeginOffset); // Established above.
541    if (Size > AllocSize - BeginOffset) {
542      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
543                   << " to remain within the " << AllocSize << " byte alloca:\n"
544                   << "    alloca: " << P.AI << "\n"
545                   << "       use: " << I << "\n");
546      EndOffset = AllocSize;
547    }
548
549    // See if we can just add a user onto the last slot currently occupied.
550    if (!P.Partitions.empty() &&
551        P.Partitions.back().BeginOffset == BeginOffset &&
552        P.Partitions.back().EndOffset == EndOffset) {
553      P.Partitions.back().IsSplittable &= IsSplittable;
554      return;
555    }
556
557    Partition New(BeginOffset, EndOffset, IsSplittable);
558    P.Partitions.push_back(New);
559  }
560
561  bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
562    uint64_t Size = TD.getTypeStoreSize(Ty);
563
564    // If this memory access can be shown to *statically* extend outside the
565    // bounds of of the allocation, it's behavior is undefined, so simply
566    // ignore it. Note that this is more strict than the generic clamping
567    // behavior of insertUse. We also try to handle cases which might run the
568    // risk of overflow.
569    // FIXME: We should instead consider the pointer to have escaped if this
570    // function is being instrumented for addressing bugs or race conditions.
571    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
572        Size > (AllocSize - (uint64_t)Offset)) {
573      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
574                   << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
575                   << " which extends past the end of the " << AllocSize
576                   << " byte alloca:\n"
577                   << "    alloca: " << P.AI << "\n"
578                   << "       use: " << I << "\n");
579      return true;
580    }
581
582    insertUse(I, Offset, Size);
583    return true;
584  }
585
586  bool visitBitCastInst(BitCastInst &BC) {
587    enqueueUsers(BC, Offset);
588    return true;
589  }
590
591  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
592    int64_t GEPOffset;
593    if (!computeConstantGEPOffset(GEPI, GEPOffset))
594      return markAsEscaping(GEPI);
595
596    enqueueUsers(GEPI, GEPOffset);
597    return true;
598  }
599
600  bool visitLoadInst(LoadInst &LI) {
601    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
602           "All simple FCA loads should have been pre-split");
603    return handleLoadOrStore(LI.getType(), LI, Offset);
604  }
605
606  bool visitStoreInst(StoreInst &SI) {
607    Value *ValOp = SI.getValueOperand();
608    if (ValOp == *U)
609      return markAsEscaping(SI);
610
611    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
612           "All simple FCA stores should have been pre-split");
613    return handleLoadOrStore(ValOp->getType(), SI, Offset);
614  }
615
616
617  bool visitMemSetInst(MemSetInst &II) {
618    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
619    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
620    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
621    insertUse(II, Offset, Size, Length);
622    return true;
623  }
624
625  bool visitMemTransferInst(MemTransferInst &II) {
626    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
627    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
628    if (!Size)
629      // Zero-length mem transfer intrinsics can be ignored entirely.
630      return true;
631
632    MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
633
634    // Only intrinsics with a constant length can be split.
635    Offsets.IsSplittable = Length;
636
637    if (*U != II.getRawDest()) {
638      assert(*U == II.getRawSource());
639      Offsets.SourceBegin = Offset;
640      Offsets.SourceEnd = Offset + Size;
641    } else {
642      Offsets.DestBegin = Offset;
643      Offsets.DestEnd = Offset + Size;
644    }
645
646    insertUse(II, Offset, Size, Offsets.IsSplittable);
647    unsigned NewIdx = P.Partitions.size() - 1;
648
649    SmallDenseMap<Instruction *, unsigned>::const_iterator PMI;
650    bool Inserted = false;
651    llvm::tie(PMI, Inserted)
652      = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx));
653    if (Offsets.IsSplittable &&
654        (!Inserted || II.getRawSource() == II.getRawDest())) {
655      // We've found a memory transfer intrinsic which refers to the alloca as
656      // both a source and dest. This is detected either by direct equality of
657      // the operand values, or when we visit the intrinsic twice due to two
658      // different chains of values leading to it. We refuse to split these to
659      // simplify splitting logic. If possible, SROA will still split them into
660      // separate allocas and then re-analyze.
661      Offsets.IsSplittable = false;
662      P.Partitions[PMI->second].IsSplittable = false;
663      P.Partitions[NewIdx].IsSplittable = false;
664    }
665
666    return true;
667  }
668
669  // Disable SRoA for any intrinsics except for lifetime invariants.
670  // FIXME: What about debug instrinsics? This matches old behavior, but
671  // doesn't make sense.
672  bool visitIntrinsicInst(IntrinsicInst &II) {
673    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
674        II.getIntrinsicID() == Intrinsic::lifetime_end) {
675      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
676      uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
677      insertUse(II, Offset, Size, true);
678      return true;
679    }
680
681    return markAsEscaping(II);
682  }
683
684  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
685    // We consider any PHI or select that results in a direct load or store of
686    // the same offset to be a viable use for partitioning purposes. These uses
687    // are considered unsplittable and the size is the maximum loaded or stored
688    // size.
689    SmallPtrSet<Instruction *, 4> Visited;
690    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
691    Visited.insert(Root);
692    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
693    // If there are no loads or stores, the access is dead. We mark that as
694    // a size zero access.
695    Size = 0;
696    do {
697      Instruction *I, *UsedI;
698      llvm::tie(UsedI, I) = Uses.pop_back_val();
699
700      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
701        Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
702        continue;
703      }
704      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
705        Value *Op = SI->getOperand(0);
706        if (Op == UsedI)
707          return SI;
708        Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
709        continue;
710      }
711
712      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
713        if (!GEP->hasAllZeroIndices())
714          return GEP;
715      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
716                 !isa<SelectInst>(I)) {
717        return I;
718      }
719
720      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
721           ++UI)
722        if (Visited.insert(cast<Instruction>(*UI)))
723          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
724    } while (!Uses.empty());
725
726    return 0;
727  }
728
729  bool visitPHINode(PHINode &PN) {
730    // See if we already have computed info on this node.
731    std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
732    if (PHIInfo.first) {
733      PHIInfo.second = true;
734      insertUse(PN, Offset, PHIInfo.first);
735      return true;
736    }
737
738    // Check for an unsafe use of the PHI node.
739    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
740      return markAsEscaping(*EscapingI);
741
742    insertUse(PN, Offset, PHIInfo.first);
743    return true;
744  }
745
746  bool visitSelectInst(SelectInst &SI) {
747    if (Value *Result = foldSelectInst(SI)) {
748      if (Result == *U)
749        // If the result of the constant fold will be the pointer, recurse
750        // through the select as if we had RAUW'ed it.
751        enqueueUsers(SI, Offset);
752
753      return true;
754    }
755
756    // See if we already have computed info on this node.
757    std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
758    if (SelectInfo.first) {
759      SelectInfo.second = true;
760      insertUse(SI, Offset, SelectInfo.first);
761      return true;
762    }
763
764    // Check for an unsafe use of the PHI node.
765    if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
766      return markAsEscaping(*EscapingI);
767
768    insertUse(SI, Offset, SelectInfo.first);
769    return true;
770  }
771
772  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
773  bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
774};
775
776
777/// \brief Use adder for the alloca partitioning.
778///
779/// This class adds the uses of an alloca to all of the partitions which they
780/// use. For splittable partitions, this can end up doing essentially a linear
781/// walk of the partitions, but the number of steps remains bounded by the
782/// total result instruction size:
783/// - The number of partitions is a result of the number unsplittable
784///   instructions using the alloca.
785/// - The number of users of each partition is at worst the total number of
786///   splittable instructions using the alloca.
787/// Thus we will produce N * M instructions in the end, where N are the number
788/// of unsplittable uses and M are the number of splittable. This visitor does
789/// the exact same number of updates to the partitioning.
790///
791/// In the more common case, this visitor will leverage the fact that the
792/// partition space is pre-sorted, and do a logarithmic search for the
793/// partition needed, making the total visit a classical ((N + M) * log(N))
794/// complexity operation.
795class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
796  friend class InstVisitor<UseBuilder>;
797
798  /// \brief Set to de-duplicate dead instructions found in the use walk.
799  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
800
801public:
802  UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
803      : BuilderBase<UseBuilder>(TD, AI, P) {}
804
805  /// \brief Run the builder over the allocation.
806  void operator()() {
807    // Note that we have to re-evaluate size on each trip through the loop as
808    // the queue grows at the tail.
809    for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
810      U = Queue[Idx].U;
811      Offset = Queue[Idx].Offset;
812      this->visit(cast<Instruction>(U->getUser()));
813    }
814  }
815
816private:
817  void markAsDead(Instruction &I) {
818    if (VisitedDeadInsts.insert(&I))
819      P.DeadUsers.push_back(&I);
820  }
821
822  void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
823    // If the use has a zero size or extends outside of the allocation, record
824    // it as a dead use for elimination later.
825    if (Size == 0 || (uint64_t)Offset >= AllocSize ||
826        (Offset < 0 && (uint64_t)-Offset >= Size))
827      return markAsDead(User);
828
829    // Clamp the start to the beginning of the allocation.
830    if (Offset < 0) {
831      Size -= (uint64_t)-Offset;
832      Offset = 0;
833    }
834
835    uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
836
837    // Clamp the end offset to the end of the allocation. Note that this is
838    // formulated to handle even the case where "BeginOffset + Size" overflows.
839    assert(AllocSize >= BeginOffset); // Established above.
840    if (Size > AllocSize - BeginOffset)
841      EndOffset = AllocSize;
842
843    // NB: This only works if we have zero overlapping partitions.
844    iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
845    if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
846      B = llvm::prior(B);
847    for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
848         ++I) {
849      PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
850                         std::min(I->EndOffset, EndOffset), U);
851      P.use_push_back(I, NewPU);
852      if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
853        P.PHIOrSelectOpMap[U]
854          = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
855    }
856  }
857
858  void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
859    uint64_t Size = TD.getTypeStoreSize(Ty);
860
861    // If this memory access can be shown to *statically* extend outside the
862    // bounds of of the allocation, it's behavior is undefined, so simply
863    // ignore it. Note that this is more strict than the generic clamping
864    // behavior of insertUse.
865    if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
866        Size > (AllocSize - (uint64_t)Offset))
867      return markAsDead(I);
868
869    insertUse(I, Offset, Size);
870  }
871
872  void visitBitCastInst(BitCastInst &BC) {
873    if (BC.use_empty())
874      return markAsDead(BC);
875
876    enqueueUsers(BC, Offset);
877  }
878
879  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
880    if (GEPI.use_empty())
881      return markAsDead(GEPI);
882
883    int64_t GEPOffset;
884    if (!computeConstantGEPOffset(GEPI, GEPOffset))
885      llvm_unreachable("Unable to compute constant offset for use");
886
887    enqueueUsers(GEPI, GEPOffset);
888  }
889
890  void visitLoadInst(LoadInst &LI) {
891    handleLoadOrStore(LI.getType(), LI, Offset);
892  }
893
894  void visitStoreInst(StoreInst &SI) {
895    handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
896  }
897
898  void visitMemSetInst(MemSetInst &II) {
899    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
900    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
901    insertUse(II, Offset, Size);
902  }
903
904  void visitMemTransferInst(MemTransferInst &II) {
905    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
906    uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
907    insertUse(II, Offset, Size);
908  }
909
910  void visitIntrinsicInst(IntrinsicInst &II) {
911    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
912           II.getIntrinsicID() == Intrinsic::lifetime_end);
913
914    ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
915    insertUse(II, Offset,
916              std::min(AllocSize - Offset, Length->getLimitedValue()));
917  }
918
919  void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
920    uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
921
922    // For PHI and select operands outside the alloca, we can't nuke the entire
923    // phi or select -- the other side might still be relevant, so we special
924    // case them here and use a separate structure to track the operands
925    // themselves which should be replaced with undef.
926    if (Offset >= AllocSize) {
927      P.DeadOperands.push_back(U);
928      return;
929    }
930
931    insertUse(User, Offset, Size);
932  }
933  void visitPHINode(PHINode &PN) {
934    if (PN.use_empty())
935      return markAsDead(PN);
936
937    insertPHIOrSelect(PN, Offset);
938  }
939  void visitSelectInst(SelectInst &SI) {
940    if (SI.use_empty())
941      return markAsDead(SI);
942
943    if (Value *Result = foldSelectInst(SI)) {
944      if (Result == *U)
945        // If the result of the constant fold will be the pointer, recurse
946        // through the select as if we had RAUW'ed it.
947        enqueueUsers(SI, Offset);
948      else
949        // Otherwise the operand to the select is dead, and we can replace it
950        // with undef.
951        P.DeadOperands.push_back(U);
952
953      return;
954    }
955
956    insertPHIOrSelect(SI, Offset);
957  }
958
959  /// \brief Unreachable, we've already visited the alloca once.
960  void visitInstruction(Instruction &I) {
961    llvm_unreachable("Unhandled instruction in use builder.");
962  }
963};
964
965void AllocaPartitioning::splitAndMergePartitions() {
966  size_t NumDeadPartitions = 0;
967
968  // Track the range of splittable partitions that we pass when accumulating
969  // overlapping unsplittable partitions.
970  uint64_t SplitEndOffset = 0ull;
971
972  Partition New(0ull, 0ull, false);
973
974  for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
975    ++j;
976
977    if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
978      assert(New.BeginOffset == New.EndOffset);
979      New = Partitions[i];
980    } else {
981      assert(New.IsSplittable);
982      New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
983    }
984    assert(New.BeginOffset != New.EndOffset);
985
986    // Scan the overlapping partitions.
987    while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
988      // If the new partition we are forming is splittable, stop at the first
989      // unsplittable partition.
990      if (New.IsSplittable && !Partitions[j].IsSplittable)
991        break;
992
993      // Grow the new partition to include any equally splittable range. 'j' is
994      // always equally splittable when New is splittable, but when New is not
995      // splittable, we may subsume some (or part of some) splitable partition
996      // without growing the new one.
997      if (New.IsSplittable == Partitions[j].IsSplittable) {
998        New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
999      } else {
1000        assert(!New.IsSplittable);
1001        assert(Partitions[j].IsSplittable);
1002        SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1003      }
1004
1005      Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX;
1006      ++NumDeadPartitions;
1007      ++j;
1008    }
1009
1010    // If the new partition is splittable, chop off the end as soon as the
1011    // unsplittable subsequent partition starts and ensure we eventually cover
1012    // the splittable area.
1013    if (j != e && New.IsSplittable) {
1014      SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1015      New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1016    }
1017
1018    // Add the new partition if it differs from the original one and is
1019    // non-empty. We can end up with an empty partition here if it was
1020    // splittable but there is an unsplittable one that starts at the same
1021    // offset.
1022    if (New != Partitions[i]) {
1023      if (New.BeginOffset != New.EndOffset)
1024        Partitions.push_back(New);
1025      // Mark the old one for removal.
1026      Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX;
1027      ++NumDeadPartitions;
1028    }
1029
1030    New.BeginOffset = New.EndOffset;
1031    if (!New.IsSplittable) {
1032      New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1033      if (j != e && !Partitions[j].IsSplittable)
1034        New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1035      New.IsSplittable = true;
1036      // If there is a trailing splittable partition which won't be fused into
1037      // the next splittable partition go ahead and add it onto the partitions
1038      // list.
1039      if (New.BeginOffset < New.EndOffset &&
1040          (j == e || !Partitions[j].IsSplittable ||
1041           New.EndOffset < Partitions[j].BeginOffset)) {
1042        Partitions.push_back(New);
1043        New.BeginOffset = New.EndOffset = 0ull;
1044      }
1045    }
1046  }
1047
1048  // Re-sort the partitions now that they have been split and merged into
1049  // disjoint set of partitions. Also remove any of the dead partitions we've
1050  // replaced in the process.
1051  std::sort(Partitions.begin(), Partitions.end());
1052  if (NumDeadPartitions) {
1053    assert(Partitions.back().BeginOffset == UINT64_MAX);
1054    assert(Partitions.back().EndOffset == UINT64_MAX);
1055    assert((ptrdiff_t)NumDeadPartitions ==
1056           std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1057  }
1058  Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1059}
1060
1061AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI)
1062    :
1063#ifndef NDEBUG
1064      AI(AI),
1065#endif
1066      PointerEscapingInstr(0) {
1067  PartitionBuilder PB(TD, AI, *this);
1068  if (!PB())
1069    return;
1070
1071  if (Partitions.size() > 1) {
1072    // Sort the uses. This arranges for the offsets to be in ascending order,
1073    // and the sizes to be in descending order.
1074    std::sort(Partitions.begin(), Partitions.end());
1075
1076    // Intersect splittability for all partitions with equal offsets and sizes.
1077    // Then remove all but the first so that we have a sequence of non-equal but
1078    // potentially overlapping partitions.
1079    for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1080         I = J) {
1081      ++J;
1082      while (J != E && *I == *J) {
1083        I->IsSplittable &= J->IsSplittable;
1084        ++J;
1085      }
1086    }
1087    Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1088                     Partitions.end());
1089
1090    // Split splittable and merge unsplittable partitions into a disjoint set
1091    // of partitions over the used space of the allocation.
1092    splitAndMergePartitions();
1093  }
1094
1095  // Now build up the user lists for each of these disjoint partitions by
1096  // re-walking the recursive users of the alloca.
1097  Uses.resize(Partitions.size());
1098  UseBuilder UB(TD, AI, *this);
1099  UB();
1100}
1101
1102Type *AllocaPartitioning::getCommonType(iterator I) const {
1103  Type *Ty = 0;
1104  for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
1105    if (isa<IntrinsicInst>(*UI->U->getUser()))
1106      continue;
1107    if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
1108      continue;
1109
1110    Type *UserTy = 0;
1111    if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
1112      UserTy = LI->getType();
1113    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
1114      UserTy = SI->getValueOperand()->getType();
1115    }
1116
1117    if (Ty && Ty != UserTy)
1118      return 0;
1119
1120    Ty = UserTy;
1121  }
1122  return Ty;
1123}
1124
1125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1126
1127void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1128                               StringRef Indent) const {
1129  OS << Indent << "partition #" << (I - begin())
1130     << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1131     << (I->IsSplittable ? " (splittable)" : "")
1132     << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1133     << "\n";
1134}
1135
1136void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1137                                    StringRef Indent) const {
1138  for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1139       UI != UE; ++UI) {
1140    OS << Indent << "  [" << UI->BeginOffset << "," << UI->EndOffset << ") "
1141       << "used by: " << *UI->U->getUser() << "\n";
1142    if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
1143      const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1144      bool IsDest;
1145      if (!MTO.IsSplittable)
1146        IsDest = UI->BeginOffset == MTO.DestBegin;
1147      else
1148        IsDest = MTO.DestBegin != 0u;
1149      OS << Indent << "    (original " << (IsDest ? "dest" : "source") << ": "
1150         << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1151         << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1152    }
1153  }
1154}
1155
1156void AllocaPartitioning::print(raw_ostream &OS) const {
1157  if (PointerEscapingInstr) {
1158    OS << "No partitioning for alloca: " << AI << "\n"
1159       << "  A pointer to this alloca escaped by:\n"
1160       << "  " << *PointerEscapingInstr << "\n";
1161    return;
1162  }
1163
1164  OS << "Partitioning of alloca: " << AI << "\n";
1165  unsigned Num = 0;
1166  for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1167    print(OS, I);
1168    printUsers(OS, I);
1169  }
1170}
1171
1172void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1173void AllocaPartitioning::dump() const { print(dbgs()); }
1174
1175#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1176
1177
1178namespace {
1179/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1180///
1181/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1182/// the loads and stores of an alloca instruction, as well as updating its
1183/// debug information. This is used when a domtree is unavailable and thus
1184/// mem2reg in its full form can't be used to handle promotion of allocas to
1185/// scalar values.
1186class AllocaPromoter : public LoadAndStorePromoter {
1187  AllocaInst &AI;
1188  DIBuilder &DIB;
1189
1190  SmallVector<DbgDeclareInst *, 4> DDIs;
1191  SmallVector<DbgValueInst *, 4> DVIs;
1192
1193public:
1194  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1195                 AllocaInst &AI, DIBuilder &DIB)
1196    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1197
1198  void run(const SmallVectorImpl<Instruction*> &Insts) {
1199    // Remember which alloca we're promoting (for isInstInList).
1200    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1201      for (Value::use_iterator UI = DebugNode->use_begin(),
1202                               UE = DebugNode->use_end();
1203           UI != UE; ++UI)
1204        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1205          DDIs.push_back(DDI);
1206        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1207          DVIs.push_back(DVI);
1208    }
1209
1210    LoadAndStorePromoter::run(Insts);
1211    AI.eraseFromParent();
1212    while (!DDIs.empty())
1213      DDIs.pop_back_val()->eraseFromParent();
1214    while (!DVIs.empty())
1215      DVIs.pop_back_val()->eraseFromParent();
1216  }
1217
1218  virtual bool isInstInList(Instruction *I,
1219                            const SmallVectorImpl<Instruction*> &Insts) const {
1220    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1221      return LI->getOperand(0) == &AI;
1222    return cast<StoreInst>(I)->getPointerOperand() == &AI;
1223  }
1224
1225  virtual void updateDebugInfo(Instruction *Inst) const {
1226    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1227           E = DDIs.end(); I != E; ++I) {
1228      DbgDeclareInst *DDI = *I;
1229      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1230        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1231      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1232        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1233    }
1234    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1235           E = DVIs.end(); I != E; ++I) {
1236      DbgValueInst *DVI = *I;
1237      Value *Arg = NULL;
1238      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1239        // If an argument is zero extended then use argument directly. The ZExt
1240        // may be zapped by an optimization pass in future.
1241        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1242          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1243        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1244          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1245        if (!Arg)
1246          Arg = SI->getOperand(0);
1247      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1248        Arg = LI->getOperand(0);
1249      } else {
1250        continue;
1251      }
1252      Instruction *DbgVal =
1253        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1254                                     Inst);
1255      DbgVal->setDebugLoc(DVI->getDebugLoc());
1256    }
1257  }
1258};
1259} // end anon namespace
1260
1261
1262namespace {
1263/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1264///
1265/// This pass takes allocations which can be completely analyzed (that is, they
1266/// don't escape) and tries to turn them into scalar SSA values. There are
1267/// a few steps to this process.
1268///
1269/// 1) It takes allocations of aggregates and analyzes the ways in which they
1270///    are used to try to split them into smaller allocations, ideally of
1271///    a single scalar data type. It will split up memcpy and memset accesses
1272///    as necessary and try to isolate invidual scalar accesses.
1273/// 2) It will transform accesses into forms which are suitable for SSA value
1274///    promotion. This can be replacing a memset with a scalar store of an
1275///    integer value, or it can involve speculating operations on a PHI or
1276///    select to be a PHI or select of the results.
1277/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1278///    onto insert and extract operations on a vector value, and convert them to
1279///    this form. By doing so, it will enable promotion of vector aggregates to
1280///    SSA vector values.
1281class SROA : public FunctionPass {
1282  const bool RequiresDomTree;
1283
1284  LLVMContext *C;
1285  const TargetData *TD;
1286  DominatorTree *DT;
1287
1288  /// \brief Worklist of alloca instructions to simplify.
1289  ///
1290  /// Each alloca in the function is added to this. Each new alloca formed gets
1291  /// added to it as well to recursively simplify unless that alloca can be
1292  /// directly promoted. Finally, each time we rewrite a use of an alloca other
1293  /// the one being actively rewritten, we add it back onto the list if not
1294  /// already present to ensure it is re-visited.
1295  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1296
1297  /// \brief A collection of instructions to delete.
1298  /// We try to batch deletions to simplify code and make things a bit more
1299  /// efficient.
1300  SmallVector<Instruction *, 8> DeadInsts;
1301
1302  /// \brief A set to prevent repeatedly marking an instruction split into many
1303  /// uses as dead. Only used to guard insertion into DeadInsts.
1304  SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1305
1306  /// \brief A collection of alloca instructions we can directly promote.
1307  std::vector<AllocaInst *> PromotableAllocas;
1308
1309public:
1310  SROA(bool RequiresDomTree = true)
1311      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1312        C(0), TD(0), DT(0) {
1313    initializeSROAPass(*PassRegistry::getPassRegistry());
1314  }
1315  bool runOnFunction(Function &F);
1316  void getAnalysisUsage(AnalysisUsage &AU) const;
1317
1318  const char *getPassName() const { return "SROA"; }
1319  static char ID;
1320
1321private:
1322  friend class PHIOrSelectSpeculator;
1323  friend class AllocaPartitionRewriter;
1324  friend class AllocaPartitionVectorRewriter;
1325
1326  bool rewriteAllocaPartition(AllocaInst &AI,
1327                              AllocaPartitioning &P,
1328                              AllocaPartitioning::iterator PI);
1329  bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1330  bool runOnAlloca(AllocaInst &AI);
1331  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
1332  bool promoteAllocas(Function &F);
1333};
1334}
1335
1336char SROA::ID = 0;
1337
1338FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1339  return new SROA(RequiresDomTree);
1340}
1341
1342INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1343                      false, false)
1344INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1345INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1346                    false, false)
1347
1348/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1349///
1350/// If the provided GEP is all-constant, the total byte offset formed by the
1351/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1352/// operands, the function returns false and the value of Offset is unmodified.
1353static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP,
1354                                 APInt &Offset) {
1355  APInt GEPOffset(Offset.getBitWidth(), 0);
1356  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1357       GTI != GTE; ++GTI) {
1358    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1359    if (!OpC)
1360      return false;
1361    if (OpC->isZero()) continue;
1362
1363    // Handle a struct index, which adds its field offset to the pointer.
1364    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1365      unsigned ElementIdx = OpC->getZExtValue();
1366      const StructLayout *SL = TD.getStructLayout(STy);
1367      GEPOffset += APInt(Offset.getBitWidth(),
1368                         SL->getElementOffset(ElementIdx));
1369      continue;
1370    }
1371
1372    APInt TypeSize(Offset.getBitWidth(),
1373                   TD.getTypeAllocSize(GTI.getIndexedType()));
1374    if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1375      assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1376             "vector element size is not a multiple of 8, cannot GEP over it");
1377      TypeSize = VTy->getScalarSizeInBits() / 8;
1378    }
1379
1380    GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1381  }
1382  Offset = GEPOffset;
1383  return true;
1384}
1385
1386/// \brief Build a GEP out of a base pointer and indices.
1387///
1388/// This will return the BasePtr if that is valid, or build a new GEP
1389/// instruction using the IRBuilder if GEP-ing is needed.
1390static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1391                       SmallVectorImpl<Value *> &Indices,
1392                       const Twine &Prefix) {
1393  if (Indices.empty())
1394    return BasePtr;
1395
1396  // A single zero index is a no-op, so check for this and avoid building a GEP
1397  // in that case.
1398  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1399    return BasePtr;
1400
1401  return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1402}
1403
1404/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1405/// TargetTy without changing the offset of the pointer.
1406///
1407/// This routine assumes we've already established a properly offset GEP with
1408/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1409/// zero-indices down through type layers until we find one the same as
1410/// TargetTy. If we can't find one with the same type, we at least try to use
1411/// one with the same size. If none of that works, we just produce the GEP as
1412/// indicated by Indices to have the correct offset.
1413static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD,
1414                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1415                                    SmallVectorImpl<Value *> &Indices,
1416                                    const Twine &Prefix) {
1417  if (Ty == TargetTy)
1418    return buildGEP(IRB, BasePtr, Indices, Prefix);
1419
1420  // See if we can descend into a struct and locate a field with the correct
1421  // type.
1422  unsigned NumLayers = 0;
1423  Type *ElementTy = Ty;
1424  do {
1425    if (ElementTy->isPointerTy())
1426      break;
1427    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1428      ElementTy = SeqTy->getElementType();
1429      Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0)));
1430    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1431      ElementTy = *STy->element_begin();
1432      Indices.push_back(IRB.getInt32(0));
1433    } else {
1434      break;
1435    }
1436    ++NumLayers;
1437  } while (ElementTy != TargetTy);
1438  if (ElementTy != TargetTy)
1439    Indices.erase(Indices.end() - NumLayers, Indices.end());
1440
1441  return buildGEP(IRB, BasePtr, Indices, Prefix);
1442}
1443
1444/// \brief Recursively compute indices for a natural GEP.
1445///
1446/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1447/// element types adding appropriate indices for the GEP.
1448static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD,
1449                                       Value *Ptr, Type *Ty, APInt &Offset,
1450                                       Type *TargetTy,
1451                                       SmallVectorImpl<Value *> &Indices,
1452                                       const Twine &Prefix) {
1453  if (Offset == 0)
1454    return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1455
1456  // We can't recurse through pointer types.
1457  if (Ty->isPointerTy())
1458    return 0;
1459
1460  // We try to analyze GEPs over vectors here, but note that these GEPs are
1461  // extremely poorly defined currently. The long-term goal is to remove GEPing
1462  // over a vector from the IR completely.
1463  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1464    unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1465    if (ElementSizeInBits % 8)
1466      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1467    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1468    APInt NumSkippedElements = Offset.udiv(ElementSize);
1469    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1470      return 0;
1471    Offset -= NumSkippedElements * ElementSize;
1472    Indices.push_back(IRB.getInt(NumSkippedElements));
1473    return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1474                                    Offset, TargetTy, Indices, Prefix);
1475  }
1476
1477  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1478    Type *ElementTy = ArrTy->getElementType();
1479    APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1480    APInt NumSkippedElements = Offset.udiv(ElementSize);
1481    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1482      return 0;
1483
1484    Offset -= NumSkippedElements * ElementSize;
1485    Indices.push_back(IRB.getInt(NumSkippedElements));
1486    return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1487                                    Indices, Prefix);
1488  }
1489
1490  StructType *STy = dyn_cast<StructType>(Ty);
1491  if (!STy)
1492    return 0;
1493
1494  const StructLayout *SL = TD.getStructLayout(STy);
1495  uint64_t StructOffset = Offset.getZExtValue();
1496  if (StructOffset >= SL->getSizeInBytes())
1497    return 0;
1498  unsigned Index = SL->getElementContainingOffset(StructOffset);
1499  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1500  Type *ElementTy = STy->getElementType(Index);
1501  if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1502    return 0; // The offset points into alignment padding.
1503
1504  Indices.push_back(IRB.getInt32(Index));
1505  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1506                                  Indices, Prefix);
1507}
1508
1509/// \brief Get a natural GEP from a base pointer to a particular offset and
1510/// resulting in a particular type.
1511///
1512/// The goal is to produce a "natural" looking GEP that works with the existing
1513/// composite types to arrive at the appropriate offset and element type for
1514/// a pointer. TargetTy is the element type the returned GEP should point-to if
1515/// possible. We recurse by decreasing Offset, adding the appropriate index to
1516/// Indices, and setting Ty to the result subtype.
1517///
1518/// If no natural GEP can be constructed, this function returns null.
1519static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD,
1520                                      Value *Ptr, APInt Offset, Type *TargetTy,
1521                                      SmallVectorImpl<Value *> &Indices,
1522                                      const Twine &Prefix) {
1523  PointerType *Ty = cast<PointerType>(Ptr->getType());
1524
1525  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1526  // an i8.
1527  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1528    return 0;
1529
1530  Type *ElementTy = Ty->getElementType();
1531  if (!ElementTy->isSized())
1532    return 0; // We can't GEP through an unsized element.
1533  APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1534  if (ElementSize == 0)
1535    return 0; // Zero-length arrays can't help us build a natural GEP.
1536  APInt NumSkippedElements = Offset.udiv(ElementSize);
1537
1538  Offset -= NumSkippedElements * ElementSize;
1539  Indices.push_back(IRB.getInt(NumSkippedElements));
1540  return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1541                                  Indices, Prefix);
1542}
1543
1544/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1545/// resulting pointer has PointerTy.
1546///
1547/// This tries very hard to compute a "natural" GEP which arrives at the offset
1548/// and produces the pointer type desired. Where it cannot, it will try to use
1549/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1550/// fails, it will try to use an existing i8* and GEP to the byte offset and
1551/// bitcast to the type.
1552///
1553/// The strategy for finding the more natural GEPs is to peel off layers of the
1554/// pointer, walking back through bit casts and GEPs, searching for a base
1555/// pointer from which we can compute a natural GEP with the desired
1556/// properities. The algorithm tries to fold as many constant indices into
1557/// a single GEP as possible, thus making each GEP more independent of the
1558/// surrounding code.
1559static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD,
1560                             Value *Ptr, APInt Offset, Type *PointerTy,
1561                             const Twine &Prefix) {
1562  // Even though we don't look through PHI nodes, we could be called on an
1563  // instruction in an unreachable block, which may be on a cycle.
1564  SmallPtrSet<Value *, 4> Visited;
1565  Visited.insert(Ptr);
1566  SmallVector<Value *, 4> Indices;
1567
1568  // We may end up computing an offset pointer that has the wrong type. If we
1569  // never are able to compute one directly that has the correct type, we'll
1570  // fall back to it, so keep it around here.
1571  Value *OffsetPtr = 0;
1572
1573  // Remember any i8 pointer we come across to re-use if we need to do a raw
1574  // byte offset.
1575  Value *Int8Ptr = 0;
1576  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1577
1578  Type *TargetTy = PointerTy->getPointerElementType();
1579
1580  do {
1581    // First fold any existing GEPs into the offset.
1582    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1583      APInt GEPOffset(Offset.getBitWidth(), 0);
1584      if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1585        break;
1586      Offset += GEPOffset;
1587      Ptr = GEP->getPointerOperand();
1588      if (!Visited.insert(Ptr))
1589        break;
1590    }
1591
1592    // See if we can perform a natural GEP here.
1593    Indices.clear();
1594    if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1595                                           Indices, Prefix)) {
1596      if (P->getType() == PointerTy) {
1597        // Zap any offset pointer that we ended up computing in previous rounds.
1598        if (OffsetPtr && OffsetPtr->use_empty())
1599          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1600            I->eraseFromParent();
1601        return P;
1602      }
1603      if (!OffsetPtr) {
1604        OffsetPtr = P;
1605      }
1606    }
1607
1608    // Stash this pointer if we've found an i8*.
1609    if (Ptr->getType()->isIntegerTy(8)) {
1610      Int8Ptr = Ptr;
1611      Int8PtrOffset = Offset;
1612    }
1613
1614    // Peel off a layer of the pointer and update the offset appropriately.
1615    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1616      Ptr = cast<Operator>(Ptr)->getOperand(0);
1617    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1618      if (GA->mayBeOverridden())
1619        break;
1620      Ptr = GA->getAliasee();
1621    } else {
1622      break;
1623    }
1624    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1625  } while (Visited.insert(Ptr));
1626
1627  if (!OffsetPtr) {
1628    if (!Int8Ptr) {
1629      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1630                                  Prefix + ".raw_cast");
1631      Int8PtrOffset = Offset;
1632    }
1633
1634    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1635      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1636                            Prefix + ".raw_idx");
1637  }
1638  Ptr = OffsetPtr;
1639
1640  // On the off chance we were targeting i8*, guard the bitcast here.
1641  if (Ptr->getType() != PointerTy)
1642    Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1643
1644  return Ptr;
1645}
1646
1647/// \brief Test whether the given alloca partition can be promoted to a vector.
1648///
1649/// This is a quick test to check whether we can rewrite a particular alloca
1650/// partition (and its newly formed alloca) into a vector alloca with only
1651/// whole-vector loads and stores such that it could be promoted to a vector
1652/// SSA value. We only can ensure this for a limited set of operations, and we
1653/// don't want to do the rewrites unless we are confident that the result will
1654/// be promotable, so we have an early test here.
1655static bool isVectorPromotionViable(const TargetData &TD,
1656                                    Type *AllocaTy,
1657                                    AllocaPartitioning &P,
1658                                    uint64_t PartitionBeginOffset,
1659                                    uint64_t PartitionEndOffset,
1660                                    AllocaPartitioning::const_use_iterator I,
1661                                    AllocaPartitioning::const_use_iterator E) {
1662  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1663  if (!Ty)
1664    return false;
1665
1666  uint64_t VecSize = TD.getTypeSizeInBits(Ty);
1667  uint64_t ElementSize = Ty->getScalarSizeInBits();
1668
1669  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1670  // that aren't byte sized.
1671  if (ElementSize % 8)
1672    return false;
1673  assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
1674  VecSize /= 8;
1675  ElementSize /= 8;
1676
1677  for (; I != E; ++I) {
1678    uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
1679    uint64_t BeginIndex = BeginOffset / ElementSize;
1680    if (BeginIndex * ElementSize != BeginOffset ||
1681        BeginIndex >= Ty->getNumElements())
1682      return false;
1683    uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
1684    uint64_t EndIndex = EndOffset / ElementSize;
1685    if (EndIndex * ElementSize != EndOffset ||
1686        EndIndex > Ty->getNumElements())
1687      return false;
1688
1689    // FIXME: We should build shuffle vector instructions to handle
1690    // non-element-sized accesses.
1691    if ((EndOffset - BeginOffset) != ElementSize &&
1692        (EndOffset - BeginOffset) != VecSize)
1693      return false;
1694
1695    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
1696      if (MI->isVolatile())
1697        return false;
1698      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
1699        const AllocaPartitioning::MemTransferOffsets &MTO
1700          = P.getMemTransferOffsets(*MTI);
1701        if (!MTO.IsSplittable)
1702          return false;
1703      }
1704    } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
1705      // Disable vector promotion when there are loads or stores of an FCA.
1706      return false;
1707    } else if (!isa<LoadInst>(I->U->getUser()) &&
1708               !isa<StoreInst>(I->U->getUser())) {
1709      return false;
1710    }
1711  }
1712  return true;
1713}
1714
1715/// \brief Test whether the given alloca partition can be promoted to an int.
1716///
1717/// This is a quick test to check whether we can rewrite a particular alloca
1718/// partition (and its newly formed alloca) into an integer alloca suitable for
1719/// promotion to an SSA value. We only can ensure this for a limited set of
1720/// operations, and we don't want to do the rewrites unless we are confident
1721/// that the result will be promotable, so we have an early test here.
1722static bool isIntegerPromotionViable(const TargetData &TD,
1723                                     Type *AllocaTy,
1724                                     AllocaPartitioning &P,
1725                                     AllocaPartitioning::const_use_iterator I,
1726                                     AllocaPartitioning::const_use_iterator E) {
1727  IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy);
1728  if (!Ty)
1729    return false;
1730
1731  // Check the uses to ensure the uses are (likely) promoteable integer uses.
1732  // Also ensure that the alloca has a covering load or store. We don't want
1733  // promote because of some other unsplittable entry (which we may make
1734  // splittable later) and lose the ability to promote each element access.
1735  bool WholeAllocaOp = false;
1736  for (; I != E; ++I) {
1737    if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
1738      if (LI->isVolatile() || !LI->getType()->isIntegerTy())
1739        return false;
1740      if (LI->getType() == Ty)
1741        WholeAllocaOp = true;
1742    } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
1743      if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy())
1744        return false;
1745      if (SI->getValueOperand()->getType() == Ty)
1746        WholeAllocaOp = true;
1747    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
1748      if (MI->isVolatile())
1749        return false;
1750      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
1751        const AllocaPartitioning::MemTransferOffsets &MTO
1752          = P.getMemTransferOffsets(*MTI);
1753        if (!MTO.IsSplittable)
1754          return false;
1755      }
1756    } else {
1757      return false;
1758    }
1759  }
1760  return WholeAllocaOp;
1761}
1762
1763namespace {
1764/// \brief Visitor to speculate PHIs and Selects where possible.
1765class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1766  // Befriend the base class so it can delegate to private visit methods.
1767  friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1768
1769  const TargetData &TD;
1770  AllocaPartitioning &P;
1771  SROA &Pass;
1772
1773public:
1774  PHIOrSelectSpeculator(const TargetData &TD, AllocaPartitioning &P, SROA &Pass)
1775    : TD(TD), P(P), Pass(Pass) {}
1776
1777  /// \brief Visit the users of the alloca partition and rewrite them.
1778  void visitUsers(AllocaPartitioning::const_use_iterator I,
1779                  AllocaPartitioning::const_use_iterator E) {
1780    for (; I != E; ++I)
1781      visit(cast<Instruction>(I->U->getUser()));
1782  }
1783
1784private:
1785  // By default, skip this instruction.
1786  void visitInstruction(Instruction &I) {}
1787
1788  /// PHI instructions that use an alloca and are subsequently loaded can be
1789  /// rewritten to load both input pointers in the pred blocks and then PHI the
1790  /// results, allowing the load of the alloca to be promoted.
1791  /// From this:
1792  ///   %P2 = phi [i32* %Alloca, i32* %Other]
1793  ///   %V = load i32* %P2
1794  /// to:
1795  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1796  ///   ...
1797  ///   %V2 = load i32* %Other
1798  ///   ...
1799  ///   %V = phi [i32 %V1, i32 %V2]
1800  ///
1801  /// We can do this to a select if its only uses are loads and if the operands
1802  /// to the select can be loaded unconditionally.
1803  ///
1804  /// FIXME: This should be hoisted into a generic utility, likely in
1805  /// Transforms/Util/Local.h
1806  bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1807    // For now, we can only do this promotion if the load is in the same block
1808    // as the PHI, and if there are no stores between the phi and load.
1809    // TODO: Allow recursive phi users.
1810    // TODO: Allow stores.
1811    BasicBlock *BB = PN.getParent();
1812    unsigned MaxAlign = 0;
1813    for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1814         UI != UE; ++UI) {
1815      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1816      if (LI == 0 || !LI->isSimple()) return false;
1817
1818      // For now we only allow loads in the same block as the PHI.  This is
1819      // a common case that happens when instcombine merges two loads through
1820      // a PHI.
1821      if (LI->getParent() != BB) return false;
1822
1823      // Ensure that there are no instructions between the PHI and the load that
1824      // could store.
1825      for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1826        if (BBI->mayWriteToMemory())
1827          return false;
1828
1829      MaxAlign = std::max(MaxAlign, LI->getAlignment());
1830      Loads.push_back(LI);
1831    }
1832
1833    // We can only transform this if it is safe to push the loads into the
1834    // predecessor blocks. The only thing to watch out for is that we can't put
1835    // a possibly trapping load in the predecessor if it is a critical edge.
1836    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1837         ++Idx) {
1838      TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1839      Value *InVal = PN.getIncomingValue(Idx);
1840
1841      // If the value is produced by the terminator of the predecessor (an
1842      // invoke) or it has side-effects, there is no valid place to put a load
1843      // in the predecessor.
1844      if (TI == InVal || TI->mayHaveSideEffects())
1845        return false;
1846
1847      // If the predecessor has a single successor, then the edge isn't
1848      // critical.
1849      if (TI->getNumSuccessors() == 1)
1850        continue;
1851
1852      // If this pointer is always safe to load, or if we can prove that there
1853      // is already a load in the block, then we can move the load to the pred
1854      // block.
1855      if (InVal->isDereferenceablePointer() ||
1856          isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1857        continue;
1858
1859      return false;
1860    }
1861
1862    return true;
1863  }
1864
1865  void visitPHINode(PHINode &PN) {
1866    DEBUG(dbgs() << "    original: " << PN << "\n");
1867
1868    SmallVector<LoadInst *, 4> Loads;
1869    if (!isSafePHIToSpeculate(PN, Loads))
1870      return;
1871
1872    assert(!Loads.empty());
1873
1874    Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1875    IRBuilder<> PHIBuilder(&PN);
1876    PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1877                                          PN.getName() + ".sroa.speculated");
1878
1879    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1880    // matter which one we get and if any differ, it doesn't matter.
1881    LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1882    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1883    unsigned Align = SomeLoad->getAlignment();
1884
1885    // Rewrite all loads of the PN to use the new PHI.
1886    do {
1887      LoadInst *LI = Loads.pop_back_val();
1888      LI->replaceAllUsesWith(NewPN);
1889      Pass.DeadInsts.push_back(LI);
1890    } while (!Loads.empty());
1891
1892    // Inject loads into all of the pred blocks.
1893    for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1894      BasicBlock *Pred = PN.getIncomingBlock(Idx);
1895      TerminatorInst *TI = Pred->getTerminator();
1896      Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1897      Value *InVal = PN.getIncomingValue(Idx);
1898      IRBuilder<> PredBuilder(TI);
1899
1900      LoadInst *Load
1901        = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1902                                         Pred->getName()));
1903      ++NumLoadsSpeculated;
1904      Load->setAlignment(Align);
1905      if (TBAATag)
1906        Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1907      NewPN->addIncoming(Load, Pred);
1908
1909      Instruction *Ptr = dyn_cast<Instruction>(InVal);
1910      if (!Ptr)
1911        // No uses to rewrite.
1912        continue;
1913
1914      // Try to lookup and rewrite any partition uses corresponding to this phi
1915      // input.
1916      AllocaPartitioning::iterator PI
1917        = P.findPartitionForPHIOrSelectOperand(InUse);
1918      if (PI == P.end())
1919        continue;
1920
1921      // Replace the Use in the PartitionUse for this operand with the Use
1922      // inside the load.
1923      AllocaPartitioning::use_iterator UI
1924        = P.findPartitionUseForPHIOrSelectOperand(InUse);
1925      assert(isa<PHINode>(*UI->U->getUser()));
1926      UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1927    }
1928    DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1929  }
1930
1931  /// Select instructions that use an alloca and are subsequently loaded can be
1932  /// rewritten to load both input pointers and then select between the result,
1933  /// allowing the load of the alloca to be promoted.
1934  /// From this:
1935  ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1936  ///   %V = load i32* %P2
1937  /// to:
1938  ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1939  ///   %V2 = load i32* %Other
1940  ///   %V = select i1 %cond, i32 %V1, i32 %V2
1941  ///
1942  /// We can do this to a select if its only uses are loads and if the operand
1943  /// to the select can be loaded unconditionally.
1944  bool isSafeSelectToSpeculate(SelectInst &SI,
1945                               SmallVectorImpl<LoadInst *> &Loads) {
1946    Value *TValue = SI.getTrueValue();
1947    Value *FValue = SI.getFalseValue();
1948    bool TDerefable = TValue->isDereferenceablePointer();
1949    bool FDerefable = FValue->isDereferenceablePointer();
1950
1951    for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1952         UI != UE; ++UI) {
1953      LoadInst *LI = dyn_cast<LoadInst>(*UI);
1954      if (LI == 0 || !LI->isSimple()) return false;
1955
1956      // Both operands to the select need to be dereferencable, either
1957      // absolutely (e.g. allocas) or at this point because we can see other
1958      // accesses to it.
1959      if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1960                                                      LI->getAlignment(), &TD))
1961        return false;
1962      if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1963                                                      LI->getAlignment(), &TD))
1964        return false;
1965      Loads.push_back(LI);
1966    }
1967
1968    return true;
1969  }
1970
1971  void visitSelectInst(SelectInst &SI) {
1972    DEBUG(dbgs() << "    original: " << SI << "\n");
1973    IRBuilder<> IRB(&SI);
1974
1975    // If the select isn't safe to speculate, just use simple logic to emit it.
1976    SmallVector<LoadInst *, 4> Loads;
1977    if (!isSafeSelectToSpeculate(SI, Loads))
1978      return;
1979
1980    Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1981    AllocaPartitioning::iterator PIs[2];
1982    AllocaPartitioning::PartitionUse PUs[2];
1983    for (unsigned i = 0, e = 2; i != e; ++i) {
1984      PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1985      if (PIs[i] != P.end()) {
1986        // If the pointer is within the partitioning, remove the select from
1987        // its uses. We'll add in the new loads below.
1988        AllocaPartitioning::use_iterator UI
1989          = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1990        PUs[i] = *UI;
1991        P.use_erase(PIs[i], UI);
1992      }
1993    }
1994
1995    Value *TV = SI.getTrueValue();
1996    Value *FV = SI.getFalseValue();
1997    // Replace the loads of the select with a select of two loads.
1998    while (!Loads.empty()) {
1999      LoadInst *LI = Loads.pop_back_val();
2000
2001      IRB.SetInsertPoint(LI);
2002      LoadInst *TL =
2003        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
2004      LoadInst *FL =
2005        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
2006      NumLoadsSpeculated += 2;
2007
2008      // Transfer alignment and TBAA info if present.
2009      TL->setAlignment(LI->getAlignment());
2010      FL->setAlignment(LI->getAlignment());
2011      if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
2012        TL->setMetadata(LLVMContext::MD_tbaa, Tag);
2013        FL->setMetadata(LLVMContext::MD_tbaa, Tag);
2014      }
2015
2016      Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
2017                                  LI->getName() + ".sroa.speculated");
2018
2019      LoadInst *Loads[2] = { TL, FL };
2020      for (unsigned i = 0, e = 2; i != e; ++i) {
2021        if (PIs[i] != P.end()) {
2022          Use *LoadUse = &Loads[i]->getOperandUse(0);
2023          assert(PUs[i].U->get() == LoadUse->get());
2024          PUs[i].U = LoadUse;
2025          P.use_push_back(PIs[i], PUs[i]);
2026        }
2027      }
2028
2029      DEBUG(dbgs() << "          speculated to: " << *V << "\n");
2030      LI->replaceAllUsesWith(V);
2031      Pass.DeadInsts.push_back(LI);
2032    }
2033  }
2034};
2035
2036/// \brief Visitor to rewrite instructions using a partition of an alloca to
2037/// use a new alloca.
2038///
2039/// Also implements the rewriting to vector-based accesses when the partition
2040/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2041/// lives here.
2042class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2043                                                   bool> {
2044  // Befriend the base class so it can delegate to private visit methods.
2045  friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2046
2047  const TargetData &TD;
2048  AllocaPartitioning &P;
2049  SROA &Pass;
2050  AllocaInst &OldAI, &NewAI;
2051  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2052
2053  // If we are rewriting an alloca partition which can be written as pure
2054  // vector operations, we stash extra information here. When VecTy is
2055  // non-null, we have some strict guarantees about the rewriten alloca:
2056  //   - The new alloca is exactly the size of the vector type here.
2057  //   - The accesses all either map to the entire vector or to a single
2058  //     element.
2059  //   - The set of accessing instructions is only one of those handled above
2060  //     in isVectorPromotionViable. Generally these are the same access kinds
2061  //     which are promotable via mem2reg.
2062  VectorType *VecTy;
2063  Type *ElementTy;
2064  uint64_t ElementSize;
2065
2066  // This is a convenience and flag variable that will be null unless the new
2067  // alloca has a promotion-targeted integer type due to passing
2068  // isIntegerPromotionViable above. If it is non-null does, the desired
2069  // integer type will be stored here for easy access during rewriting.
2070  IntegerType *IntPromotionTy;
2071
2072  // The offset of the partition user currently being rewritten.
2073  uint64_t BeginOffset, EndOffset;
2074  Use *OldUse;
2075  Instruction *OldPtr;
2076
2077  // The name prefix to use when rewriting instructions for this alloca.
2078  std::string NamePrefix;
2079
2080public:
2081  AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P,
2082                          AllocaPartitioning::iterator PI,
2083                          SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2084                          uint64_t NewBeginOffset, uint64_t NewEndOffset)
2085    : TD(TD), P(P), Pass(Pass),
2086      OldAI(OldAI), NewAI(NewAI),
2087      NewAllocaBeginOffset(NewBeginOffset),
2088      NewAllocaEndOffset(NewEndOffset),
2089      VecTy(), ElementTy(), ElementSize(), IntPromotionTy(),
2090      BeginOffset(), EndOffset() {
2091  }
2092
2093  /// \brief Visit the users of the alloca partition and rewrite them.
2094  bool visitUsers(AllocaPartitioning::const_use_iterator I,
2095                  AllocaPartitioning::const_use_iterator E) {
2096    if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2097                                NewAllocaBeginOffset, NewAllocaEndOffset,
2098                                I, E)) {
2099      ++NumVectorized;
2100      VecTy = cast<VectorType>(NewAI.getAllocatedType());
2101      ElementTy = VecTy->getElementType();
2102      assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2103             "Only multiple-of-8 sized vector elements are viable");
2104      ElementSize = VecTy->getScalarSizeInBits() / 8;
2105    } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(),
2106                                        P, I, E)) {
2107      IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType());
2108    }
2109    bool CanSROA = true;
2110    for (; I != E; ++I) {
2111      BeginOffset = I->BeginOffset;
2112      EndOffset = I->EndOffset;
2113      OldUse = I->U;
2114      OldPtr = cast<Instruction>(I->U->get());
2115      NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
2116      CanSROA &= visit(cast<Instruction>(I->U->getUser()));
2117    }
2118    if (VecTy) {
2119      assert(CanSROA);
2120      VecTy = 0;
2121      ElementTy = 0;
2122      ElementSize = 0;
2123    }
2124    return CanSROA;
2125  }
2126
2127private:
2128  // Every instruction which can end up as a user must have a rewrite rule.
2129  bool visitInstruction(Instruction &I) {
2130    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2131    llvm_unreachable("No rewrite rule for this instruction!");
2132  }
2133
2134  Twine getName(const Twine &Suffix) {
2135    return NamePrefix + Suffix;
2136  }
2137
2138  Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2139    assert(BeginOffset >= NewAllocaBeginOffset);
2140    APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2141    return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2142  }
2143
2144  unsigned getAdjustedAlign(uint64_t Offset) {
2145    unsigned NewAIAlign = NewAI.getAlignment();
2146    if (!NewAIAlign)
2147      NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2148    return MinAlign(NewAIAlign, Offset);
2149  }
2150  unsigned getAdjustedAlign() {
2151    return getAdjustedAlign(BeginOffset - NewAllocaBeginOffset);
2152  }
2153
2154  bool isTypeAlignSufficient(Type *Ty) {
2155    return TD.getABITypeAlignment(Ty) >= getAdjustedAlign();
2156  }
2157
2158  ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2159    assert(VecTy && "Can only call getIndex when rewriting a vector");
2160    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2161    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2162    uint32_t Index = RelOffset / ElementSize;
2163    assert(Index * ElementSize == RelOffset);
2164    return IRB.getInt32(Index);
2165  }
2166
2167  Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
2168                        uint64_t Offset) {
2169    assert(IntPromotionTy && "Alloca is not an integer we can extract from");
2170    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2171                                     getName(".load"));
2172    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2173    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2174    if (RelOffset)
2175      V = IRB.CreateLShr(V, RelOffset*8, getName(".shift"));
2176    if (TargetTy != IntPromotionTy) {
2177      assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() &&
2178             "Cannot extract to a larger integer!");
2179      V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
2180    }
2181    return V;
2182  }
2183
2184  StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
2185    IntegerType *Ty = cast<IntegerType>(V->getType());
2186    if (Ty == IntPromotionTy)
2187      return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2188
2189    assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() &&
2190           "Cannot insert a larger integer!");
2191    V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext"));
2192    assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2193    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2194    if (RelOffset)
2195      V = IRB.CreateShl(V, RelOffset*8, getName(".shift"));
2196
2197    APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth())
2198                               .shl(RelOffset*8);
2199    Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI,
2200                                                     NewAI.getAlignment(),
2201                                                     getName(".oldload")),
2202                               Mask, getName(".mask"));
2203    return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")),
2204                                  &NewAI, NewAI.getAlignment());
2205  }
2206
2207  void deleteIfTriviallyDead(Value *V) {
2208    Instruction *I = cast<Instruction>(V);
2209    if (isInstructionTriviallyDead(I))
2210      Pass.DeadInsts.push_back(I);
2211  }
2212
2213  Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
2214    if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2215      return IRB.CreateIntToPtr(V, Ty);
2216    if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2217      return IRB.CreatePtrToInt(V, Ty);
2218
2219    return IRB.CreateBitCast(V, Ty);
2220  }
2221
2222  bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2223    Value *Result;
2224    if (LI.getType() == VecTy->getElementType() ||
2225        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2226      Result = IRB.CreateExtractElement(
2227        IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2228        getIndex(IRB, BeginOffset), getName(".extract"));
2229    } else {
2230      Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2231                                     getName(".load"));
2232    }
2233    if (Result->getType() != LI.getType())
2234      Result = getValueCast(IRB, Result, LI.getType());
2235    LI.replaceAllUsesWith(Result);
2236    Pass.DeadInsts.push_back(&LI);
2237
2238    DEBUG(dbgs() << "          to: " << *Result << "\n");
2239    return true;
2240  }
2241
2242  bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2243    assert(!LI.isVolatile());
2244    Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
2245                                   BeginOffset);
2246    LI.replaceAllUsesWith(Result);
2247    Pass.DeadInsts.push_back(&LI);
2248    DEBUG(dbgs() << "          to: " << *Result << "\n");
2249    return true;
2250  }
2251
2252  bool visitLoadInst(LoadInst &LI) {
2253    DEBUG(dbgs() << "    original: " << LI << "\n");
2254    Value *OldOp = LI.getOperand(0);
2255    assert(OldOp == OldPtr);
2256    IRBuilder<> IRB(&LI);
2257
2258    if (VecTy)
2259      return rewriteVectorizedLoadInst(IRB, LI, OldOp);
2260    if (IntPromotionTy)
2261      return rewriteIntegerLoad(IRB, LI);
2262
2263    Value *NewPtr = getAdjustedAllocaPtr(IRB,
2264                                         LI.getPointerOperand()->getType());
2265    LI.setOperand(0, NewPtr);
2266    if (LI.getAlignment() || !isTypeAlignSufficient(LI.getType()))
2267      LI.setAlignment(getAdjustedAlign());
2268    DEBUG(dbgs() << "          to: " << LI << "\n");
2269
2270    deleteIfTriviallyDead(OldOp);
2271    return NewPtr == &NewAI && !LI.isVolatile();
2272  }
2273
2274  bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2275                                  Value *OldOp) {
2276    Value *V = SI.getValueOperand();
2277    if (V->getType() == ElementTy ||
2278        BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2279      if (V->getType() != ElementTy)
2280        V = getValueCast(IRB, V, ElementTy);
2281      LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2282                                           getName(".load"));
2283      V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
2284                                  getName(".insert"));
2285    } else if (V->getType() != VecTy) {
2286      V = getValueCast(IRB, V, VecTy);
2287    }
2288    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2289    Pass.DeadInsts.push_back(&SI);
2290
2291    (void)Store;
2292    DEBUG(dbgs() << "          to: " << *Store << "\n");
2293    return true;
2294  }
2295
2296  bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2297    assert(!SI.isVolatile());
2298    StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2299    Pass.DeadInsts.push_back(&SI);
2300    (void)Store;
2301    DEBUG(dbgs() << "          to: " << *Store << "\n");
2302    return true;
2303  }
2304
2305  bool visitStoreInst(StoreInst &SI) {
2306    DEBUG(dbgs() << "    original: " << SI << "\n");
2307    Value *OldOp = SI.getOperand(1);
2308    assert(OldOp == OldPtr);
2309    IRBuilder<> IRB(&SI);
2310
2311    if (VecTy)
2312      return rewriteVectorizedStoreInst(IRB, SI, OldOp);
2313    if (IntPromotionTy)
2314      return rewriteIntegerStore(IRB, SI);
2315
2316    Value *NewPtr = getAdjustedAllocaPtr(IRB,
2317                                         SI.getPointerOperand()->getType());
2318    SI.setOperand(1, NewPtr);
2319    if (SI.getAlignment() ||
2320        !isTypeAlignSufficient(SI.getValueOperand()->getType()))
2321      SI.setAlignment(getAdjustedAlign());
2322    if (SI.getAlignment())
2323      SI.setAlignment(MinAlign(NewAI.getAlignment(),
2324                               BeginOffset - NewAllocaBeginOffset));
2325    DEBUG(dbgs() << "          to: " << SI << "\n");
2326
2327    deleteIfTriviallyDead(OldOp);
2328    return NewPtr == &NewAI && !SI.isVolatile();
2329  }
2330
2331  bool visitMemSetInst(MemSetInst &II) {
2332    DEBUG(dbgs() << "    original: " << II << "\n");
2333    IRBuilder<> IRB(&II);
2334    assert(II.getRawDest() == OldPtr);
2335
2336    // If the memset has a variable size, it cannot be split, just adjust the
2337    // pointer to the new alloca.
2338    if (!isa<Constant>(II.getLength())) {
2339      II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2340      Type *CstTy = II.getAlignmentCst()->getType();
2341      II.setAlignment(ConstantInt::get(CstTy, getAdjustedAlign()));
2342
2343      deleteIfTriviallyDead(OldPtr);
2344      return false;
2345    }
2346
2347    // Record this instruction for deletion.
2348    if (Pass.DeadSplitInsts.insert(&II))
2349      Pass.DeadInsts.push_back(&II);
2350
2351    Type *AllocaTy = NewAI.getAllocatedType();
2352    Type *ScalarTy = AllocaTy->getScalarType();
2353
2354    // If this doesn't map cleanly onto the alloca type, and that type isn't
2355    // a single value type, just emit a memset.
2356    if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
2357                   EndOffset != NewAllocaEndOffset ||
2358                   !AllocaTy->isSingleValueType() ||
2359                   !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2360      Type *SizeTy = II.getLength()->getType();
2361      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2362      CallInst *New
2363        = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2364                                                II.getRawDest()->getType()),
2365                           II.getValue(), Size, getAdjustedAlign(),
2366                           II.isVolatile());
2367      (void)New;
2368      DEBUG(dbgs() << "          to: " << *New << "\n");
2369      return false;
2370    }
2371
2372    // If we can represent this as a simple value, we have to build the actual
2373    // value to store, which requires expanding the byte present in memset to
2374    // a sensible representation for the alloca type. This is essentially
2375    // splatting the byte to a sufficiently wide integer, bitcasting to the
2376    // desired scalar type, and splatting it across any desired vector type.
2377    Value *V = II.getValue();
2378    IntegerType *VTy = cast<IntegerType>(V->getType());
2379    Type *IntTy = Type::getIntNTy(VTy->getContext(),
2380                                  TD.getTypeSizeInBits(ScalarTy));
2381    if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
2382      V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
2383                        ConstantExpr::getUDiv(
2384                          Constant::getAllOnesValue(IntTy),
2385                          ConstantExpr::getZExt(
2386                            Constant::getAllOnesValue(V->getType()),
2387                            IntTy)),
2388                        getName(".isplat"));
2389    if (V->getType() != ScalarTy) {
2390      if (ScalarTy->isPointerTy())
2391        V = IRB.CreateIntToPtr(V, ScalarTy);
2392      else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
2393        V = IRB.CreateBitCast(V, ScalarTy);
2394      else if (ScalarTy->isIntegerTy())
2395        llvm_unreachable("Computed different integer types with equal widths");
2396      else
2397        llvm_unreachable("Invalid scalar type");
2398    }
2399
2400    // If this is an element-wide memset of a vectorizable alloca, insert it.
2401    if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2402                  EndOffset < NewAllocaEndOffset)) {
2403      StoreInst *Store = IRB.CreateAlignedStore(
2404        IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2405                                                      NewAI.getAlignment(),
2406                                                      getName(".load")),
2407                                V, getIndex(IRB, BeginOffset),
2408                                getName(".insert")),
2409        &NewAI, NewAI.getAlignment());
2410      (void)Store;
2411      DEBUG(dbgs() << "          to: " << *Store << "\n");
2412      return true;
2413    }
2414
2415    // Splat to a vector if needed.
2416    if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
2417      VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
2418      V = IRB.CreateShuffleVector(
2419        IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
2420                                IRB.getInt32(0), getName(".vsplat.insert")),
2421        UndefValue::get(SplatSourceTy),
2422        ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
2423        getName(".vsplat.shuffle"));
2424      assert(V->getType() == VecTy);
2425    }
2426
2427    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2428                                        II.isVolatile());
2429    (void)New;
2430    DEBUG(dbgs() << "          to: " << *New << "\n");
2431    return !II.isVolatile();
2432  }
2433
2434  bool visitMemTransferInst(MemTransferInst &II) {
2435    // Rewriting of memory transfer instructions can be a bit tricky. We break
2436    // them into two categories: split intrinsics and unsplit intrinsics.
2437
2438    DEBUG(dbgs() << "    original: " << II << "\n");
2439    IRBuilder<> IRB(&II);
2440
2441    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2442    bool IsDest = II.getRawDest() == OldPtr;
2443
2444    const AllocaPartitioning::MemTransferOffsets &MTO
2445      = P.getMemTransferOffsets(II);
2446
2447    // Compute the relative offset within the transfer.
2448    unsigned IntPtrWidth = TD.getPointerSizeInBits();
2449    APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2450                                                       : MTO.SourceBegin));
2451
2452    unsigned Align = II.getAlignment();
2453    if (Align > 1)
2454      Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2455                       MinAlign(II.getAlignment(), getAdjustedAlign()));
2456
2457    // For unsplit intrinsics, we simply modify the source and destination
2458    // pointers in place. This isn't just an optimization, it is a matter of
2459    // correctness. With unsplit intrinsics we may be dealing with transfers
2460    // within a single alloca before SROA ran, or with transfers that have
2461    // a variable length. We may also be dealing with memmove instead of
2462    // memcpy, and so simply updating the pointers is the necessary for us to
2463    // update both source and dest of a single call.
2464    if (!MTO.IsSplittable) {
2465      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2466      if (IsDest)
2467        II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2468      else
2469        II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2470
2471      Type *CstTy = II.getAlignmentCst()->getType();
2472      II.setAlignment(ConstantInt::get(CstTy, Align));
2473
2474      DEBUG(dbgs() << "          to: " << II << "\n");
2475      deleteIfTriviallyDead(OldOp);
2476      return false;
2477    }
2478    // For split transfer intrinsics we have an incredibly useful assurance:
2479    // the source and destination do not reside within the same alloca, and at
2480    // least one of them does not escape. This means that we can replace
2481    // memmove with memcpy, and we don't need to worry about all manner of
2482    // downsides to splitting and transforming the operations.
2483
2484    // If this doesn't map cleanly onto the alloca type, and that type isn't
2485    // a single value type, just emit a memcpy.
2486    bool EmitMemCpy
2487      = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
2488                   EndOffset != NewAllocaEndOffset ||
2489                   !NewAI.getAllocatedType()->isSingleValueType());
2490
2491    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2492    // size hasn't been shrunk based on analysis of the viable range, this is
2493    // a no-op.
2494    if (EmitMemCpy && &OldAI == &NewAI) {
2495      uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2496      uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2497      // Ensure the start lines up.
2498      assert(BeginOffset == OrigBegin);
2499      (void)OrigBegin;
2500
2501      // Rewrite the size as needed.
2502      if (EndOffset != OrigEnd)
2503        II.setLength(ConstantInt::get(II.getLength()->getType(),
2504                                      EndOffset - BeginOffset));
2505      return false;
2506    }
2507    // Record this instruction for deletion.
2508    if (Pass.DeadSplitInsts.insert(&II))
2509      Pass.DeadInsts.push_back(&II);
2510
2511    bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
2512                                     EndOffset < NewAllocaEndOffset);
2513
2514    Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2515                              : II.getRawDest()->getType();
2516    if (!EmitMemCpy)
2517      OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
2518                                   : NewAI.getType();
2519
2520    // Compute the other pointer, folding as much as possible to produce
2521    // a single, simple GEP in most cases.
2522    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2523    OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2524                              getName("." + OtherPtr->getName()));
2525
2526    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2527    // alloca that should be re-examined after rewriting this instruction.
2528    if (AllocaInst *AI
2529          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2530      Pass.Worklist.insert(AI);
2531
2532    if (EmitMemCpy) {
2533      Value *OurPtr
2534        = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2535                                           : II.getRawSource()->getType());
2536      Type *SizeTy = II.getLength()->getType();
2537      Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2538
2539      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2540                                       IsDest ? OtherPtr : OurPtr,
2541                                       Size, Align, II.isVolatile());
2542      (void)New;
2543      DEBUG(dbgs() << "          to: " << *New << "\n");
2544      return false;
2545    }
2546
2547    Value *SrcPtr = OtherPtr;
2548    Value *DstPtr = &NewAI;
2549    if (!IsDest)
2550      std::swap(SrcPtr, DstPtr);
2551
2552    Value *Src;
2553    if (IsVectorElement && !IsDest) {
2554      // We have to extract rather than load.
2555      Src = IRB.CreateExtractElement(
2556        IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2557        getIndex(IRB, BeginOffset),
2558        getName(".copyextract"));
2559    } else {
2560      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2561                                  getName(".copyload"));
2562    }
2563
2564    if (IsVectorElement && IsDest) {
2565      // We have to insert into a loaded copy before storing.
2566      Src = IRB.CreateInsertElement(
2567        IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2568        Src, getIndex(IRB, BeginOffset),
2569        getName(".insert"));
2570    }
2571
2572    StoreInst *Store = cast<StoreInst>(
2573      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2574    (void)Store;
2575    DEBUG(dbgs() << "          to: " << *Store << "\n");
2576    return !II.isVolatile();
2577  }
2578
2579  bool visitIntrinsicInst(IntrinsicInst &II) {
2580    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2581           II.getIntrinsicID() == Intrinsic::lifetime_end);
2582    DEBUG(dbgs() << "    original: " << II << "\n");
2583    IRBuilder<> IRB(&II);
2584    assert(II.getArgOperand(1) == OldPtr);
2585
2586    // Record this instruction for deletion.
2587    if (Pass.DeadSplitInsts.insert(&II))
2588      Pass.DeadInsts.push_back(&II);
2589
2590    ConstantInt *Size
2591      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2592                         EndOffset - BeginOffset);
2593    Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2594    Value *New;
2595    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2596      New = IRB.CreateLifetimeStart(Ptr, Size);
2597    else
2598      New = IRB.CreateLifetimeEnd(Ptr, Size);
2599
2600    DEBUG(dbgs() << "          to: " << *New << "\n");
2601    return true;
2602  }
2603
2604  bool visitPHINode(PHINode &PN) {
2605    DEBUG(dbgs() << "    original: " << PN << "\n");
2606
2607    // We would like to compute a new pointer in only one place, but have it be
2608    // as local as possible to the PHI. To do that, we re-use the location of
2609    // the old pointer, which necessarily must be in the right position to
2610    // dominate the PHI.
2611    IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2612
2613    Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
2614    // Replace the operands which were using the old pointer.
2615    User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2616    for (; OI != OE; ++OI)
2617      if (*OI == OldPtr)
2618        *OI = NewPtr;
2619
2620    DEBUG(dbgs() << "          to: " << PN << "\n");
2621    deleteIfTriviallyDead(OldPtr);
2622    return false;
2623  }
2624
2625  bool visitSelectInst(SelectInst &SI) {
2626    DEBUG(dbgs() << "    original: " << SI << "\n");
2627    IRBuilder<> IRB(&SI);
2628
2629    // Find the operand we need to rewrite here.
2630    bool IsTrueVal = SI.getTrueValue() == OldPtr;
2631    if (IsTrueVal)
2632      assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2633    else
2634      assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
2635
2636    Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
2637    SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2638    DEBUG(dbgs() << "          to: " << SI << "\n");
2639    deleteIfTriviallyDead(OldPtr);
2640    return false;
2641  }
2642
2643};
2644}
2645
2646namespace {
2647/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2648///
2649/// This pass aggressively rewrites all aggregate loads and stores on
2650/// a particular pointer (or any pointer derived from it which we can identify)
2651/// with scalar loads and stores.
2652class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2653  // Befriend the base class so it can delegate to private visit methods.
2654  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2655
2656  const TargetData &TD;
2657
2658  /// Queue of pointer uses to analyze and potentially rewrite.
2659  SmallVector<Use *, 8> Queue;
2660
2661  /// Set to prevent us from cycling with phi nodes and loops.
2662  SmallPtrSet<User *, 8> Visited;
2663
2664  /// The current pointer use being rewritten. This is used to dig up the used
2665  /// value (as opposed to the user).
2666  Use *U;
2667
2668public:
2669  AggLoadStoreRewriter(const TargetData &TD) : TD(TD) {}
2670
2671  /// Rewrite loads and stores through a pointer and all pointers derived from
2672  /// it.
2673  bool rewrite(Instruction &I) {
2674    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2675    enqueueUsers(I);
2676    bool Changed = false;
2677    while (!Queue.empty()) {
2678      U = Queue.pop_back_val();
2679      Changed |= visit(cast<Instruction>(U->getUser()));
2680    }
2681    return Changed;
2682  }
2683
2684private:
2685  /// Enqueue all the users of the given instruction for further processing.
2686  /// This uses a set to de-duplicate users.
2687  void enqueueUsers(Instruction &I) {
2688    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2689         ++UI)
2690      if (Visited.insert(*UI))
2691        Queue.push_back(&UI.getUse());
2692  }
2693
2694  // Conservative default is to not rewrite anything.
2695  bool visitInstruction(Instruction &I) { return false; }
2696
2697  /// \brief Generic recursive split emission class.
2698  template <typename Derived>
2699  class OpSplitter {
2700  protected:
2701    /// The builder used to form new instructions.
2702    IRBuilder<> IRB;
2703    /// The indices which to be used with insert- or extractvalue to select the
2704    /// appropriate value within the aggregate.
2705    SmallVector<unsigned, 4> Indices;
2706    /// The indices to a GEP instruction which will move Ptr to the correct slot
2707    /// within the aggregate.
2708    SmallVector<Value *, 4> GEPIndices;
2709    /// The base pointer of the original op, used as a base for GEPing the
2710    /// split operations.
2711    Value *Ptr;
2712
2713    /// Initialize the splitter with an insertion point, Ptr and start with a
2714    /// single zero GEP index.
2715    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2716      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2717
2718  public:
2719    /// \brief Generic recursive split emission routine.
2720    ///
2721    /// This method recursively splits an aggregate op (load or store) into
2722    /// scalar or vector ops. It splits recursively until it hits a single value
2723    /// and emits that single value operation via the template argument.
2724    ///
2725    /// The logic of this routine relies on GEPs and insertvalue and
2726    /// extractvalue all operating with the same fundamental index list, merely
2727    /// formatted differently (GEPs need actual values).
2728    ///
2729    /// \param Ty  The type being split recursively into smaller ops.
2730    /// \param Agg The aggregate value being built up or stored, depending on
2731    /// whether this is splitting a load or a store respectively.
2732    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2733      if (Ty->isSingleValueType())
2734        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2735
2736      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2737        unsigned OldSize = Indices.size();
2738        (void)OldSize;
2739        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2740             ++Idx) {
2741          assert(Indices.size() == OldSize && "Did not return to the old size");
2742          Indices.push_back(Idx);
2743          GEPIndices.push_back(IRB.getInt32(Idx));
2744          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2745          GEPIndices.pop_back();
2746          Indices.pop_back();
2747        }
2748        return;
2749      }
2750
2751      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2752        unsigned OldSize = Indices.size();
2753        (void)OldSize;
2754        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2755             ++Idx) {
2756          assert(Indices.size() == OldSize && "Did not return to the old size");
2757          Indices.push_back(Idx);
2758          GEPIndices.push_back(IRB.getInt32(Idx));
2759          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2760          GEPIndices.pop_back();
2761          Indices.pop_back();
2762        }
2763        return;
2764      }
2765
2766      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2767    }
2768  };
2769
2770  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2771    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2772      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2773
2774    /// Emit a leaf load of a single value. This is called at the leaves of the
2775    /// recursive emission to actually load values.
2776    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2777      assert(Ty->isSingleValueType());
2778      // Load the single value and insert it using the indices.
2779      Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
2780                                                         Name + ".gep"),
2781                                   Name + ".load");
2782      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2783      DEBUG(dbgs() << "          to: " << *Load << "\n");
2784    }
2785  };
2786
2787  bool visitLoadInst(LoadInst &LI) {
2788    assert(LI.getPointerOperand() == *U);
2789    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2790      return false;
2791
2792    // We have an aggregate being loaded, split it apart.
2793    DEBUG(dbgs() << "    original: " << LI << "\n");
2794    LoadOpSplitter Splitter(&LI, *U);
2795    Value *V = UndefValue::get(LI.getType());
2796    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2797    LI.replaceAllUsesWith(V);
2798    LI.eraseFromParent();
2799    return true;
2800  }
2801
2802  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2803    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2804      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2805
2806    /// Emit a leaf store of a single value. This is called at the leaves of the
2807    /// recursive emission to actually produce stores.
2808    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2809      assert(Ty->isSingleValueType());
2810      // Extract the single value and store it using the indices.
2811      Value *Store = IRB.CreateStore(
2812        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2813        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2814      (void)Store;
2815      DEBUG(dbgs() << "          to: " << *Store << "\n");
2816    }
2817  };
2818
2819  bool visitStoreInst(StoreInst &SI) {
2820    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2821      return false;
2822    Value *V = SI.getValueOperand();
2823    if (V->getType()->isSingleValueType())
2824      return false;
2825
2826    // We have an aggregate being stored, split it apart.
2827    DEBUG(dbgs() << "    original: " << SI << "\n");
2828    StoreOpSplitter Splitter(&SI, *U);
2829    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2830    SI.eraseFromParent();
2831    return true;
2832  }
2833
2834  bool visitBitCastInst(BitCastInst &BC) {
2835    enqueueUsers(BC);
2836    return false;
2837  }
2838
2839  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2840    enqueueUsers(GEPI);
2841    return false;
2842  }
2843
2844  bool visitPHINode(PHINode &PN) {
2845    enqueueUsers(PN);
2846    return false;
2847  }
2848
2849  bool visitSelectInst(SelectInst &SI) {
2850    enqueueUsers(SI);
2851    return false;
2852  }
2853};
2854}
2855
2856/// \brief Try to find a partition of the aggregate type passed in for a given
2857/// offset and size.
2858///
2859/// This recurses through the aggregate type and tries to compute a subtype
2860/// based on the offset and size. When the offset and size span a sub-section
2861/// of an array, it will even compute a new array type for that sub-section,
2862/// and the same for structs.
2863///
2864/// Note that this routine is very strict and tries to find a partition of the
2865/// type which produces the *exact* right offset and size. It is not forgiving
2866/// when the size or offset cause either end of type-based partition to be off.
2867/// Also, this is a best-effort routine. It is reasonable to give up and not
2868/// return a type if necessary.
2869static Type *getTypePartition(const TargetData &TD, Type *Ty,
2870                              uint64_t Offset, uint64_t Size) {
2871  if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
2872    return Ty;
2873
2874  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2875    // We can't partition pointers...
2876    if (SeqTy->isPointerTy())
2877      return 0;
2878
2879    Type *ElementTy = SeqTy->getElementType();
2880    uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
2881    uint64_t NumSkippedElements = Offset / ElementSize;
2882    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
2883      if (NumSkippedElements >= ArrTy->getNumElements())
2884        return 0;
2885    if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
2886      if (NumSkippedElements >= VecTy->getNumElements())
2887        return 0;
2888    Offset -= NumSkippedElements * ElementSize;
2889
2890    // First check if we need to recurse.
2891    if (Offset > 0 || Size < ElementSize) {
2892      // Bail if the partition ends in a different array element.
2893      if ((Offset + Size) > ElementSize)
2894        return 0;
2895      // Recurse through the element type trying to peel off offset bytes.
2896      return getTypePartition(TD, ElementTy, Offset, Size);
2897    }
2898    assert(Offset == 0);
2899
2900    if (Size == ElementSize)
2901      return ElementTy;
2902    assert(Size > ElementSize);
2903    uint64_t NumElements = Size / ElementSize;
2904    if (NumElements * ElementSize != Size)
2905      return 0;
2906    return ArrayType::get(ElementTy, NumElements);
2907  }
2908
2909  StructType *STy = dyn_cast<StructType>(Ty);
2910  if (!STy)
2911    return 0;
2912
2913  const StructLayout *SL = TD.getStructLayout(STy);
2914  if (Offset >= SL->getSizeInBytes())
2915    return 0;
2916  uint64_t EndOffset = Offset + Size;
2917  if (EndOffset > SL->getSizeInBytes())
2918    return 0;
2919
2920  unsigned Index = SL->getElementContainingOffset(Offset);
2921  Offset -= SL->getElementOffset(Index);
2922
2923  Type *ElementTy = STy->getElementType(Index);
2924  uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
2925  if (Offset >= ElementSize)
2926    return 0; // The offset points into alignment padding.
2927
2928  // See if any partition must be contained by the element.
2929  if (Offset > 0 || Size < ElementSize) {
2930    if ((Offset + Size) > ElementSize)
2931      return 0;
2932    return getTypePartition(TD, ElementTy, Offset, Size);
2933  }
2934  assert(Offset == 0);
2935
2936  if (Size == ElementSize)
2937    return ElementTy;
2938
2939  StructType::element_iterator EI = STy->element_begin() + Index,
2940                               EE = STy->element_end();
2941  if (EndOffset < SL->getSizeInBytes()) {
2942    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
2943    if (Index == EndIndex)
2944      return 0; // Within a single element and its padding.
2945
2946    // Don't try to form "natural" types if the elements don't line up with the
2947    // expected size.
2948    // FIXME: We could potentially recurse down through the last element in the
2949    // sub-struct to find a natural end point.
2950    if (SL->getElementOffset(EndIndex) != EndOffset)
2951      return 0;
2952
2953    assert(Index < EndIndex);
2954    EE = STy->element_begin() + EndIndex;
2955  }
2956
2957  // Try to build up a sub-structure.
2958  SmallVector<Type *, 4> ElementTys;
2959  do {
2960    ElementTys.push_back(*EI++);
2961  } while (EI != EE);
2962  StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
2963                                      STy->isPacked());
2964  const StructLayout *SubSL = TD.getStructLayout(SubTy);
2965  if (Size != SubSL->getSizeInBytes())
2966    return 0; // The sub-struct doesn't have quite the size needed.
2967
2968  return SubTy;
2969}
2970
2971/// \brief Rewrite an alloca partition's users.
2972///
2973/// This routine drives both of the rewriting goals of the SROA pass. It tries
2974/// to rewrite uses of an alloca partition to be conducive for SSA value
2975/// promotion. If the partition needs a new, more refined alloca, this will
2976/// build that new alloca, preserving as much type information as possible, and
2977/// rewrite the uses of the old alloca to point at the new one and have the
2978/// appropriate new offsets. It also evaluates how successful the rewrite was
2979/// at enabling promotion and if it was successful queues the alloca to be
2980/// promoted.
2981bool SROA::rewriteAllocaPartition(AllocaInst &AI,
2982                                  AllocaPartitioning &P,
2983                                  AllocaPartitioning::iterator PI) {
2984  uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
2985  if (P.use_begin(PI) == P.use_end(PI))
2986    return false; // No live uses left of this partition.
2987
2988  DEBUG(dbgs() << "Speculating PHIs and selects in partition "
2989               << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
2990
2991  PHIOrSelectSpeculator Speculator(*TD, P, *this);
2992  DEBUG(dbgs() << "  speculating ");
2993  DEBUG(P.print(dbgs(), PI, ""));
2994  Speculator.visitUsers(P.use_begin(PI), P.use_end(PI));
2995
2996  // Try to compute a friendly type for this partition of the alloca. This
2997  // won't always succeed, in which case we fall back to a legal integer type
2998  // or an i8 array of an appropriate size.
2999  Type *AllocaTy = 0;
3000  if (Type *PartitionTy = P.getCommonType(PI))
3001    if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3002      AllocaTy = PartitionTy;
3003  if (!AllocaTy)
3004    if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3005                                             PI->BeginOffset, AllocaSize))
3006      AllocaTy = PartitionTy;
3007  if ((!AllocaTy ||
3008       (AllocaTy->isArrayTy() &&
3009        AllocaTy->getArrayElementType()->isIntegerTy())) &&
3010      TD->isLegalInteger(AllocaSize * 8))
3011    AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3012  if (!AllocaTy)
3013    AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
3014  assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
3015
3016  // Check for the case where we're going to rewrite to a new alloca of the
3017  // exact same type as the original, and with the same access offsets. In that
3018  // case, re-use the existing alloca, but still run through the rewriter to
3019  // performe phi and select speculation.
3020  AllocaInst *NewAI;
3021  if (AllocaTy == AI.getAllocatedType()) {
3022    assert(PI->BeginOffset == 0 &&
3023           "Non-zero begin offset but same alloca type");
3024    assert(PI == P.begin() && "Begin offset is zero on later partition");
3025    NewAI = &AI;
3026  } else {
3027    unsigned Alignment = AI.getAlignment();
3028    if (!Alignment) {
3029      // The minimum alignment which users can rely on when the explicit
3030      // alignment is omitted or zero is that required by the ABI for this
3031      // type.
3032      Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3033    }
3034    Alignment = MinAlign(Alignment, PI->BeginOffset);
3035    // If we will get at least this much alignment from the type alone, leave
3036    // the alloca's alignment unconstrained.
3037    if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3038      Alignment = 0;
3039    NewAI = new AllocaInst(AllocaTy, 0, Alignment,
3040                           AI.getName() + ".sroa." + Twine(PI - P.begin()),
3041                           &AI);
3042    ++NumNewAllocas;
3043  }
3044
3045  DEBUG(dbgs() << "Rewriting alloca partition "
3046               << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3047               << *NewAI << "\n");
3048
3049  AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3050                                   PI->BeginOffset, PI->EndOffset);
3051  DEBUG(dbgs() << "  rewriting ");
3052  DEBUG(P.print(dbgs(), PI, ""));
3053  if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) {
3054    DEBUG(dbgs() << "  and queuing for promotion\n");
3055    PromotableAllocas.push_back(NewAI);
3056  } else if (NewAI != &AI) {
3057    // If we can't promote the alloca, iterate on it to check for new
3058    // refinements exposed by splitting the current alloca. Don't iterate on an
3059    // alloca which didn't actually change and didn't get promoted.
3060    Worklist.insert(NewAI);
3061  }
3062  return true;
3063}
3064
3065/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3066bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3067  bool Changed = false;
3068  for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3069       ++PI)
3070    Changed |= rewriteAllocaPartition(AI, P, PI);
3071
3072  return Changed;
3073}
3074
3075/// \brief Analyze an alloca for SROA.
3076///
3077/// This analyzes the alloca to ensure we can reason about it, builds
3078/// a partitioning of the alloca, and then hands it off to be split and
3079/// rewritten as needed.
3080bool SROA::runOnAlloca(AllocaInst &AI) {
3081  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3082  ++NumAllocasAnalyzed;
3083
3084  // Special case dead allocas, as they're trivial.
3085  if (AI.use_empty()) {
3086    AI.eraseFromParent();
3087    return true;
3088  }
3089
3090  // Skip alloca forms that this analysis can't handle.
3091  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3092      TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3093    return false;
3094
3095  // First check if this is a non-aggregate type that we should simply promote.
3096  if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) {
3097    DEBUG(dbgs() << "  Trivially scalar type, queuing for promotion...\n");
3098    PromotableAllocas.push_back(&AI);
3099    return false;
3100  }
3101
3102  bool Changed = false;
3103
3104  // First, split any FCA loads and stores touching this alloca to promote
3105  // better splitting and promotion opportunities.
3106  AggLoadStoreRewriter AggRewriter(*TD);
3107  Changed |= AggRewriter.rewrite(AI);
3108
3109  // Build the partition set using a recursive instruction-visiting builder.
3110  AllocaPartitioning P(*TD, AI);
3111  DEBUG(P.print(dbgs()));
3112  if (P.isEscaped())
3113    return Changed;
3114
3115  // No partitions to split. Leave the dead alloca for a later pass to clean up.
3116  if (P.begin() == P.end())
3117    return Changed;
3118
3119  // Delete all the dead users of this alloca before splitting and rewriting it.
3120  for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3121                                              DE = P.dead_user_end();
3122       DI != DE; ++DI) {
3123    Changed = true;
3124    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3125    DeadInsts.push_back(*DI);
3126  }
3127  for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3128                                            DE = P.dead_op_end();
3129       DO != DE; ++DO) {
3130    Value *OldV = **DO;
3131    // Clobber the use with an undef value.
3132    **DO = UndefValue::get(OldV->getType());
3133    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3134      if (isInstructionTriviallyDead(OldI)) {
3135        Changed = true;
3136        DeadInsts.push_back(OldI);
3137      }
3138  }
3139
3140  return splitAlloca(AI, P) || Changed;
3141}
3142
3143/// \brief Delete the dead instructions accumulated in this run.
3144///
3145/// Recursively deletes the dead instructions we've accumulated. This is done
3146/// at the very end to maximize locality of the recursive delete and to
3147/// minimize the problems of invalidated instruction pointers as such pointers
3148/// are used heavily in the intermediate stages of the algorithm.
3149///
3150/// We also record the alloca instructions deleted here so that they aren't
3151/// subsequently handed to mem2reg to promote.
3152void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3153  DeadSplitInsts.clear();
3154  while (!DeadInsts.empty()) {
3155    Instruction *I = DeadInsts.pop_back_val();
3156    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3157
3158    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3159      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3160        // Zero out the operand and see if it becomes trivially dead.
3161        *OI = 0;
3162        if (isInstructionTriviallyDead(U))
3163          DeadInsts.push_back(U);
3164      }
3165
3166    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3167      DeletedAllocas.insert(AI);
3168
3169    ++NumDeleted;
3170    I->eraseFromParent();
3171  }
3172}
3173
3174/// \brief Promote the allocas, using the best available technique.
3175///
3176/// This attempts to promote whatever allocas have been identified as viable in
3177/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3178/// If there is a domtree available, we attempt to promote using the full power
3179/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3180/// based on the SSAUpdater utilities. This function returns whether any
3181/// promotion occured.
3182bool SROA::promoteAllocas(Function &F) {
3183  if (PromotableAllocas.empty())
3184    return false;
3185
3186  NumPromoted += PromotableAllocas.size();
3187
3188  if (DT && !ForceSSAUpdater) {
3189    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3190    PromoteMemToReg(PromotableAllocas, *DT);
3191    PromotableAllocas.clear();
3192    return true;
3193  }
3194
3195  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3196  SSAUpdater SSA;
3197  DIBuilder DIB(*F.getParent());
3198  SmallVector<Instruction*, 64> Insts;
3199
3200  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3201    AllocaInst *AI = PromotableAllocas[Idx];
3202    for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3203         UI != UE;) {
3204      Instruction *I = cast<Instruction>(*UI++);
3205      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3206      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3207      // leading to them) here. Eventually it should use them to optimize the
3208      // scalar values produced.
3209      if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3210        assert(onlyUsedByLifetimeMarkers(I) &&
3211               "Found a bitcast used outside of a lifetime marker.");
3212        while (!I->use_empty())
3213          cast<Instruction>(*I->use_begin())->eraseFromParent();
3214        I->eraseFromParent();
3215        continue;
3216      }
3217      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3218        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3219               II->getIntrinsicID() == Intrinsic::lifetime_end);
3220        II->eraseFromParent();
3221        continue;
3222      }
3223
3224      Insts.push_back(I);
3225    }
3226    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3227    Insts.clear();
3228  }
3229
3230  PromotableAllocas.clear();
3231  return true;
3232}
3233
3234namespace {
3235  /// \brief A predicate to test whether an alloca belongs to a set.
3236  class IsAllocaInSet {
3237    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3238    const SetType &Set;
3239
3240  public:
3241    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3242    bool operator()(AllocaInst *AI) { return Set.count(AI); }
3243  };
3244}
3245
3246bool SROA::runOnFunction(Function &F) {
3247  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3248  C = &F.getContext();
3249  TD = getAnalysisIfAvailable<TargetData>();
3250  if (!TD) {
3251    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3252    return false;
3253  }
3254  DT = getAnalysisIfAvailable<DominatorTree>();
3255
3256  BasicBlock &EntryBB = F.getEntryBlock();
3257  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3258       I != E; ++I)
3259    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3260      Worklist.insert(AI);
3261
3262  bool Changed = false;
3263  // A set of deleted alloca instruction pointers which should be removed from
3264  // the list of promotable allocas.
3265  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3266
3267  while (!Worklist.empty()) {
3268    Changed |= runOnAlloca(*Worklist.pop_back_val());
3269    deleteDeadInstructions(DeletedAllocas);
3270    if (!DeletedAllocas.empty()) {
3271      PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3272                                             PromotableAllocas.end(),
3273                                             IsAllocaInSet(DeletedAllocas)),
3274                              PromotableAllocas.end());
3275      DeletedAllocas.clear();
3276    }
3277  }
3278
3279  Changed |= promoteAllocas(F);
3280
3281  return Changed;
3282}
3283
3284void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3285  if (RequiresDomTree)
3286    AU.addRequired<DominatorTree>();
3287  AU.setPreservesCFG();
3288}
3289