1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Constants.h"
31#include "llvm/Instructions.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Type.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/ScalarEvolutionExpander.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/SimplifyIndVar.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetLibraryInfo.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumWidened     , "Number of indvars widened");
54STATISTIC(NumReplaced    , "Number of exit values replaced");
55STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
56STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
57STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
58
59// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63  "verify-indvars", cl::Hidden,
64  cl::desc("Verify the ScalarEvolution result after running indvars"));
65
66namespace {
67  class IndVarSimplify : public LoopPass {
68    LoopInfo        *LI;
69    ScalarEvolution *SE;
70    DominatorTree   *DT;
71    TargetData      *TD;
72    TargetLibraryInfo *TLI;
73
74    SmallVector<WeakVH, 16> DeadInsts;
75    bool Changed;
76  public:
77
78    static char ID; // Pass identification, replacement for typeid
79    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80                       Changed(false) {
81      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82    }
83
84    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.addRequired<DominatorTree>();
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<ScalarEvolution>();
90      AU.addRequiredID(LoopSimplifyID);
91      AU.addRequiredID(LCSSAID);
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreservedID(LoopSimplifyID);
94      AU.addPreservedID(LCSSAID);
95      AU.setPreservesCFG();
96    }
97
98  private:
99    virtual void releaseMemory() {
100      DeadInsts.clear();
101    }
102
103    bool isValidRewrite(Value *FromVal, Value *ToVal);
104
105    void HandleFloatingPointIV(Loop *L, PHINode *PH);
106    void RewriteNonIntegerIVs(Loop *L);
107
108    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109
110    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111
112    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113                                     PHINode *IndVar, SCEVExpander &Rewriter);
114
115    void SinkUnusedInvariants(Loop *L);
116  };
117}
118
119char IndVarSimplify::ID = 0;
120INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121                "Induction Variable Simplification", false, false)
122INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126INITIALIZE_PASS_DEPENDENCY(LCSSA)
127INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128                "Induction Variable Simplification", false, false)
129
130Pass *llvm::createIndVarSimplifyPass() {
131  return new IndVarSimplify();
132}
133
134/// isValidRewrite - Return true if the SCEV expansion generated by the
135/// rewriter can replace the original value. SCEV guarantees that it
136/// produces the same value, but the way it is produced may be illegal IR.
137/// Ideally, this function will only be called for verification.
138bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139  // If an SCEV expression subsumed multiple pointers, its expansion could
140  // reassociate the GEP changing the base pointer. This is illegal because the
141  // final address produced by a GEP chain must be inbounds relative to its
142  // underlying object. Otherwise basic alias analysis, among other things,
143  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144  // producing an expression involving multiple pointers. Until then, we must
145  // bail out here.
146  //
147  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148  // because it understands lcssa phis while SCEV does not.
149  Value *FromPtr = FromVal;
150  Value *ToPtr = ToVal;
151  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152    FromPtr = GEP->getPointerOperand();
153  }
154  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155    ToPtr = GEP->getPointerOperand();
156  }
157  if (FromPtr != FromVal || ToPtr != ToVal) {
158    // Quickly check the common case
159    if (FromPtr == ToPtr)
160      return true;
161
162    // SCEV may have rewritten an expression that produces the GEP's pointer
163    // operand. That's ok as long as the pointer operand has the same base
164    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165    // base of a recurrence. This handles the case in which SCEV expansion
166    // converts a pointer type recurrence into a nonrecurrent pointer base
167    // indexed by an integer recurrence.
168
169    // If the GEP base pointer is a vector of pointers, abort.
170    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171      return false;
172
173    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175    if (FromBase == ToBase)
176      return true;
177
178    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179          << *FromBase << " != " << *ToBase << "\n");
180
181    return false;
182  }
183  return true;
184}
185
186/// Determine the insertion point for this user. By default, insert immediately
187/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189/// common dominator for the incoming blocks.
190static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191                                          DominatorTree *DT) {
192  PHINode *PHI = dyn_cast<PHINode>(User);
193  if (!PHI)
194    return User;
195
196  Instruction *InsertPt = 0;
197  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198    if (PHI->getIncomingValue(i) != Def)
199      continue;
200
201    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202    if (!InsertPt) {
203      InsertPt = InsertBB->getTerminator();
204      continue;
205    }
206    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207    InsertPt = InsertBB->getTerminator();
208  }
209  assert(InsertPt && "Missing phi operand");
210  assert((!isa<Instruction>(Def) ||
211          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212         "def does not dominate all uses");
213  return InsertPt;
214}
215
216//===----------------------------------------------------------------------===//
217// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218//===----------------------------------------------------------------------===//
219
220/// ConvertToSInt - Convert APF to an integer, if possible.
221static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222  bool isExact = false;
223  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
224    return false;
225  // See if we can convert this to an int64_t
226  uint64_t UIntVal;
227  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
228                           &isExact) != APFloat::opOK || !isExact)
229    return false;
230  IntVal = UIntVal;
231  return true;
232}
233
234/// HandleFloatingPointIV - If the loop has floating induction variable
235/// then insert corresponding integer induction variable if possible.
236/// For example,
237/// for(double i = 0; i < 10000; ++i)
238///   bar(i)
239/// is converted into
240/// for(int i = 0; i < 10000; ++i)
241///   bar((double)i);
242///
243void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
244  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
245  unsigned BackEdge     = IncomingEdge^1;
246
247  // Check incoming value.
248  ConstantFP *InitValueVal =
249    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
250
251  int64_t InitValue;
252  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
253    return;
254
255  // Check IV increment. Reject this PN if increment operation is not
256  // an add or increment value can not be represented by an integer.
257  BinaryOperator *Incr =
258    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
259  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
260
261  // If this is not an add of the PHI with a constantfp, or if the constant fp
262  // is not an integer, bail out.
263  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
264  int64_t IncValue;
265  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
266      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
267    return;
268
269  // Check Incr uses. One user is PN and the other user is an exit condition
270  // used by the conditional terminator.
271  Value::use_iterator IncrUse = Incr->use_begin();
272  Instruction *U1 = cast<Instruction>(*IncrUse++);
273  if (IncrUse == Incr->use_end()) return;
274  Instruction *U2 = cast<Instruction>(*IncrUse++);
275  if (IncrUse != Incr->use_end()) return;
276
277  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
278  // only used by a branch, we can't transform it.
279  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
280  if (!Compare)
281    Compare = dyn_cast<FCmpInst>(U2);
282  if (Compare == 0 || !Compare->hasOneUse() ||
283      !isa<BranchInst>(Compare->use_back()))
284    return;
285
286  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
287
288  // We need to verify that the branch actually controls the iteration count
289  // of the loop.  If not, the new IV can overflow and no one will notice.
290  // The branch block must be in the loop and one of the successors must be out
291  // of the loop.
292  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
293  if (!L->contains(TheBr->getParent()) ||
294      (L->contains(TheBr->getSuccessor(0)) &&
295       L->contains(TheBr->getSuccessor(1))))
296    return;
297
298
299  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
300  // transform it.
301  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
302  int64_t ExitValue;
303  if (ExitValueVal == 0 ||
304      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
305    return;
306
307  // Find new predicate for integer comparison.
308  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
309  switch (Compare->getPredicate()) {
310  default: return;  // Unknown comparison.
311  case CmpInst::FCMP_OEQ:
312  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
313  case CmpInst::FCMP_ONE:
314  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
315  case CmpInst::FCMP_OGT:
316  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
317  case CmpInst::FCMP_OGE:
318  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
319  case CmpInst::FCMP_OLT:
320  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
321  case CmpInst::FCMP_OLE:
322  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
323  }
324
325  // We convert the floating point induction variable to a signed i32 value if
326  // we can.  This is only safe if the comparison will not overflow in a way
327  // that won't be trapped by the integer equivalent operations.  Check for this
328  // now.
329  // TODO: We could use i64 if it is native and the range requires it.
330
331  // The start/stride/exit values must all fit in signed i32.
332  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
333    return;
334
335  // If not actually striding (add x, 0.0), avoid touching the code.
336  if (IncValue == 0)
337    return;
338
339  // Positive and negative strides have different safety conditions.
340  if (IncValue > 0) {
341    // If we have a positive stride, we require the init to be less than the
342    // exit value.
343    if (InitValue >= ExitValue)
344      return;
345
346    uint32_t Range = uint32_t(ExitValue-InitValue);
347    // Check for infinite loop, either:
348    // while (i <= Exit) or until (i > Exit)
349    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
350      if (++Range == 0) return;  // Range overflows.
351    }
352
353    unsigned Leftover = Range % uint32_t(IncValue);
354
355    // If this is an equality comparison, we require that the strided value
356    // exactly land on the exit value, otherwise the IV condition will wrap
357    // around and do things the fp IV wouldn't.
358    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
359        Leftover != 0)
360      return;
361
362    // If the stride would wrap around the i32 before exiting, we can't
363    // transform the IV.
364    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
365      return;
366
367  } else {
368    // If we have a negative stride, we require the init to be greater than the
369    // exit value.
370    if (InitValue <= ExitValue)
371      return;
372
373    uint32_t Range = uint32_t(InitValue-ExitValue);
374    // Check for infinite loop, either:
375    // while (i >= Exit) or until (i < Exit)
376    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
377      if (++Range == 0) return;  // Range overflows.
378    }
379
380    unsigned Leftover = Range % uint32_t(-IncValue);
381
382    // If this is an equality comparison, we require that the strided value
383    // exactly land on the exit value, otherwise the IV condition will wrap
384    // around and do things the fp IV wouldn't.
385    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
386        Leftover != 0)
387      return;
388
389    // If the stride would wrap around the i32 before exiting, we can't
390    // transform the IV.
391    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
392      return;
393  }
394
395  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
396
397  // Insert new integer induction variable.
398  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
399  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
400                      PN->getIncomingBlock(IncomingEdge));
401
402  Value *NewAdd =
403    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
404                              Incr->getName()+".int", Incr);
405  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
406
407  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
408                                      ConstantInt::get(Int32Ty, ExitValue),
409                                      Compare->getName());
410
411  // In the following deletions, PN may become dead and may be deleted.
412  // Use a WeakVH to observe whether this happens.
413  WeakVH WeakPH = PN;
414
415  // Delete the old floating point exit comparison.  The branch starts using the
416  // new comparison.
417  NewCompare->takeName(Compare);
418  Compare->replaceAllUsesWith(NewCompare);
419  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
420
421  // Delete the old floating point increment.
422  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
423  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
424
425  // If the FP induction variable still has uses, this is because something else
426  // in the loop uses its value.  In order to canonicalize the induction
427  // variable, we chose to eliminate the IV and rewrite it in terms of an
428  // int->fp cast.
429  //
430  // We give preference to sitofp over uitofp because it is faster on most
431  // platforms.
432  if (WeakPH) {
433    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
434                                 PN->getParent()->getFirstInsertionPt());
435    PN->replaceAllUsesWith(Conv);
436    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
437  }
438  Changed = true;
439}
440
441void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
442  // First step.  Check to see if there are any floating-point recurrences.
443  // If there are, change them into integer recurrences, permitting analysis by
444  // the SCEV routines.
445  //
446  BasicBlock *Header = L->getHeader();
447
448  SmallVector<WeakVH, 8> PHIs;
449  for (BasicBlock::iterator I = Header->begin();
450       PHINode *PN = dyn_cast<PHINode>(I); ++I)
451    PHIs.push_back(PN);
452
453  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
454    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
455      HandleFloatingPointIV(L, PN);
456
457  // If the loop previously had floating-point IV, ScalarEvolution
458  // may not have been able to compute a trip count. Now that we've done some
459  // re-writing, the trip count may be computable.
460  if (Changed)
461    SE->forgetLoop(L);
462}
463
464//===----------------------------------------------------------------------===//
465// RewriteLoopExitValues - Optimize IV users outside the loop.
466// As a side effect, reduces the amount of IV processing within the loop.
467//===----------------------------------------------------------------------===//
468
469/// RewriteLoopExitValues - Check to see if this loop has a computable
470/// loop-invariant execution count.  If so, this means that we can compute the
471/// final value of any expressions that are recurrent in the loop, and
472/// substitute the exit values from the loop into any instructions outside of
473/// the loop that use the final values of the current expressions.
474///
475/// This is mostly redundant with the regular IndVarSimplify activities that
476/// happen later, except that it's more powerful in some cases, because it's
477/// able to brute-force evaluate arbitrary instructions as long as they have
478/// constant operands at the beginning of the loop.
479void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
480  // Verify the input to the pass in already in LCSSA form.
481  assert(L->isLCSSAForm(*DT));
482
483  SmallVector<BasicBlock*, 8> ExitBlocks;
484  L->getUniqueExitBlocks(ExitBlocks);
485
486  // Find all values that are computed inside the loop, but used outside of it.
487  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
488  // the exit blocks of the loop to find them.
489  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
490    BasicBlock *ExitBB = ExitBlocks[i];
491
492    // If there are no PHI nodes in this exit block, then no values defined
493    // inside the loop are used on this path, skip it.
494    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
495    if (!PN) continue;
496
497    unsigned NumPreds = PN->getNumIncomingValues();
498
499    // Iterate over all of the PHI nodes.
500    BasicBlock::iterator BBI = ExitBB->begin();
501    while ((PN = dyn_cast<PHINode>(BBI++))) {
502      if (PN->use_empty())
503        continue; // dead use, don't replace it
504
505      // SCEV only supports integer expressions for now.
506      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
507        continue;
508
509      // It's necessary to tell ScalarEvolution about this explicitly so that
510      // it can walk the def-use list and forget all SCEVs, as it may not be
511      // watching the PHI itself. Once the new exit value is in place, there
512      // may not be a def-use connection between the loop and every instruction
513      // which got a SCEVAddRecExpr for that loop.
514      SE->forgetValue(PN);
515
516      // Iterate over all of the values in all the PHI nodes.
517      for (unsigned i = 0; i != NumPreds; ++i) {
518        // If the value being merged in is not integer or is not defined
519        // in the loop, skip it.
520        Value *InVal = PN->getIncomingValue(i);
521        if (!isa<Instruction>(InVal))
522          continue;
523
524        // If this pred is for a subloop, not L itself, skip it.
525        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
526          continue; // The Block is in a subloop, skip it.
527
528        // Check that InVal is defined in the loop.
529        Instruction *Inst = cast<Instruction>(InVal);
530        if (!L->contains(Inst))
531          continue;
532
533        // Okay, this instruction has a user outside of the current loop
534        // and varies predictably *inside* the loop.  Evaluate the value it
535        // contains when the loop exits, if possible.
536        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
537        if (!SE->isLoopInvariant(ExitValue, L))
538          continue;
539
540        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
541
542        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
543                     << "  LoopVal = " << *Inst << "\n");
544
545        if (!isValidRewrite(Inst, ExitVal)) {
546          DeadInsts.push_back(ExitVal);
547          continue;
548        }
549        Changed = true;
550        ++NumReplaced;
551
552        PN->setIncomingValue(i, ExitVal);
553
554        // If this instruction is dead now, delete it. Don't do it now to avoid
555        // invalidating iterators.
556        if (isInstructionTriviallyDead(Inst, TLI))
557          DeadInsts.push_back(Inst);
558
559        if (NumPreds == 1) {
560          // Completely replace a single-pred PHI. This is safe, because the
561          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
562          // node anymore.
563          PN->replaceAllUsesWith(ExitVal);
564          PN->eraseFromParent();
565        }
566      }
567      if (NumPreds != 1) {
568        // Clone the PHI and delete the original one. This lets IVUsers and
569        // any other maps purge the original user from their records.
570        PHINode *NewPN = cast<PHINode>(PN->clone());
571        NewPN->takeName(PN);
572        NewPN->insertBefore(PN);
573        PN->replaceAllUsesWith(NewPN);
574        PN->eraseFromParent();
575      }
576    }
577  }
578
579  // The insertion point instruction may have been deleted; clear it out
580  // so that the rewriter doesn't trip over it later.
581  Rewriter.clearInsertPoint();
582}
583
584//===----------------------------------------------------------------------===//
585//  IV Widening - Extend the width of an IV to cover its widest uses.
586//===----------------------------------------------------------------------===//
587
588namespace {
589  // Collect information about induction variables that are used by sign/zero
590  // extend operations. This information is recorded by CollectExtend and
591  // provides the input to WidenIV.
592  struct WideIVInfo {
593    PHINode *NarrowIV;
594    Type *WidestNativeType; // Widest integer type created [sz]ext
595    bool IsSigned;          // Was an sext user seen before a zext?
596
597    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
598  };
599
600  class WideIVVisitor : public IVVisitor {
601    ScalarEvolution *SE;
602    const TargetData *TD;
603
604  public:
605    WideIVInfo WI;
606
607    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
608                  const TargetData *TData) :
609      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
610
611    // Implement the interface used by simplifyUsersOfIV.
612    virtual void visitCast(CastInst *Cast);
613  };
614}
615
616/// visitCast - Update information about the induction variable that is
617/// extended by this sign or zero extend operation. This is used to determine
618/// the final width of the IV before actually widening it.
619void WideIVVisitor::visitCast(CastInst *Cast) {
620  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
621  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
622    return;
623
624  Type *Ty = Cast->getType();
625  uint64_t Width = SE->getTypeSizeInBits(Ty);
626  if (TD && !TD->isLegalInteger(Width))
627    return;
628
629  if (!WI.WidestNativeType) {
630    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
631    WI.IsSigned = IsSigned;
632    return;
633  }
634
635  // We extend the IV to satisfy the sign of its first user, arbitrarily.
636  if (WI.IsSigned != IsSigned)
637    return;
638
639  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
640    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
641}
642
643namespace {
644
645/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
646/// WideIV that computes the same value as the Narrow IV def.  This avoids
647/// caching Use* pointers.
648struct NarrowIVDefUse {
649  Instruction *NarrowDef;
650  Instruction *NarrowUse;
651  Instruction *WideDef;
652
653  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
654
655  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
656    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
657};
658
659/// WidenIV - The goal of this transform is to remove sign and zero extends
660/// without creating any new induction variables. To do this, it creates a new
661/// phi of the wider type and redirects all users, either removing extends or
662/// inserting truncs whenever we stop propagating the type.
663///
664class WidenIV {
665  // Parameters
666  PHINode *OrigPhi;
667  Type *WideType;
668  bool IsSigned;
669
670  // Context
671  LoopInfo        *LI;
672  Loop            *L;
673  ScalarEvolution *SE;
674  DominatorTree   *DT;
675
676  // Result
677  PHINode *WidePhi;
678  Instruction *WideInc;
679  const SCEV *WideIncExpr;
680  SmallVectorImpl<WeakVH> &DeadInsts;
681
682  SmallPtrSet<Instruction*,16> Widened;
683  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
684
685public:
686  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
687          ScalarEvolution *SEv, DominatorTree *DTree,
688          SmallVectorImpl<WeakVH> &DI) :
689    OrigPhi(WI.NarrowIV),
690    WideType(WI.WidestNativeType),
691    IsSigned(WI.IsSigned),
692    LI(LInfo),
693    L(LI->getLoopFor(OrigPhi->getParent())),
694    SE(SEv),
695    DT(DTree),
696    WidePhi(0),
697    WideInc(0),
698    WideIncExpr(0),
699    DeadInsts(DI) {
700    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
701  }
702
703  PHINode *CreateWideIV(SCEVExpander &Rewriter);
704
705protected:
706  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
707                   Instruction *Use);
708
709  Instruction *CloneIVUser(NarrowIVDefUse DU);
710
711  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
712
713  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
714
715  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
716
717  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
718};
719} // anonymous namespace
720
721/// isLoopInvariant - Perform a quick domtree based check for loop invariance
722/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
723/// gratuitous for this purpose.
724static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
725  Instruction *Inst = dyn_cast<Instruction>(V);
726  if (!Inst)
727    return true;
728
729  return DT->properlyDominates(Inst->getParent(), L->getHeader());
730}
731
732Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
733                          Instruction *Use) {
734  // Set the debug location and conservative insertion point.
735  IRBuilder<> Builder(Use);
736  // Hoist the insertion point into loop preheaders as far as possible.
737  for (const Loop *L = LI->getLoopFor(Use->getParent());
738       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
739       L = L->getParentLoop())
740    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
741
742  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
743                    Builder.CreateZExt(NarrowOper, WideType);
744}
745
746/// CloneIVUser - Instantiate a wide operation to replace a narrow
747/// operation. This only needs to handle operations that can evaluation to
748/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
749Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
750  unsigned Opcode = DU.NarrowUse->getOpcode();
751  switch (Opcode) {
752  default:
753    return 0;
754  case Instruction::Add:
755  case Instruction::Mul:
756  case Instruction::UDiv:
757  case Instruction::Sub:
758  case Instruction::And:
759  case Instruction::Or:
760  case Instruction::Xor:
761  case Instruction::Shl:
762  case Instruction::LShr:
763  case Instruction::AShr:
764    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
765
766    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
767    // anything about the narrow operand yet so must insert a [sz]ext. It is
768    // probably loop invariant and will be folded or hoisted. If it actually
769    // comes from a widened IV, it should be removed during a future call to
770    // WidenIVUse.
771    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
772      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
773    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
774      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
775
776    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
777    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
778                                                    LHS, RHS,
779                                                    NarrowBO->getName());
780    IRBuilder<> Builder(DU.NarrowUse);
781    Builder.Insert(WideBO);
782    if (const OverflowingBinaryOperator *OBO =
783        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
784      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
785      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
786    }
787    return WideBO;
788  }
789}
790
791/// No-wrap operations can transfer sign extension of their result to their
792/// operands. Generate the SCEV value for the widened operation without
793/// actually modifying the IR yet. If the expression after extending the
794/// operands is an AddRec for this loop, return it.
795const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
796  // Handle the common case of add<nsw/nuw>
797  if (DU.NarrowUse->getOpcode() != Instruction::Add)
798    return 0;
799
800  // One operand (NarrowDef) has already been extended to WideDef. Now determine
801  // if extending the other will lead to a recurrence.
802  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
803  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
804
805  const SCEV *ExtendOperExpr = 0;
806  const OverflowingBinaryOperator *OBO =
807    cast<OverflowingBinaryOperator>(DU.NarrowUse);
808  if (IsSigned && OBO->hasNoSignedWrap())
809    ExtendOperExpr = SE->getSignExtendExpr(
810      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
811  else if(!IsSigned && OBO->hasNoUnsignedWrap())
812    ExtendOperExpr = SE->getZeroExtendExpr(
813      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
814  else
815    return 0;
816
817  // When creating this AddExpr, don't apply the current operations NSW or NUW
818  // flags. This instruction may be guarded by control flow that the no-wrap
819  // behavior depends on. Non-control-equivalent instructions can be mapped to
820  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
821  // semantics to those operations.
822  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
823    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
824
825  if (!AddRec || AddRec->getLoop() != L)
826    return 0;
827  return AddRec;
828}
829
830/// GetWideRecurrence - Is this instruction potentially interesting from
831/// IVUsers' perspective after widening it's type? In other words, can the
832/// extend be safely hoisted out of the loop with SCEV reducing the value to a
833/// recurrence on the same loop. If so, return the sign or zero extended
834/// recurrence. Otherwise return NULL.
835const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
836  if (!SE->isSCEVable(NarrowUse->getType()))
837    return 0;
838
839  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
840  if (SE->getTypeSizeInBits(NarrowExpr->getType())
841      >= SE->getTypeSizeInBits(WideType)) {
842    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
843    // index. So don't follow this use.
844    return 0;
845  }
846
847  const SCEV *WideExpr = IsSigned ?
848    SE->getSignExtendExpr(NarrowExpr, WideType) :
849    SE->getZeroExtendExpr(NarrowExpr, WideType);
850  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
851  if (!AddRec || AddRec->getLoop() != L)
852    return 0;
853  return AddRec;
854}
855
856/// WidenIVUse - Determine whether an individual user of the narrow IV can be
857/// widened. If so, return the wide clone of the user.
858Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
859
860  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
861  if (isa<PHINode>(DU.NarrowUse) &&
862      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
863    return 0;
864
865  // Our raison d'etre! Eliminate sign and zero extension.
866  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
867    Value *NewDef = DU.WideDef;
868    if (DU.NarrowUse->getType() != WideType) {
869      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
870      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
871      if (CastWidth < IVWidth) {
872        // The cast isn't as wide as the IV, so insert a Trunc.
873        IRBuilder<> Builder(DU.NarrowUse);
874        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
875      }
876      else {
877        // A wider extend was hidden behind a narrower one. This may induce
878        // another round of IV widening in which the intermediate IV becomes
879        // dead. It should be very rare.
880        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
881              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
882        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
883        NewDef = DU.NarrowUse;
884      }
885    }
886    if (NewDef != DU.NarrowUse) {
887      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
888            << " replaced by " << *DU.WideDef << "\n");
889      ++NumElimExt;
890      DU.NarrowUse->replaceAllUsesWith(NewDef);
891      DeadInsts.push_back(DU.NarrowUse);
892    }
893    // Now that the extend is gone, we want to expose it's uses for potential
894    // further simplification. We don't need to directly inform SimplifyIVUsers
895    // of the new users, because their parent IV will be processed later as a
896    // new loop phi. If we preserved IVUsers analysis, we would also want to
897    // push the uses of WideDef here.
898
899    // No further widening is needed. The deceased [sz]ext had done it for us.
900    return 0;
901  }
902
903  // Does this user itself evaluate to a recurrence after widening?
904  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
905  if (!WideAddRec) {
906      WideAddRec = GetExtendedOperandRecurrence(DU);
907  }
908  if (!WideAddRec) {
909    // This user does not evaluate to a recurence after widening, so don't
910    // follow it. Instead insert a Trunc to kill off the original use,
911    // eventually isolating the original narrow IV so it can be removed.
912    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
913    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
914    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
915    return 0;
916  }
917  // Assume block terminators cannot evaluate to a recurrence. We can't to
918  // insert a Trunc after a terminator if there happens to be a critical edge.
919  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
920         "SCEV is not expected to evaluate a block terminator");
921
922  // Reuse the IV increment that SCEVExpander created as long as it dominates
923  // NarrowUse.
924  Instruction *WideUse = 0;
925  if (WideAddRec == WideIncExpr
926      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
927    WideUse = WideInc;
928  else {
929    WideUse = CloneIVUser(DU);
930    if (!WideUse)
931      return 0;
932  }
933  // Evaluation of WideAddRec ensured that the narrow expression could be
934  // extended outside the loop without overflow. This suggests that the wide use
935  // evaluates to the same expression as the extended narrow use, but doesn't
936  // absolutely guarantee it. Hence the following failsafe check. In rare cases
937  // where it fails, we simply throw away the newly created wide use.
938  if (WideAddRec != SE->getSCEV(WideUse)) {
939    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
940          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
941    DeadInsts.push_back(WideUse);
942    return 0;
943  }
944
945  // Returning WideUse pushes it on the worklist.
946  return WideUse;
947}
948
949/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
950///
951void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
952  for (Value::use_iterator UI = NarrowDef->use_begin(),
953         UE = NarrowDef->use_end(); UI != UE; ++UI) {
954    Instruction *NarrowUse = cast<Instruction>(*UI);
955
956    // Handle data flow merges and bizarre phi cycles.
957    if (!Widened.insert(NarrowUse))
958      continue;
959
960    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
961  }
962}
963
964/// CreateWideIV - Process a single induction variable. First use the
965/// SCEVExpander to create a wide induction variable that evaluates to the same
966/// recurrence as the original narrow IV. Then use a worklist to forward
967/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
968/// interesting IV users, the narrow IV will be isolated for removal by
969/// DeleteDeadPHIs.
970///
971/// It would be simpler to delete uses as they are processed, but we must avoid
972/// invalidating SCEV expressions.
973///
974PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
975  // Is this phi an induction variable?
976  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
977  if (!AddRec)
978    return NULL;
979
980  // Widen the induction variable expression.
981  const SCEV *WideIVExpr = IsSigned ?
982    SE->getSignExtendExpr(AddRec, WideType) :
983    SE->getZeroExtendExpr(AddRec, WideType);
984
985  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
986         "Expect the new IV expression to preserve its type");
987
988  // Can the IV be extended outside the loop without overflow?
989  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
990  if (!AddRec || AddRec->getLoop() != L)
991    return NULL;
992
993  // An AddRec must have loop-invariant operands. Since this AddRec is
994  // materialized by a loop header phi, the expression cannot have any post-loop
995  // operands, so they must dominate the loop header.
996  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
997         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
998         && "Loop header phi recurrence inputs do not dominate the loop");
999
1000  // The rewriter provides a value for the desired IV expression. This may
1001  // either find an existing phi or materialize a new one. Either way, we
1002  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1003  // of the phi-SCC dominates the loop entry.
1004  Instruction *InsertPt = L->getHeader()->begin();
1005  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1006
1007  // Remembering the WideIV increment generated by SCEVExpander allows
1008  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1009  // employ a general reuse mechanism because the call above is the only call to
1010  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1011  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1012    WideInc =
1013      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1014    WideIncExpr = SE->getSCEV(WideInc);
1015  }
1016
1017  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1018  ++NumWidened;
1019
1020  // Traverse the def-use chain using a worklist starting at the original IV.
1021  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1022
1023  Widened.insert(OrigPhi);
1024  pushNarrowIVUsers(OrigPhi, WidePhi);
1025
1026  while (!NarrowIVUsers.empty()) {
1027    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1028
1029    // Process a def-use edge. This may replace the use, so don't hold a
1030    // use_iterator across it.
1031    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1032
1033    // Follow all def-use edges from the previous narrow use.
1034    if (WideUse)
1035      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1036
1037    // WidenIVUse may have removed the def-use edge.
1038    if (DU.NarrowDef->use_empty())
1039      DeadInsts.push_back(DU.NarrowDef);
1040  }
1041  return WidePhi;
1042}
1043
1044//===----------------------------------------------------------------------===//
1045//  Simplification of IV users based on SCEV evaluation.
1046//===----------------------------------------------------------------------===//
1047
1048
1049/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1050/// users. Each successive simplification may push more users which may
1051/// themselves be candidates for simplification.
1052///
1053/// Sign/Zero extend elimination is interleaved with IV simplification.
1054///
1055void IndVarSimplify::SimplifyAndExtend(Loop *L,
1056                                       SCEVExpander &Rewriter,
1057                                       LPPassManager &LPM) {
1058  SmallVector<WideIVInfo, 8> WideIVs;
1059
1060  SmallVector<PHINode*, 8> LoopPhis;
1061  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1062    LoopPhis.push_back(cast<PHINode>(I));
1063  }
1064  // Each round of simplification iterates through the SimplifyIVUsers worklist
1065  // for all current phis, then determines whether any IVs can be
1066  // widened. Widening adds new phis to LoopPhis, inducing another round of
1067  // simplification on the wide IVs.
1068  while (!LoopPhis.empty()) {
1069    // Evaluate as many IV expressions as possible before widening any IVs. This
1070    // forces SCEV to set no-wrap flags before evaluating sign/zero
1071    // extension. The first time SCEV attempts to normalize sign/zero extension,
1072    // the result becomes final. So for the most predictable results, we delay
1073    // evaluation of sign/zero extend evaluation until needed, and avoid running
1074    // other SCEV based analysis prior to SimplifyAndExtend.
1075    do {
1076      PHINode *CurrIV = LoopPhis.pop_back_val();
1077
1078      // Information about sign/zero extensions of CurrIV.
1079      WideIVVisitor WIV(CurrIV, SE, TD);
1080
1081      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1082
1083      if (WIV.WI.WidestNativeType) {
1084        WideIVs.push_back(WIV.WI);
1085      }
1086    } while(!LoopPhis.empty());
1087
1088    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1089      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1090      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1091        Changed = true;
1092        LoopPhis.push_back(WidePhi);
1093      }
1094    }
1095  }
1096}
1097
1098//===----------------------------------------------------------------------===//
1099//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1100//===----------------------------------------------------------------------===//
1101
1102/// Check for expressions that ScalarEvolution generates to compute
1103/// BackedgeTakenInfo. If these expressions have not been reduced, then
1104/// expanding them may incur additional cost (albeit in the loop preheader).
1105static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1106                                SmallPtrSet<const SCEV*, 8> &Processed,
1107                                ScalarEvolution *SE) {
1108  if (!Processed.insert(S))
1109    return false;
1110
1111  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1112  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1113  // precise expression, rather than a UDiv from the user's code. If we can't
1114  // find a UDiv in the code with some simple searching, assume the former and
1115  // forego rewriting the loop.
1116  if (isa<SCEVUDivExpr>(S)) {
1117    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1118    if (!OrigCond) return true;
1119    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1120    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1121    if (R != S) {
1122      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1123      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1124      if (L != S)
1125        return true;
1126    }
1127  }
1128
1129  // Recurse past add expressions, which commonly occur in the
1130  // BackedgeTakenCount. They may already exist in program code, and if not,
1131  // they are not too expensive rematerialize.
1132  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1133    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1134         I != E; ++I) {
1135      if (isHighCostExpansion(*I, BI, Processed, SE))
1136        return true;
1137    }
1138    return false;
1139  }
1140
1141  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1142  // the exit condition.
1143  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1144    return true;
1145
1146  // If we haven't recognized an expensive SCEV pattern, assume it's an
1147  // expression produced by program code.
1148  return false;
1149}
1150
1151/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1152/// count expression can be safely and cheaply expanded into an instruction
1153/// sequence that can be used by LinearFunctionTestReplace.
1154///
1155/// TODO: This fails for pointer-type loop counters with greater than one byte
1156/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1157/// we could skip this check in the case that the LFTR loop counter (chosen by
1158/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1159/// the loop test to an inequality test by checking the target data's alignment
1160/// of element types (given that the initial pointer value originates from or is
1161/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1162/// However, we don't yet have a strong motivation for converting loop tests
1163/// into inequality tests.
1164static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1165  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1166  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1167      BackedgeTakenCount->isZero())
1168    return false;
1169
1170  if (!L->getExitingBlock())
1171    return false;
1172
1173  // Can't rewrite non-branch yet.
1174  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1175  if (!BI)
1176    return false;
1177
1178  SmallPtrSet<const SCEV*, 8> Processed;
1179  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1180    return false;
1181
1182  return true;
1183}
1184
1185/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1186/// invariant value to the phi.
1187static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1188  Instruction *IncI = dyn_cast<Instruction>(IncV);
1189  if (!IncI)
1190    return 0;
1191
1192  switch (IncI->getOpcode()) {
1193  case Instruction::Add:
1194  case Instruction::Sub:
1195    break;
1196  case Instruction::GetElementPtr:
1197    // An IV counter must preserve its type.
1198    if (IncI->getNumOperands() == 2)
1199      break;
1200  default:
1201    return 0;
1202  }
1203
1204  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1205  if (Phi && Phi->getParent() == L->getHeader()) {
1206    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1207      return Phi;
1208    return 0;
1209  }
1210  if (IncI->getOpcode() == Instruction::GetElementPtr)
1211    return 0;
1212
1213  // Allow add/sub to be commuted.
1214  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1215  if (Phi && Phi->getParent() == L->getHeader()) {
1216    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1217      return Phi;
1218  }
1219  return 0;
1220}
1221
1222/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1223static ICmpInst *getLoopTest(Loop *L) {
1224  assert(L->getExitingBlock() && "expected loop exit");
1225
1226  BasicBlock *LatchBlock = L->getLoopLatch();
1227  // Don't bother with LFTR if the loop is not properly simplified.
1228  if (!LatchBlock)
1229    return 0;
1230
1231  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1232  assert(BI && "expected exit branch");
1233
1234  return dyn_cast<ICmpInst>(BI->getCondition());
1235}
1236
1237/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1238/// that the current exit test is already sufficiently canonical.
1239static bool needsLFTR(Loop *L, DominatorTree *DT) {
1240  // Do LFTR to simplify the exit condition to an ICMP.
1241  ICmpInst *Cond = getLoopTest(L);
1242  if (!Cond)
1243    return true;
1244
1245  // Do LFTR to simplify the exit ICMP to EQ/NE
1246  ICmpInst::Predicate Pred = Cond->getPredicate();
1247  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1248    return true;
1249
1250  // Look for a loop invariant RHS
1251  Value *LHS = Cond->getOperand(0);
1252  Value *RHS = Cond->getOperand(1);
1253  if (!isLoopInvariant(RHS, L, DT)) {
1254    if (!isLoopInvariant(LHS, L, DT))
1255      return true;
1256    std::swap(LHS, RHS);
1257  }
1258  // Look for a simple IV counter LHS
1259  PHINode *Phi = dyn_cast<PHINode>(LHS);
1260  if (!Phi)
1261    Phi = getLoopPhiForCounter(LHS, L, DT);
1262
1263  if (!Phi)
1264    return true;
1265
1266  // Do LFTR if the exit condition's IV is *not* a simple counter.
1267  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1268  if (Idx < 0)
1269    return true;
1270  Value *IncV = Phi->getIncomingValue(Idx);
1271  return Phi != getLoopPhiForCounter(IncV, L, DT);
1272}
1273
1274/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1275/// down to checking that all operands are constant and listing instructions
1276/// that may hide undef.
1277static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1278                               unsigned Depth) {
1279  if (isa<Constant>(V))
1280    return !isa<UndefValue>(V);
1281
1282  if (Depth >= 6)
1283    return false;
1284
1285  // Conservatively handle non-constant non-instructions. For example, Arguments
1286  // may be undef.
1287  Instruction *I = dyn_cast<Instruction>(V);
1288  if (!I)
1289    return false;
1290
1291  // Load and return values may be undef.
1292  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1293    return false;
1294
1295  // Optimistically handle other instructions.
1296  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1297    if (!Visited.insert(*OI))
1298      continue;
1299    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1300      return false;
1301  }
1302  return true;
1303}
1304
1305/// Return true if the given value is concrete. We must prove that undef can
1306/// never reach it.
1307///
1308/// TODO: If we decide that this is a good approach to checking for undef, we
1309/// may factor it into a common location.
1310static bool hasConcreteDef(Value *V) {
1311  SmallPtrSet<Value*, 8> Visited;
1312  Visited.insert(V);
1313  return hasConcreteDefImpl(V, Visited, 0);
1314}
1315
1316/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1317/// be rewritten) loop exit test.
1318static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1319  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1320  Value *IncV = Phi->getIncomingValue(LatchIdx);
1321
1322  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1323       UI != UE; ++UI) {
1324    if (*UI != Cond && *UI != IncV) return false;
1325  }
1326
1327  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1328       UI != UE; ++UI) {
1329    if (*UI != Cond && *UI != Phi) return false;
1330  }
1331  return true;
1332}
1333
1334/// FindLoopCounter - Find an affine IV in canonical form.
1335///
1336/// BECount may be an i8* pointer type. The pointer difference is already
1337/// valid count without scaling the address stride, so it remains a pointer
1338/// expression as far as SCEV is concerned.
1339///
1340/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1341///
1342/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1343///
1344/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1345/// This is difficult in general for SCEV because of potential overflow. But we
1346/// could at least handle constant BECounts.
1347static PHINode *
1348FindLoopCounter(Loop *L, const SCEV *BECount,
1349                ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1350  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1351
1352  Value *Cond =
1353    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1354
1355  // Loop over all of the PHI nodes, looking for a simple counter.
1356  PHINode *BestPhi = 0;
1357  const SCEV *BestInit = 0;
1358  BasicBlock *LatchBlock = L->getLoopLatch();
1359  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1360
1361  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1362    PHINode *Phi = cast<PHINode>(I);
1363    if (!SE->isSCEVable(Phi->getType()))
1364      continue;
1365
1366    // Avoid comparing an integer IV against a pointer Limit.
1367    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1368      continue;
1369
1370    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1371    if (!AR || AR->getLoop() != L || !AR->isAffine())
1372      continue;
1373
1374    // AR may be a pointer type, while BECount is an integer type.
1375    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1376    // AR may not be a narrower type, or we may never exit.
1377    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1378    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1379      continue;
1380
1381    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1382    if (!Step || !Step->isOne())
1383      continue;
1384
1385    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1386    Value *IncV = Phi->getIncomingValue(LatchIdx);
1387    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1388      continue;
1389
1390    // Avoid reusing a potentially undef value to compute other values that may
1391    // have originally had a concrete definition.
1392    if (!hasConcreteDef(Phi)) {
1393      // We explicitly allow unknown phis as long as they are already used by
1394      // the loop test. In this case we assume that performing LFTR could not
1395      // increase the number of undef users.
1396      if (ICmpInst *Cond = getLoopTest(L)) {
1397        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1398            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1399          continue;
1400        }
1401      }
1402    }
1403    const SCEV *Init = AR->getStart();
1404
1405    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1406      // Don't force a live loop counter if another IV can be used.
1407      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1408        continue;
1409
1410      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1411      // also prefers integer to pointer IVs.
1412      if (BestInit->isZero() != Init->isZero()) {
1413        if (BestInit->isZero())
1414          continue;
1415      }
1416      // If two IVs both count from zero or both count from nonzero then the
1417      // narrower is likely a dead phi that has been widened. Use the wider phi
1418      // to allow the other to be eliminated.
1419      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1420        continue;
1421    }
1422    BestPhi = Phi;
1423    BestInit = Init;
1424  }
1425  return BestPhi;
1426}
1427
1428/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1429/// holds the RHS of the new loop test.
1430static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1431                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1432  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1433  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1434  const SCEV *IVInit = AR->getStart();
1435
1436  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1437  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1438  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1439  // the existing GEPs whenever possible.
1440  if (IndVar->getType()->isPointerTy()
1441      && !IVCount->getType()->isPointerTy()) {
1442
1443    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1444    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1445
1446    // Expand the code for the iteration count.
1447    assert(SE->isLoopInvariant(IVOffset, L) &&
1448           "Computed iteration count is not loop invariant!");
1449    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1450    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1451
1452    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1453    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1454    // We could handle pointer IVs other than i8*, but we need to compensate for
1455    // gep index scaling. See canExpandBackedgeTakenCount comments.
1456    assert(SE->getSizeOfExpr(
1457             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1458           && "unit stride pointer IV must be i8*");
1459
1460    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1461    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1462  }
1463  else {
1464    // In any other case, convert both IVInit and IVCount to integers before
1465    // comparing. This may result in SCEV expension of pointers, but in practice
1466    // SCEV will fold the pointer arithmetic away as such:
1467    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1468    //
1469    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1470    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1471    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1472    // of case #2.
1473
1474    const SCEV *IVLimit = 0;
1475    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1476    // For non-zero Start, compute IVCount here.
1477    if (AR->getStart()->isZero())
1478      IVLimit = IVCount;
1479    else {
1480      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1481      const SCEV *IVInit = AR->getStart();
1482
1483      // For integer IVs, truncate the IV before computing IVInit + BECount.
1484      if (SE->getTypeSizeInBits(IVInit->getType())
1485          > SE->getTypeSizeInBits(IVCount->getType()))
1486        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1487
1488      IVLimit = SE->getAddExpr(IVInit, IVCount);
1489    }
1490    // Expand the code for the iteration count.
1491    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1492    IRBuilder<> Builder(BI);
1493    assert(SE->isLoopInvariant(IVLimit, L) &&
1494           "Computed iteration count is not loop invariant!");
1495    // Ensure that we generate the same type as IndVar, or a smaller integer
1496    // type. In the presence of null pointer values, we have an integer type
1497    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1498    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1499      IndVar->getType() : IVCount->getType();
1500    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1501  }
1502}
1503
1504/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1505/// loop to be a canonical != comparison against the incremented loop induction
1506/// variable.  This pass is able to rewrite the exit tests of any loop where the
1507/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1508/// is actually a much broader range than just linear tests.
1509Value *IndVarSimplify::
1510LinearFunctionTestReplace(Loop *L,
1511                          const SCEV *BackedgeTakenCount,
1512                          PHINode *IndVar,
1513                          SCEVExpander &Rewriter) {
1514  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1515
1516  // LFTR can ignore IV overflow and truncate to the width of
1517  // BECount. This avoids materializing the add(zext(add)) expression.
1518  Type *CntTy = BackedgeTakenCount->getType();
1519
1520  const SCEV *IVCount = BackedgeTakenCount;
1521
1522  // If the exiting block is the same as the backedge block, we prefer to
1523  // compare against the post-incremented value, otherwise we must compare
1524  // against the preincremented value.
1525  Value *CmpIndVar;
1526  if (L->getExitingBlock() == L->getLoopLatch()) {
1527    // Add one to the "backedge-taken" count to get the trip count.
1528    // If this addition may overflow, we have to be more pessimistic and
1529    // cast the induction variable before doing the add.
1530    const SCEV *N =
1531      SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1532    if (CntTy == IVCount->getType())
1533      IVCount = N;
1534    else {
1535      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1536      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1537          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1538        // No overflow. Cast the sum.
1539        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1540      } else {
1541        // Potential overflow. Cast before doing the add.
1542        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1543        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1544      }
1545    }
1546    // The BackedgeTaken expression contains the number of times that the
1547    // backedge branches to the loop header.  This is one less than the
1548    // number of times the loop executes, so use the incremented indvar.
1549    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1550  } else {
1551    // We must use the preincremented value...
1552    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1553    CmpIndVar = IndVar;
1554  }
1555
1556  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1557  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1558         && "genLoopLimit missed a cast");
1559
1560  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1561  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1562  ICmpInst::Predicate P;
1563  if (L->contains(BI->getSuccessor(0)))
1564    P = ICmpInst::ICMP_NE;
1565  else
1566    P = ICmpInst::ICMP_EQ;
1567
1568  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1569               << "      LHS:" << *CmpIndVar << '\n'
1570               << "       op:\t"
1571               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1572               << "      RHS:\t" << *ExitCnt << "\n"
1573               << "  IVCount:\t" << *IVCount << "\n");
1574
1575  IRBuilder<> Builder(BI);
1576  if (SE->getTypeSizeInBits(CmpIndVar->getType())
1577      > SE->getTypeSizeInBits(ExitCnt->getType())) {
1578    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1579                                    "lftr.wideiv");
1580  }
1581
1582  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1583  Value *OrigCond = BI->getCondition();
1584  // It's tempting to use replaceAllUsesWith here to fully replace the old
1585  // comparison, but that's not immediately safe, since users of the old
1586  // comparison may not be dominated by the new comparison. Instead, just
1587  // update the branch to use the new comparison; in the common case this
1588  // will make old comparison dead.
1589  BI->setCondition(Cond);
1590  DeadInsts.push_back(OrigCond);
1591
1592  ++NumLFTR;
1593  Changed = true;
1594  return Cond;
1595}
1596
1597//===----------------------------------------------------------------------===//
1598//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1599//===----------------------------------------------------------------------===//
1600
1601/// If there's a single exit block, sink any loop-invariant values that
1602/// were defined in the preheader but not used inside the loop into the
1603/// exit block to reduce register pressure in the loop.
1604void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1605  BasicBlock *ExitBlock = L->getExitBlock();
1606  if (!ExitBlock) return;
1607
1608  BasicBlock *Preheader = L->getLoopPreheader();
1609  if (!Preheader) return;
1610
1611  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1612  BasicBlock::iterator I = Preheader->getTerminator();
1613  while (I != Preheader->begin()) {
1614    --I;
1615    // New instructions were inserted at the end of the preheader.
1616    if (isa<PHINode>(I))
1617      break;
1618
1619    // Don't move instructions which might have side effects, since the side
1620    // effects need to complete before instructions inside the loop.  Also don't
1621    // move instructions which might read memory, since the loop may modify
1622    // memory. Note that it's okay if the instruction might have undefined
1623    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1624    // block.
1625    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1626      continue;
1627
1628    // Skip debug info intrinsics.
1629    if (isa<DbgInfoIntrinsic>(I))
1630      continue;
1631
1632    // Skip landingpad instructions.
1633    if (isa<LandingPadInst>(I))
1634      continue;
1635
1636    // Don't sink alloca: we never want to sink static alloca's out of the
1637    // entry block, and correctly sinking dynamic alloca's requires
1638    // checks for stacksave/stackrestore intrinsics.
1639    // FIXME: Refactor this check somehow?
1640    if (isa<AllocaInst>(I))
1641      continue;
1642
1643    // Determine if there is a use in or before the loop (direct or
1644    // otherwise).
1645    bool UsedInLoop = false;
1646    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1647         UI != UE; ++UI) {
1648      User *U = *UI;
1649      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1650      if (PHINode *P = dyn_cast<PHINode>(U)) {
1651        unsigned i =
1652          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1653        UseBB = P->getIncomingBlock(i);
1654      }
1655      if (UseBB == Preheader || L->contains(UseBB)) {
1656        UsedInLoop = true;
1657        break;
1658      }
1659    }
1660
1661    // If there is, the def must remain in the preheader.
1662    if (UsedInLoop)
1663      continue;
1664
1665    // Otherwise, sink it to the exit block.
1666    Instruction *ToMove = I;
1667    bool Done = false;
1668
1669    if (I != Preheader->begin()) {
1670      // Skip debug info intrinsics.
1671      do {
1672        --I;
1673      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1674
1675      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1676        Done = true;
1677    } else {
1678      Done = true;
1679    }
1680
1681    ToMove->moveBefore(InsertPt);
1682    if (Done) break;
1683    InsertPt = ToMove;
1684  }
1685}
1686
1687//===----------------------------------------------------------------------===//
1688//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1689//===----------------------------------------------------------------------===//
1690
1691bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1692  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1693  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1694  //    canonicalization can be a pessimization without LSR to "clean up"
1695  //    afterwards.
1696  //  - We depend on having a preheader; in particular,
1697  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1698  //    and we're in trouble if we can't find the induction variable even when
1699  //    we've manually inserted one.
1700  if (!L->isLoopSimplifyForm())
1701    return false;
1702
1703  LI = &getAnalysis<LoopInfo>();
1704  SE = &getAnalysis<ScalarEvolution>();
1705  DT = &getAnalysis<DominatorTree>();
1706  TD = getAnalysisIfAvailable<TargetData>();
1707  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1708
1709  DeadInsts.clear();
1710  Changed = false;
1711
1712  // If there are any floating-point recurrences, attempt to
1713  // transform them to use integer recurrences.
1714  RewriteNonIntegerIVs(L);
1715
1716  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1717
1718  // Create a rewriter object which we'll use to transform the code with.
1719  SCEVExpander Rewriter(*SE, "indvars");
1720#ifndef NDEBUG
1721  Rewriter.setDebugType(DEBUG_TYPE);
1722#endif
1723
1724  // Eliminate redundant IV users.
1725  //
1726  // Simplification works best when run before other consumers of SCEV. We
1727  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1728  // other expressions involving loop IVs have been evaluated. This helps SCEV
1729  // set no-wrap flags before normalizing sign/zero extension.
1730  Rewriter.disableCanonicalMode();
1731  SimplifyAndExtend(L, Rewriter, LPM);
1732
1733  // Check to see if this loop has a computable loop-invariant execution count.
1734  // If so, this means that we can compute the final value of any expressions
1735  // that are recurrent in the loop, and substitute the exit values from the
1736  // loop into any instructions outside of the loop that use the final values of
1737  // the current expressions.
1738  //
1739  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1740    RewriteLoopExitValues(L, Rewriter);
1741
1742  // Eliminate redundant IV cycles.
1743  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1744
1745  // If we have a trip count expression, rewrite the loop's exit condition
1746  // using it.  We can currently only handle loops with a single exit.
1747  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1748    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1749    if (IndVar) {
1750      // Check preconditions for proper SCEVExpander operation. SCEV does not
1751      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1752      // pass that uses the SCEVExpander must do it. This does not work well for
1753      // loop passes because SCEVExpander makes assumptions about all loops, while
1754      // LoopPassManager only forces the current loop to be simplified.
1755      //
1756      // FIXME: SCEV expansion has no way to bail out, so the caller must
1757      // explicitly check any assumptions made by SCEV. Brittle.
1758      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1759      if (!AR || AR->getLoop()->getLoopPreheader())
1760        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1761                                        Rewriter);
1762    }
1763  }
1764  // Clear the rewriter cache, because values that are in the rewriter's cache
1765  // can be deleted in the loop below, causing the AssertingVH in the cache to
1766  // trigger.
1767  Rewriter.clear();
1768
1769  // Now that we're done iterating through lists, clean up any instructions
1770  // which are now dead.
1771  while (!DeadInsts.empty())
1772    if (Instruction *Inst =
1773          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1774      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1775
1776  // The Rewriter may not be used from this point on.
1777
1778  // Loop-invariant instructions in the preheader that aren't used in the
1779  // loop may be sunk below the loop to reduce register pressure.
1780  SinkUnusedInvariants(L);
1781
1782  // Clean up dead instructions.
1783  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1784  // Check a post-condition.
1785  assert(L->isLCSSAForm(*DT) &&
1786         "Indvars did not leave the loop in lcssa form!");
1787
1788  // Verify that LFTR, and any other change have not interfered with SCEV's
1789  // ability to compute trip count.
1790#ifndef NDEBUG
1791  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1792    SE->forgetLoop(L);
1793    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1794    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1795        SE->getTypeSizeInBits(NewBECount->getType()))
1796      NewBECount = SE->getTruncateOrNoop(NewBECount,
1797                                         BackedgeTakenCount->getType());
1798    else
1799      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1800                                                 NewBECount->getType());
1801    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1802  }
1803#endif
1804
1805  return Changed;
1806}
1807