1/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2 *
3 *                     The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16#include <stdarg.h>   /* for va_*()       */
17#include <stdio.h>    /* for vsnprintf()  */
18#include <stdlib.h>   /* for exit()       */
19#include <string.h>   /* for memset()     */
20
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE  1
26#define FALSE 0
27
28typedef int8_t bool;
29
30#ifndef NDEBUG
31#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32#else
33#define debug(s) do { } while (0)
34#endif
35
36
37/*
38 * contextForAttrs - Client for the instruction context table.  Takes a set of
39 *   attributes and returns the appropriate decode context.
40 *
41 * @param attrMask  - Attributes, from the enumeration attributeBits.
42 * @return          - The InstructionContext to use when looking up an
43 *                    an instruction with these attributes.
44 */
45static InstructionContext contextForAttrs(uint8_t attrMask) {
46  return CONTEXTS_SYM[attrMask];
47}
48
49/*
50 * modRMRequired - Reads the appropriate instruction table to determine whether
51 *   the ModR/M byte is required to decode a particular instruction.
52 *
53 * @param type        - The opcode type (i.e., how many bytes it has).
54 * @param insnContext - The context for the instruction, as returned by
55 *                      contextForAttrs.
56 * @param opcode      - The last byte of the instruction's opcode, not counting
57 *                      ModR/M extensions and escapes.
58 * @return            - TRUE if the ModR/M byte is required, FALSE otherwise.
59 */
60static int modRMRequired(OpcodeType type,
61                         InstructionContext insnContext,
62                         uint8_t opcode) {
63  const struct ContextDecision* decision = 0;
64
65  switch (type) {
66  case ONEBYTE:
67    decision = &ONEBYTE_SYM;
68    break;
69  case TWOBYTE:
70    decision = &TWOBYTE_SYM;
71    break;
72  case THREEBYTE_38:
73    decision = &THREEBYTE38_SYM;
74    break;
75  case THREEBYTE_3A:
76    decision = &THREEBYTE3A_SYM;
77    break;
78  case THREEBYTE_A6:
79    decision = &THREEBYTEA6_SYM;
80    break;
81  case THREEBYTE_A7:
82    decision = &THREEBYTEA7_SYM;
83    break;
84  }
85
86  return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87    modrm_type != MODRM_ONEENTRY;
88}
89
90/*
91 * decode - Reads the appropriate instruction table to obtain the unique ID of
92 *   an instruction.
93 *
94 * @param type        - See modRMRequired().
95 * @param insnContext - See modRMRequired().
96 * @param opcode      - See modRMRequired().
97 * @param modRM       - The ModR/M byte if required, or any value if not.
98 * @return            - The UID of the instruction, or 0 on failure.
99 */
100static InstrUID decode(OpcodeType type,
101                       InstructionContext insnContext,
102                       uint8_t opcode,
103                       uint8_t modRM) {
104  const struct ModRMDecision* dec = 0;
105
106  switch (type) {
107  case ONEBYTE:
108    dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
109    break;
110  case TWOBYTE:
111    dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
112    break;
113  case THREEBYTE_38:
114    dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
115    break;
116  case THREEBYTE_3A:
117    dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
118    break;
119  case THREEBYTE_A6:
120    dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
121    break;
122  case THREEBYTE_A7:
123    dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
124    break;
125  }
126
127  switch (dec->modrm_type) {
128  default:
129    debug("Corrupt table!  Unknown modrm_type");
130    return 0;
131  case MODRM_ONEENTRY:
132    return modRMTable[dec->instructionIDs];
133  case MODRM_SPLITRM:
134    if (modFromModRM(modRM) == 0x3)
135      return modRMTable[dec->instructionIDs+1];
136    return modRMTable[dec->instructionIDs];
137  case MODRM_SPLITREG:
138    if (modFromModRM(modRM) == 0x3)
139      return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
140    return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
141  case MODRM_SPLITMISC:
142    if (modFromModRM(modRM) == 0x3)
143      return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
144    return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
145  case MODRM_FULL:
146    return modRMTable[dec->instructionIDs+modRM];
147  }
148}
149
150/*
151 * specifierForUID - Given a UID, returns the name and operand specification for
152 *   that instruction.
153 *
154 * @param uid - The unique ID for the instruction.  This should be returned by
155 *              decode(); specifierForUID will not check bounds.
156 * @return    - A pointer to the specification for that instruction.
157 */
158static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
159  return &INSTRUCTIONS_SYM[uid];
160}
161
162/*
163 * consumeByte - Uses the reader function provided by the user to consume one
164 *   byte from the instruction's memory and advance the cursor.
165 *
166 * @param insn  - The instruction with the reader function to use.  The cursor
167 *                for this instruction is advanced.
168 * @param byte  - A pointer to a pre-allocated memory buffer to be populated
169 *                with the data read.
170 * @return      - 0 if the read was successful; nonzero otherwise.
171 */
172static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
173  int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
174
175  if (!ret)
176    ++(insn->readerCursor);
177
178  return ret;
179}
180
181/*
182 * lookAtByte - Like consumeByte, but does not advance the cursor.
183 *
184 * @param insn  - See consumeByte().
185 * @param byte  - See consumeByte().
186 * @return      - See consumeByte().
187 */
188static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
189  return insn->reader(insn->readerArg, byte, insn->readerCursor);
190}
191
192static void unconsumeByte(struct InternalInstruction* insn) {
193  insn->readerCursor--;
194}
195
196#define CONSUME_FUNC(name, type)                                  \
197  static int name(struct InternalInstruction* insn, type* ptr) {  \
198    type combined = 0;                                            \
199    unsigned offset;                                              \
200    for (offset = 0; offset < sizeof(type); ++offset) {           \
201      uint8_t byte;                                               \
202      int ret = insn->reader(insn->readerArg,                     \
203                             &byte,                               \
204                             insn->readerCursor + offset);        \
205      if (ret)                                                    \
206        return ret;                                               \
207      combined = combined | ((uint64_t)byte << (offset * 8));     \
208    }                                                             \
209    *ptr = combined;                                              \
210    insn->readerCursor += sizeof(type);                           \
211    return 0;                                                     \
212  }
213
214/*
215 * consume* - Use the reader function provided by the user to consume data
216 *   values of various sizes from the instruction's memory and advance the
217 *   cursor appropriately.  These readers perform endian conversion.
218 *
219 * @param insn    - See consumeByte().
220 * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
221 *                  be populated with the data read.
222 * @return        - See consumeByte().
223 */
224CONSUME_FUNC(consumeInt8, int8_t)
225CONSUME_FUNC(consumeInt16, int16_t)
226CONSUME_FUNC(consumeInt32, int32_t)
227CONSUME_FUNC(consumeUInt16, uint16_t)
228CONSUME_FUNC(consumeUInt32, uint32_t)
229CONSUME_FUNC(consumeUInt64, uint64_t)
230
231/*
232 * dbgprintf - Uses the logging function provided by the user to log a single
233 *   message, typically without a carriage-return.
234 *
235 * @param insn    - The instruction containing the logging function.
236 * @param format  - See printf().
237 * @param ...     - See printf().
238 */
239static void dbgprintf(struct InternalInstruction* insn,
240                      const char* format,
241                      ...) {
242  char buffer[256];
243  va_list ap;
244
245  if (!insn->dlog)
246    return;
247
248  va_start(ap, format);
249  (void)vsnprintf(buffer, sizeof(buffer), format, ap);
250  va_end(ap);
251
252  insn->dlog(insn->dlogArg, buffer);
253
254  return;
255}
256
257/*
258 * setPrefixPresent - Marks that a particular prefix is present at a particular
259 *   location.
260 *
261 * @param insn      - The instruction to be marked as having the prefix.
262 * @param prefix    - The prefix that is present.
263 * @param location  - The location where the prefix is located (in the address
264 *                    space of the instruction's reader).
265 */
266static void setPrefixPresent(struct InternalInstruction* insn,
267                                    uint8_t prefix,
268                                    uint64_t location)
269{
270  insn->prefixPresent[prefix] = 1;
271  insn->prefixLocations[prefix] = location;
272}
273
274/*
275 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
276 *   present at a given location.
277 *
278 * @param insn      - The instruction to be queried.
279 * @param prefix    - The prefix.
280 * @param location  - The location to query.
281 * @return          - Whether the prefix is at that location.
282 */
283static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
284                               uint8_t prefix,
285                               uint64_t location)
286{
287  if (insn->prefixPresent[prefix] == 1 &&
288     insn->prefixLocations[prefix] == location)
289    return TRUE;
290  else
291    return FALSE;
292}
293
294/*
295 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
296 *   instruction as having them.  Also sets the instruction's default operand,
297 *   address, and other relevant data sizes to report operands correctly.
298 *
299 * @param insn  - The instruction whose prefixes are to be read.
300 * @return      - 0 if the instruction could be read until the end of the prefix
301 *                bytes, and no prefixes conflicted; nonzero otherwise.
302 */
303static int readPrefixes(struct InternalInstruction* insn) {
304  BOOL isPrefix = TRUE;
305  BOOL prefixGroups[4] = { FALSE };
306  uint64_t prefixLocation;
307  uint8_t byte = 0;
308
309  BOOL hasAdSize = FALSE;
310  BOOL hasOpSize = FALSE;
311
312  dbgprintf(insn, "readPrefixes()");
313
314  while (isPrefix) {
315    prefixLocation = insn->readerCursor;
316
317    if (consumeByte(insn, &byte))
318      return -1;
319
320    /*
321     * If the first byte is a LOCK prefix break and let it be disassembled
322     * as a lock "instruction", by creating an <MCInst #xxxx LOCK_PREFIX>.
323     * FIXME there is currently no way to get the disassembler to print the
324     * lock prefix if it is not the first byte.
325     */
326    if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
327      break;
328
329    switch (byte) {
330    case 0xf0:  /* LOCK */
331    case 0xf2:  /* REPNE/REPNZ */
332    case 0xf3:  /* REP or REPE/REPZ */
333      if (prefixGroups[0])
334        dbgprintf(insn, "Redundant Group 1 prefix");
335      prefixGroups[0] = TRUE;
336      setPrefixPresent(insn, byte, prefixLocation);
337      break;
338    case 0x2e:  /* CS segment override -OR- Branch not taken */
339    case 0x36:  /* SS segment override -OR- Branch taken */
340    case 0x3e:  /* DS segment override */
341    case 0x26:  /* ES segment override */
342    case 0x64:  /* FS segment override */
343    case 0x65:  /* GS segment override */
344      switch (byte) {
345      case 0x2e:
346        insn->segmentOverride = SEG_OVERRIDE_CS;
347        break;
348      case 0x36:
349        insn->segmentOverride = SEG_OVERRIDE_SS;
350        break;
351      case 0x3e:
352        insn->segmentOverride = SEG_OVERRIDE_DS;
353        break;
354      case 0x26:
355        insn->segmentOverride = SEG_OVERRIDE_ES;
356        break;
357      case 0x64:
358        insn->segmentOverride = SEG_OVERRIDE_FS;
359        break;
360      case 0x65:
361        insn->segmentOverride = SEG_OVERRIDE_GS;
362        break;
363      default:
364        debug("Unhandled override");
365        return -1;
366      }
367      if (prefixGroups[1])
368        dbgprintf(insn, "Redundant Group 2 prefix");
369      prefixGroups[1] = TRUE;
370      setPrefixPresent(insn, byte, prefixLocation);
371      break;
372    case 0x66:  /* Operand-size override */
373      if (prefixGroups[2])
374        dbgprintf(insn, "Redundant Group 3 prefix");
375      prefixGroups[2] = TRUE;
376      hasOpSize = TRUE;
377      setPrefixPresent(insn, byte, prefixLocation);
378      break;
379    case 0x67:  /* Address-size override */
380      if (prefixGroups[3])
381        dbgprintf(insn, "Redundant Group 4 prefix");
382      prefixGroups[3] = TRUE;
383      hasAdSize = TRUE;
384      setPrefixPresent(insn, byte, prefixLocation);
385      break;
386    default:    /* Not a prefix byte */
387      isPrefix = FALSE;
388      break;
389    }
390
391    if (isPrefix)
392      dbgprintf(insn, "Found prefix 0x%hhx", byte);
393  }
394
395  insn->vexSize = 0;
396
397  if (byte == 0xc4) {
398    uint8_t byte1;
399
400    if (lookAtByte(insn, &byte1)) {
401      dbgprintf(insn, "Couldn't read second byte of VEX");
402      return -1;
403    }
404
405    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
406      insn->vexSize = 3;
407      insn->necessaryPrefixLocation = insn->readerCursor - 1;
408    }
409    else {
410      unconsumeByte(insn);
411      insn->necessaryPrefixLocation = insn->readerCursor - 1;
412    }
413
414    if (insn->vexSize == 3) {
415      insn->vexPrefix[0] = byte;
416      consumeByte(insn, &insn->vexPrefix[1]);
417      consumeByte(insn, &insn->vexPrefix[2]);
418
419      /* We simulate the REX prefix for simplicity's sake */
420
421      if (insn->mode == MODE_64BIT) {
422        insn->rexPrefix = 0x40
423                        | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
424                        | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
425                        | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
426                        | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
427      }
428
429      switch (ppFromVEX3of3(insn->vexPrefix[2]))
430      {
431      default:
432        break;
433      case VEX_PREFIX_66:
434        hasOpSize = TRUE;
435        break;
436      }
437
438      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
439    }
440  }
441  else if (byte == 0xc5) {
442    uint8_t byte1;
443
444    if (lookAtByte(insn, &byte1)) {
445      dbgprintf(insn, "Couldn't read second byte of VEX");
446      return -1;
447    }
448
449    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
450      insn->vexSize = 2;
451    }
452    else {
453      unconsumeByte(insn);
454    }
455
456    if (insn->vexSize == 2) {
457      insn->vexPrefix[0] = byte;
458      consumeByte(insn, &insn->vexPrefix[1]);
459
460      if (insn->mode == MODE_64BIT) {
461        insn->rexPrefix = 0x40
462                        | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
463      }
464
465      switch (ppFromVEX2of2(insn->vexPrefix[1]))
466      {
467      default:
468        break;
469      case VEX_PREFIX_66:
470        hasOpSize = TRUE;
471        break;
472      }
473
474      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
475    }
476  }
477  else {
478    if (insn->mode == MODE_64BIT) {
479      if ((byte & 0xf0) == 0x40) {
480        uint8_t opcodeByte;
481
482        if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
483          dbgprintf(insn, "Redundant REX prefix");
484          return -1;
485        }
486
487        insn->rexPrefix = byte;
488        insn->necessaryPrefixLocation = insn->readerCursor - 2;
489
490        dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
491      } else {
492        unconsumeByte(insn);
493        insn->necessaryPrefixLocation = insn->readerCursor - 1;
494      }
495    } else {
496      unconsumeByte(insn);
497      insn->necessaryPrefixLocation = insn->readerCursor - 1;
498    }
499  }
500
501  if (insn->mode == MODE_16BIT) {
502    insn->registerSize       = (hasOpSize ? 4 : 2);
503    insn->addressSize        = (hasAdSize ? 4 : 2);
504    insn->displacementSize   = (hasAdSize ? 4 : 2);
505    insn->immediateSize      = (hasOpSize ? 4 : 2);
506  } else if (insn->mode == MODE_32BIT) {
507    insn->registerSize       = (hasOpSize ? 2 : 4);
508    insn->addressSize        = (hasAdSize ? 2 : 4);
509    insn->displacementSize   = (hasAdSize ? 2 : 4);
510    insn->immediateSize      = (hasOpSize ? 2 : 4);
511  } else if (insn->mode == MODE_64BIT) {
512    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
513      insn->registerSize       = 8;
514      insn->addressSize        = (hasAdSize ? 4 : 8);
515      insn->displacementSize   = 4;
516      insn->immediateSize      = 4;
517    } else if (insn->rexPrefix) {
518      insn->registerSize       = (hasOpSize ? 2 : 4);
519      insn->addressSize        = (hasAdSize ? 4 : 8);
520      insn->displacementSize   = (hasOpSize ? 2 : 4);
521      insn->immediateSize      = (hasOpSize ? 2 : 4);
522    } else {
523      insn->registerSize       = (hasOpSize ? 2 : 4);
524      insn->addressSize        = (hasAdSize ? 4 : 8);
525      insn->displacementSize   = (hasOpSize ? 2 : 4);
526      insn->immediateSize      = (hasOpSize ? 2 : 4);
527    }
528  }
529
530  return 0;
531}
532
533/*
534 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
535 *   extended or escape opcodes).
536 *
537 * @param insn  - The instruction whose opcode is to be read.
538 * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
539 */
540static int readOpcode(struct InternalInstruction* insn) {
541  /* Determine the length of the primary opcode */
542
543  uint8_t current;
544
545  dbgprintf(insn, "readOpcode()");
546
547  insn->opcodeType = ONEBYTE;
548
549  if (insn->vexSize == 3)
550  {
551    switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
552    {
553    default:
554      dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
555      return -1;
556    case 0:
557      break;
558    case VEX_LOB_0F:
559      insn->twoByteEscape = 0x0f;
560      insn->opcodeType = TWOBYTE;
561      return consumeByte(insn, &insn->opcode);
562    case VEX_LOB_0F38:
563      insn->twoByteEscape = 0x0f;
564      insn->threeByteEscape = 0x38;
565      insn->opcodeType = THREEBYTE_38;
566      return consumeByte(insn, &insn->opcode);
567    case VEX_LOB_0F3A:
568      insn->twoByteEscape = 0x0f;
569      insn->threeByteEscape = 0x3a;
570      insn->opcodeType = THREEBYTE_3A;
571      return consumeByte(insn, &insn->opcode);
572    }
573  }
574  else if (insn->vexSize == 2)
575  {
576    insn->twoByteEscape = 0x0f;
577    insn->opcodeType = TWOBYTE;
578    return consumeByte(insn, &insn->opcode);
579  }
580
581  if (consumeByte(insn, &current))
582    return -1;
583
584  if (current == 0x0f) {
585    dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
586
587    insn->twoByteEscape = current;
588
589    if (consumeByte(insn, &current))
590      return -1;
591
592    if (current == 0x38) {
593      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
594
595      insn->threeByteEscape = current;
596
597      if (consumeByte(insn, &current))
598        return -1;
599
600      insn->opcodeType = THREEBYTE_38;
601    } else if (current == 0x3a) {
602      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
603
604      insn->threeByteEscape = current;
605
606      if (consumeByte(insn, &current))
607        return -1;
608
609      insn->opcodeType = THREEBYTE_3A;
610    } else if (current == 0xa6) {
611      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
612
613      insn->threeByteEscape = current;
614
615      if (consumeByte(insn, &current))
616        return -1;
617
618      insn->opcodeType = THREEBYTE_A6;
619    } else if (current == 0xa7) {
620      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
621
622      insn->threeByteEscape = current;
623
624      if (consumeByte(insn, &current))
625        return -1;
626
627      insn->opcodeType = THREEBYTE_A7;
628    } else {
629      dbgprintf(insn, "Didn't find a three-byte escape prefix");
630
631      insn->opcodeType = TWOBYTE;
632    }
633  }
634
635  /*
636   * At this point we have consumed the full opcode.
637   * Anything we consume from here on must be unconsumed.
638   */
639
640  insn->opcode = current;
641
642  return 0;
643}
644
645static int readModRM(struct InternalInstruction* insn);
646
647/*
648 * getIDWithAttrMask - Determines the ID of an instruction, consuming
649 *   the ModR/M byte as appropriate for extended and escape opcodes,
650 *   and using a supplied attribute mask.
651 *
652 * @param instructionID - A pointer whose target is filled in with the ID of the
653 *                        instruction.
654 * @param insn          - The instruction whose ID is to be determined.
655 * @param attrMask      - The attribute mask to search.
656 * @return              - 0 if the ModR/M could be read when needed or was not
657 *                        needed; nonzero otherwise.
658 */
659static int getIDWithAttrMask(uint16_t* instructionID,
660                             struct InternalInstruction* insn,
661                             uint8_t attrMask) {
662  BOOL hasModRMExtension;
663
664  uint8_t instructionClass;
665
666  instructionClass = contextForAttrs(attrMask);
667
668  hasModRMExtension = modRMRequired(insn->opcodeType,
669                                    instructionClass,
670                                    insn->opcode);
671
672  if (hasModRMExtension) {
673    if (readModRM(insn))
674      return -1;
675
676    *instructionID = decode(insn->opcodeType,
677                            instructionClass,
678                            insn->opcode,
679                            insn->modRM);
680  } else {
681    *instructionID = decode(insn->opcodeType,
682                            instructionClass,
683                            insn->opcode,
684                            0);
685  }
686
687  return 0;
688}
689
690/*
691 * is16BitEquivalent - Determines whether two instruction names refer to
692 * equivalent instructions but one is 16-bit whereas the other is not.
693 *
694 * @param orig  - The instruction that is not 16-bit
695 * @param equiv - The instruction that is 16-bit
696 */
697static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
698  off_t i;
699
700  for (i = 0;; i++) {
701    if (orig[i] == '\0' && equiv[i] == '\0')
702      return TRUE;
703    if (orig[i] == '\0' || equiv[i] == '\0')
704      return FALSE;
705    if (orig[i] != equiv[i]) {
706      if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
707        continue;
708      if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
709        continue;
710      if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
711        continue;
712      return FALSE;
713    }
714  }
715}
716
717/*
718 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
719 *   appropriate for extended and escape opcodes.  Determines the attributes and
720 *   context for the instruction before doing so.
721 *
722 * @param insn  - The instruction whose ID is to be determined.
723 * @return      - 0 if the ModR/M could be read when needed or was not needed;
724 *                nonzero otherwise.
725 */
726static int getID(struct InternalInstruction* insn, const void *miiArg) {
727  uint8_t attrMask;
728  uint16_t instructionID;
729
730  dbgprintf(insn, "getID()");
731
732  attrMask = ATTR_NONE;
733
734  if (insn->mode == MODE_64BIT)
735    attrMask |= ATTR_64BIT;
736
737  if (insn->vexSize) {
738    attrMask |= ATTR_VEX;
739
740    if (insn->vexSize == 3) {
741      switch (ppFromVEX3of3(insn->vexPrefix[2])) {
742      case VEX_PREFIX_66:
743        attrMask |= ATTR_OPSIZE;
744        break;
745      case VEX_PREFIX_F3:
746        attrMask |= ATTR_XS;
747        break;
748      case VEX_PREFIX_F2:
749        attrMask |= ATTR_XD;
750        break;
751      }
752
753      if (lFromVEX3of3(insn->vexPrefix[2]))
754        attrMask |= ATTR_VEXL;
755    }
756    else if (insn->vexSize == 2) {
757      switch (ppFromVEX2of2(insn->vexPrefix[1])) {
758      case VEX_PREFIX_66:
759        attrMask |= ATTR_OPSIZE;
760        break;
761      case VEX_PREFIX_F3:
762        attrMask |= ATTR_XS;
763        break;
764      case VEX_PREFIX_F2:
765        attrMask |= ATTR_XD;
766        break;
767      }
768
769      if (lFromVEX2of2(insn->vexPrefix[1]))
770        attrMask |= ATTR_VEXL;
771    }
772    else {
773      return -1;
774    }
775  }
776  else {
777    if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
778      attrMask |= ATTR_OPSIZE;
779    else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
780      attrMask |= ATTR_ADSIZE;
781    else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
782      attrMask |= ATTR_XS;
783    else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
784      attrMask |= ATTR_XD;
785  }
786
787  if (insn->rexPrefix & 0x08)
788    attrMask |= ATTR_REXW;
789
790  if (getIDWithAttrMask(&instructionID, insn, attrMask))
791    return -1;
792
793  /* The following clauses compensate for limitations of the tables. */
794
795  if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) &&
796      !(attrMask & ATTR_OPSIZE)) {
797    /*
798     * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
799     * has precedence since there are no L-bit with W-bit entries in the tables.
800     * So if the L-bit isn't significant we should use the W-bit instead.
801     * We only need to do this if the instruction doesn't specify OpSize since
802     * there is a VEX_L_W_OPSIZE table.
803     */
804
805    const struct InstructionSpecifier *spec;
806    uint16_t instructionIDWithWBit;
807    const struct InstructionSpecifier *specWithWBit;
808
809    spec = specifierForUID(instructionID);
810
811    if (getIDWithAttrMask(&instructionIDWithWBit,
812                          insn,
813                          (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
814      insn->instructionID = instructionID;
815      insn->spec = spec;
816      return 0;
817    }
818
819    specWithWBit = specifierForUID(instructionIDWithWBit);
820
821    if (instructionID != instructionIDWithWBit) {
822      insn->instructionID = instructionIDWithWBit;
823      insn->spec = specWithWBit;
824    } else {
825      insn->instructionID = instructionID;
826      insn->spec = spec;
827    }
828    return 0;
829  }
830
831  if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
832    /*
833     * The instruction tables make no distinction between instructions that
834     * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
835     * particular spot (i.e., many MMX operations).  In general we're
836     * conservative, but in the specific case where OpSize is present but not
837     * in the right place we check if there's a 16-bit operation.
838     */
839
840    const struct InstructionSpecifier *spec;
841    uint16_t instructionIDWithOpsize;
842    const char *specName, *specWithOpSizeName;
843
844    spec = specifierForUID(instructionID);
845
846    if (getIDWithAttrMask(&instructionIDWithOpsize,
847                          insn,
848                          attrMask | ATTR_OPSIZE)) {
849      /*
850       * ModRM required with OpSize but not present; give up and return version
851       * without OpSize set
852       */
853
854      insn->instructionID = instructionID;
855      insn->spec = spec;
856      return 0;
857    }
858
859    specName = x86DisassemblerGetInstrName(instructionID, miiArg);
860    specWithOpSizeName =
861      x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
862
863    if (is16BitEquvalent(specName, specWithOpSizeName)) {
864      insn->instructionID = instructionIDWithOpsize;
865      insn->spec = specifierForUID(instructionIDWithOpsize);
866    } else {
867      insn->instructionID = instructionID;
868      insn->spec = spec;
869    }
870    return 0;
871  }
872
873  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
874      insn->rexPrefix & 0x01) {
875    /*
876     * NOOP shouldn't decode as NOOP if REX.b is set. Instead
877     * it should decode as XCHG %r8, %eax.
878     */
879
880    const struct InstructionSpecifier *spec;
881    uint16_t instructionIDWithNewOpcode;
882    const struct InstructionSpecifier *specWithNewOpcode;
883
884    spec = specifierForUID(instructionID);
885
886    /* Borrow opcode from one of the other XCHGar opcodes */
887    insn->opcode = 0x91;
888
889    if (getIDWithAttrMask(&instructionIDWithNewOpcode,
890                          insn,
891                          attrMask)) {
892      insn->opcode = 0x90;
893
894      insn->instructionID = instructionID;
895      insn->spec = spec;
896      return 0;
897    }
898
899    specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
900
901    /* Change back */
902    insn->opcode = 0x90;
903
904    insn->instructionID = instructionIDWithNewOpcode;
905    insn->spec = specWithNewOpcode;
906
907    return 0;
908  }
909
910  insn->instructionID = instructionID;
911  insn->spec = specifierForUID(insn->instructionID);
912
913  return 0;
914}
915
916/*
917 * readSIB - Consumes the SIB byte to determine addressing information for an
918 *   instruction.
919 *
920 * @param insn  - The instruction whose SIB byte is to be read.
921 * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
922 */
923static int readSIB(struct InternalInstruction* insn) {
924  SIBIndex sibIndexBase = 0;
925  SIBBase sibBaseBase = 0;
926  uint8_t index, base;
927
928  dbgprintf(insn, "readSIB()");
929
930  if (insn->consumedSIB)
931    return 0;
932
933  insn->consumedSIB = TRUE;
934
935  switch (insn->addressSize) {
936  case 2:
937    dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
938    return -1;
939    break;
940  case 4:
941    sibIndexBase = SIB_INDEX_EAX;
942    sibBaseBase = SIB_BASE_EAX;
943    break;
944  case 8:
945    sibIndexBase = SIB_INDEX_RAX;
946    sibBaseBase = SIB_BASE_RAX;
947    break;
948  }
949
950  if (consumeByte(insn, &insn->sib))
951    return -1;
952
953  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
954
955  switch (index) {
956  case 0x4:
957    insn->sibIndex = SIB_INDEX_NONE;
958    break;
959  default:
960    insn->sibIndex = (SIBIndex)(sibIndexBase + index);
961    if (insn->sibIndex == SIB_INDEX_sib ||
962        insn->sibIndex == SIB_INDEX_sib64)
963      insn->sibIndex = SIB_INDEX_NONE;
964    break;
965  }
966
967  switch (scaleFromSIB(insn->sib)) {
968  case 0:
969    insn->sibScale = 1;
970    break;
971  case 1:
972    insn->sibScale = 2;
973    break;
974  case 2:
975    insn->sibScale = 4;
976    break;
977  case 3:
978    insn->sibScale = 8;
979    break;
980  }
981
982  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
983
984  switch (base) {
985  case 0x5:
986    switch (modFromModRM(insn->modRM)) {
987    case 0x0:
988      insn->eaDisplacement = EA_DISP_32;
989      insn->sibBase = SIB_BASE_NONE;
990      break;
991    case 0x1:
992      insn->eaDisplacement = EA_DISP_8;
993      insn->sibBase = (insn->addressSize == 4 ?
994                       SIB_BASE_EBP : SIB_BASE_RBP);
995      break;
996    case 0x2:
997      insn->eaDisplacement = EA_DISP_32;
998      insn->sibBase = (insn->addressSize == 4 ?
999                       SIB_BASE_EBP : SIB_BASE_RBP);
1000      break;
1001    case 0x3:
1002      debug("Cannot have Mod = 0b11 and a SIB byte");
1003      return -1;
1004    }
1005    break;
1006  default:
1007    insn->sibBase = (SIBBase)(sibBaseBase + base);
1008    break;
1009  }
1010
1011  return 0;
1012}
1013
1014/*
1015 * readDisplacement - Consumes the displacement of an instruction.
1016 *
1017 * @param insn  - The instruction whose displacement is to be read.
1018 * @return      - 0 if the displacement byte was successfully read; nonzero
1019 *                otherwise.
1020 */
1021static int readDisplacement(struct InternalInstruction* insn) {
1022  int8_t d8;
1023  int16_t d16;
1024  int32_t d32;
1025
1026  dbgprintf(insn, "readDisplacement()");
1027
1028  if (insn->consumedDisplacement)
1029    return 0;
1030
1031  insn->consumedDisplacement = TRUE;
1032  insn->displacementOffset = insn->readerCursor - insn->startLocation;
1033
1034  switch (insn->eaDisplacement) {
1035  case EA_DISP_NONE:
1036    insn->consumedDisplacement = FALSE;
1037    break;
1038  case EA_DISP_8:
1039    if (consumeInt8(insn, &d8))
1040      return -1;
1041    insn->displacement = d8;
1042    break;
1043  case EA_DISP_16:
1044    if (consumeInt16(insn, &d16))
1045      return -1;
1046    insn->displacement = d16;
1047    break;
1048  case EA_DISP_32:
1049    if (consumeInt32(insn, &d32))
1050      return -1;
1051    insn->displacement = d32;
1052    break;
1053  }
1054
1055  insn->consumedDisplacement = TRUE;
1056  return 0;
1057}
1058
1059/*
1060 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1061 *   displacement) for an instruction and interprets it.
1062 *
1063 * @param insn  - The instruction whose addressing information is to be read.
1064 * @return      - 0 if the information was successfully read; nonzero otherwise.
1065 */
1066static int readModRM(struct InternalInstruction* insn) {
1067  uint8_t mod, rm, reg;
1068
1069  dbgprintf(insn, "readModRM()");
1070
1071  if (insn->consumedModRM)
1072    return 0;
1073
1074  if (consumeByte(insn, &insn->modRM))
1075    return -1;
1076  insn->consumedModRM = TRUE;
1077
1078  mod     = modFromModRM(insn->modRM);
1079  rm      = rmFromModRM(insn->modRM);
1080  reg     = regFromModRM(insn->modRM);
1081
1082  /*
1083   * This goes by insn->registerSize to pick the correct register, which messes
1084   * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1085   * fixupReg().
1086   */
1087  switch (insn->registerSize) {
1088  case 2:
1089    insn->regBase = MODRM_REG_AX;
1090    insn->eaRegBase = EA_REG_AX;
1091    break;
1092  case 4:
1093    insn->regBase = MODRM_REG_EAX;
1094    insn->eaRegBase = EA_REG_EAX;
1095    break;
1096  case 8:
1097    insn->regBase = MODRM_REG_RAX;
1098    insn->eaRegBase = EA_REG_RAX;
1099    break;
1100  }
1101
1102  reg |= rFromREX(insn->rexPrefix) << 3;
1103  rm  |= bFromREX(insn->rexPrefix) << 3;
1104
1105  insn->reg = (Reg)(insn->regBase + reg);
1106
1107  switch (insn->addressSize) {
1108  case 2:
1109    insn->eaBaseBase = EA_BASE_BX_SI;
1110
1111    switch (mod) {
1112    case 0x0:
1113      if (rm == 0x6) {
1114        insn->eaBase = EA_BASE_NONE;
1115        insn->eaDisplacement = EA_DISP_16;
1116        if (readDisplacement(insn))
1117          return -1;
1118      } else {
1119        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1120        insn->eaDisplacement = EA_DISP_NONE;
1121      }
1122      break;
1123    case 0x1:
1124      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1125      insn->eaDisplacement = EA_DISP_8;
1126      if (readDisplacement(insn))
1127        return -1;
1128      break;
1129    case 0x2:
1130      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1131      insn->eaDisplacement = EA_DISP_16;
1132      if (readDisplacement(insn))
1133        return -1;
1134      break;
1135    case 0x3:
1136      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1137      if (readDisplacement(insn))
1138        return -1;
1139      break;
1140    }
1141    break;
1142  case 4:
1143  case 8:
1144    insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1145
1146    switch (mod) {
1147    case 0x0:
1148      insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1149      switch (rm) {
1150      case 0x4:
1151      case 0xc:   /* in case REXW.b is set */
1152        insn->eaBase = (insn->addressSize == 4 ?
1153                        EA_BASE_sib : EA_BASE_sib64);
1154        readSIB(insn);
1155        if (readDisplacement(insn))
1156          return -1;
1157        break;
1158      case 0x5:
1159        insn->eaBase = EA_BASE_NONE;
1160        insn->eaDisplacement = EA_DISP_32;
1161        if (readDisplacement(insn))
1162          return -1;
1163        break;
1164      default:
1165        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1166        break;
1167      }
1168      break;
1169    case 0x1:
1170    case 0x2:
1171      insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1172      switch (rm) {
1173      case 0x4:
1174      case 0xc:   /* in case REXW.b is set */
1175        insn->eaBase = EA_BASE_sib;
1176        readSIB(insn);
1177        if (readDisplacement(insn))
1178          return -1;
1179        break;
1180      default:
1181        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1182        if (readDisplacement(insn))
1183          return -1;
1184        break;
1185      }
1186      break;
1187    case 0x3:
1188      insn->eaDisplacement = EA_DISP_NONE;
1189      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1190      break;
1191    }
1192    break;
1193  } /* switch (insn->addressSize) */
1194
1195  return 0;
1196}
1197
1198#define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1199  static uint8_t name(struct InternalInstruction *insn,   \
1200                      OperandType type,                   \
1201                      uint8_t index,                      \
1202                      uint8_t *valid) {                   \
1203    *valid = 1;                                           \
1204    switch (type) {                                       \
1205    default:                                              \
1206      debug("Unhandled register type");                   \
1207      *valid = 0;                                         \
1208      return 0;                                           \
1209    case TYPE_Rv:                                         \
1210      return base + index;                                \
1211    case TYPE_R8:                                         \
1212      if (insn->rexPrefix &&                              \
1213         index >= 4 && index <= 7) {                      \
1214        return prefix##_SPL + (index - 4);                \
1215      } else {                                            \
1216        return prefix##_AL + index;                       \
1217      }                                                   \
1218    case TYPE_R16:                                        \
1219      return prefix##_AX + index;                         \
1220    case TYPE_R32:                                        \
1221      return prefix##_EAX + index;                        \
1222    case TYPE_R64:                                        \
1223      return prefix##_RAX + index;                        \
1224    case TYPE_XMM256:                                     \
1225      return prefix##_YMM0 + index;                       \
1226    case TYPE_XMM128:                                     \
1227    case TYPE_XMM64:                                      \
1228    case TYPE_XMM32:                                      \
1229    case TYPE_XMM:                                        \
1230      return prefix##_XMM0 + index;                       \
1231    case TYPE_MM64:                                       \
1232    case TYPE_MM32:                                       \
1233    case TYPE_MM:                                         \
1234      if (index > 7)                                      \
1235        *valid = 0;                                       \
1236      return prefix##_MM0 + index;                        \
1237    case TYPE_SEGMENTREG:                                 \
1238      if (index > 5)                                      \
1239        *valid = 0;                                       \
1240      return prefix##_ES + index;                         \
1241    case TYPE_DEBUGREG:                                   \
1242      if (index > 7)                                      \
1243        *valid = 0;                                       \
1244      return prefix##_DR0 + index;                        \
1245    case TYPE_CONTROLREG:                                 \
1246      if (index > 8)                                      \
1247        *valid = 0;                                       \
1248      return prefix##_CR0 + index;                        \
1249    }                                                     \
1250  }
1251
1252/*
1253 * fixup*Value - Consults an operand type to determine the meaning of the
1254 *   reg or R/M field.  If the operand is an XMM operand, for example, an
1255 *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1256 *   misinterpret it as.
1257 *
1258 * @param insn  - The instruction containing the operand.
1259 * @param type  - The operand type.
1260 * @param index - The existing value of the field as reported by readModRM().
1261 * @param valid - The address of a uint8_t.  The target is set to 1 if the
1262 *                field is valid for the register class; 0 if not.
1263 * @return      - The proper value.
1264 */
1265GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1266GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1267
1268/*
1269 * fixupReg - Consults an operand specifier to determine which of the
1270 *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1271 *
1272 * @param insn  - See fixup*Value().
1273 * @param op    - The operand specifier.
1274 * @return      - 0 if fixup was successful; -1 if the register returned was
1275 *                invalid for its class.
1276 */
1277static int fixupReg(struct InternalInstruction *insn,
1278                    const struct OperandSpecifier *op) {
1279  uint8_t valid;
1280
1281  dbgprintf(insn, "fixupReg()");
1282
1283  switch ((OperandEncoding)op->encoding) {
1284  default:
1285    debug("Expected a REG or R/M encoding in fixupReg");
1286    return -1;
1287  case ENCODING_VVVV:
1288    insn->vvvv = (Reg)fixupRegValue(insn,
1289                                    (OperandType)op->type,
1290                                    insn->vvvv,
1291                                    &valid);
1292    if (!valid)
1293      return -1;
1294    break;
1295  case ENCODING_REG:
1296    insn->reg = (Reg)fixupRegValue(insn,
1297                                   (OperandType)op->type,
1298                                   insn->reg - insn->regBase,
1299                                   &valid);
1300    if (!valid)
1301      return -1;
1302    break;
1303  case ENCODING_RM:
1304    if (insn->eaBase >= insn->eaRegBase) {
1305      insn->eaBase = (EABase)fixupRMValue(insn,
1306                                          (OperandType)op->type,
1307                                          insn->eaBase - insn->eaRegBase,
1308                                          &valid);
1309      if (!valid)
1310        return -1;
1311    }
1312    break;
1313  }
1314
1315  return 0;
1316}
1317
1318/*
1319 * readOpcodeModifier - Reads an operand from the opcode field of an
1320 *   instruction.  Handles AddRegFrm instructions.
1321 *
1322 * @param insn    - The instruction whose opcode field is to be read.
1323 * @param inModRM - Indicates that the opcode field is to be read from the
1324 *                  ModR/M extension; useful for escape opcodes
1325 * @return        - 0 on success; nonzero otherwise.
1326 */
1327static int readOpcodeModifier(struct InternalInstruction* insn) {
1328  dbgprintf(insn, "readOpcodeModifier()");
1329
1330  if (insn->consumedOpcodeModifier)
1331    return 0;
1332
1333  insn->consumedOpcodeModifier = TRUE;
1334
1335  switch (insn->spec->modifierType) {
1336  default:
1337    debug("Unknown modifier type.");
1338    return -1;
1339  case MODIFIER_NONE:
1340    debug("No modifier but an operand expects one.");
1341    return -1;
1342  case MODIFIER_OPCODE:
1343    insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1344    return 0;
1345  case MODIFIER_MODRM:
1346    insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1347    return 0;
1348  }
1349}
1350
1351/*
1352 * readOpcodeRegister - Reads an operand from the opcode field of an
1353 *   instruction and interprets it appropriately given the operand width.
1354 *   Handles AddRegFrm instructions.
1355 *
1356 * @param insn  - See readOpcodeModifier().
1357 * @param size  - The width (in bytes) of the register being specified.
1358 *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1359 *                RAX.
1360 * @return      - 0 on success; nonzero otherwise.
1361 */
1362static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1363  dbgprintf(insn, "readOpcodeRegister()");
1364
1365  if (readOpcodeModifier(insn))
1366    return -1;
1367
1368  if (size == 0)
1369    size = insn->registerSize;
1370
1371  switch (size) {
1372  case 1:
1373    insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1374                                                  | insn->opcodeModifier));
1375    if (insn->rexPrefix &&
1376        insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1377        insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1378      insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1379                                   + (insn->opcodeRegister - MODRM_REG_AL - 4));
1380    }
1381
1382    break;
1383  case 2:
1384    insn->opcodeRegister = (Reg)(MODRM_REG_AX
1385                                 + ((bFromREX(insn->rexPrefix) << 3)
1386                                    | insn->opcodeModifier));
1387    break;
1388  case 4:
1389    insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1390                                 + ((bFromREX(insn->rexPrefix) << 3)
1391                                    | insn->opcodeModifier));
1392    break;
1393  case 8:
1394    insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1395                                 + ((bFromREX(insn->rexPrefix) << 3)
1396                                    | insn->opcodeModifier));
1397    break;
1398  }
1399
1400  return 0;
1401}
1402
1403/*
1404 * readImmediate - Consumes an immediate operand from an instruction, given the
1405 *   desired operand size.
1406 *
1407 * @param insn  - The instruction whose operand is to be read.
1408 * @param size  - The width (in bytes) of the operand.
1409 * @return      - 0 if the immediate was successfully consumed; nonzero
1410 *                otherwise.
1411 */
1412static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1413  uint8_t imm8;
1414  uint16_t imm16;
1415  uint32_t imm32;
1416  uint64_t imm64;
1417
1418  dbgprintf(insn, "readImmediate()");
1419
1420  if (insn->numImmediatesConsumed == 2) {
1421    debug("Already consumed two immediates");
1422    return -1;
1423  }
1424
1425  if (size == 0)
1426    size = insn->immediateSize;
1427  else
1428    insn->immediateSize = size;
1429  insn->immediateOffset = insn->readerCursor - insn->startLocation;
1430
1431  switch (size) {
1432  case 1:
1433    if (consumeByte(insn, &imm8))
1434      return -1;
1435    insn->immediates[insn->numImmediatesConsumed] = imm8;
1436    break;
1437  case 2:
1438    if (consumeUInt16(insn, &imm16))
1439      return -1;
1440    insn->immediates[insn->numImmediatesConsumed] = imm16;
1441    break;
1442  case 4:
1443    if (consumeUInt32(insn, &imm32))
1444      return -1;
1445    insn->immediates[insn->numImmediatesConsumed] = imm32;
1446    break;
1447  case 8:
1448    if (consumeUInt64(insn, &imm64))
1449      return -1;
1450    insn->immediates[insn->numImmediatesConsumed] = imm64;
1451    break;
1452  }
1453
1454  insn->numImmediatesConsumed++;
1455
1456  return 0;
1457}
1458
1459/*
1460 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1461 *
1462 * @param insn  - The instruction whose operand is to be read.
1463 * @return      - 0 if the vvvv was successfully consumed; nonzero
1464 *                otherwise.
1465 */
1466static int readVVVV(struct InternalInstruction* insn) {
1467  dbgprintf(insn, "readVVVV()");
1468
1469  if (insn->vexSize == 3)
1470    insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1471  else if (insn->vexSize == 2)
1472    insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1473  else
1474    return -1;
1475
1476  if (insn->mode != MODE_64BIT)
1477    insn->vvvv &= 0x7;
1478
1479  return 0;
1480}
1481
1482/*
1483 * readOperands - Consults the specifier for an instruction and consumes all
1484 *   operands for that instruction, interpreting them as it goes.
1485 *
1486 * @param insn  - The instruction whose operands are to be read and interpreted.
1487 * @return      - 0 if all operands could be read; nonzero otherwise.
1488 */
1489static int readOperands(struct InternalInstruction* insn) {
1490  int index;
1491  int hasVVVV, needVVVV;
1492  int sawRegImm = 0;
1493
1494  dbgprintf(insn, "readOperands()");
1495
1496  /* If non-zero vvvv specified, need to make sure one of the operands
1497     uses it. */
1498  hasVVVV = !readVVVV(insn);
1499  needVVVV = hasVVVV && (insn->vvvv != 0);
1500
1501  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1502    switch (x86OperandSets[insn->spec->operands][index].encoding) {
1503    case ENCODING_NONE:
1504      break;
1505    case ENCODING_REG:
1506    case ENCODING_RM:
1507      if (readModRM(insn))
1508        return -1;
1509      if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1510        return -1;
1511      break;
1512    case ENCODING_CB:
1513    case ENCODING_CW:
1514    case ENCODING_CD:
1515    case ENCODING_CP:
1516    case ENCODING_CO:
1517    case ENCODING_CT:
1518      dbgprintf(insn, "We currently don't hande code-offset encodings");
1519      return -1;
1520    case ENCODING_IB:
1521      if (sawRegImm) {
1522        /* Saw a register immediate so don't read again and instead split the
1523           previous immediate.  FIXME: This is a hack. */
1524        insn->immediates[insn->numImmediatesConsumed] =
1525          insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1526        ++insn->numImmediatesConsumed;
1527        break;
1528      }
1529      if (readImmediate(insn, 1))
1530        return -1;
1531      if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1532          insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1533        return -1;
1534      if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1535          insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1536        return -1;
1537      if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1538          x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1539        sawRegImm = 1;
1540      break;
1541    case ENCODING_IW:
1542      if (readImmediate(insn, 2))
1543        return -1;
1544      break;
1545    case ENCODING_ID:
1546      if (readImmediate(insn, 4))
1547        return -1;
1548      break;
1549    case ENCODING_IO:
1550      if (readImmediate(insn, 8))
1551        return -1;
1552      break;
1553    case ENCODING_Iv:
1554      if (readImmediate(insn, insn->immediateSize))
1555        return -1;
1556      break;
1557    case ENCODING_Ia:
1558      if (readImmediate(insn, insn->addressSize))
1559        return -1;
1560      break;
1561    case ENCODING_RB:
1562      if (readOpcodeRegister(insn, 1))
1563        return -1;
1564      break;
1565    case ENCODING_RW:
1566      if (readOpcodeRegister(insn, 2))
1567        return -1;
1568      break;
1569    case ENCODING_RD:
1570      if (readOpcodeRegister(insn, 4))
1571        return -1;
1572      break;
1573    case ENCODING_RO:
1574      if (readOpcodeRegister(insn, 8))
1575        return -1;
1576      break;
1577    case ENCODING_Rv:
1578      if (readOpcodeRegister(insn, 0))
1579        return -1;
1580      break;
1581    case ENCODING_I:
1582      if (readOpcodeModifier(insn))
1583        return -1;
1584      break;
1585    case ENCODING_VVVV:
1586      needVVVV = 0; /* Mark that we have found a VVVV operand. */
1587      if (!hasVVVV)
1588        return -1;
1589      if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1590        return -1;
1591      break;
1592    case ENCODING_DUP:
1593      break;
1594    default:
1595      dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1596      return -1;
1597    }
1598  }
1599
1600  /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1601  if (needVVVV) return -1;
1602
1603  return 0;
1604}
1605
1606/*
1607 * decodeInstruction - Reads and interprets a full instruction provided by the
1608 *   user.
1609 *
1610 * @param insn      - A pointer to the instruction to be populated.  Must be
1611 *                    pre-allocated.
1612 * @param reader    - The function to be used to read the instruction's bytes.
1613 * @param readerArg - A generic argument to be passed to the reader to store
1614 *                    any internal state.
1615 * @param logger    - If non-NULL, the function to be used to write log messages
1616 *                    and warnings.
1617 * @param loggerArg - A generic argument to be passed to the logger to store
1618 *                    any internal state.
1619 * @param startLoc  - The address (in the reader's address space) of the first
1620 *                    byte in the instruction.
1621 * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1622 *                    decode the instruction in.
1623 * @return          - 0 if the instruction's memory could be read; nonzero if
1624 *                    not.
1625 */
1626int decodeInstruction(struct InternalInstruction* insn,
1627                      byteReader_t reader,
1628                      const void* readerArg,
1629                      dlog_t logger,
1630                      void* loggerArg,
1631                      const void* miiArg,
1632                      uint64_t startLoc,
1633                      DisassemblerMode mode) {
1634  memset(insn, 0, sizeof(struct InternalInstruction));
1635
1636  insn->reader = reader;
1637  insn->readerArg = readerArg;
1638  insn->dlog = logger;
1639  insn->dlogArg = loggerArg;
1640  insn->startLocation = startLoc;
1641  insn->readerCursor = startLoc;
1642  insn->mode = mode;
1643  insn->numImmediatesConsumed = 0;
1644
1645  if (readPrefixes(insn)       ||
1646      readOpcode(insn)         ||
1647      getID(insn, miiArg)      ||
1648      insn->instructionID == 0 ||
1649      readOperands(insn))
1650    return -1;
1651
1652  insn->operands = &x86OperandSets[insn->spec->operands][0];
1653
1654  insn->length = insn->readerCursor - insn->startLocation;
1655
1656  dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1657            startLoc, insn->readerCursor, insn->length);
1658
1659  if (insn->length > 15)
1660    dbgprintf(insn, "Instruction exceeds 15-byte limit");
1661
1662  return 0;
1663}
1664