1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCSubtarget.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to.
45      STFIWX,
46
47      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48      // three v4f32 operands and producing a v4f32 result.
49      VMADDFP, VNMSUBFP,
50
51      /// VPERM - The PPC VPERM Instruction.
52      ///
53      VPERM,
54
55      /// Hi/Lo - These represent the high and low 16-bit parts of a global
56      /// address respectively.  These nodes have two operands, the first of
57      /// which must be a TargetGlobalAddress, and the second of which must be a
58      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
59      /// though these are usually folded into other nodes.
60      Hi, Lo,
61
62      TOC_ENTRY,
63
64      /// The following three target-specific nodes are used for calls through
65      /// function pointers in the 64-bit SVR4 ABI.
66
67      /// Restore the TOC from the TOC save area of the current stack frame.
68      /// This is basically a hard coded load instruction which additionally
69      /// takes/produces a flag.
70      TOC_RESTORE,
71
72      /// Like a regular LOAD but additionally taking/producing a flag.
73      LOAD,
74
75      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76      /// a hard coded load instruction.
77      LOAD_TOC,
78
79      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
80      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81      /// compute an allocation on the stack.
82      DYNALLOC,
83
84      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85      /// at function entry, used for PIC code.
86      GlobalBaseReg,
87
88      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89      /// shift amounts.  These nodes are generated by the multi-precision shift
90      /// code.
91      SRL, SRA, SHL,
92
93      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
94      /// registers.
95      EXTSW_32,
96
97      /// CALL - A direct function call.
98      /// CALL_NOP_SVR4 is a call with the special  NOP which follows 64-bit
99      /// SVR4 calls.
100      CALL_Darwin, CALL_SVR4, CALL_NOP_SVR4,
101
102      /// NOP - Special NOP which follows 64-bit SVR4 calls.
103      NOP,
104
105      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
106      /// MTCTR instruction.
107      MTCTR,
108
109      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
110      /// BCTRL instruction.
111      BCTRL_Darwin, BCTRL_SVR4,
112
113      /// Return with a flag operand, matched by 'blr'
114      RET_FLAG,
115
116      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
117      /// instructions.  This copies the bits corresponding to the specified
118      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
119      /// are undefined.
120      MFCR,
121
122      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
123      /// instructions.  For lack of better number, we use the opcode number
124      /// encoding for the OPC field to identify the compare.  For example, 838
125      /// is VCMPGTSH.
126      VCMP,
127
128      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
129      /// altivec VCMP*o instructions.  For lack of better number, we use the
130      /// opcode number encoding for the OPC field to identify the compare.  For
131      /// example, 838 is VCMPGTSH.
132      VCMPo,
133
134      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
135      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
136      /// condition register to branch on, OPC is the branch opcode to use (e.g.
137      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
138      /// an optional input flag argument.
139      COND_BRANCH,
140
141      // The following 5 instructions are used only as part of the
142      // long double-to-int conversion sequence.
143
144      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
145      /// register.
146      MFFS,
147
148      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
149      MTFSB0,
150
151      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
152      MTFSB1,
153
154      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
155      /// rounding towards zero.  It has flags added so it won't move past the
156      /// FPSCR-setting instructions.
157      FADDRTZ,
158
159      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
160      MTFSF,
161
162      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
163      /// reserve indexed. This is used to implement atomic operations.
164      LARX,
165
166      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
167      /// indexed. This is used to implement atomic operations.
168      STCX,
169
170      /// TC_RETURN - A tail call return.
171      ///   operand #0 chain
172      ///   operand #1 callee (register or absolute)
173      ///   operand #2 stack adjustment
174      ///   operand #3 optional in flag
175      TC_RETURN,
176
177      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
178      CR6SET,
179      CR6UNSET,
180
181      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
182      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
183
184      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
185      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
186      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
187      /// i32.
188      STBRX,
189
190      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
191      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
192      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
193      /// or i32.
194      LBRX
195    };
196  }
197
198  /// Define some predicates that are used for node matching.
199  namespace PPC {
200    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
201    /// VPKUHUM instruction.
202    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
203
204    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
205    /// VPKUWUM instruction.
206    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
207
208    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
209    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
210    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
211                            bool isUnary);
212
213    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
214    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
215    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
216                            bool isUnary);
217
218    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
219    /// amount, otherwise return -1.
220    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
221
222    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
223    /// specifies a splat of a single element that is suitable for input to
224    /// VSPLTB/VSPLTH/VSPLTW.
225    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
226
227    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
228    /// are -0.0.
229    bool isAllNegativeZeroVector(SDNode *N);
230
231    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
232    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
233    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
234
235    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
236    /// formed by using a vspltis[bhw] instruction of the specified element
237    /// size, return the constant being splatted.  The ByteSize field indicates
238    /// the number of bytes of each element [124] -> [bhw].
239    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
240  }
241
242  class PPCTargetLowering : public TargetLowering {
243    const PPCSubtarget &PPCSubTarget;
244
245  public:
246    explicit PPCTargetLowering(PPCTargetMachine &TM);
247
248    /// getTargetNodeName() - This method returns the name of a target specific
249    /// DAG node.
250    virtual const char *getTargetNodeName(unsigned Opcode) const;
251
252    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
253
254    /// getSetCCResultType - Return the ISD::SETCC ValueType
255    virtual EVT getSetCCResultType(EVT VT) const;
256
257    /// getPreIndexedAddressParts - returns true by value, base pointer and
258    /// offset pointer and addressing mode by reference if the node's address
259    /// can be legally represented as pre-indexed load / store address.
260    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
261                                           SDValue &Offset,
262                                           ISD::MemIndexedMode &AM,
263                                           SelectionDAG &DAG) const;
264
265    /// SelectAddressRegReg - Given the specified addressed, check to see if it
266    /// can be represented as an indexed [r+r] operation.  Returns false if it
267    /// can be more efficiently represented with [r+imm].
268    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
269                             SelectionDAG &DAG) const;
270
271    /// SelectAddressRegImm - Returns true if the address N can be represented
272    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
273    /// is not better represented as reg+reg.
274    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
275                             SelectionDAG &DAG) const;
276
277    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
278    /// represented as an indexed [r+r] operation.
279    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
280                                 SelectionDAG &DAG) const;
281
282    /// SelectAddressRegImmShift - Returns true if the address N can be
283    /// represented by a base register plus a signed 14-bit displacement
284    /// [r+imm*4].  Suitable for use by STD and friends.
285    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
286                                  SelectionDAG &DAG) const;
287
288    Sched::Preference getSchedulingPreference(SDNode *N) const;
289
290    /// LowerOperation - Provide custom lowering hooks for some operations.
291    ///
292    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
293
294    /// ReplaceNodeResults - Replace the results of node with an illegal result
295    /// type with new values built out of custom code.
296    ///
297    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
298                                    SelectionDAG &DAG) const;
299
300    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
301
302    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
303                                                APInt &KnownZero,
304                                                APInt &KnownOne,
305                                                const SelectionDAG &DAG,
306                                                unsigned Depth = 0) const;
307
308    virtual MachineBasicBlock *
309      EmitInstrWithCustomInserter(MachineInstr *MI,
310                                  MachineBasicBlock *MBB) const;
311    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
312                                        MachineBasicBlock *MBB, bool is64Bit,
313                                        unsigned BinOpcode) const;
314    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
315                                                MachineBasicBlock *MBB,
316                                            bool is8bit, unsigned Opcode) const;
317
318    ConstraintType getConstraintType(const std::string &Constraint) const;
319
320    /// Examine constraint string and operand type and determine a weight value.
321    /// The operand object must already have been set up with the operand type.
322    ConstraintWeight getSingleConstraintMatchWeight(
323      AsmOperandInfo &info, const char *constraint) const;
324
325    std::pair<unsigned, const TargetRegisterClass*>
326      getRegForInlineAsmConstraint(const std::string &Constraint,
327                                   EVT VT) const;
328
329    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
330    /// function arguments in the caller parameter area.  This is the actual
331    /// alignment, not its logarithm.
332    unsigned getByValTypeAlignment(Type *Ty) const;
333
334    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
335    /// vector.  If it is invalid, don't add anything to Ops.
336    virtual void LowerAsmOperandForConstraint(SDValue Op,
337                                              std::string &Constraint,
338                                              std::vector<SDValue> &Ops,
339                                              SelectionDAG &DAG) const;
340
341    /// isLegalAddressingMode - Return true if the addressing mode represented
342    /// by AM is legal for this target, for a load/store of the specified type.
343    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
344
345    /// isLegalAddressImmediate - Return true if the integer value can be used
346    /// as the offset of the target addressing mode for load / store of the
347    /// given type.
348    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
349
350    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
351    /// the offset of the target addressing mode.
352    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
353
354    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
355
356    /// getOptimalMemOpType - Returns the target specific optimal type for load
357    /// and store operations as a result of memset, memcpy, and memmove
358    /// lowering. If DstAlign is zero that means it's safe to destination
359    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
360    /// means there isn't a need to check it against alignment requirement,
361    /// probably because the source does not need to be loaded. If
362    /// 'IsZeroVal' is true, that means it's safe to return a
363    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
364    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
365    /// constant so it does not need to be loaded.
366    /// It returns EVT::Other if the type should be determined using generic
367    /// target-independent logic.
368    virtual EVT
369    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
370                        bool IsZeroVal, bool MemcpyStrSrc,
371                        MachineFunction &MF) const;
372
373    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
374    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
375    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
376    /// is expanded to mul + add.
377    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
378
379  private:
380    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
381    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
382
383    bool
384    IsEligibleForTailCallOptimization(SDValue Callee,
385                                      CallingConv::ID CalleeCC,
386                                      bool isVarArg,
387                                      const SmallVectorImpl<ISD::InputArg> &Ins,
388                                      SelectionDAG& DAG) const;
389
390    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
391                                         int SPDiff,
392                                         SDValue Chain,
393                                         SDValue &LROpOut,
394                                         SDValue &FPOpOut,
395                                         bool isDarwinABI,
396                                         DebugLoc dl) const;
397
398    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
399    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
400    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
401    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
402    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
403    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
404    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
405    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
406    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
407    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
408    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
409                         const PPCSubtarget &Subtarget) const;
410    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
411                       const PPCSubtarget &Subtarget) const;
412    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
413                                const PPCSubtarget &Subtarget) const;
414    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
415                                      const PPCSubtarget &Subtarget) const;
416    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
417    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
418    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
419    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
420    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
421    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
422    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
423    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
424    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
425    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
426    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
427    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
428
429    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
430                            CallingConv::ID CallConv, bool isVarArg,
431                            const SmallVectorImpl<ISD::InputArg> &Ins,
432                            DebugLoc dl, SelectionDAG &DAG,
433                            SmallVectorImpl<SDValue> &InVals) const;
434    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
435                       bool isVarArg,
436                       SelectionDAG &DAG,
437                       SmallVector<std::pair<unsigned, SDValue>, 8>
438                         &RegsToPass,
439                       SDValue InFlag, SDValue Chain,
440                       SDValue &Callee,
441                       int SPDiff, unsigned NumBytes,
442                       const SmallVectorImpl<ISD::InputArg> &Ins,
443                       SmallVectorImpl<SDValue> &InVals) const;
444
445    virtual SDValue
446      LowerFormalArguments(SDValue Chain,
447                           CallingConv::ID CallConv, bool isVarArg,
448                           const SmallVectorImpl<ISD::InputArg> &Ins,
449                           DebugLoc dl, SelectionDAG &DAG,
450                           SmallVectorImpl<SDValue> &InVals) const;
451
452    virtual SDValue
453      LowerCall(TargetLowering::CallLoweringInfo &CLI,
454                SmallVectorImpl<SDValue> &InVals) const;
455
456    virtual bool
457      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
458                   bool isVarArg,
459                   const SmallVectorImpl<ISD::OutputArg> &Outs,
460                   LLVMContext &Context) const;
461
462    virtual SDValue
463      LowerReturn(SDValue Chain,
464                  CallingConv::ID CallConv, bool isVarArg,
465                  const SmallVectorImpl<ISD::OutputArg> &Outs,
466                  const SmallVectorImpl<SDValue> &OutVals,
467                  DebugLoc dl, SelectionDAG &DAG) const;
468
469    SDValue
470      LowerFormalArguments_Darwin_Or_64SVR4(SDValue Chain,
471                                  CallingConv::ID CallConv, bool isVarArg,
472                                  const SmallVectorImpl<ISD::InputArg> &Ins,
473                                  DebugLoc dl, SelectionDAG &DAG,
474                                  SmallVectorImpl<SDValue> &InVals) const;
475    SDValue
476      LowerFormalArguments_32SVR4(SDValue Chain,
477                                  CallingConv::ID CallConv, bool isVarArg,
478                                  const SmallVectorImpl<ISD::InputArg> &Ins,
479                                  DebugLoc dl, SelectionDAG &DAG,
480                                  SmallVectorImpl<SDValue> &InVals) const;
481
482    SDValue
483      LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
484                       CallingConv::ID CallConv,
485                       bool isVarArg, bool isTailCall,
486                       const SmallVectorImpl<ISD::OutputArg> &Outs,
487                       const SmallVectorImpl<SDValue> &OutVals,
488                       const SmallVectorImpl<ISD::InputArg> &Ins,
489                       DebugLoc dl, SelectionDAG &DAG,
490                       SmallVectorImpl<SDValue> &InVals) const;
491    SDValue
492    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
493                     bool isVarArg, bool isTailCall,
494                     const SmallVectorImpl<ISD::OutputArg> &Outs,
495                     const SmallVectorImpl<SDValue> &OutVals,
496                     const SmallVectorImpl<ISD::InputArg> &Ins,
497                     DebugLoc dl, SelectionDAG &DAG,
498                     SmallVectorImpl<SDValue> &InVals) const;
499  };
500}
501
502#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
503