1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "ppc-codegen"
16#include "PPC.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalValue.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35namespace {
36  //===--------------------------------------------------------------------===//
37  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
38  /// instructions for SelectionDAG operations.
39  ///
40  class PPCDAGToDAGISel : public SelectionDAGISel {
41    const PPCTargetMachine &TM;
42    const PPCTargetLowering &PPCLowering;
43    const PPCSubtarget &PPCSubTarget;
44    unsigned GlobalBaseReg;
45  public:
46    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
47      : SelectionDAGISel(tm), TM(tm),
48        PPCLowering(*TM.getTargetLowering()),
49        PPCSubTarget(*TM.getSubtargetImpl()) {}
50
51    virtual bool runOnMachineFunction(MachineFunction &MF) {
52      // Make sure we re-emit a set of the global base reg if necessary
53      GlobalBaseReg = 0;
54      SelectionDAGISel::runOnMachineFunction(MF);
55
56      InsertVRSaveCode(MF);
57      return true;
58    }
59
60    /// getI32Imm - Return a target constant with the specified value, of type
61    /// i32.
62    inline SDValue getI32Imm(unsigned Imm) {
63      return CurDAG->getTargetConstant(Imm, MVT::i32);
64    }
65
66    /// getI64Imm - Return a target constant with the specified value, of type
67    /// i64.
68    inline SDValue getI64Imm(uint64_t Imm) {
69      return CurDAG->getTargetConstant(Imm, MVT::i64);
70    }
71
72    /// getSmallIPtrImm - Return a target constant of pointer type.
73    inline SDValue getSmallIPtrImm(unsigned Imm) {
74      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
75    }
76
77    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
78    /// with any number of 0s on either side.  The 1s are allowed to wrap from
79    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
80    /// 0x0F0F0000 is not, since all 1s are not contiguous.
81    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
82
83
84    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
85    /// rotate and mask opcode and mask operation.
86    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
87                                unsigned &SH, unsigned &MB, unsigned &ME);
88
89    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
90    /// base register.  Return the virtual register that holds this value.
91    SDNode *getGlobalBaseReg();
92
93    // Select - Convert the specified operand from a target-independent to a
94    // target-specific node if it hasn't already been changed.
95    SDNode *Select(SDNode *N);
96
97    SDNode *SelectBitfieldInsert(SDNode *N);
98
99    /// SelectCC - Select a comparison of the specified values with the
100    /// specified condition code, returning the CR# of the expression.
101    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
102
103    /// SelectAddrImm - Returns true if the address N can be represented by
104    /// a base register plus a signed 16-bit displacement [r+imm].
105    bool SelectAddrImm(SDValue N, SDValue &Disp,
106                       SDValue &Base) {
107      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
108    }
109
110    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
111    /// immediate field.  Because preinc imms have already been validated, just
112    /// accept it.
113    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
114      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
115          N.getOpcode() == ISD::TargetGlobalAddress) {
116        Out = N;
117        return true;
118      }
119
120      return false;
121    }
122
123    /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc
124    /// index field.  Because preinc imms have already been validated, just
125    /// accept it.
126    bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const {
127      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
128          N.getOpcode() == ISD::TargetGlobalAddress)
129        return false;
130
131      Out = N;
132      return true;
133    }
134
135    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
136    /// represented as an indexed [r+r] operation.  Returns false if it can
137    /// be represented by [r+imm], which are preferred.
138    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
139      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
140    }
141
142    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
143    /// represented as an indexed [r+r] operation.
144    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
145      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
146    }
147
148    /// SelectAddrImmShift - Returns true if the address N can be represented by
149    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
150    /// for use by STD and friends.
151    bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
152      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
153    }
154
155    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
156    /// inline asm expressions.  It is always correct to compute the value into
157    /// a register.  The case of adding a (possibly relocatable) constant to a
158    /// register can be improved, but it is wrong to substitute Reg+Reg for
159    /// Reg in an asm, because the load or store opcode would have to change.
160   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
161                                              char ConstraintCode,
162                                              std::vector<SDValue> &OutOps) {
163      OutOps.push_back(Op);
164      return false;
165    }
166
167    void InsertVRSaveCode(MachineFunction &MF);
168
169    virtual const char *getPassName() const {
170      return "PowerPC DAG->DAG Pattern Instruction Selection";
171    }
172
173// Include the pieces autogenerated from the target description.
174#include "PPCGenDAGISel.inc"
175
176private:
177    SDNode *SelectSETCC(SDNode *N);
178  };
179}
180
181/// InsertVRSaveCode - Once the entire function has been instruction selected,
182/// all virtual registers are created and all machine instructions are built,
183/// check to see if we need to save/restore VRSAVE.  If so, do it.
184void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
185  // Check to see if this function uses vector registers, which means we have to
186  // save and restore the VRSAVE register and update it with the regs we use.
187  //
188  // In this case, there will be virtual registers of vector type created
189  // by the scheduler.  Detect them now.
190  bool HasVectorVReg = false;
191  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
192    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
193    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
194      HasVectorVReg = true;
195      break;
196    }
197  }
198  if (!HasVectorVReg) return;  // nothing to do.
199
200  // If we have a vector register, we want to emit code into the entry and exit
201  // blocks to save and restore the VRSAVE register.  We do this here (instead
202  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
203  //
204  // 1. This (trivially) reduces the load on the register allocator, by not
205  //    having to represent the live range of the VRSAVE register.
206  // 2. This (more significantly) allows us to create a temporary virtual
207  //    register to hold the saved VRSAVE value, allowing this temporary to be
208  //    register allocated, instead of forcing it to be spilled to the stack.
209
210  // Create two vregs - one to hold the VRSAVE register that is live-in to the
211  // function and one for the value after having bits or'd into it.
212  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
213  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
214
215  const TargetInstrInfo &TII = *TM.getInstrInfo();
216  MachineBasicBlock &EntryBB = *Fn.begin();
217  DebugLoc dl;
218  // Emit the following code into the entry block:
219  // InVRSAVE = MFVRSAVE
220  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
221  // MTVRSAVE UpdatedVRSAVE
222  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
223  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
224  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
225          UpdatedVRSAVE).addReg(InVRSAVE);
226  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
227
228  // Find all return blocks, outputting a restore in each epilog.
229  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
230    if (!BB->empty() && BB->back().isReturn()) {
231      IP = BB->end(); --IP;
232
233      // Skip over all terminator instructions, which are part of the return
234      // sequence.
235      MachineBasicBlock::iterator I2 = IP;
236      while (I2 != BB->begin() && (--I2)->isTerminator())
237        IP = I2;
238
239      // Emit: MTVRSAVE InVRSave
240      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
241    }
242  }
243}
244
245
246/// getGlobalBaseReg - Output the instructions required to put the
247/// base address to use for accessing globals into a register.
248///
249SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
250  if (!GlobalBaseReg) {
251    const TargetInstrInfo &TII = *TM.getInstrInfo();
252    // Insert the set of GlobalBaseReg into the first MBB of the function
253    MachineBasicBlock &FirstMBB = MF->front();
254    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
255    DebugLoc dl;
256
257    if (PPCLowering.getPointerTy() == MVT::i32) {
258      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
259      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
260      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
261    } else {
262      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
263      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
264      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
265    }
266  }
267  return CurDAG->getRegister(GlobalBaseReg,
268                             PPCLowering.getPointerTy()).getNode();
269}
270
271/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
272/// or 64-bit immediate, and if the value can be accurately represented as a
273/// sign extension from a 16-bit value.  If so, this returns true and the
274/// immediate.
275static bool isIntS16Immediate(SDNode *N, short &Imm) {
276  if (N->getOpcode() != ISD::Constant)
277    return false;
278
279  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
280  if (N->getValueType(0) == MVT::i32)
281    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
282  else
283    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
284}
285
286static bool isIntS16Immediate(SDValue Op, short &Imm) {
287  return isIntS16Immediate(Op.getNode(), Imm);
288}
289
290
291/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
292/// operand. If so Imm will receive the 32-bit value.
293static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
294  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
295    Imm = cast<ConstantSDNode>(N)->getZExtValue();
296    return true;
297  }
298  return false;
299}
300
301/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
302/// operand.  If so Imm will receive the 64-bit value.
303static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
304  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
305    Imm = cast<ConstantSDNode>(N)->getZExtValue();
306    return true;
307  }
308  return false;
309}
310
311// isInt32Immediate - This method tests to see if a constant operand.
312// If so Imm will receive the 32 bit value.
313static bool isInt32Immediate(SDValue N, unsigned &Imm) {
314  return isInt32Immediate(N.getNode(), Imm);
315}
316
317
318// isOpcWithIntImmediate - This method tests to see if the node is a specific
319// opcode and that it has a immediate integer right operand.
320// If so Imm will receive the 32 bit value.
321static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
322  return N->getOpcode() == Opc
323         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
324}
325
326bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
327  if (isShiftedMask_32(Val)) {
328    // look for the first non-zero bit
329    MB = CountLeadingZeros_32(Val);
330    // look for the first zero bit after the run of ones
331    ME = CountLeadingZeros_32((Val - 1) ^ Val);
332    return true;
333  } else {
334    Val = ~Val; // invert mask
335    if (isShiftedMask_32(Val)) {
336      // effectively look for the first zero bit
337      ME = CountLeadingZeros_32(Val) - 1;
338      // effectively look for the first one bit after the run of zeros
339      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
340      return true;
341    }
342  }
343  // no run present
344  return false;
345}
346
347bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
348                                      bool isShiftMask, unsigned &SH,
349                                      unsigned &MB, unsigned &ME) {
350  // Don't even go down this path for i64, since different logic will be
351  // necessary for rldicl/rldicr/rldimi.
352  if (N->getValueType(0) != MVT::i32)
353    return false;
354
355  unsigned Shift  = 32;
356  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
357  unsigned Opcode = N->getOpcode();
358  if (N->getNumOperands() != 2 ||
359      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
360    return false;
361
362  if (Opcode == ISD::SHL) {
363    // apply shift left to mask if it comes first
364    if (isShiftMask) Mask = Mask << Shift;
365    // determine which bits are made indeterminant by shift
366    Indeterminant = ~(0xFFFFFFFFu << Shift);
367  } else if (Opcode == ISD::SRL) {
368    // apply shift right to mask if it comes first
369    if (isShiftMask) Mask = Mask >> Shift;
370    // determine which bits are made indeterminant by shift
371    Indeterminant = ~(0xFFFFFFFFu >> Shift);
372    // adjust for the left rotate
373    Shift = 32 - Shift;
374  } else if (Opcode == ISD::ROTL) {
375    Indeterminant = 0;
376  } else {
377    return false;
378  }
379
380  // if the mask doesn't intersect any Indeterminant bits
381  if (Mask && !(Mask & Indeterminant)) {
382    SH = Shift & 31;
383    // make sure the mask is still a mask (wrap arounds may not be)
384    return isRunOfOnes(Mask, MB, ME);
385  }
386  return false;
387}
388
389/// SelectBitfieldInsert - turn an or of two masked values into
390/// the rotate left word immediate then mask insert (rlwimi) instruction.
391SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
392  SDValue Op0 = N->getOperand(0);
393  SDValue Op1 = N->getOperand(1);
394  DebugLoc dl = N->getDebugLoc();
395
396  APInt LKZ, LKO, RKZ, RKO;
397  CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
398  CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
399
400  unsigned TargetMask = LKZ.getZExtValue();
401  unsigned InsertMask = RKZ.getZExtValue();
402
403  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
404    unsigned Op0Opc = Op0.getOpcode();
405    unsigned Op1Opc = Op1.getOpcode();
406    unsigned Value, SH = 0;
407    TargetMask = ~TargetMask;
408    InsertMask = ~InsertMask;
409
410    // If the LHS has a foldable shift and the RHS does not, then swap it to the
411    // RHS so that we can fold the shift into the insert.
412    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
413      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
414          Op0.getOperand(0).getOpcode() == ISD::SRL) {
415        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
416            Op1.getOperand(0).getOpcode() != ISD::SRL) {
417          std::swap(Op0, Op1);
418          std::swap(Op0Opc, Op1Opc);
419          std::swap(TargetMask, InsertMask);
420        }
421      }
422    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
423      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
424          Op1.getOperand(0).getOpcode() != ISD::SRL) {
425        std::swap(Op0, Op1);
426        std::swap(Op0Opc, Op1Opc);
427        std::swap(TargetMask, InsertMask);
428      }
429    }
430
431    unsigned MB, ME;
432    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
433      SDValue Tmp1, Tmp2;
434
435      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
436          isInt32Immediate(Op1.getOperand(1), Value)) {
437        Op1 = Op1.getOperand(0);
438        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
439      }
440      if (Op1Opc == ISD::AND) {
441        unsigned SHOpc = Op1.getOperand(0).getOpcode();
442        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
443            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
444          Op1 = Op1.getOperand(0).getOperand(0);
445          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
446        } else {
447          Op1 = Op1.getOperand(0);
448        }
449      }
450
451      SH &= 31;
452      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
453                          getI32Imm(ME) };
454      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
455    }
456  }
457  return 0;
458}
459
460/// SelectCC - Select a comparison of the specified values with the specified
461/// condition code, returning the CR# of the expression.
462SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
463                                    ISD::CondCode CC, DebugLoc dl) {
464  // Always select the LHS.
465  unsigned Opc;
466
467  if (LHS.getValueType() == MVT::i32) {
468    unsigned Imm;
469    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
470      if (isInt32Immediate(RHS, Imm)) {
471        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
472        if (isUInt<16>(Imm))
473          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
474                                                getI32Imm(Imm & 0xFFFF)), 0);
475        // If this is a 16-bit signed immediate, fold it.
476        if (isInt<16>((int)Imm))
477          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
478                                                getI32Imm(Imm & 0xFFFF)), 0);
479
480        // For non-equality comparisons, the default code would materialize the
481        // constant, then compare against it, like this:
482        //   lis r2, 4660
483        //   ori r2, r2, 22136
484        //   cmpw cr0, r3, r2
485        // Since we are just comparing for equality, we can emit this instead:
486        //   xoris r0,r3,0x1234
487        //   cmplwi cr0,r0,0x5678
488        //   beq cr0,L6
489        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
490                                           getI32Imm(Imm >> 16)), 0);
491        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
492                                              getI32Imm(Imm & 0xFFFF)), 0);
493      }
494      Opc = PPC::CMPLW;
495    } else if (ISD::isUnsignedIntSetCC(CC)) {
496      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
497        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
498                                              getI32Imm(Imm & 0xFFFF)), 0);
499      Opc = PPC::CMPLW;
500    } else {
501      short SImm;
502      if (isIntS16Immediate(RHS, SImm))
503        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
504                                              getI32Imm((int)SImm & 0xFFFF)),
505                         0);
506      Opc = PPC::CMPW;
507    }
508  } else if (LHS.getValueType() == MVT::i64) {
509    uint64_t Imm;
510    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
511      if (isInt64Immediate(RHS.getNode(), Imm)) {
512        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
513        if (isUInt<16>(Imm))
514          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
515                                                getI32Imm(Imm & 0xFFFF)), 0);
516        // If this is a 16-bit signed immediate, fold it.
517        if (isInt<16>(Imm))
518          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
519                                                getI32Imm(Imm & 0xFFFF)), 0);
520
521        // For non-equality comparisons, the default code would materialize the
522        // constant, then compare against it, like this:
523        //   lis r2, 4660
524        //   ori r2, r2, 22136
525        //   cmpd cr0, r3, r2
526        // Since we are just comparing for equality, we can emit this instead:
527        //   xoris r0,r3,0x1234
528        //   cmpldi cr0,r0,0x5678
529        //   beq cr0,L6
530        if (isUInt<32>(Imm)) {
531          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
532                                             getI64Imm(Imm >> 16)), 0);
533          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
534                                                getI64Imm(Imm & 0xFFFF)), 0);
535        }
536      }
537      Opc = PPC::CMPLD;
538    } else if (ISD::isUnsignedIntSetCC(CC)) {
539      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
540        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
541                                              getI64Imm(Imm & 0xFFFF)), 0);
542      Opc = PPC::CMPLD;
543    } else {
544      short SImm;
545      if (isIntS16Immediate(RHS, SImm))
546        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
547                                              getI64Imm(SImm & 0xFFFF)),
548                         0);
549      Opc = PPC::CMPD;
550    }
551  } else if (LHS.getValueType() == MVT::f32) {
552    Opc = PPC::FCMPUS;
553  } else {
554    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
555    Opc = PPC::FCMPUD;
556  }
557  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
558}
559
560static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
561  switch (CC) {
562  case ISD::SETUEQ:
563  case ISD::SETONE:
564  case ISD::SETOLE:
565  case ISD::SETOGE:
566    llvm_unreachable("Should be lowered by legalize!");
567  default: llvm_unreachable("Unknown condition!");
568  case ISD::SETOEQ:
569  case ISD::SETEQ:  return PPC::PRED_EQ;
570  case ISD::SETUNE:
571  case ISD::SETNE:  return PPC::PRED_NE;
572  case ISD::SETOLT:
573  case ISD::SETLT:  return PPC::PRED_LT;
574  case ISD::SETULE:
575  case ISD::SETLE:  return PPC::PRED_LE;
576  case ISD::SETOGT:
577  case ISD::SETGT:  return PPC::PRED_GT;
578  case ISD::SETUGE:
579  case ISD::SETGE:  return PPC::PRED_GE;
580  case ISD::SETO:   return PPC::PRED_NU;
581  case ISD::SETUO:  return PPC::PRED_UN;
582    // These two are invalid for floating point.  Assume we have int.
583  case ISD::SETULT: return PPC::PRED_LT;
584  case ISD::SETUGT: return PPC::PRED_GT;
585  }
586}
587
588/// getCRIdxForSetCC - Return the index of the condition register field
589/// associated with the SetCC condition, and whether or not the field is
590/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
591///
592/// If this returns with Other != -1, then the returned comparison is an or of
593/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
594static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
595  Invert = false;
596  Other = -1;
597  switch (CC) {
598  default: llvm_unreachable("Unknown condition!");
599  case ISD::SETOLT:
600  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
601  case ISD::SETOGT:
602  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
603  case ISD::SETOEQ:
604  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
605  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
606  case ISD::SETUGE:
607  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
608  case ISD::SETULE:
609  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
610  case ISD::SETUNE:
611  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
612  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
613  case ISD::SETUEQ:
614  case ISD::SETOGE:
615  case ISD::SETOLE:
616  case ISD::SETONE:
617    llvm_unreachable("Invalid branch code: should be expanded by legalize");
618  // These are invalid for floating point.  Assume integer.
619  case ISD::SETULT: return 0;
620  case ISD::SETUGT: return 1;
621  }
622}
623
624SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
625  DebugLoc dl = N->getDebugLoc();
626  unsigned Imm;
627  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
628  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
629  bool isPPC64 = (PtrVT == MVT::i64);
630
631  if (isInt32Immediate(N->getOperand(1), Imm)) {
632    // We can codegen setcc op, imm very efficiently compared to a brcond.
633    // Check for those cases here.
634    // setcc op, 0
635    if (Imm == 0) {
636      SDValue Op = N->getOperand(0);
637      switch (CC) {
638      default: break;
639      case ISD::SETEQ: {
640        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
641        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
642        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
643      }
644      case ISD::SETNE: {
645        if (isPPC64) break;
646        SDValue AD =
647          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
648                                         Op, getI32Imm(~0U)), 0);
649        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
650                                    AD.getValue(1));
651      }
652      case ISD::SETLT: {
653        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
654        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
655      }
656      case ISD::SETGT: {
657        SDValue T =
658          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
659        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
660        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
661        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
662      }
663      }
664    } else if (Imm == ~0U) {        // setcc op, -1
665      SDValue Op = N->getOperand(0);
666      switch (CC) {
667      default: break;
668      case ISD::SETEQ:
669        if (isPPC64) break;
670        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
671                                            Op, getI32Imm(1)), 0);
672        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
673                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
674                                                             MVT::i32,
675                                                             getI32Imm(0)), 0),
676                                      Op.getValue(1));
677      case ISD::SETNE: {
678        if (isPPC64) break;
679        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
680        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
681                                            Op, getI32Imm(~0U));
682        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
683                                    Op, SDValue(AD, 1));
684      }
685      case ISD::SETLT: {
686        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
687                                                    getI32Imm(1)), 0);
688        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
689                                                    Op), 0);
690        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
691        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
692      }
693      case ISD::SETGT: {
694        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
695        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
696                     0);
697        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
698                                    getI32Imm(1));
699      }
700      }
701    }
702  }
703
704  bool Inv;
705  int OtherCondIdx;
706  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
707  SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
708  SDValue IntCR;
709
710  // Force the ccreg into CR7.
711  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
712
713  SDValue InFlag(0, 0);  // Null incoming flag value.
714  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
715                               InFlag).getValue(1);
716
717  if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1)
718    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
719                                           CCReg), 0);
720 else
721    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
722                                           CR7Reg, CCReg), 0);
723
724  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
725                      getI32Imm(31), getI32Imm(31) };
726  if (OtherCondIdx == -1 && !Inv)
727    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
728
729  // Get the specified bit.
730  SDValue Tmp =
731    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
732  if (Inv) {
733    assert(OtherCondIdx == -1 && "Can't have split plus negation");
734    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
735  }
736
737  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
738  // We already got the bit for the first part of the comparison (e.g. SETULE).
739
740  // Get the other bit of the comparison.
741  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
742  SDValue OtherCond =
743    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
744
745  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
746}
747
748
749// Select - Convert the specified operand from a target-independent to a
750// target-specific node if it hasn't already been changed.
751SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
752  DebugLoc dl = N->getDebugLoc();
753  if (N->isMachineOpcode())
754    return NULL;   // Already selected.
755
756  switch (N->getOpcode()) {
757  default: break;
758
759  case ISD::Constant: {
760    if (N->getValueType(0) == MVT::i64) {
761      // Get 64 bit value.
762      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
763      // Assume no remaining bits.
764      unsigned Remainder = 0;
765      // Assume no shift required.
766      unsigned Shift = 0;
767
768      // If it can't be represented as a 32 bit value.
769      if (!isInt<32>(Imm)) {
770        Shift = CountTrailingZeros_64(Imm);
771        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
772
773        // If the shifted value fits 32 bits.
774        if (isInt<32>(ImmSh)) {
775          // Go with the shifted value.
776          Imm = ImmSh;
777        } else {
778          // Still stuck with a 64 bit value.
779          Remainder = Imm;
780          Shift = 32;
781          Imm >>= 32;
782        }
783      }
784
785      // Intermediate operand.
786      SDNode *Result;
787
788      // Handle first 32 bits.
789      unsigned Lo = Imm & 0xFFFF;
790      unsigned Hi = (Imm >> 16) & 0xFFFF;
791
792      // Simple value.
793      if (isInt<16>(Imm)) {
794       // Just the Lo bits.
795        Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
796      } else if (Lo) {
797        // Handle the Hi bits.
798        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
799        Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
800        // And Lo bits.
801        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
802                                        SDValue(Result, 0), getI32Imm(Lo));
803      } else {
804       // Just the Hi bits.
805        Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
806      }
807
808      // If no shift, we're done.
809      if (!Shift) return Result;
810
811      // Shift for next step if the upper 32-bits were not zero.
812      if (Imm) {
813        Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
814                                        SDValue(Result, 0),
815                                        getI32Imm(Shift),
816                                        getI32Imm(63 - Shift));
817      }
818
819      // Add in the last bits as required.
820      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
821        Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
822                                        SDValue(Result, 0), getI32Imm(Hi));
823      }
824      if ((Lo = Remainder & 0xFFFF)) {
825        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
826                                        SDValue(Result, 0), getI32Imm(Lo));
827      }
828
829      return Result;
830    }
831    break;
832  }
833
834  case ISD::SETCC:
835    return SelectSETCC(N);
836  case PPCISD::GlobalBaseReg:
837    return getGlobalBaseReg();
838
839  case ISD::FrameIndex: {
840    int FI = cast<FrameIndexSDNode>(N)->getIndex();
841    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
842    unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
843    if (N->hasOneUse())
844      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
845                                  getSmallIPtrImm(0));
846    return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
847                                  getSmallIPtrImm(0));
848  }
849
850  case PPCISD::MFCR: {
851    SDValue InFlag = N->getOperand(1);
852    // Use MFOCRF if supported.
853    if (PPCSubTarget.hasMFOCRF())
854      return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
855                                    N->getOperand(0), InFlag);
856    else
857      return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
858                                    N->getOperand(0), InFlag);
859  }
860
861  case ISD::SDIV: {
862    // FIXME: since this depends on the setting of the carry flag from the srawi
863    //        we should really be making notes about that for the scheduler.
864    // FIXME: It sure would be nice if we could cheaply recognize the
865    //        srl/add/sra pattern the dag combiner will generate for this as
866    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
867    unsigned Imm;
868    if (isInt32Immediate(N->getOperand(1), Imm)) {
869      SDValue N0 = N->getOperand(0);
870      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
871        SDNode *Op =
872          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
873                                 N0, getI32Imm(Log2_32(Imm)));
874        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
875                                    SDValue(Op, 0), SDValue(Op, 1));
876      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
877        SDNode *Op =
878          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
879                                 N0, getI32Imm(Log2_32(-Imm)));
880        SDValue PT =
881          SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
882                                         SDValue(Op, 0), SDValue(Op, 1)),
883                    0);
884        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
885      }
886    }
887
888    // Other cases are autogenerated.
889    break;
890  }
891
892  case ISD::LOAD: {
893    // Handle preincrement loads.
894    LoadSDNode *LD = cast<LoadSDNode>(N);
895    EVT LoadedVT = LD->getMemoryVT();
896
897    // Normal loads are handled by code generated from the .td file.
898    if (LD->getAddressingMode() != ISD::PRE_INC)
899      break;
900
901    SDValue Offset = LD->getOffset();
902    if (isa<ConstantSDNode>(Offset) ||
903        Offset.getOpcode() == ISD::TargetGlobalAddress) {
904
905      unsigned Opcode;
906      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
907      if (LD->getValueType(0) != MVT::i64) {
908        // Handle PPC32 integer and normal FP loads.
909        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
910        switch (LoadedVT.getSimpleVT().SimpleTy) {
911          default: llvm_unreachable("Invalid PPC load type!");
912          case MVT::f64: Opcode = PPC::LFDU; break;
913          case MVT::f32: Opcode = PPC::LFSU; break;
914          case MVT::i32: Opcode = PPC::LWZU; break;
915          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
916          case MVT::i1:
917          case MVT::i8:  Opcode = PPC::LBZU; break;
918        }
919      } else {
920        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
921        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
922        switch (LoadedVT.getSimpleVT().SimpleTy) {
923          default: llvm_unreachable("Invalid PPC load type!");
924          case MVT::i64: Opcode = PPC::LDU; break;
925          case MVT::i32: Opcode = PPC::LWZU8; break;
926          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
927          case MVT::i1:
928          case MVT::i8:  Opcode = PPC::LBZU8; break;
929        }
930      }
931
932      SDValue Chain = LD->getChain();
933      SDValue Base = LD->getBasePtr();
934      SDValue Ops[] = { Offset, Base, Chain };
935      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
936                                    PPCLowering.getPointerTy(),
937                                    MVT::Other, Ops, 3);
938    } else {
939      unsigned Opcode;
940      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
941      if (LD->getValueType(0) != MVT::i64) {
942        // Handle PPC32 integer and normal FP loads.
943        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
944        switch (LoadedVT.getSimpleVT().SimpleTy) {
945          default: llvm_unreachable("Invalid PPC load type!");
946          case MVT::f64: Opcode = PPC::LFDUX; break;
947          case MVT::f32: Opcode = PPC::LFSUX; break;
948          case MVT::i32: Opcode = PPC::LWZUX; break;
949          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
950          case MVT::i1:
951          case MVT::i8:  Opcode = PPC::LBZUX; break;
952        }
953      } else {
954        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
955        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
956               "Invalid sext update load");
957        switch (LoadedVT.getSimpleVT().SimpleTy) {
958          default: llvm_unreachable("Invalid PPC load type!");
959          case MVT::i64: Opcode = PPC::LDUX; break;
960          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
961          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
962          case MVT::i1:
963          case MVT::i8:  Opcode = PPC::LBZUX8; break;
964        }
965      }
966
967      SDValue Chain = LD->getChain();
968      SDValue Base = LD->getBasePtr();
969      SDValue Ops[] = { Offset, Base, Chain };
970      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
971                                    PPCLowering.getPointerTy(),
972                                    MVT::Other, Ops, 3);
973    }
974  }
975
976  case ISD::AND: {
977    unsigned Imm, Imm2, SH, MB, ME;
978    uint64_t Imm64;
979
980    // If this is an and of a value rotated between 0 and 31 bits and then and'd
981    // with a mask, emit rlwinm
982    if (isInt32Immediate(N->getOperand(1), Imm) &&
983        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
984      SDValue Val = N->getOperand(0).getOperand(0);
985      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
986      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
987    }
988    // If this is just a masked value where the input is not handled above, and
989    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
990    if (isInt32Immediate(N->getOperand(1), Imm) &&
991        isRunOfOnes(Imm, MB, ME) &&
992        N->getOperand(0).getOpcode() != ISD::ROTL) {
993      SDValue Val = N->getOperand(0);
994      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
995      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
996    }
997    // If this is a 64-bit zero-extension mask, emit rldicl.
998    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
999        isMask_64(Imm64)) {
1000      SDValue Val = N->getOperand(0);
1001      MB = 64 - CountTrailingOnes_64(Imm64);
1002      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
1003      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
1004    }
1005    // AND X, 0 -> 0, not "rlwinm 32".
1006    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
1007      ReplaceUses(SDValue(N, 0), N->getOperand(1));
1008      return NULL;
1009    }
1010    // ISD::OR doesn't get all the bitfield insertion fun.
1011    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1012    if (isInt32Immediate(N->getOperand(1), Imm) &&
1013        N->getOperand(0).getOpcode() == ISD::OR &&
1014        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1015      unsigned MB, ME;
1016      Imm = ~(Imm^Imm2);
1017      if (isRunOfOnes(Imm, MB, ME)) {
1018        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1019                            N->getOperand(0).getOperand(1),
1020                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1021        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
1022      }
1023    }
1024
1025    // Other cases are autogenerated.
1026    break;
1027  }
1028  case ISD::OR:
1029    if (N->getValueType(0) == MVT::i32)
1030      if (SDNode *I = SelectBitfieldInsert(N))
1031        return I;
1032
1033    // Other cases are autogenerated.
1034    break;
1035  case ISD::SHL: {
1036    unsigned Imm, SH, MB, ME;
1037    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1038        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1039      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1040                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1041      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1042    }
1043
1044    // Other cases are autogenerated.
1045    break;
1046  }
1047  case ISD::SRL: {
1048    unsigned Imm, SH, MB, ME;
1049    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1050        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1051      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1052                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1053      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1054    }
1055
1056    // Other cases are autogenerated.
1057    break;
1058  }
1059  case ISD::SELECT_CC: {
1060    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1061    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1062    bool isPPC64 = (PtrVT == MVT::i64);
1063
1064    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1065    if (!isPPC64)
1066      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1067        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1068          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1069            if (N1C->isNullValue() && N3C->isNullValue() &&
1070                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1071                // FIXME: Implement this optzn for PPC64.
1072                N->getValueType(0) == MVT::i32) {
1073              SDNode *Tmp =
1074                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1075                                       N->getOperand(0), getI32Imm(~0U));
1076              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1077                                          SDValue(Tmp, 0), N->getOperand(0),
1078                                          SDValue(Tmp, 1));
1079            }
1080
1081    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1082    unsigned BROpc = getPredicateForSetCC(CC);
1083
1084    unsigned SelectCCOp;
1085    if (N->getValueType(0) == MVT::i32)
1086      SelectCCOp = PPC::SELECT_CC_I4;
1087    else if (N->getValueType(0) == MVT::i64)
1088      SelectCCOp = PPC::SELECT_CC_I8;
1089    else if (N->getValueType(0) == MVT::f32)
1090      SelectCCOp = PPC::SELECT_CC_F4;
1091    else if (N->getValueType(0) == MVT::f64)
1092      SelectCCOp = PPC::SELECT_CC_F8;
1093    else
1094      SelectCCOp = PPC::SELECT_CC_VRRC;
1095
1096    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1097                        getI32Imm(BROpc) };
1098    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1099  }
1100  case PPCISD::COND_BRANCH: {
1101    // Op #0 is the Chain.
1102    // Op #1 is the PPC::PRED_* number.
1103    // Op #2 is the CR#
1104    // Op #3 is the Dest MBB
1105    // Op #4 is the Flag.
1106    // Prevent PPC::PRED_* from being selected into LI.
1107    SDValue Pred =
1108      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1109    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1110      N->getOperand(0), N->getOperand(4) };
1111    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1112  }
1113  case ISD::BR_CC: {
1114    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1115    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1116    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1117                        N->getOperand(4), N->getOperand(0) };
1118    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1119  }
1120  case ISD::BRIND: {
1121    // FIXME: Should custom lower this.
1122    SDValue Chain = N->getOperand(0);
1123    SDValue Target = N->getOperand(1);
1124    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1125    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1126    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
1127                                           Chain), 0);
1128    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1129  }
1130  }
1131
1132  return SelectCode(N);
1133}
1134
1135
1136
1137/// createPPCISelDag - This pass converts a legalized DAG into a
1138/// PowerPC-specific DAG, ready for instruction scheduling.
1139///
1140FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1141  return new PPCDAGToDAGISel(TM);
1142}
1143
1144