1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLibraryInfo.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/FEnv.h"
36#include <cerrno>
37#include <cmath>
38using namespace llvm;
39
40//===----------------------------------------------------------------------===//
41// Constant Folding internal helper functions
42//===----------------------------------------------------------------------===//
43
44/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
45/// TargetData.  This always returns a non-null constant, but it may be a
46/// ConstantExpr if unfoldable.
47static Constant *FoldBitCast(Constant *C, Type *DestTy,
48                             const TargetData &TD) {
49  // Catch the obvious splat cases.
50  if (C->isNullValue() && !DestTy->isX86_MMXTy())
51    return Constant::getNullValue(DestTy);
52  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
53    return Constant::getAllOnesValue(DestTy);
54
55  // Handle a vector->integer cast.
56  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
57    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
58    if (CDV == 0)
59      return ConstantExpr::getBitCast(C, DestTy);
60
61    unsigned NumSrcElts = CDV->getType()->getNumElements();
62
63    Type *SrcEltTy = CDV->getType()->getElementType();
64
65    // If the vector is a vector of floating point, convert it to vector of int
66    // to simplify things.
67    if (SrcEltTy->isFloatingPointTy()) {
68      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69      Type *SrcIVTy =
70        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71      // Ask VMCore to do the conversion now that #elts line up.
72      C = ConstantExpr::getBitCast(C, SrcIVTy);
73      CDV = cast<ConstantDataVector>(C);
74    }
75
76    // Now that we know that the input value is a vector of integers, just shift
77    // and insert them into our result.
78    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
79    APInt Result(IT->getBitWidth(), 0);
80    for (unsigned i = 0; i != NumSrcElts; ++i) {
81      Result <<= BitShift;
82      if (TD.isLittleEndian())
83        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
84      else
85        Result |= CDV->getElementAsInteger(i);
86    }
87
88    return ConstantInt::get(IT, Result);
89  }
90
91  // The code below only handles casts to vectors currently.
92  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
93  if (DestVTy == 0)
94    return ConstantExpr::getBitCast(C, DestTy);
95
96  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
97  // vector so the code below can handle it uniformly.
98  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
99    Constant *Ops = C; // don't take the address of C!
100    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
101  }
102
103  // If this is a bitcast from constant vector -> vector, fold it.
104  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
105    return ConstantExpr::getBitCast(C, DestTy);
106
107  // If the element types match, VMCore can fold it.
108  unsigned NumDstElt = DestVTy->getNumElements();
109  unsigned NumSrcElt = C->getType()->getVectorNumElements();
110  if (NumDstElt == NumSrcElt)
111    return ConstantExpr::getBitCast(C, DestTy);
112
113  Type *SrcEltTy = C->getType()->getVectorElementType();
114  Type *DstEltTy = DestVTy->getElementType();
115
116  // Otherwise, we're changing the number of elements in a vector, which
117  // requires endianness information to do the right thing.  For example,
118  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
119  // folds to (little endian):
120  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
121  // and to (big endian):
122  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
123
124  // First thing is first.  We only want to think about integer here, so if
125  // we have something in FP form, recast it as integer.
126  if (DstEltTy->isFloatingPointTy()) {
127    // Fold to an vector of integers with same size as our FP type.
128    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
129    Type *DestIVTy =
130      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
131    // Recursively handle this integer conversion, if possible.
132    C = FoldBitCast(C, DestIVTy, TD);
133
134    // Finally, VMCore can handle this now that #elts line up.
135    return ConstantExpr::getBitCast(C, DestTy);
136  }
137
138  // Okay, we know the destination is integer, if the input is FP, convert
139  // it to integer first.
140  if (SrcEltTy->isFloatingPointTy()) {
141    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
142    Type *SrcIVTy =
143      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
144    // Ask VMCore to do the conversion now that #elts line up.
145    C = ConstantExpr::getBitCast(C, SrcIVTy);
146    // If VMCore wasn't able to fold it, bail out.
147    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
148        !isa<ConstantDataVector>(C))
149      return C;
150  }
151
152  // Now we know that the input and output vectors are both integer vectors
153  // of the same size, and that their #elements is not the same.  Do the
154  // conversion here, which depends on whether the input or output has
155  // more elements.
156  bool isLittleEndian = TD.isLittleEndian();
157
158  SmallVector<Constant*, 32> Result;
159  if (NumDstElt < NumSrcElt) {
160    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
161    Constant *Zero = Constant::getNullValue(DstEltTy);
162    unsigned Ratio = NumSrcElt/NumDstElt;
163    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
164    unsigned SrcElt = 0;
165    for (unsigned i = 0; i != NumDstElt; ++i) {
166      // Build each element of the result.
167      Constant *Elt = Zero;
168      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
169      for (unsigned j = 0; j != Ratio; ++j) {
170        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
171        if (!Src)  // Reject constantexpr elements.
172          return ConstantExpr::getBitCast(C, DestTy);
173
174        // Zero extend the element to the right size.
175        Src = ConstantExpr::getZExt(Src, Elt->getType());
176
177        // Shift it to the right place, depending on endianness.
178        Src = ConstantExpr::getShl(Src,
179                                   ConstantInt::get(Src->getType(), ShiftAmt));
180        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
181
182        // Mix it in.
183        Elt = ConstantExpr::getOr(Elt, Src);
184      }
185      Result.push_back(Elt);
186    }
187    return ConstantVector::get(Result);
188  }
189
190  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
191  unsigned Ratio = NumDstElt/NumSrcElt;
192  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
193
194  // Loop over each source value, expanding into multiple results.
195  for (unsigned i = 0; i != NumSrcElt; ++i) {
196    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
197    if (!Src)  // Reject constantexpr elements.
198      return ConstantExpr::getBitCast(C, DestTy);
199
200    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
201    for (unsigned j = 0; j != Ratio; ++j) {
202      // Shift the piece of the value into the right place, depending on
203      // endianness.
204      Constant *Elt = ConstantExpr::getLShr(Src,
205                                  ConstantInt::get(Src->getType(), ShiftAmt));
206      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
207
208      // Truncate and remember this piece.
209      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
210    }
211  }
212
213  return ConstantVector::get(Result);
214}
215
216
217/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
218/// from a global, return the global and the constant.  Because of
219/// constantexprs, this function is recursive.
220static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
221                                       int64_t &Offset, const TargetData &TD) {
222  // Trivial case, constant is the global.
223  if ((GV = dyn_cast<GlobalValue>(C))) {
224    Offset = 0;
225    return true;
226  }
227
228  // Otherwise, if this isn't a constant expr, bail out.
229  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
230  if (!CE) return false;
231
232  // Look through ptr->int and ptr->ptr casts.
233  if (CE->getOpcode() == Instruction::PtrToInt ||
234      CE->getOpcode() == Instruction::BitCast)
235    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
236
237  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
238  if (CE->getOpcode() == Instruction::GetElementPtr) {
239    // Cannot compute this if the element type of the pointer is missing size
240    // info.
241    if (!cast<PointerType>(CE->getOperand(0)->getType())
242                 ->getElementType()->isSized())
243      return false;
244
245    // If the base isn't a global+constant, we aren't either.
246    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
247      return false;
248
249    // Otherwise, add any offset that our operands provide.
250    gep_type_iterator GTI = gep_type_begin(CE);
251    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
252         i != e; ++i, ++GTI) {
253      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
254      if (!CI) return false;  // Index isn't a simple constant?
255      if (CI->isZero()) continue;  // Not adding anything.
256
257      if (StructType *ST = dyn_cast<StructType>(*GTI)) {
258        // N = N + Offset
259        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
260      } else {
261        SequentialType *SQT = cast<SequentialType>(*GTI);
262        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
263      }
264    }
265    return true;
266  }
267
268  return false;
269}
270
271/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
272/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
273/// pointer to copy results into and BytesLeft is the number of bytes left in
274/// the CurPtr buffer.  TD is the target data.
275static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
276                               unsigned char *CurPtr, unsigned BytesLeft,
277                               const TargetData &TD) {
278  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
279         "Out of range access");
280
281  // If this element is zero or undefined, we can just return since *CurPtr is
282  // zero initialized.
283  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
284    return true;
285
286  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
287    if (CI->getBitWidth() > 64 ||
288        (CI->getBitWidth() & 7) != 0)
289      return false;
290
291    uint64_t Val = CI->getZExtValue();
292    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
293
294    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
295      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
296      ++ByteOffset;
297    }
298    return true;
299  }
300
301  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
302    if (CFP->getType()->isDoubleTy()) {
303      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
304      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
305    }
306    if (CFP->getType()->isFloatTy()){
307      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
308      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
309    }
310    return false;
311  }
312
313  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
314    const StructLayout *SL = TD.getStructLayout(CS->getType());
315    unsigned Index = SL->getElementContainingOffset(ByteOffset);
316    uint64_t CurEltOffset = SL->getElementOffset(Index);
317    ByteOffset -= CurEltOffset;
318
319    while (1) {
320      // If the element access is to the element itself and not to tail padding,
321      // read the bytes from the element.
322      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
323
324      if (ByteOffset < EltSize &&
325          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
326                              BytesLeft, TD))
327        return false;
328
329      ++Index;
330
331      // Check to see if we read from the last struct element, if so we're done.
332      if (Index == CS->getType()->getNumElements())
333        return true;
334
335      // If we read all of the bytes we needed from this element we're done.
336      uint64_t NextEltOffset = SL->getElementOffset(Index);
337
338      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
339        return true;
340
341      // Move to the next element of the struct.
342      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
343      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
344      ByteOffset = 0;
345      CurEltOffset = NextEltOffset;
346    }
347    // not reached.
348  }
349
350  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
351      isa<ConstantDataSequential>(C)) {
352    Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
353    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
354    uint64_t Index = ByteOffset / EltSize;
355    uint64_t Offset = ByteOffset - Index * EltSize;
356    uint64_t NumElts;
357    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
358      NumElts = AT->getNumElements();
359    else
360      NumElts = cast<VectorType>(C->getType())->getNumElements();
361
362    for (; Index != NumElts; ++Index) {
363      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
364                              BytesLeft, TD))
365        return false;
366
367      uint64_t BytesWritten = EltSize - Offset;
368      assert(BytesWritten <= EltSize && "Not indexing into this element?");
369      if (BytesWritten >= BytesLeft)
370        return true;
371
372      Offset = 0;
373      BytesLeft -= BytesWritten;
374      CurPtr += BytesWritten;
375    }
376    return true;
377  }
378
379  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
380    if (CE->getOpcode() == Instruction::IntToPtr &&
381        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
382      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
383                                BytesLeft, TD);
384  }
385
386  // Otherwise, unknown initializer type.
387  return false;
388}
389
390static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
391                                                 const TargetData &TD) {
392  Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
393  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
394
395  // If this isn't an integer load we can't fold it directly.
396  if (!IntType) {
397    // If this is a float/double load, we can try folding it as an int32/64 load
398    // and then bitcast the result.  This can be useful for union cases.  Note
399    // that address spaces don't matter here since we're not going to result in
400    // an actual new load.
401    Type *MapTy;
402    if (LoadTy->isFloatTy())
403      MapTy = Type::getInt32PtrTy(C->getContext());
404    else if (LoadTy->isDoubleTy())
405      MapTy = Type::getInt64PtrTy(C->getContext());
406    else if (LoadTy->isVectorTy()) {
407      MapTy = IntegerType::get(C->getContext(),
408                               TD.getTypeAllocSizeInBits(LoadTy));
409      MapTy = PointerType::getUnqual(MapTy);
410    } else
411      return 0;
412
413    C = FoldBitCast(C, MapTy, TD);
414    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
415      return FoldBitCast(Res, LoadTy, TD);
416    return 0;
417  }
418
419  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
420  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
421
422  GlobalValue *GVal;
423  int64_t Offset;
424  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
425    return 0;
426
427  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
428  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
429      !GV->getInitializer()->getType()->isSized())
430    return 0;
431
432  // If we're loading off the beginning of the global, some bytes may be valid,
433  // but we don't try to handle this.
434  if (Offset < 0) return 0;
435
436  // If we're not accessing anything in this constant, the result is undefined.
437  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
438    return UndefValue::get(IntType);
439
440  unsigned char RawBytes[32] = {0};
441  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
442                          BytesLoaded, TD))
443    return 0;
444
445  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
446  for (unsigned i = 1; i != BytesLoaded; ++i) {
447    ResultVal <<= 8;
448    ResultVal |= RawBytes[BytesLoaded-1-i];
449  }
450
451  return ConstantInt::get(IntType->getContext(), ResultVal);
452}
453
454/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
455/// produce if it is constant and determinable.  If this is not determinable,
456/// return null.
457Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
458                                             const TargetData *TD) {
459  // First, try the easy cases:
460  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
461    if (GV->isConstant() && GV->hasDefinitiveInitializer())
462      return GV->getInitializer();
463
464  // If the loaded value isn't a constant expr, we can't handle it.
465  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
466  if (!CE) return 0;
467
468  if (CE->getOpcode() == Instruction::GetElementPtr) {
469    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
470      if (GV->isConstant() && GV->hasDefinitiveInitializer())
471        if (Constant *V =
472             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
473          return V;
474  }
475
476  // Instead of loading constant c string, use corresponding integer value
477  // directly if string length is small enough.
478  StringRef Str;
479  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
480    unsigned StrLen = Str.size();
481    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
482    unsigned NumBits = Ty->getPrimitiveSizeInBits();
483    // Replace load with immediate integer if the result is an integer or fp
484    // value.
485    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
486        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
487      APInt StrVal(NumBits, 0);
488      APInt SingleChar(NumBits, 0);
489      if (TD->isLittleEndian()) {
490        for (signed i = StrLen-1; i >= 0; i--) {
491          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
492          StrVal = (StrVal << 8) | SingleChar;
493        }
494      } else {
495        for (unsigned i = 0; i < StrLen; i++) {
496          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
497          StrVal = (StrVal << 8) | SingleChar;
498        }
499        // Append NULL at the end.
500        SingleChar = 0;
501        StrVal = (StrVal << 8) | SingleChar;
502      }
503
504      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
505      if (Ty->isFloatingPointTy())
506        Res = ConstantExpr::getBitCast(Res, Ty);
507      return Res;
508    }
509  }
510
511  // If this load comes from anywhere in a constant global, and if the global
512  // is all undef or zero, we know what it loads.
513  if (GlobalVariable *GV =
514        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
515    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
516      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
517      if (GV->getInitializer()->isNullValue())
518        return Constant::getNullValue(ResTy);
519      if (isa<UndefValue>(GV->getInitializer()))
520        return UndefValue::get(ResTy);
521    }
522  }
523
524  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
525  // currently don't do any of this for big endian systems.  It can be
526  // generalized in the future if someone is interested.
527  if (TD && TD->isLittleEndian())
528    return FoldReinterpretLoadFromConstPtr(CE, *TD);
529  return 0;
530}
531
532static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
533  if (LI->isVolatile()) return 0;
534
535  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
536    return ConstantFoldLoadFromConstPtr(C, TD);
537
538  return 0;
539}
540
541/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
542/// Attempt to symbolically evaluate the result of a binary operator merging
543/// these together.  If target data info is available, it is provided as TD,
544/// otherwise TD is null.
545static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
546                                           Constant *Op1, const TargetData *TD){
547  // SROA
548
549  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
550  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
551  // bits.
552
553
554  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
555  // constant.  This happens frequently when iterating over a global array.
556  if (Opc == Instruction::Sub && TD) {
557    GlobalValue *GV1, *GV2;
558    int64_t Offs1, Offs2;
559
560    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
561      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
562          GV1 == GV2) {
563        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
564        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
565      }
566  }
567
568  return 0;
569}
570
571/// CastGEPIndices - If array indices are not pointer-sized integers,
572/// explicitly cast them so that they aren't implicitly casted by the
573/// getelementptr.
574static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
575                                Type *ResultTy, const TargetData *TD,
576                                const TargetLibraryInfo *TLI) {
577  if (!TD) return 0;
578  Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
579
580  bool Any = false;
581  SmallVector<Constant*, 32> NewIdxs;
582  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
583    if ((i == 1 ||
584         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
585                                                        Ops.slice(1, i-1)))) &&
586        Ops[i]->getType() != IntPtrTy) {
587      Any = true;
588      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
589                                                                      true,
590                                                                      IntPtrTy,
591                                                                      true),
592                                              Ops[i], IntPtrTy));
593    } else
594      NewIdxs.push_back(Ops[i]);
595  }
596  if (!Any) return 0;
597
598  Constant *C =
599    ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
600  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
601    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
602      C = Folded;
603  return C;
604}
605
606/// Strip the pointer casts, but preserve the address space information.
607static Constant* StripPtrCastKeepAS(Constant* Ptr) {
608  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
609  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
610  Ptr = cast<Constant>(Ptr->stripPointerCasts());
611  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
612
613  // Preserve the address space number of the pointer.
614  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
615    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
616      OldPtrTy->getAddressSpace());
617    Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
618  }
619  return Ptr;
620}
621
622/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
623/// constant expression, do so.
624static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
625                                         Type *ResultTy, const TargetData *TD,
626                                         const TargetLibraryInfo *TLI) {
627  Constant *Ptr = Ops[0];
628  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
629      !Ptr->getType()->isPointerTy())
630    return 0;
631
632  Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
633
634  // If this is a constant expr gep that is effectively computing an
635  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
636  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
637    if (!isa<ConstantInt>(Ops[i])) {
638
639      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
640      // "inttoptr (sub (ptrtoint Ptr), V)"
641      if (Ops.size() == 2 &&
642          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
643        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
644        assert((CE == 0 || CE->getType() == IntPtrTy) &&
645               "CastGEPIndices didn't canonicalize index types!");
646        if (CE && CE->getOpcode() == Instruction::Sub &&
647            CE->getOperand(0)->isNullValue()) {
648          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
649          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
650          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
651          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
652            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
653          return Res;
654        }
655      }
656      return 0;
657    }
658
659  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
660  APInt Offset =
661    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
662                                         makeArrayRef((Value *const*)
663                                                        Ops.data() + 1,
664                                                      Ops.size() - 1)));
665  Ptr = StripPtrCastKeepAS(Ptr);
666
667  // If this is a GEP of a GEP, fold it all into a single GEP.
668  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
669    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
670
671    // Do not try the incorporate the sub-GEP if some index is not a number.
672    bool AllConstantInt = true;
673    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
674      if (!isa<ConstantInt>(NestedOps[i])) {
675        AllConstantInt = false;
676        break;
677      }
678    if (!AllConstantInt)
679      break;
680
681    Ptr = cast<Constant>(GEP->getOperand(0));
682    Offset += APInt(BitWidth,
683                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
684    Ptr = StripPtrCastKeepAS(Ptr);
685  }
686
687  // If the base value for this address is a literal integer value, fold the
688  // getelementptr to the resulting integer value casted to the pointer type.
689  APInt BasePtr(BitWidth, 0);
690  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
691    if (CE->getOpcode() == Instruction::IntToPtr)
692      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
693        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
694  if (Ptr->isNullValue() || BasePtr != 0) {
695    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
696    return ConstantExpr::getIntToPtr(C, ResultTy);
697  }
698
699  // Otherwise form a regular getelementptr. Recompute the indices so that
700  // we eliminate over-indexing of the notional static type array bounds.
701  // This makes it easy to determine if the getelementptr is "inbounds".
702  // Also, this helps GlobalOpt do SROA on GlobalVariables.
703  Type *Ty = Ptr->getType();
704  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
705  SmallVector<Constant*, 32> NewIdxs;
706  do {
707    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
708      if (ATy->isPointerTy()) {
709        // The only pointer indexing we'll do is on the first index of the GEP.
710        if (!NewIdxs.empty())
711          break;
712
713        // Only handle pointers to sized types, not pointers to functions.
714        if (!ATy->getElementType()->isSized())
715          return 0;
716      }
717
718      // Determine which element of the array the offset points into.
719      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
720      IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
721      if (ElemSize == 0)
722        // The element size is 0. This may be [0 x Ty]*, so just use a zero
723        // index for this level and proceed to the next level to see if it can
724        // accommodate the offset.
725        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
726      else {
727        // The element size is non-zero divide the offset by the element
728        // size (rounding down), to compute the index at this level.
729        APInt NewIdx = Offset.udiv(ElemSize);
730        Offset -= NewIdx * ElemSize;
731        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
732      }
733      Ty = ATy->getElementType();
734    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
735      // If we end up with an offset that isn't valid for this struct type, we
736      // can't re-form this GEP in a regular form, so bail out. The pointer
737      // operand likely went through casts that are necessary to make the GEP
738      // sensible.
739      const StructLayout &SL = *TD->getStructLayout(STy);
740      if (Offset.uge(SL.getSizeInBytes()))
741        break;
742
743      // Determine which field of the struct the offset points into. The
744      // getZExtValue is fine as we've already ensured that the offset is
745      // within the range representable by the StructLayout API.
746      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
747      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
748                                         ElIdx));
749      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
750      Ty = STy->getTypeAtIndex(ElIdx);
751    } else {
752      // We've reached some non-indexable type.
753      break;
754    }
755  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
756
757  // If we haven't used up the entire offset by descending the static
758  // type, then the offset is pointing into the middle of an indivisible
759  // member, so we can't simplify it.
760  if (Offset != 0)
761    return 0;
762
763  // Create a GEP.
764  Constant *C =
765    ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
766  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
767         "Computed GetElementPtr has unexpected type!");
768
769  // If we ended up indexing a member with a type that doesn't match
770  // the type of what the original indices indexed, add a cast.
771  if (Ty != cast<PointerType>(ResultTy)->getElementType())
772    C = FoldBitCast(C, ResultTy, *TD);
773
774  return C;
775}
776
777
778
779//===----------------------------------------------------------------------===//
780// Constant Folding public APIs
781//===----------------------------------------------------------------------===//
782
783/// ConstantFoldInstruction - Try to constant fold the specified instruction.
784/// If successful, the constant result is returned, if not, null is returned.
785/// Note that this fails if not all of the operands are constant.  Otherwise,
786/// this function can only fail when attempting to fold instructions like loads
787/// and stores, which have no constant expression form.
788Constant *llvm::ConstantFoldInstruction(Instruction *I,
789                                        const TargetData *TD,
790                                        const TargetLibraryInfo *TLI) {
791  // Handle PHI nodes quickly here...
792  if (PHINode *PN = dyn_cast<PHINode>(I)) {
793    Constant *CommonValue = 0;
794
795    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
796      Value *Incoming = PN->getIncomingValue(i);
797      // If the incoming value is undef then skip it.  Note that while we could
798      // skip the value if it is equal to the phi node itself we choose not to
799      // because that would break the rule that constant folding only applies if
800      // all operands are constants.
801      if (isa<UndefValue>(Incoming))
802        continue;
803      // If the incoming value is not a constant, then give up.
804      Constant *C = dyn_cast<Constant>(Incoming);
805      if (!C)
806        return 0;
807      // Fold the PHI's operands.
808      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
809        C = ConstantFoldConstantExpression(NewC, TD, TLI);
810      // If the incoming value is a different constant to
811      // the one we saw previously, then give up.
812      if (CommonValue && C != CommonValue)
813        return 0;
814      CommonValue = C;
815    }
816
817
818    // If we reach here, all incoming values are the same constant or undef.
819    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
820  }
821
822  // Scan the operand list, checking to see if they are all constants, if so,
823  // hand off to ConstantFoldInstOperands.
824  SmallVector<Constant*, 8> Ops;
825  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
826    Constant *Op = dyn_cast<Constant>(*i);
827    if (!Op)
828      return 0;  // All operands not constant!
829
830    // Fold the Instruction's operands.
831    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
832      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
833
834    Ops.push_back(Op);
835  }
836
837  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
838    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
839                                           TD, TLI);
840
841  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
842    return ConstantFoldLoadInst(LI, TD);
843
844  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
845    return ConstantExpr::getInsertValue(
846                                cast<Constant>(IVI->getAggregateOperand()),
847                                cast<Constant>(IVI->getInsertedValueOperand()),
848                                IVI->getIndices());
849
850  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
851    return ConstantExpr::getExtractValue(
852                                    cast<Constant>(EVI->getAggregateOperand()),
853                                    EVI->getIndices());
854
855  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
856}
857
858/// ConstantFoldConstantExpression - Attempt to fold the constant expression
859/// using the specified TargetData.  If successful, the constant result is
860/// result is returned, if not, null is returned.
861Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
862                                               const TargetData *TD,
863                                               const TargetLibraryInfo *TLI) {
864  SmallVector<Constant*, 8> Ops;
865  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
866       i != e; ++i) {
867    Constant *NewC = cast<Constant>(*i);
868    // Recursively fold the ConstantExpr's operands.
869    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
870      NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
871    Ops.push_back(NewC);
872  }
873
874  if (CE->isCompare())
875    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
876                                           TD, TLI);
877  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
878}
879
880/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
881/// specified opcode and operands.  If successful, the constant result is
882/// returned, if not, null is returned.  Note that this function can fail when
883/// attempting to fold instructions like loads and stores, which have no
884/// constant expression form.
885///
886/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
887/// information, due to only being passed an opcode and operands. Constant
888/// folding using this function strips this information.
889///
890Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
891                                         ArrayRef<Constant *> Ops,
892                                         const TargetData *TD,
893                                         const TargetLibraryInfo *TLI) {
894  // Handle easy binops first.
895  if (Instruction::isBinaryOp(Opcode)) {
896    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
897      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
898        return C;
899
900    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
901  }
902
903  switch (Opcode) {
904  default: return 0;
905  case Instruction::ICmp:
906  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
907  case Instruction::Call:
908    if (Function *F = dyn_cast<Function>(Ops.back()))
909      if (canConstantFoldCallTo(F))
910        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
911    return 0;
912  case Instruction::PtrToInt:
913    // If the input is a inttoptr, eliminate the pair.  This requires knowing
914    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
915    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
916      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
917        Constant *Input = CE->getOperand(0);
918        unsigned InWidth = Input->getType()->getScalarSizeInBits();
919        if (TD->getPointerSizeInBits() < InWidth) {
920          Constant *Mask =
921            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
922                                                  TD->getPointerSizeInBits()));
923          Input = ConstantExpr::getAnd(Input, Mask);
924        }
925        // Do a zext or trunc to get to the dest size.
926        return ConstantExpr::getIntegerCast(Input, DestTy, false);
927      }
928    }
929    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
930  case Instruction::IntToPtr:
931    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
932    // the int size is >= the ptr size.  This requires knowing the width of a
933    // pointer, so it can't be done in ConstantExpr::getCast.
934    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
935      if (TD &&
936          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
937          CE->getOpcode() == Instruction::PtrToInt)
938        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
939
940    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
941  case Instruction::Trunc:
942  case Instruction::ZExt:
943  case Instruction::SExt:
944  case Instruction::FPTrunc:
945  case Instruction::FPExt:
946  case Instruction::UIToFP:
947  case Instruction::SIToFP:
948  case Instruction::FPToUI:
949  case Instruction::FPToSI:
950      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
951  case Instruction::BitCast:
952    if (TD)
953      return FoldBitCast(Ops[0], DestTy, *TD);
954    return ConstantExpr::getBitCast(Ops[0], DestTy);
955  case Instruction::Select:
956    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
957  case Instruction::ExtractElement:
958    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
959  case Instruction::InsertElement:
960    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
961  case Instruction::ShuffleVector:
962    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
963  case Instruction::GetElementPtr:
964    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
965      return C;
966    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
967      return C;
968
969    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
970  }
971}
972
973/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
974/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
975/// returns a constant expression of the specified operands.
976///
977Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
978                                                Constant *Ops0, Constant *Ops1,
979                                                const TargetData *TD,
980                                                const TargetLibraryInfo *TLI) {
981  // fold: icmp (inttoptr x), null         -> icmp x, 0
982  // fold: icmp (ptrtoint x), 0            -> icmp x, null
983  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
984  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
985  //
986  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
987  // around to know if bit truncation is happening.
988  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
989    if (TD && Ops1->isNullValue()) {
990      Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
991      if (CE0->getOpcode() == Instruction::IntToPtr) {
992        // Convert the integer value to the right size to ensure we get the
993        // proper extension or truncation.
994        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
995                                                   IntPtrTy, false);
996        Constant *Null = Constant::getNullValue(C->getType());
997        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
998      }
999
1000      // Only do this transformation if the int is intptrty in size, otherwise
1001      // there is a truncation or extension that we aren't modeling.
1002      if (CE0->getOpcode() == Instruction::PtrToInt &&
1003          CE0->getType() == IntPtrTy) {
1004        Constant *C = CE0->getOperand(0);
1005        Constant *Null = Constant::getNullValue(C->getType());
1006        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1007      }
1008    }
1009
1010    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1011      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1012        Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1013
1014        if (CE0->getOpcode() == Instruction::IntToPtr) {
1015          // Convert the integer value to the right size to ensure we get the
1016          // proper extension or truncation.
1017          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1018                                                      IntPtrTy, false);
1019          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1020                                                      IntPtrTy, false);
1021          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1022        }
1023
1024        // Only do this transformation if the int is intptrty in size, otherwise
1025        // there is a truncation or extension that we aren't modeling.
1026        if ((CE0->getOpcode() == Instruction::PtrToInt &&
1027             CE0->getType() == IntPtrTy &&
1028             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
1029          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
1030                                                 CE1->getOperand(0), TD, TLI);
1031      }
1032    }
1033
1034    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1035    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1036    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1037        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1038      Constant *LHS =
1039        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1040                                        TD, TLI);
1041      Constant *RHS =
1042        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1043                                        TD, TLI);
1044      unsigned OpC =
1045        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1046      Constant *Ops[] = { LHS, RHS };
1047      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1048    }
1049  }
1050
1051  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1052}
1053
1054
1055/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1056/// getelementptr constantexpr, return the constant value being addressed by the
1057/// constant expression, or null if something is funny and we can't decide.
1058Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1059                                                       ConstantExpr *CE) {
1060  if (!CE->getOperand(1)->isNullValue())
1061    return 0;  // Do not allow stepping over the value!
1062
1063  // Loop over all of the operands, tracking down which value we are
1064  // addressing.
1065  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1066    C = C->getAggregateElement(CE->getOperand(i));
1067    if (C == 0) return 0;
1068  }
1069  return C;
1070}
1071
1072/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1073/// indices (with an *implied* zero pointer index that is not in the list),
1074/// return the constant value being addressed by a virtual load, or null if
1075/// something is funny and we can't decide.
1076Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1077                                                  ArrayRef<Constant*> Indices) {
1078  // Loop over all of the operands, tracking down which value we are
1079  // addressing.
1080  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1081    C = C->getAggregateElement(Indices[i]);
1082    if (C == 0) return 0;
1083  }
1084  return C;
1085}
1086
1087
1088//===----------------------------------------------------------------------===//
1089//  Constant Folding for Calls
1090//
1091
1092/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1093/// the specified function.
1094bool
1095llvm::canConstantFoldCallTo(const Function *F) {
1096  switch (F->getIntrinsicID()) {
1097  case Intrinsic::sqrt:
1098  case Intrinsic::pow:
1099  case Intrinsic::powi:
1100  case Intrinsic::bswap:
1101  case Intrinsic::ctpop:
1102  case Intrinsic::ctlz:
1103  case Intrinsic::cttz:
1104  case Intrinsic::sadd_with_overflow:
1105  case Intrinsic::uadd_with_overflow:
1106  case Intrinsic::ssub_with_overflow:
1107  case Intrinsic::usub_with_overflow:
1108  case Intrinsic::smul_with_overflow:
1109  case Intrinsic::umul_with_overflow:
1110  case Intrinsic::convert_from_fp16:
1111  case Intrinsic::convert_to_fp16:
1112  case Intrinsic::x86_sse_cvtss2si:
1113  case Intrinsic::x86_sse_cvtss2si64:
1114  case Intrinsic::x86_sse_cvttss2si:
1115  case Intrinsic::x86_sse_cvttss2si64:
1116  case Intrinsic::x86_sse2_cvtsd2si:
1117  case Intrinsic::x86_sse2_cvtsd2si64:
1118  case Intrinsic::x86_sse2_cvttsd2si:
1119  case Intrinsic::x86_sse2_cvttsd2si64:
1120    return true;
1121  default:
1122    return false;
1123  case 0: break;
1124  }
1125
1126  if (!F->hasName()) return false;
1127  StringRef Name = F->getName();
1128
1129  // In these cases, the check of the length is required.  We don't want to
1130  // return true for a name like "cos\0blah" which strcmp would return equal to
1131  // "cos", but has length 8.
1132  switch (Name[0]) {
1133  default: return false;
1134  case 'a':
1135    return Name == "acos" || Name == "asin" ||
1136      Name == "atan" || Name == "atan2";
1137  case 'c':
1138    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1139  case 'e':
1140    return Name == "exp" || Name == "exp2";
1141  case 'f':
1142    return Name == "fabs" || Name == "fmod" || Name == "floor";
1143  case 'l':
1144    return Name == "log" || Name == "log10";
1145  case 'p':
1146    return Name == "pow";
1147  case 's':
1148    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1149      Name == "sinf" || Name == "sqrtf";
1150  case 't':
1151    return Name == "tan" || Name == "tanh";
1152  }
1153}
1154
1155static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1156                                Type *Ty) {
1157  sys::llvm_fenv_clearexcept();
1158  V = NativeFP(V);
1159  if (sys::llvm_fenv_testexcept()) {
1160    sys::llvm_fenv_clearexcept();
1161    return 0;
1162  }
1163
1164  if (Ty->isFloatTy())
1165    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1166  if (Ty->isDoubleTy())
1167    return ConstantFP::get(Ty->getContext(), APFloat(V));
1168  llvm_unreachable("Can only constant fold float/double");
1169}
1170
1171static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1172                                      double V, double W, Type *Ty) {
1173  sys::llvm_fenv_clearexcept();
1174  V = NativeFP(V, W);
1175  if (sys::llvm_fenv_testexcept()) {
1176    sys::llvm_fenv_clearexcept();
1177    return 0;
1178  }
1179
1180  if (Ty->isFloatTy())
1181    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1182  if (Ty->isDoubleTy())
1183    return ConstantFP::get(Ty->getContext(), APFloat(V));
1184  llvm_unreachable("Can only constant fold float/double");
1185}
1186
1187/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1188/// conversion of a constant floating point. If roundTowardZero is false, the
1189/// default IEEE rounding is used (toward nearest, ties to even). This matches
1190/// the behavior of the non-truncating SSE instructions in the default rounding
1191/// mode. The desired integer type Ty is used to select how many bits are
1192/// available for the result. Returns null if the conversion cannot be
1193/// performed, otherwise returns the Constant value resulting from the
1194/// conversion.
1195static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1196                                          bool roundTowardZero, Type *Ty) {
1197  // All of these conversion intrinsics form an integer of at most 64bits.
1198  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1199  assert(ResultWidth <= 64 &&
1200         "Can only constant fold conversions to 64 and 32 bit ints");
1201
1202  uint64_t UIntVal;
1203  bool isExact = false;
1204  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1205                                              : APFloat::rmNearestTiesToEven;
1206  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1207                                                  /*isSigned=*/true, mode,
1208                                                  &isExact);
1209  if (status != APFloat::opOK && status != APFloat::opInexact)
1210    return 0;
1211  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1212}
1213
1214/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1215/// with the specified arguments, returning null if unsuccessful.
1216Constant *
1217llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1218                       const TargetLibraryInfo *TLI) {
1219  if (!F->hasName()) return 0;
1220  StringRef Name = F->getName();
1221
1222  Type *Ty = F->getReturnType();
1223  if (Operands.size() == 1) {
1224    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1225      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1226        APFloat Val(Op->getValueAPF());
1227
1228        bool lost = false;
1229        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1230
1231        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1232      }
1233      if (!TLI)
1234        return 0;
1235
1236      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1237        return 0;
1238
1239      /// We only fold functions with finite arguments. Folding NaN and inf is
1240      /// likely to be aborted with an exception anyway, and some host libms
1241      /// have known errors raising exceptions.
1242      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1243        return 0;
1244
1245      /// Currently APFloat versions of these functions do not exist, so we use
1246      /// the host native double versions.  Float versions are not called
1247      /// directly but for all these it is true (float)(f((double)arg)) ==
1248      /// f(arg).  Long double not supported yet.
1249      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1250                                     Op->getValueAPF().convertToDouble();
1251      switch (Name[0]) {
1252      case 'a':
1253        if (Name == "acos" && TLI->has(LibFunc::acos))
1254          return ConstantFoldFP(acos, V, Ty);
1255        else if (Name == "asin" && TLI->has(LibFunc::asin))
1256          return ConstantFoldFP(asin, V, Ty);
1257        else if (Name == "atan" && TLI->has(LibFunc::atan))
1258          return ConstantFoldFP(atan, V, Ty);
1259        break;
1260      case 'c':
1261        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1262          return ConstantFoldFP(ceil, V, Ty);
1263        else if (Name == "cos" && TLI->has(LibFunc::cos))
1264          return ConstantFoldFP(cos, V, Ty);
1265        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1266          return ConstantFoldFP(cosh, V, Ty);
1267        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1268          return ConstantFoldFP(cos, V, Ty);
1269        break;
1270      case 'e':
1271        if (Name == "exp" && TLI->has(LibFunc::exp))
1272          return ConstantFoldFP(exp, V, Ty);
1273
1274        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1275          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1276          // C99 library.
1277          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1278        }
1279        break;
1280      case 'f':
1281        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1282          return ConstantFoldFP(fabs, V, Ty);
1283        else if (Name == "floor" && TLI->has(LibFunc::floor))
1284          return ConstantFoldFP(floor, V, Ty);
1285        break;
1286      case 'l':
1287        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1288          return ConstantFoldFP(log, V, Ty);
1289        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1290          return ConstantFoldFP(log10, V, Ty);
1291        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1292                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1293          if (V >= -0.0)
1294            return ConstantFoldFP(sqrt, V, Ty);
1295          else // Undefined
1296            return Constant::getNullValue(Ty);
1297        }
1298        break;
1299      case 's':
1300        if (Name == "sin" && TLI->has(LibFunc::sin))
1301          return ConstantFoldFP(sin, V, Ty);
1302        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1303          return ConstantFoldFP(sinh, V, Ty);
1304        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1305          return ConstantFoldFP(sqrt, V, Ty);
1306        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1307          return ConstantFoldFP(sqrt, V, Ty);
1308        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1309          return ConstantFoldFP(sin, V, Ty);
1310        break;
1311      case 't':
1312        if (Name == "tan" && TLI->has(LibFunc::tan))
1313          return ConstantFoldFP(tan, V, Ty);
1314        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1315          return ConstantFoldFP(tanh, V, Ty);
1316        break;
1317      default:
1318        break;
1319      }
1320      return 0;
1321    }
1322
1323    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1324      switch (F->getIntrinsicID()) {
1325      case Intrinsic::bswap:
1326        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1327      case Intrinsic::ctpop:
1328        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1329      case Intrinsic::convert_from_fp16: {
1330        APFloat Val(Op->getValue());
1331
1332        bool lost = false;
1333        APFloat::opStatus status =
1334          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1335
1336        // Conversion is always precise.
1337        (void)status;
1338        assert(status == APFloat::opOK && !lost &&
1339               "Precision lost during fp16 constfolding");
1340
1341        return ConstantFP::get(F->getContext(), Val);
1342      }
1343      default:
1344        return 0;
1345      }
1346    }
1347
1348    // Support ConstantVector in case we have an Undef in the top.
1349    if (isa<ConstantVector>(Operands[0]) ||
1350        isa<ConstantDataVector>(Operands[0])) {
1351      Constant *Op = cast<Constant>(Operands[0]);
1352      switch (F->getIntrinsicID()) {
1353      default: break;
1354      case Intrinsic::x86_sse_cvtss2si:
1355      case Intrinsic::x86_sse_cvtss2si64:
1356      case Intrinsic::x86_sse2_cvtsd2si:
1357      case Intrinsic::x86_sse2_cvtsd2si64:
1358        if (ConstantFP *FPOp =
1359              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1360          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1361                                          /*roundTowardZero=*/false, Ty);
1362      case Intrinsic::x86_sse_cvttss2si:
1363      case Intrinsic::x86_sse_cvttss2si64:
1364      case Intrinsic::x86_sse2_cvttsd2si:
1365      case Intrinsic::x86_sse2_cvttsd2si64:
1366        if (ConstantFP *FPOp =
1367              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1368          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1369                                          /*roundTowardZero=*/true, Ty);
1370      }
1371    }
1372
1373    if (isa<UndefValue>(Operands[0])) {
1374      if (F->getIntrinsicID() == Intrinsic::bswap)
1375        return Operands[0];
1376      return 0;
1377    }
1378
1379    return 0;
1380  }
1381
1382  if (Operands.size() == 2) {
1383    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1384      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1385        return 0;
1386      double Op1V = Ty->isFloatTy() ?
1387                      (double)Op1->getValueAPF().convertToFloat() :
1388                      Op1->getValueAPF().convertToDouble();
1389      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1390        if (Op2->getType() != Op1->getType())
1391          return 0;
1392
1393        double Op2V = Ty->isFloatTy() ?
1394                      (double)Op2->getValueAPF().convertToFloat():
1395                      Op2->getValueAPF().convertToDouble();
1396
1397        if (F->getIntrinsicID() == Intrinsic::pow) {
1398          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1399        }
1400        if (!TLI)
1401          return 0;
1402        if (Name == "pow" && TLI->has(LibFunc::pow))
1403          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1404        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1405          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1406        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1407          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1408      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1409        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1410          return ConstantFP::get(F->getContext(),
1411                                 APFloat((float)std::pow((float)Op1V,
1412                                                 (int)Op2C->getZExtValue())));
1413        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1414          return ConstantFP::get(F->getContext(),
1415                                 APFloat((double)std::pow((double)Op1V,
1416                                                   (int)Op2C->getZExtValue())));
1417      }
1418      return 0;
1419    }
1420
1421    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1422      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1423        switch (F->getIntrinsicID()) {
1424        default: break;
1425        case Intrinsic::sadd_with_overflow:
1426        case Intrinsic::uadd_with_overflow:
1427        case Intrinsic::ssub_with_overflow:
1428        case Intrinsic::usub_with_overflow:
1429        case Intrinsic::smul_with_overflow:
1430        case Intrinsic::umul_with_overflow: {
1431          APInt Res;
1432          bool Overflow;
1433          switch (F->getIntrinsicID()) {
1434          default: llvm_unreachable("Invalid case");
1435          case Intrinsic::sadd_with_overflow:
1436            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1437            break;
1438          case Intrinsic::uadd_with_overflow:
1439            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1440            break;
1441          case Intrinsic::ssub_with_overflow:
1442            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1443            break;
1444          case Intrinsic::usub_with_overflow:
1445            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1446            break;
1447          case Intrinsic::smul_with_overflow:
1448            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1449            break;
1450          case Intrinsic::umul_with_overflow:
1451            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1452            break;
1453          }
1454          Constant *Ops[] = {
1455            ConstantInt::get(F->getContext(), Res),
1456            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1457          };
1458          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1459        }
1460        case Intrinsic::cttz:
1461          // FIXME: This should check for Op2 == 1, and become unreachable if
1462          // Op1 == 0.
1463          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1464        case Intrinsic::ctlz:
1465          // FIXME: This should check for Op2 == 1, and become unreachable if
1466          // Op1 == 0.
1467          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1468        }
1469      }
1470
1471      return 0;
1472    }
1473    return 0;
1474  }
1475  return 0;
1476}
1477