1//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declarations of classes that represent "derived
11// types".  These are things like "arrays of x" or "structure of x, y, z" or
12// "function returning x taking (y,z) as parameters", etc...
13//
14// The implementations of these classes live in the Type.cpp file.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_DERIVED_TYPES_H
19#define LLVM_DERIVED_TYPES_H
20
21#include "llvm/Type.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/DataTypes.h"
24
25namespace llvm {
26
27class Value;
28class APInt;
29class LLVMContext;
30template<typename T> class ArrayRef;
31class StringRef;
32
33/// Class to represent integer types. Note that this class is also used to
34/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
35/// Int64Ty.
36/// @brief Integer representation type
37class IntegerType : public Type {
38  friend class LLVMContextImpl;
39
40protected:
41  explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
42    setSubclassData(NumBits);
43  }
44public:
45  /// This enum is just used to hold constants we need for IntegerType.
46  enum {
47    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
48    MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
49      ///< Note that bit width is stored in the Type classes SubclassData field
50      ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
51  };
52
53  /// This static method is the primary way of constructing an IntegerType.
54  /// If an IntegerType with the same NumBits value was previously instantiated,
55  /// that instance will be returned. Otherwise a new one will be created. Only
56  /// one instance with a given NumBits value is ever created.
57  /// @brief Get or create an IntegerType instance.
58  static IntegerType *get(LLVMContext &C, unsigned NumBits);
59
60  /// @brief Get the number of bits in this IntegerType
61  unsigned getBitWidth() const { return getSubclassData(); }
62
63  /// getBitMask - Return a bitmask with ones set for all of the bits
64  /// that can be set by an unsigned version of this type.  This is 0xFF for
65  /// i8, 0xFFFF for i16, etc.
66  uint64_t getBitMask() const {
67    return ~uint64_t(0UL) >> (64-getBitWidth());
68  }
69
70  /// getSignBit - Return a uint64_t with just the most significant bit set (the
71  /// sign bit, if the value is treated as a signed number).
72  uint64_t getSignBit() const {
73    return 1ULL << (getBitWidth()-1);
74  }
75
76  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
77  /// @returns a bit mask with ones set for all the bits of this type.
78  /// @brief Get a bit mask for this type.
79  APInt getMask() const;
80
81  /// This method determines if the width of this IntegerType is a power-of-2
82  /// in terms of 8 bit bytes.
83  /// @returns true if this is a power-of-2 byte width.
84  /// @brief Is this a power-of-2 byte-width IntegerType ?
85  bool isPowerOf2ByteWidth() const;
86
87  // Methods for support type inquiry through isa, cast, and dyn_cast.
88  static inline bool classof(const IntegerType *) { return true; }
89  static inline bool classof(const Type *T) {
90    return T->getTypeID() == IntegerTyID;
91  }
92};
93
94
95/// FunctionType - Class to represent function types
96///
97class FunctionType : public Type {
98  FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION;
99  const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION;
100  FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
101
102public:
103  /// FunctionType::get - This static method is the primary way of constructing
104  /// a FunctionType.
105  ///
106  static FunctionType *get(Type *Result,
107                           ArrayRef<Type*> Params, bool isVarArg);
108
109  /// FunctionType::get - Create a FunctionType taking no parameters.
110  ///
111  static FunctionType *get(Type *Result, bool isVarArg);
112
113  /// isValidReturnType - Return true if the specified type is valid as a return
114  /// type.
115  static bool isValidReturnType(Type *RetTy);
116
117  /// isValidArgumentType - Return true if the specified type is valid as an
118  /// argument type.
119  static bool isValidArgumentType(Type *ArgTy);
120
121  bool isVarArg() const { return getSubclassData(); }
122  Type *getReturnType() const { return ContainedTys[0]; }
123
124  typedef Type::subtype_iterator param_iterator;
125  param_iterator param_begin() const { return ContainedTys + 1; }
126  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
127
128  // Parameter type accessors.
129  Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
130
131  /// getNumParams - Return the number of fixed parameters this function type
132  /// requires.  This does not consider varargs.
133  ///
134  unsigned getNumParams() const { return NumContainedTys - 1; }
135
136  // Methods for support type inquiry through isa, cast, and dyn_cast.
137  static inline bool classof(const FunctionType *) { return true; }
138  static inline bool classof(const Type *T) {
139    return T->getTypeID() == FunctionTyID;
140  }
141};
142
143
144/// CompositeType - Common super class of ArrayType, StructType, PointerType
145/// and VectorType.
146class CompositeType : public Type {
147protected:
148  explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
149public:
150
151  /// getTypeAtIndex - Given an index value into the type, return the type of
152  /// the element.
153  ///
154  Type *getTypeAtIndex(const Value *V);
155  Type *getTypeAtIndex(unsigned Idx);
156  bool indexValid(const Value *V) const;
157  bool indexValid(unsigned Idx) const;
158
159  // Methods for support type inquiry through isa, cast, and dyn_cast.
160  static inline bool classof(const CompositeType *) { return true; }
161  static inline bool classof(const Type *T) {
162    return T->getTypeID() == ArrayTyID ||
163           T->getTypeID() == StructTyID ||
164           T->getTypeID() == PointerTyID ||
165           T->getTypeID() == VectorTyID;
166  }
167};
168
169
170/// StructType - Class to represent struct types.  There are two different kinds
171/// of struct types: Literal structs and Identified structs.
172///
173/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
174/// always have a body when created.  You can get one of these by using one of
175/// the StructType::get() forms.
176///
177/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
178/// uniqued.  The names for identified structs are managed at the LLVMContext
179/// level, so there can only be a single identified struct with a given name in
180/// a particular LLVMContext.  Identified structs may also optionally be opaque
181/// (have no body specified).  You get one of these by using one of the
182/// StructType::create() forms.
183///
184/// Independent of what kind of struct you have, the body of a struct type are
185/// laid out in memory consequtively with the elements directly one after the
186/// other (if the struct is packed) or (if not packed) with padding between the
187/// elements as defined by TargetData (which is required to match what the code
188/// generator for a target expects).
189///
190class StructType : public CompositeType {
191  StructType(const StructType &) LLVM_DELETED_FUNCTION;
192  const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION;
193  StructType(LLVMContext &C)
194    : CompositeType(C, StructTyID), SymbolTableEntry(0) {}
195  enum {
196    // This is the contents of the SubClassData field.
197    SCDB_HasBody = 1,
198    SCDB_Packed = 2,
199    SCDB_IsLiteral = 4,
200    SCDB_IsSized = 8
201  };
202
203  /// SymbolTableEntry - For a named struct that actually has a name, this is a
204  /// pointer to the symbol table entry (maintained by LLVMContext) for the
205  /// struct.  This is null if the type is an literal struct or if it is
206  /// a identified type that has an empty name.
207  ///
208  void *SymbolTableEntry;
209public:
210  ~StructType() {
211    delete [] ContainedTys; // Delete the body.
212  }
213
214  /// StructType::create - This creates an identified struct.
215  static StructType *create(LLVMContext &Context, StringRef Name);
216  static StructType *create(LLVMContext &Context);
217
218  static StructType *create(ArrayRef<Type*> Elements,
219                            StringRef Name,
220                            bool isPacked = false);
221  static StructType *create(ArrayRef<Type*> Elements);
222  static StructType *create(LLVMContext &Context,
223                            ArrayRef<Type*> Elements,
224                            StringRef Name,
225                            bool isPacked = false);
226  static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
227  static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;
228
229  /// StructType::get - This static method is the primary way to create a
230  /// literal StructType.
231  static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
232                         bool isPacked = false);
233
234  /// StructType::get - Create an empty structure type.
235  ///
236  static StructType *get(LLVMContext &Context, bool isPacked = false);
237
238  /// StructType::get - This static method is a convenience method for creating
239  /// structure types by specifying the elements as arguments.  Note that this
240  /// method always returns a non-packed struct, and requires at least one
241  /// element type.
242  static StructType *get(Type *elt1, ...) END_WITH_NULL;
243
244  bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
245
246  /// isLiteral - Return true if this type is uniqued by structural
247  /// equivalence, false if it is a struct definition.
248  bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
249
250  /// isOpaque - Return true if this is a type with an identity that has no body
251  /// specified yet.  These prints as 'opaque' in .ll files.
252  bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
253
254  /// isSized - Return true if this is a sized type.
255  bool isSized() const;
256
257  /// hasName - Return true if this is a named struct that has a non-empty name.
258  bool hasName() const { return SymbolTableEntry != 0; }
259
260  /// getName - Return the name for this struct type if it has an identity.
261  /// This may return an empty string for an unnamed struct type.  Do not call
262  /// this on an literal type.
263  StringRef getName() const;
264
265  /// setName - Change the name of this type to the specified name, or to a name
266  /// with a suffix if there is a collision.  Do not call this on an literal
267  /// type.
268  void setName(StringRef Name);
269
270  /// setBody - Specify a body for an opaque identified type.
271  void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
272  void setBody(Type *elt1, ...) END_WITH_NULL;
273
274  /// isValidElementType - Return true if the specified type is valid as a
275  /// element type.
276  static bool isValidElementType(Type *ElemTy);
277
278
279  // Iterator access to the elements.
280  typedef Type::subtype_iterator element_iterator;
281  element_iterator element_begin() const { return ContainedTys; }
282  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
283
284  /// isLayoutIdentical - Return true if this is layout identical to the
285  /// specified struct.
286  bool isLayoutIdentical(StructType *Other) const;
287
288  // Random access to the elements
289  unsigned getNumElements() const { return NumContainedTys; }
290  Type *getElementType(unsigned N) const {
291    assert(N < NumContainedTys && "Element number out of range!");
292    return ContainedTys[N];
293  }
294
295  // Methods for support type inquiry through isa, cast, and dyn_cast.
296  static inline bool classof(const StructType *) { return true; }
297  static inline bool classof(const Type *T) {
298    return T->getTypeID() == StructTyID;
299  }
300};
301
302/// SequentialType - This is the superclass of the array, pointer and vector
303/// type classes.  All of these represent "arrays" in memory.  The array type
304/// represents a specifically sized array, pointer types are unsized/unknown
305/// size arrays, vector types represent specifically sized arrays that
306/// allow for use of SIMD instructions.  SequentialType holds the common
307/// features of all, which stem from the fact that all three lay their
308/// components out in memory identically.
309///
310class SequentialType : public CompositeType {
311  Type *ContainedType;               ///< Storage for the single contained type.
312  SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION;
313  const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION;
314
315protected:
316  SequentialType(TypeID TID, Type *ElType)
317    : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
318    ContainedTys = &ContainedType;
319    NumContainedTys = 1;
320  }
321
322public:
323  Type *getElementType() const { return ContainedTys[0]; }
324
325  // Methods for support type inquiry through isa, cast, and dyn_cast.
326  static inline bool classof(const SequentialType *) { return true; }
327  static inline bool classof(const Type *T) {
328    return T->getTypeID() == ArrayTyID ||
329           T->getTypeID() == PointerTyID ||
330           T->getTypeID() == VectorTyID;
331  }
332};
333
334
335/// ArrayType - Class to represent array types.
336///
337class ArrayType : public SequentialType {
338  uint64_t NumElements;
339
340  ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION;
341  const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION;
342  ArrayType(Type *ElType, uint64_t NumEl);
343public:
344  /// ArrayType::get - This static method is the primary way to construct an
345  /// ArrayType
346  ///
347  static ArrayType *get(Type *ElementType, uint64_t NumElements);
348
349  /// isValidElementType - Return true if the specified type is valid as a
350  /// element type.
351  static bool isValidElementType(Type *ElemTy);
352
353  uint64_t getNumElements() const { return NumElements; }
354
355  // Methods for support type inquiry through isa, cast, and dyn_cast.
356  static inline bool classof(const ArrayType *) { return true; }
357  static inline bool classof(const Type *T) {
358    return T->getTypeID() == ArrayTyID;
359  }
360};
361
362/// VectorType - Class to represent vector types.
363///
364class VectorType : public SequentialType {
365  unsigned NumElements;
366
367  VectorType(const VectorType &) LLVM_DELETED_FUNCTION;
368  const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION;
369  VectorType(Type *ElType, unsigned NumEl);
370public:
371  /// VectorType::get - This static method is the primary way to construct an
372  /// VectorType.
373  ///
374  static VectorType *get(Type *ElementType, unsigned NumElements);
375
376  /// VectorType::getInteger - This static method gets a VectorType with the
377  /// same number of elements as the input type, and the element type is an
378  /// integer type of the same width as the input element type.
379  ///
380  static VectorType *getInteger(VectorType *VTy) {
381    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
382    assert(EltBits && "Element size must be of a non-zero size");
383    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
384    return VectorType::get(EltTy, VTy->getNumElements());
385  }
386
387  /// VectorType::getExtendedElementVectorType - This static method is like
388  /// getInteger except that the element types are twice as wide as the
389  /// elements in the input type.
390  ///
391  static VectorType *getExtendedElementVectorType(VectorType *VTy) {
392    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
393    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
394    return VectorType::get(EltTy, VTy->getNumElements());
395  }
396
397  /// VectorType::getTruncatedElementVectorType - This static method is like
398  /// getInteger except that the element types are half as wide as the
399  /// elements in the input type.
400  ///
401  static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
402    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
403    assert((EltBits & 1) == 0 &&
404           "Cannot truncate vector element with odd bit-width");
405    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
406    return VectorType::get(EltTy, VTy->getNumElements());
407  }
408
409  /// isValidElementType - Return true if the specified type is valid as a
410  /// element type.
411  static bool isValidElementType(Type *ElemTy);
412
413  /// @brief Return the number of elements in the Vector type.
414  unsigned getNumElements() const { return NumElements; }
415
416  /// @brief Return the number of bits in the Vector type.
417  /// Returns zero when the vector is a vector of pointers.
418  unsigned getBitWidth() const {
419    return NumElements * getElementType()->getPrimitiveSizeInBits();
420  }
421
422  // Methods for support type inquiry through isa, cast, and dyn_cast.
423  static inline bool classof(const VectorType *) { return true; }
424  static inline bool classof(const Type *T) {
425    return T->getTypeID() == VectorTyID;
426  }
427};
428
429
430/// PointerType - Class to represent pointers.
431///
432class PointerType : public SequentialType {
433  PointerType(const PointerType &) LLVM_DELETED_FUNCTION;
434  const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION;
435  explicit PointerType(Type *ElType, unsigned AddrSpace);
436public:
437  /// PointerType::get - This constructs a pointer to an object of the specified
438  /// type in a numbered address space.
439  static PointerType *get(Type *ElementType, unsigned AddressSpace);
440
441  /// PointerType::getUnqual - This constructs a pointer to an object of the
442  /// specified type in the generic address space (address space zero).
443  static PointerType *getUnqual(Type *ElementType) {
444    return PointerType::get(ElementType, 0);
445  }
446
447  /// isValidElementType - Return true if the specified type is valid as a
448  /// element type.
449  static bool isValidElementType(Type *ElemTy);
450
451  /// @brief Return the address space of the Pointer type.
452  inline unsigned getAddressSpace() const { return getSubclassData(); }
453
454  // Implement support type inquiry through isa, cast, and dyn_cast.
455  static inline bool classof(const PointerType *) { return true; }
456  static inline bool classof(const Type *T) {
457    return T->getTypeID() == PointerTyID;
458  }
459};
460
461} // End llvm namespace
462
463#endif
464