1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers. This encapsulates the scheduling DAG,
12// which is shared between SelectionDAG and MachineInstr scheduling.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
17#define LLVM_CODEGEN_SCHEDULEDAG_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/PointerIntPair.h"
26
27namespace llvm {
28  class AliasAnalysis;
29  class SUnit;
30  class MachineConstantPool;
31  class MachineFunction;
32  class MachineRegisterInfo;
33  class MachineInstr;
34  class TargetRegisterInfo;
35  class ScheduleDAG;
36  class SDNode;
37  class TargetInstrInfo;
38  class MCInstrDesc;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88    /// Record MinLatency seperately from "expected" Latency.
89    unsigned MinLatency;
90
91  public:
92    /// SDep - Construct a null SDep. This is only for use by container
93    /// classes which require default constructors. SUnits may not
94    /// have null SDep edges.
95    SDep() : Dep(0, Data) {}
96
97    /// SDep - Construct an SDep with the specified values.
98    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
99         bool isNormalMemory = false, bool isMustAlias = false,
100         bool isArtificial = false)
101      : Dep(S, kind), Contents(), Latency(latency), MinLatency(latency) {
102      switch (kind) {
103      case Anti:
104      case Output:
105        assert(Reg != 0 &&
106               "SDep::Anti and SDep::Output must use a non-zero Reg!");
107        // fall through
108      case Data:
109        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
110        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
111        Contents.Reg = Reg;
112        break;
113      case Order:
114        assert(Reg == 0 && "Reg given for non-register dependence!");
115        Contents.Order.isNormalMemory = isNormalMemory;
116        Contents.Order.isMustAlias = isMustAlias;
117        Contents.Order.isArtificial = isArtificial;
118        break;
119      }
120    }
121
122    /// Return true if the specified SDep is equivalent except for latency.
123    bool overlaps(const SDep &Other) const {
124      if (Dep != Other.Dep) return false;
125      switch (Dep.getInt()) {
126      case Data:
127      case Anti:
128      case Output:
129        return Contents.Reg == Other.Contents.Reg;
130      case Order:
131        return Contents.Order.isNormalMemory ==
132                 Other.Contents.Order.isNormalMemory &&
133               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
134               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
135      }
136      llvm_unreachable("Invalid dependency kind!");
137    }
138
139    bool operator==(const SDep &Other) const {
140      return overlaps(Other)
141        && Latency == Other.Latency && MinLatency == Other.MinLatency;
142    }
143
144    bool operator!=(const SDep &Other) const {
145      return !operator==(Other);
146    }
147
148    /// getLatency - Return the latency value for this edge, which roughly
149    /// means the minimum number of cycles that must elapse between the
150    /// predecessor and the successor, given that they have this edge
151    /// between them.
152    unsigned getLatency() const {
153      return Latency;
154    }
155
156    /// setLatency - Set the latency for this edge.
157    void setLatency(unsigned Lat) {
158      Latency = Lat;
159    }
160
161    /// getMinLatency - Return the minimum latency for this edge. Minimum
162    /// latency is used for scheduling groups, while normal (expected) latency
163    /// is for instruction cost and critical path.
164    unsigned getMinLatency() const {
165      return MinLatency;
166    }
167
168    /// setMinLatency - Set the minimum latency for this edge.
169    void setMinLatency(unsigned Lat) {
170      MinLatency = Lat;
171    }
172
173    //// getSUnit - Return the SUnit to which this edge points.
174    SUnit *getSUnit() const {
175      return Dep.getPointer();
176    }
177
178    //// setSUnit - Assign the SUnit to which this edge points.
179    void setSUnit(SUnit *SU) {
180      Dep.setPointer(SU);
181    }
182
183    /// getKind - Return an enum value representing the kind of the dependence.
184    Kind getKind() const {
185      return Dep.getInt();
186    }
187
188    /// isCtrl - Shorthand for getKind() != SDep::Data.
189    bool isCtrl() const {
190      return getKind() != Data;
191    }
192
193    /// isNormalMemory - Test if this is an Order dependence between two
194    /// memory accesses where both sides of the dependence access memory
195    /// in non-volatile and fully modeled ways.
196    bool isNormalMemory() const {
197      return getKind() == Order && Contents.Order.isNormalMemory;
198    }
199
200    /// isMustAlias - Test if this is an Order dependence that is marked
201    /// as "must alias", meaning that the SUnits at either end of the edge
202    /// have a memory dependence on a known memory location.
203    bool isMustAlias() const {
204      return getKind() == Order && Contents.Order.isMustAlias;
205    }
206
207    /// isArtificial - Test if this is an Order dependence that is marked
208    /// as "artificial", meaning it isn't necessary for correctness.
209    bool isArtificial() const {
210      return getKind() == Order && Contents.Order.isArtificial;
211    }
212
213    /// isAssignedRegDep - Test if this is a Data dependence that is
214    /// associated with a register.
215    bool isAssignedRegDep() const {
216      return getKind() == Data && Contents.Reg != 0;
217    }
218
219    /// getReg - Return the register associated with this edge. This is
220    /// only valid on Data, Anti, and Output edges. On Data edges, this
221    /// value may be zero, meaning there is no associated register.
222    unsigned getReg() const {
223      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
224             "getReg called on non-register dependence edge!");
225      return Contents.Reg;
226    }
227
228    /// setReg - Assign the associated register for this edge. This is
229    /// only valid on Data, Anti, and Output edges. On Anti and Output
230    /// edges, this value must not be zero. On Data edges, the value may
231    /// be zero, which would mean that no specific register is associated
232    /// with this edge.
233    void setReg(unsigned Reg) {
234      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
235             "setReg called on non-register dependence edge!");
236      assert((getKind() != Anti || Reg != 0) &&
237             "SDep::Anti edge cannot use the zero register!");
238      assert((getKind() != Output || Reg != 0) &&
239             "SDep::Output edge cannot use the zero register!");
240      Contents.Reg = Reg;
241    }
242  };
243
244  template <>
245  struct isPodLike<SDep> { static const bool value = true; };
246
247  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
248  class SUnit {
249  private:
250    SDNode *Node;                       // Representative node.
251    MachineInstr *Instr;                // Alternatively, a MachineInstr.
252  public:
253    SUnit *OrigNode;                    // If not this, the node from which
254                                        // this node was cloned.
255                                        // (SD scheduling only)
256
257    // Preds/Succs - The SUnits before/after us in the graph.
258    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
259    SmallVector<SDep, 4> Succs;  // All sunit successors.
260
261    typedef SmallVector<SDep, 4>::iterator pred_iterator;
262    typedef SmallVector<SDep, 4>::iterator succ_iterator;
263    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
264    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
265
266    unsigned NodeNum;                   // Entry # of node in the node vector.
267    unsigned NodeQueueId;               // Queue id of node.
268    unsigned NumPreds;                  // # of SDep::Data preds.
269    unsigned NumSuccs;                  // # of SDep::Data sucss.
270    unsigned NumPredsLeft;              // # of preds not scheduled.
271    unsigned NumSuccsLeft;              // # of succs not scheduled.
272    unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
273    unsigned short Latency;             // Node latency.
274    bool isVRegCycle      : 1;          // May use and def the same vreg.
275    bool isCall           : 1;          // Is a function call.
276    bool isCallOp         : 1;          // Is a function call operand.
277    bool isTwoAddress     : 1;          // Is a two-address instruction.
278    bool isCommutable     : 1;          // Is a commutable instruction.
279    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
280    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
281    bool isPending        : 1;          // True once pending.
282    bool isAvailable      : 1;          // True once available.
283    bool isScheduled      : 1;          // True once scheduled.
284    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
285    bool isScheduleLow    : 1;          // True if preferable to schedule low.
286    bool isCloned         : 1;          // True if this node has been cloned.
287    Sched::Preference SchedulingPref;   // Scheduling preference.
288
289  private:
290    bool isDepthCurrent   : 1;          // True if Depth is current.
291    bool isHeightCurrent  : 1;          // True if Height is current.
292    unsigned Depth;                     // Node depth.
293    unsigned Height;                    // Node height.
294  public:
295    unsigned TopReadyCycle; // Cycle relative to start when node is ready.
296    unsigned BotReadyCycle; // Cycle relative to end when node is ready.
297
298    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
299    const TargetRegisterClass *CopySrcRC;
300
301    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
302    /// an SDNode and any nodes flagged to it.
303    SUnit(SDNode *node, unsigned nodenum)
304      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
305        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
306        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
307        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
308        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
309        isPending(false), isAvailable(false), isScheduled(false),
310        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
311        SchedulingPref(Sched::None),
312        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
313        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
314
315    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
316    /// a MachineInstr.
317    SUnit(MachineInstr *instr, unsigned nodenum)
318      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
319        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
320        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
321        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
322        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
323        isPending(false), isAvailable(false), isScheduled(false),
324        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
325        SchedulingPref(Sched::None),
326        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
327        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
328
329    /// SUnit - Construct a placeholder SUnit.
330    SUnit()
331      : Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
332        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
333        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
334        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
335        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
336        isPending(false), isAvailable(false), isScheduled(false),
337        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
338        SchedulingPref(Sched::None),
339        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
340        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
341
342    /// setNode - Assign the representative SDNode for this SUnit.
343    /// This may be used during pre-regalloc scheduling.
344    void setNode(SDNode *N) {
345      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
346      Node = N;
347    }
348
349    /// getNode - Return the representative SDNode for this SUnit.
350    /// This may be used during pre-regalloc scheduling.
351    SDNode *getNode() const {
352      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
353      return Node;
354    }
355
356    /// isInstr - Return true if this SUnit refers to a machine instruction as
357    /// opposed to an SDNode.
358    bool isInstr() const { return Instr; }
359
360    /// setInstr - Assign the instruction for the SUnit.
361    /// This may be used during post-regalloc scheduling.
362    void setInstr(MachineInstr *MI) {
363      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
364      Instr = MI;
365    }
366
367    /// getInstr - Return the representative MachineInstr for this SUnit.
368    /// This may be used during post-regalloc scheduling.
369    MachineInstr *getInstr() const {
370      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
371      return Instr;
372    }
373
374    /// addPred - This adds the specified edge as a pred of the current node if
375    /// not already.  It also adds the current node as a successor of the
376    /// specified node.
377    bool addPred(const SDep &D);
378
379    /// removePred - This removes the specified edge as a pred of the current
380    /// node if it exists.  It also removes the current node as a successor of
381    /// the specified node.
382    void removePred(const SDep &D);
383
384    /// getDepth - Return the depth of this node, which is the length of the
385    /// maximum path up to any node which has no predecessors.
386    unsigned getDepth() const {
387      if (!isDepthCurrent)
388        const_cast<SUnit *>(this)->ComputeDepth();
389      return Depth;
390    }
391
392    /// getHeight - Return the height of this node, which is the length of the
393    /// maximum path down to any node which has no successors.
394    unsigned getHeight() const {
395      if (!isHeightCurrent)
396        const_cast<SUnit *>(this)->ComputeHeight();
397      return Height;
398    }
399
400    /// setDepthToAtLeast - If NewDepth is greater than this node's
401    /// depth value, set it to be the new depth value. This also
402    /// recursively marks successor nodes dirty.
403    void setDepthToAtLeast(unsigned NewDepth);
404
405    /// setDepthToAtLeast - If NewDepth is greater than this node's
406    /// depth value, set it to be the new height value. This also
407    /// recursively marks predecessor nodes dirty.
408    void setHeightToAtLeast(unsigned NewHeight);
409
410    /// setDepthDirty - Set a flag in this node to indicate that its
411    /// stored Depth value will require recomputation the next time
412    /// getDepth() is called.
413    void setDepthDirty();
414
415    /// setHeightDirty - Set a flag in this node to indicate that its
416    /// stored Height value will require recomputation the next time
417    /// getHeight() is called.
418    void setHeightDirty();
419
420    /// isPred - Test if node N is a predecessor of this node.
421    bool isPred(SUnit *N) {
422      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
423        if (Preds[i].getSUnit() == N)
424          return true;
425      return false;
426    }
427
428    /// isSucc - Test if node N is a successor of this node.
429    bool isSucc(SUnit *N) {
430      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
431        if (Succs[i].getSUnit() == N)
432          return true;
433      return false;
434    }
435
436    bool isTopReady() const {
437      return NumPredsLeft == 0;
438    }
439    bool isBottomReady() const {
440      return NumSuccsLeft == 0;
441    }
442
443    void dump(const ScheduleDAG *G) const;
444    void dumpAll(const ScheduleDAG *G) const;
445    void print(raw_ostream &O, const ScheduleDAG *G) const;
446
447  private:
448    void ComputeDepth();
449    void ComputeHeight();
450  };
451
452  //===--------------------------------------------------------------------===//
453  /// SchedulingPriorityQueue - This interface is used to plug different
454  /// priorities computation algorithms into the list scheduler. It implements
455  /// the interface of a standard priority queue, where nodes are inserted in
456  /// arbitrary order and returned in priority order.  The computation of the
457  /// priority and the representation of the queue are totally up to the
458  /// implementation to decide.
459  ///
460  class SchedulingPriorityQueue {
461    virtual void anchor();
462    unsigned CurCycle;
463    bool HasReadyFilter;
464  public:
465    SchedulingPriorityQueue(bool rf = false):
466      CurCycle(0), HasReadyFilter(rf) {}
467    virtual ~SchedulingPriorityQueue() {}
468
469    virtual bool isBottomUp() const = 0;
470
471    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
472    virtual void addNode(const SUnit *SU) = 0;
473    virtual void updateNode(const SUnit *SU) = 0;
474    virtual void releaseState() = 0;
475
476    virtual bool empty() const = 0;
477
478    bool hasReadyFilter() const { return HasReadyFilter; }
479
480    virtual bool tracksRegPressure() const { return false; }
481
482    virtual bool isReady(SUnit *) const {
483      assert(!HasReadyFilter && "The ready filter must override isReady()");
484      return true;
485    }
486    virtual void push(SUnit *U) = 0;
487
488    void push_all(const std::vector<SUnit *> &Nodes) {
489      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
490           E = Nodes.end(); I != E; ++I)
491        push(*I);
492    }
493
494    virtual SUnit *pop() = 0;
495
496    virtual void remove(SUnit *SU) = 0;
497
498    virtual void dump(ScheduleDAG *) const {}
499
500    /// scheduledNode - As each node is scheduled, this method is invoked.  This
501    /// allows the priority function to adjust the priority of related
502    /// unscheduled nodes, for example.
503    ///
504    virtual void scheduledNode(SUnit *) {}
505
506    virtual void unscheduledNode(SUnit *) {}
507
508    void setCurCycle(unsigned Cycle) {
509      CurCycle = Cycle;
510    }
511
512    unsigned getCurCycle() const {
513      return CurCycle;
514    }
515  };
516
517  class ScheduleDAG {
518  public:
519    const TargetMachine &TM;              // Target processor
520    const TargetInstrInfo *TII;           // Target instruction information
521    const TargetRegisterInfo *TRI;        // Target processor register info
522    MachineFunction &MF;                  // Machine function
523    MachineRegisterInfo &MRI;             // Virtual/real register map
524    std::vector<SUnit> SUnits;            // The scheduling units.
525    SUnit EntrySU;                        // Special node for the region entry.
526    SUnit ExitSU;                         // Special node for the region exit.
527
528#ifdef NDEBUG
529    static const bool StressSched = false;
530#else
531    bool StressSched;
532#endif
533
534    explicit ScheduleDAG(MachineFunction &mf);
535
536    virtual ~ScheduleDAG();
537
538    /// clearDAG - clear the DAG state (between regions).
539    void clearDAG();
540
541    /// getInstrDesc - Return the MCInstrDesc of this SUnit.
542    /// Return NULL for SDNodes without a machine opcode.
543    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
544      if (SU->isInstr()) return &SU->getInstr()->getDesc();
545      return getNodeDesc(SU->getNode());
546    }
547
548    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
549    /// using 'dot'.
550    ///
551    void viewGraph(const Twine &Name, const Twine &Title);
552    void viewGraph();
553
554    virtual void dumpNode(const SUnit *SU) const = 0;
555
556    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
557    /// of the ScheduleDAG.
558    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
559
560    /// getDAGLabel - Return a label for the region of code covered by the DAG.
561    virtual std::string getDAGName() const = 0;
562
563    /// addCustomGraphFeatures - Add custom features for a visualization of
564    /// the ScheduleDAG.
565    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
566
567#ifndef NDEBUG
568    /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
569    /// their state is consistent. Return the number of scheduled SUnits.
570    unsigned VerifyScheduledDAG(bool isBottomUp);
571#endif
572
573  private:
574    // Return the MCInstrDesc of this SDNode or NULL.
575    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
576  };
577
578  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
579                                             SUnit, ptrdiff_t> {
580    SUnit *Node;
581    unsigned Operand;
582
583    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
584  public:
585    bool operator==(const SUnitIterator& x) const {
586      return Operand == x.Operand;
587    }
588    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
589
590    const SUnitIterator &operator=(const SUnitIterator &I) {
591      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
592      Operand = I.Operand;
593      return *this;
594    }
595
596    pointer operator*() const {
597      return Node->Preds[Operand].getSUnit();
598    }
599    pointer operator->() const { return operator*(); }
600
601    SUnitIterator& operator++() {                // Preincrement
602      ++Operand;
603      return *this;
604    }
605    SUnitIterator operator++(int) { // Postincrement
606      SUnitIterator tmp = *this; ++*this; return tmp;
607    }
608
609    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
610    static SUnitIterator end  (SUnit *N) {
611      return SUnitIterator(N, (unsigned)N->Preds.size());
612    }
613
614    unsigned getOperand() const { return Operand; }
615    const SUnit *getNode() const { return Node; }
616    /// isCtrlDep - Test if this is not an SDep::Data dependence.
617    bool isCtrlDep() const {
618      return getSDep().isCtrl();
619    }
620    bool isArtificialDep() const {
621      return getSDep().isArtificial();
622    }
623    const SDep &getSDep() const {
624      return Node->Preds[Operand];
625    }
626  };
627
628  template <> struct GraphTraits<SUnit*> {
629    typedef SUnit NodeType;
630    typedef SUnitIterator ChildIteratorType;
631    static inline NodeType *getEntryNode(SUnit *N) { return N; }
632    static inline ChildIteratorType child_begin(NodeType *N) {
633      return SUnitIterator::begin(N);
634    }
635    static inline ChildIteratorType child_end(NodeType *N) {
636      return SUnitIterator::end(N);
637    }
638  };
639
640  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
641    typedef std::vector<SUnit>::iterator nodes_iterator;
642    static nodes_iterator nodes_begin(ScheduleDAG *G) {
643      return G->SUnits.begin();
644    }
645    static nodes_iterator nodes_end(ScheduleDAG *G) {
646      return G->SUnits.end();
647    }
648  };
649
650  /// ScheduleDAGTopologicalSort is a class that computes a topological
651  /// ordering for SUnits and provides methods for dynamically updating
652  /// the ordering as new edges are added.
653  ///
654  /// This allows a very fast implementation of IsReachable, for example.
655  ///
656  class ScheduleDAGTopologicalSort {
657    /// SUnits - A reference to the ScheduleDAG's SUnits.
658    std::vector<SUnit> &SUnits;
659
660    /// Index2Node - Maps topological index to the node number.
661    std::vector<int> Index2Node;
662    /// Node2Index - Maps the node number to its topological index.
663    std::vector<int> Node2Index;
664    /// Visited - a set of nodes visited during a DFS traversal.
665    BitVector Visited;
666
667    /// DFS - make a DFS traversal and mark all nodes affected by the
668    /// edge insertion. These nodes will later get new topological indexes
669    /// by means of the Shift method.
670    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
671
672    /// Shift - reassign topological indexes for the nodes in the DAG
673    /// to preserve the topological ordering.
674    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
675
676    /// Allocate - assign the topological index to the node n.
677    void Allocate(int n, int index);
678
679  public:
680    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
681
682    /// InitDAGTopologicalSorting - create the initial topological
683    /// ordering from the DAG to be scheduled.
684    void InitDAGTopologicalSorting();
685
686    /// IsReachable - Checks if SU is reachable from TargetSU.
687    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
688
689    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
690    /// will create a cycle.
691    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
692
693    /// AddPred - Updates the topological ordering to accommodate an edge
694    /// to be added from SUnit X to SUnit Y.
695    void AddPred(SUnit *Y, SUnit *X);
696
697    /// RemovePred - Updates the topological ordering to accommodate an
698    /// an edge to be removed from the specified node N from the predecessors
699    /// of the current node M.
700    void RemovePred(SUnit *M, SUnit *N);
701
702    typedef std::vector<int>::iterator iterator;
703    typedef std::vector<int>::const_iterator const_iterator;
704    iterator begin() { return Index2Node.begin(); }
705    const_iterator begin() const { return Index2Node.begin(); }
706    iterator end() { return Index2Node.end(); }
707    const_iterator end() const { return Index2Node.end(); }
708
709    typedef std::vector<int>::reverse_iterator reverse_iterator;
710    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
711    reverse_iterator rbegin() { return Index2Node.rbegin(); }
712    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
713    reverse_iterator rend() { return Index2Node.rend(); }
714    const_reverse_iterator rend() const { return Index2Node.rend(); }
715  };
716}
717
718#endif
719