1/* Support for HPPA 64-bit ELF
2   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3   Free Software Foundation, Inc.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20
21#include "alloca-conf.h"
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#define ARCH_SIZE	       64
30
31#define PLT_ENTRY_SIZE 0x10
32#define DLT_ENTRY_SIZE 0x8
33#define OPD_ENTRY_SIZE 0x20
34
35#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37/* The stub is supposed to load the target address and target's DP
38   value out of the PLT, then do an external branch to the target
39   address.
40
41   LDD PLTOFF(%r27),%r1
42   BVE (%r1)
43   LDD PLTOFF+8(%r27),%r27
44
45   Note that we must use the LDD with a 14 bit displacement, not the one
46   with a 5 bit displacement.  */
47static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48			  0x53, 0x7b, 0x00, 0x00 };
49
50struct elf64_hppa_dyn_hash_entry
51{
52  struct bfd_hash_entry root;
53
54  /* Offsets for this symbol in various linker sections.  */
55  bfd_vma dlt_offset;
56  bfd_vma plt_offset;
57  bfd_vma opd_offset;
58  bfd_vma stub_offset;
59
60  /* The symbol table entry, if any, that this was derived from.  */
61  struct elf_link_hash_entry *h;
62
63  /* The index of the (possibly local) symbol in the input bfd and its
64     associated BFD.  Needed so that we can have relocs against local
65     symbols in shared libraries.  */
66  long sym_indx;
67  bfd *owner;
68
69  /* Dynamic symbols may need to have two different values.  One for
70     the dynamic symbol table, one for the normal symbol table.
71
72     In such cases we store the symbol's real value and section
73     index here so we can restore the real value before we write
74     the normal symbol table.  */
75  bfd_vma st_value;
76  int st_shndx;
77
78  /* Used to count non-got, non-plt relocations for delayed sizing
79     of relocation sections.  */
80  struct elf64_hppa_dyn_reloc_entry
81  {
82    /* Next relocation in the chain.  */
83    struct elf64_hppa_dyn_reloc_entry *next;
84
85    /* The type of the relocation.  */
86    int type;
87
88    /* The input section of the relocation.  */
89    asection *sec;
90
91    /* The index of the section symbol for the input section of
92       the relocation.  Only needed when building shared libraries.  */
93    int sec_symndx;
94
95    /* The offset within the input section of the relocation.  */
96    bfd_vma offset;
97
98    /* The addend for the relocation.  */
99    bfd_vma addend;
100
101  } *reloc_entries;
102
103  /* Nonzero if this symbol needs an entry in one of the linker
104     sections.  */
105  unsigned want_dlt;
106  unsigned want_plt;
107  unsigned want_opd;
108  unsigned want_stub;
109};
110
111struct elf64_hppa_dyn_hash_table
112{
113  struct bfd_hash_table root;
114};
115
116struct elf64_hppa_link_hash_table
117{
118  struct elf_link_hash_table root;
119
120  /* Shortcuts to get to the various linker defined sections.  */
121  asection *dlt_sec;
122  asection *dlt_rel_sec;
123  asection *plt_sec;
124  asection *plt_rel_sec;
125  asection *opd_sec;
126  asection *opd_rel_sec;
127  asection *other_rel_sec;
128
129  /* Offset of __gp within .plt section.  When the PLT gets large we want
130     to slide __gp into the PLT section so that we can continue to use
131     single DP relative instructions to load values out of the PLT.  */
132  bfd_vma gp_offset;
133
134  /* Note this is not strictly correct.  We should create a stub section for
135     each input section with calls.  The stub section should be placed before
136     the section with the call.  */
137  asection *stub_sec;
138
139  bfd_vma text_segment_base;
140  bfd_vma data_segment_base;
141
142  struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144  /* We build tables to map from an input section back to its
145     symbol index.  This is the BFD for which we currently have
146     a map.  */
147  bfd *section_syms_bfd;
148
149  /* Array of symbol numbers for each input section attached to the
150     current BFD.  */
151  int *section_syms;
152};
153
154#define elf64_hppa_hash_table(p) \
155  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157typedef struct bfd_hash_entry *(*new_hash_entry_func)
158  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161  PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162	   const char *string));
163static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164  PARAMS ((bfd *abfd));
165static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166  PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167	   bfd_boolean create, bfd_boolean copy));
168static void elf64_hppa_dyn_hash_traverse
169  PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170	   bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171	   PTR info));
172
173static const char *get_dyn_name
174  PARAMS ((bfd *, struct elf_link_hash_entry *,
175	   const Elf_Internal_Rela *, char **, size_t *));
176
177/* This must follow the definitions of the various derived linker
178   hash tables and shared functions.  */
179#include "elf-hppa.h"
180
181static bfd_boolean elf64_hppa_object_p
182  PARAMS ((bfd *));
183
184static void elf64_hppa_post_process_headers
185  PARAMS ((bfd *, struct bfd_link_info *));
186
187static bfd_boolean elf64_hppa_create_dynamic_sections
188  PARAMS ((bfd *, struct bfd_link_info *));
189
190static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194  PARAMS ((struct elf_link_hash_entry *, PTR));
195
196static bfd_boolean elf64_hppa_size_dynamic_sections
197  PARAMS ((bfd *, struct bfd_link_info *));
198
199static bfd_boolean elf64_hppa_link_output_symbol_hook
200  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201	   asection *, struct elf_link_hash_entry *));
202
203static bfd_boolean elf64_hppa_finish_dynamic_symbol
204  PARAMS ((bfd *, struct bfd_link_info *,
205	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207static enum elf_reloc_type_class elf64_hppa_reloc_type_class
208  PARAMS ((const Elf_Internal_Rela *));
209
210static bfd_boolean elf64_hppa_finish_dynamic_sections
211  PARAMS ((bfd *, struct bfd_link_info *));
212
213static bfd_boolean elf64_hppa_check_relocs
214  PARAMS ((bfd *, struct bfd_link_info *,
215	   asection *, const Elf_Internal_Rela *));
216
217static bfd_boolean elf64_hppa_dynamic_symbol_p
218  PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
219
220static bfd_boolean elf64_hppa_mark_exported_functions
221  PARAMS ((struct elf_link_hash_entry *, PTR));
222
223static bfd_boolean elf64_hppa_finalize_opd
224  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
225
226static bfd_boolean elf64_hppa_finalize_dlt
227  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static bfd_boolean allocate_global_data_dlt
230  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static bfd_boolean allocate_global_data_plt
233  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static bfd_boolean allocate_global_data_stub
236  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static bfd_boolean allocate_global_data_opd
239  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static bfd_boolean get_reloc_section
242  PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
243
244static bfd_boolean count_dyn_reloc
245  PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
246	   int, asection *, int, bfd_vma, bfd_vma));
247
248static bfd_boolean allocate_dynrel_entries
249  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250
251static bfd_boolean elf64_hppa_finalize_dynreloc
252  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254static bfd_boolean get_opd
255  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
256
257static bfd_boolean get_plt
258  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static bfd_boolean get_dlt
261  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static bfd_boolean get_stub
264  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static int elf64_hppa_elf_get_symbol_type
267  PARAMS ((Elf_Internal_Sym *, int));
268
269static bfd_boolean
270elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
271				bfd *abfd ATTRIBUTE_UNUSED,
272				new_hash_entry_func new,
273				unsigned int entsize)
274{
275  memset (ht, 0, sizeof (*ht));
276  return bfd_hash_table_init (&ht->root, new, entsize);
277}
278
279static struct bfd_hash_entry*
280elf64_hppa_new_dyn_hash_entry (entry, table, string)
281     struct bfd_hash_entry *entry;
282     struct bfd_hash_table *table;
283     const char *string;
284{
285  struct elf64_hppa_dyn_hash_entry *ret;
286  ret = (struct elf64_hppa_dyn_hash_entry *) entry;
287
288  /* Allocate the structure if it has not already been allocated by a
289     subclass.  */
290  if (!ret)
291    ret = bfd_hash_allocate (table, sizeof (*ret));
292
293  if (!ret)
294    return 0;
295
296  /* Call the allocation method of the superclass.  */
297  ret = ((struct elf64_hppa_dyn_hash_entry *)
298	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
299
300  /* Initialize our local data.  All zeros.  */
301  memset (&ret->dlt_offset, 0,
302	  (sizeof (struct elf64_hppa_dyn_hash_entry)
303	   - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
304
305  return &ret->root;
306}
307
308/* Create the derived linker hash table.  The PA64 ELF port uses this
309   derived hash table to keep information specific to the PA ElF
310   linker (without using static variables).  */
311
312static struct bfd_link_hash_table*
313elf64_hppa_hash_table_create (abfd)
314     bfd *abfd;
315{
316  struct elf64_hppa_link_hash_table *ret;
317
318  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
319  if (!ret)
320    return 0;
321  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
322				      _bfd_elf_link_hash_newfunc,
323				      sizeof (struct elf_link_hash_entry)))
324    {
325      bfd_release (abfd, ret);
326      return 0;
327    }
328
329  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
330				       elf64_hppa_new_dyn_hash_entry,
331				       sizeof (struct elf64_hppa_dyn_hash_entry)))
332    return 0;
333  return &ret->root.root;
334}
335
336/* Look up an entry in a PA64 ELF linker hash table.  */
337
338static struct elf64_hppa_dyn_hash_entry *
339elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340     struct elf64_hppa_dyn_hash_table *table;
341     const char *string;
342     bfd_boolean create, copy;
343{
344  return ((struct elf64_hppa_dyn_hash_entry *)
345	  bfd_hash_lookup (&table->root, string, create, copy));
346}
347
348/* Traverse a PA64 ELF linker hash table.  */
349
350static void
351elf64_hppa_dyn_hash_traverse (table, func, info)
352     struct elf64_hppa_dyn_hash_table *table;
353     bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354     PTR info;
355{
356  (bfd_hash_traverse
357   (&table->root,
358    (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359    info));
360}
361
362/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364   Additionally we set the default architecture and machine.  */
365static bfd_boolean
366elf64_hppa_object_p (abfd)
367     bfd *abfd;
368{
369  Elf_Internal_Ehdr * i_ehdrp;
370  unsigned int flags;
371
372  i_ehdrp = elf_elfheader (abfd);
373  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374    {
375      /* GCC on hppa-linux produces binaries with OSABI=Linux,
376	 but the kernel produces corefiles with OSABI=SysV.  */
377      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
378	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
379	return FALSE;
380    }
381  else
382    {
383      /* HPUX produces binaries with OSABI=HPUX,
384	 but the kernel produces corefiles with OSABI=SysV.  */
385      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
386	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
387	return FALSE;
388    }
389
390  flags = i_ehdrp->e_flags;
391  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
392    {
393    case EFA_PARISC_1_0:
394      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395    case EFA_PARISC_1_1:
396      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397    case EFA_PARISC_2_0:
398      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
399        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
400      else
401        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
402    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
403      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
404    }
405  /* Don't be fussy.  */
406  return TRUE;
407}
408
409/* Given section type (hdr->sh_type), return a boolean indicating
410   whether or not the section is an elf64-hppa specific section.  */
411static bfd_boolean
412elf64_hppa_section_from_shdr (bfd *abfd,
413			      Elf_Internal_Shdr *hdr,
414			      const char *name,
415			      int shindex)
416{
417  asection *newsect;
418
419  switch (hdr->sh_type)
420    {
421    case SHT_PARISC_EXT:
422      if (strcmp (name, ".PARISC.archext") != 0)
423	return FALSE;
424      break;
425    case SHT_PARISC_UNWIND:
426      if (strcmp (name, ".PARISC.unwind") != 0)
427	return FALSE;
428      break;
429    case SHT_PARISC_DOC:
430    case SHT_PARISC_ANNOT:
431    default:
432      return FALSE;
433    }
434
435  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
436    return FALSE;
437  newsect = hdr->bfd_section;
438
439  return TRUE;
440}
441
442/* Construct a string for use in the elf64_hppa_dyn_hash_table.  The
443   name describes what was once potentially anonymous memory.  We
444   allocate memory as necessary, possibly reusing PBUF/PLEN.  */
445
446static const char *
447get_dyn_name (abfd, h, rel, pbuf, plen)
448     bfd *abfd;
449     struct elf_link_hash_entry *h;
450     const Elf_Internal_Rela *rel;
451     char **pbuf;
452     size_t *plen;
453{
454  asection *sec = abfd->sections;
455  size_t nlen, tlen;
456  char *buf;
457  size_t len;
458
459  if (h && rel->r_addend == 0)
460    return h->root.root.string;
461
462  if (h)
463    nlen = strlen (h->root.root.string);
464  else
465    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
466  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
467
468  len = *plen;
469  buf = *pbuf;
470  if (len < tlen)
471    {
472      if (buf)
473	free (buf);
474      *pbuf = buf = malloc (tlen);
475      *plen = len = tlen;
476      if (!buf)
477	return NULL;
478    }
479
480  if (h)
481    {
482      memcpy (buf, h->root.root.string, nlen);
483      buf[nlen++] = '+';
484      sprintf_vma (buf + nlen, rel->r_addend);
485    }
486  else
487    {
488      nlen = sprintf (buf, "%x:%lx",
489		      sec->id & 0xffffffff,
490		      (long) ELF64_R_SYM (rel->r_info));
491      if (rel->r_addend)
492	{
493	  buf[nlen++] = '+';
494	  sprintf_vma (buf + nlen, rel->r_addend);
495	}
496    }
497
498  return buf;
499}
500
501/* SEC is a section containing relocs for an input BFD when linking; return
502   a suitable section for holding relocs in the output BFD for a link.  */
503
504static bfd_boolean
505get_reloc_section (abfd, hppa_info, sec)
506     bfd *abfd;
507     struct elf64_hppa_link_hash_table *hppa_info;
508     asection *sec;
509{
510  const char *srel_name;
511  asection *srel;
512  bfd *dynobj;
513
514  srel_name = (bfd_elf_string_from_elf_section
515	       (abfd, elf_elfheader(abfd)->e_shstrndx,
516		elf_section_data(sec)->rel_hdr.sh_name));
517  if (srel_name == NULL)
518    return FALSE;
519
520  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
521	       && strcmp (bfd_get_section_name (abfd, sec),
522			  srel_name + 5) == 0)
523	      || (CONST_STRNEQ (srel_name, ".rel")
524		  && strcmp (bfd_get_section_name (abfd, sec),
525			     srel_name + 4) == 0));
526
527  dynobj = hppa_info->root.dynobj;
528  if (!dynobj)
529    hppa_info->root.dynobj = dynobj = abfd;
530
531  srel = bfd_get_section_by_name (dynobj, srel_name);
532  if (srel == NULL)
533    {
534      srel = bfd_make_section_with_flags (dynobj, srel_name,
535					  (SEC_ALLOC
536					   | SEC_LOAD
537					   | SEC_HAS_CONTENTS
538					   | SEC_IN_MEMORY
539					   | SEC_LINKER_CREATED
540					   | SEC_READONLY));
541      if (srel == NULL
542	  || !bfd_set_section_alignment (dynobj, srel, 3))
543	return FALSE;
544    }
545
546  hppa_info->other_rel_sec = srel;
547  return TRUE;
548}
549
550/* Add a new entry to the list of dynamic relocations against DYN_H.
551
552   We use this to keep a record of all the FPTR relocations against a
553   particular symbol so that we can create FPTR relocations in the
554   output file.  */
555
556static bfd_boolean
557count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
558     bfd *abfd;
559     struct elf64_hppa_dyn_hash_entry *dyn_h;
560     int type;
561     asection *sec;
562     int sec_symndx;
563     bfd_vma offset;
564     bfd_vma addend;
565{
566  struct elf64_hppa_dyn_reloc_entry *rent;
567
568  rent = (struct elf64_hppa_dyn_reloc_entry *)
569  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
570  if (!rent)
571    return FALSE;
572
573  rent->next = dyn_h->reloc_entries;
574  rent->type = type;
575  rent->sec = sec;
576  rent->sec_symndx = sec_symndx;
577  rent->offset = offset;
578  rent->addend = addend;
579  dyn_h->reloc_entries = rent;
580
581  return TRUE;
582}
583
584/* Scan the RELOCS and record the type of dynamic entries that each
585   referenced symbol needs.  */
586
587static bfd_boolean
588elf64_hppa_check_relocs (abfd, info, sec, relocs)
589     bfd *abfd;
590     struct bfd_link_info *info;
591     asection *sec;
592     const Elf_Internal_Rela *relocs;
593{
594  struct elf64_hppa_link_hash_table *hppa_info;
595  const Elf_Internal_Rela *relend;
596  Elf_Internal_Shdr *symtab_hdr;
597  const Elf_Internal_Rela *rel;
598  asection *dlt, *plt, *stubs;
599  char *buf;
600  size_t buf_len;
601  int sec_symndx;
602
603  if (info->relocatable)
604    return TRUE;
605
606  /* If this is the first dynamic object found in the link, create
607     the special sections required for dynamic linking.  */
608  if (! elf_hash_table (info)->dynamic_sections_created)
609    {
610      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
611	return FALSE;
612    }
613
614  hppa_info = elf64_hppa_hash_table (info);
615  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617  /* If necessary, build a new table holding section symbols indices
618     for this BFD.  */
619
620  if (info->shared && hppa_info->section_syms_bfd != abfd)
621    {
622      unsigned long i;
623      unsigned int highest_shndx;
624      Elf_Internal_Sym *local_syms = NULL;
625      Elf_Internal_Sym *isym, *isymend;
626      bfd_size_type amt;
627
628      /* We're done with the old cache of section index to section symbol
629	 index information.  Free it.
630
631	 ?!? Note we leak the last section_syms array.  Presumably we
632	 could free it in one of the later routines in this file.  */
633      if (hppa_info->section_syms)
634	free (hppa_info->section_syms);
635
636      /* Read this BFD's local symbols.  */
637      if (symtab_hdr->sh_info != 0)
638	{
639	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
640	  if (local_syms == NULL)
641	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
642					       symtab_hdr->sh_info, 0,
643					       NULL, NULL, NULL);
644	  if (local_syms == NULL)
645	    return FALSE;
646	}
647
648      /* Record the highest section index referenced by the local symbols.  */
649      highest_shndx = 0;
650      isymend = local_syms + symtab_hdr->sh_info;
651      for (isym = local_syms; isym < isymend; isym++)
652	{
653	  if (isym->st_shndx > highest_shndx)
654	    highest_shndx = isym->st_shndx;
655	}
656
657      /* Allocate an array to hold the section index to section symbol index
658	 mapping.  Bump by one since we start counting at zero.  */
659      highest_shndx++;
660      amt = highest_shndx;
661      amt *= sizeof (int);
662      hppa_info->section_syms = (int *) bfd_malloc (amt);
663
664      /* Now walk the local symbols again.  If we find a section symbol,
665	 record the index of the symbol into the section_syms array.  */
666      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
667	{
668	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
669	    hppa_info->section_syms[isym->st_shndx] = i;
670	}
671
672      /* We are finished with the local symbols.  */
673      if (local_syms != NULL
674	  && symtab_hdr->contents != (unsigned char *) local_syms)
675	{
676	  if (! info->keep_memory)
677	    free (local_syms);
678	  else
679	    {
680	      /* Cache the symbols for elf_link_input_bfd.  */
681	      symtab_hdr->contents = (unsigned char *) local_syms;
682	    }
683	}
684
685      /* Record which BFD we built the section_syms mapping for.  */
686      hppa_info->section_syms_bfd = abfd;
687    }
688
689  /* Record the symbol index for this input section.  We may need it for
690     relocations when building shared libraries.  When not building shared
691     libraries this value is never really used, but assign it to zero to
692     prevent out of bounds memory accesses in other routines.  */
693  if (info->shared)
694    {
695      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
696
697      /* If we did not find a section symbol for this section, then
698	 something went terribly wrong above.  */
699      if (sec_symndx == -1)
700	return FALSE;
701
702      sec_symndx = hppa_info->section_syms[sec_symndx];
703    }
704  else
705    sec_symndx = 0;
706
707  dlt = plt = stubs = NULL;
708  buf = NULL;
709  buf_len = 0;
710
711  relend = relocs + sec->reloc_count;
712  for (rel = relocs; rel < relend; ++rel)
713    {
714      enum
715	{
716	  NEED_DLT = 1,
717	  NEED_PLT = 2,
718	  NEED_STUB = 4,
719	  NEED_OPD = 8,
720	  NEED_DYNREL = 16,
721	};
722
723      struct elf_link_hash_entry *h = NULL;
724      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
725      struct elf64_hppa_dyn_hash_entry *dyn_h;
726      int need_entry;
727      const char *addr_name;
728      bfd_boolean maybe_dynamic;
729      int dynrel_type = R_PARISC_NONE;
730      static reloc_howto_type *howto;
731
732      if (r_symndx >= symtab_hdr->sh_info)
733	{
734	  /* We're dealing with a global symbol -- find its hash entry
735	     and mark it as being referenced.  */
736	  long indx = r_symndx - symtab_hdr->sh_info;
737	  h = elf_sym_hashes (abfd)[indx];
738	  while (h->root.type == bfd_link_hash_indirect
739		 || h->root.type == bfd_link_hash_warning)
740	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
741
742	  h->ref_regular = 1;
743	}
744
745      /* We can only get preliminary data on whether a symbol is
746	 locally or externally defined, as not all of the input files
747	 have yet been processed.  Do something with what we know, as
748	 this may help reduce memory usage and processing time later.  */
749      maybe_dynamic = FALSE;
750      if (h && ((info->shared
751		 && (!info->symbolic
752		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
753		|| !h->def_regular
754		|| h->root.type == bfd_link_hash_defweak))
755	maybe_dynamic = TRUE;
756
757      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
758      need_entry = 0;
759      switch (howto->type)
760	{
761	/* These are simple indirect references to symbols through the
762	   DLT.  We need to create a DLT entry for any symbols which
763	   appears in a DLTIND relocation.  */
764	case R_PARISC_DLTIND21L:
765	case R_PARISC_DLTIND14R:
766	case R_PARISC_DLTIND14F:
767	case R_PARISC_DLTIND14WR:
768	case R_PARISC_DLTIND14DR:
769	  need_entry = NEED_DLT;
770	  break;
771
772	/* ?!?  These need a DLT entry.  But I have no idea what to do with
773	   the "link time TP value.  */
774	case R_PARISC_LTOFF_TP21L:
775	case R_PARISC_LTOFF_TP14R:
776	case R_PARISC_LTOFF_TP14F:
777	case R_PARISC_LTOFF_TP64:
778	case R_PARISC_LTOFF_TP14WR:
779	case R_PARISC_LTOFF_TP14DR:
780	case R_PARISC_LTOFF_TP16F:
781	case R_PARISC_LTOFF_TP16WF:
782	case R_PARISC_LTOFF_TP16DF:
783	  need_entry = NEED_DLT;
784	  break;
785
786	/* These are function calls.  Depending on their precise target we
787	   may need to make a stub for them.  The stub uses the PLT, so we
788	   need to create PLT entries for these symbols too.  */
789	case R_PARISC_PCREL12F:
790	case R_PARISC_PCREL17F:
791	case R_PARISC_PCREL22F:
792	case R_PARISC_PCREL32:
793	case R_PARISC_PCREL64:
794	case R_PARISC_PCREL21L:
795	case R_PARISC_PCREL17R:
796	case R_PARISC_PCREL17C:
797	case R_PARISC_PCREL14R:
798	case R_PARISC_PCREL14F:
799	case R_PARISC_PCREL22C:
800	case R_PARISC_PCREL14WR:
801	case R_PARISC_PCREL14DR:
802	case R_PARISC_PCREL16F:
803	case R_PARISC_PCREL16WF:
804	case R_PARISC_PCREL16DF:
805	  need_entry = (NEED_PLT | NEED_STUB);
806	  break;
807
808	case R_PARISC_PLTOFF21L:
809	case R_PARISC_PLTOFF14R:
810	case R_PARISC_PLTOFF14F:
811	case R_PARISC_PLTOFF14WR:
812	case R_PARISC_PLTOFF14DR:
813	case R_PARISC_PLTOFF16F:
814	case R_PARISC_PLTOFF16WF:
815	case R_PARISC_PLTOFF16DF:
816	  need_entry = (NEED_PLT);
817	  break;
818
819	case R_PARISC_DIR64:
820	  if (info->shared || maybe_dynamic)
821	    need_entry = (NEED_DYNREL);
822	  dynrel_type = R_PARISC_DIR64;
823	  break;
824
825	/* This is an indirect reference through the DLT to get the address
826	   of a OPD descriptor.  Thus we need to make a DLT entry that points
827	   to an OPD entry.  */
828	case R_PARISC_LTOFF_FPTR21L:
829	case R_PARISC_LTOFF_FPTR14R:
830	case R_PARISC_LTOFF_FPTR14WR:
831	case R_PARISC_LTOFF_FPTR14DR:
832	case R_PARISC_LTOFF_FPTR32:
833	case R_PARISC_LTOFF_FPTR64:
834	case R_PARISC_LTOFF_FPTR16F:
835	case R_PARISC_LTOFF_FPTR16WF:
836	case R_PARISC_LTOFF_FPTR16DF:
837	  if (info->shared || maybe_dynamic)
838	    need_entry = (NEED_DLT | NEED_OPD);
839	  else
840	    need_entry = (NEED_DLT | NEED_OPD);
841	  dynrel_type = R_PARISC_FPTR64;
842	  break;
843
844	/* This is a simple OPD entry.  */
845	case R_PARISC_FPTR64:
846	  if (info->shared || maybe_dynamic)
847	    need_entry = (NEED_OPD | NEED_DYNREL);
848	  else
849	    need_entry = (NEED_OPD);
850	  dynrel_type = R_PARISC_FPTR64;
851	  break;
852
853	/* Add more cases as needed.  */
854	}
855
856      if (!need_entry)
857	continue;
858
859      /* Collect a canonical name for this address.  */
860      addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
861
862      /* Collect the canonical entry data for this address.  */
863      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
864					  addr_name, TRUE, TRUE);
865      BFD_ASSERT (dyn_h);
866
867      /* Stash away enough information to be able to find this symbol
868	 regardless of whether or not it is local or global.  */
869      dyn_h->h = h;
870      dyn_h->owner = abfd;
871      dyn_h->sym_indx = r_symndx;
872
873      /* ?!? We may need to do some error checking in here.  */
874      /* Create what's needed.  */
875      if (need_entry & NEED_DLT)
876	{
877	  if (! hppa_info->dlt_sec
878	      && ! get_dlt (abfd, info, hppa_info))
879	    goto err_out;
880	  dyn_h->want_dlt = 1;
881	}
882
883      if (need_entry & NEED_PLT)
884	{
885	  if (! hppa_info->plt_sec
886	      && ! get_plt (abfd, info, hppa_info))
887	    goto err_out;
888	  dyn_h->want_plt = 1;
889	}
890
891      if (need_entry & NEED_STUB)
892	{
893	  if (! hppa_info->stub_sec
894	      && ! get_stub (abfd, info, hppa_info))
895	    goto err_out;
896	  dyn_h->want_stub = 1;
897	}
898
899      if (need_entry & NEED_OPD)
900	{
901	  if (! hppa_info->opd_sec
902	      && ! get_opd (abfd, info, hppa_info))
903	    goto err_out;
904
905	  dyn_h->want_opd = 1;
906
907	  /* FPTRs are not allocated by the dynamic linker for PA64, though
908	     it is possible that will change in the future.  */
909
910	  /* This could be a local function that had its address taken, in
911	     which case H will be NULL.  */
912	  if (h)
913	    h->needs_plt = 1;
914	}
915
916      /* Add a new dynamic relocation to the chain of dynamic
917	 relocations for this symbol.  */
918      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
919	{
920	  if (! hppa_info->other_rel_sec
921	      && ! get_reloc_section (abfd, hppa_info, sec))
922	    goto err_out;
923
924	  if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
925				sec_symndx, rel->r_offset, rel->r_addend))
926	    goto err_out;
927
928	  /* If we are building a shared library and we just recorded
929	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
930	     section symbol for this section ends up in the dynamic
931	     symbol table.  */
932	  if (info->shared && dynrel_type == R_PARISC_FPTR64
933	      && ! (bfd_elf_link_record_local_dynamic_symbol
934		    (info, abfd, sec_symndx)))
935	    return FALSE;
936	}
937    }
938
939  if (buf)
940    free (buf);
941  return TRUE;
942
943 err_out:
944  if (buf)
945    free (buf);
946  return FALSE;
947}
948
949struct elf64_hppa_allocate_data
950{
951  struct bfd_link_info *info;
952  bfd_size_type ofs;
953};
954
955/* Should we do dynamic things to this symbol?  */
956
957static bfd_boolean
958elf64_hppa_dynamic_symbol_p (h, info)
959     struct elf_link_hash_entry *h;
960     struct bfd_link_info *info;
961{
962  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
963     and relocations that retrieve a function descriptor?  Assume the
964     worst for now.  */
965  if (_bfd_elf_dynamic_symbol_p (h, info, 1))
966    {
967      /* ??? Why is this here and not elsewhere is_local_label_name.  */
968      if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
969	return FALSE;
970
971      return TRUE;
972    }
973  else
974    return FALSE;
975}
976
977/* Mark all functions exported by this file so that we can later allocate
978   entries in .opd for them.  */
979
980static bfd_boolean
981elf64_hppa_mark_exported_functions (h, data)
982     struct elf_link_hash_entry *h;
983     PTR data;
984{
985  struct bfd_link_info *info = (struct bfd_link_info *)data;
986  struct elf64_hppa_link_hash_table *hppa_info;
987
988  hppa_info = elf64_hppa_hash_table (info);
989
990  if (h->root.type == bfd_link_hash_warning)
991    h = (struct elf_link_hash_entry *) h->root.u.i.link;
992
993  if (h
994      && (h->root.type == bfd_link_hash_defined
995	  || h->root.type == bfd_link_hash_defweak)
996      && h->root.u.def.section->output_section != NULL
997      && h->type == STT_FUNC)
998    {
999       struct elf64_hppa_dyn_hash_entry *dyn_h;
1000
1001      /* Add this symbol to the PA64 linker hash table.  */
1002      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1003					  h->root.root.string, TRUE, TRUE);
1004      BFD_ASSERT (dyn_h);
1005      dyn_h->h = h;
1006
1007      if (! hppa_info->opd_sec
1008	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1009	return FALSE;
1010
1011      dyn_h->want_opd = 1;
1012      /* Put a flag here for output_symbol_hook.  */
1013      dyn_h->st_shndx = -1;
1014      h->needs_plt = 1;
1015    }
1016
1017  return TRUE;
1018}
1019
1020/* Allocate space for a DLT entry.  */
1021
1022static bfd_boolean
1023allocate_global_data_dlt (dyn_h, data)
1024     struct elf64_hppa_dyn_hash_entry *dyn_h;
1025     PTR data;
1026{
1027  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1028
1029  if (dyn_h->want_dlt)
1030    {
1031      struct elf_link_hash_entry *h = dyn_h->h;
1032
1033      if (x->info->shared)
1034	{
1035	  /* Possibly add the symbol to the local dynamic symbol
1036	     table since we might need to create a dynamic relocation
1037	     against it.  */
1038	  if (! h
1039	      || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1040	    {
1041	      bfd *owner;
1042	      owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1043
1044	      if (! (bfd_elf_link_record_local_dynamic_symbol
1045		     (x->info, owner, dyn_h->sym_indx)))
1046		return FALSE;
1047	    }
1048	}
1049
1050      dyn_h->dlt_offset = x->ofs;
1051      x->ofs += DLT_ENTRY_SIZE;
1052    }
1053  return TRUE;
1054}
1055
1056/* Allocate space for a DLT.PLT entry.  */
1057
1058static bfd_boolean
1059allocate_global_data_plt (dyn_h, data)
1060     struct elf64_hppa_dyn_hash_entry *dyn_h;
1061     PTR data;
1062{
1063  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1064
1065  if (dyn_h->want_plt
1066      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1067      && !((dyn_h->h->root.type == bfd_link_hash_defined
1068	    || dyn_h->h->root.type == bfd_link_hash_defweak)
1069	   && dyn_h->h->root.u.def.section->output_section != NULL))
1070    {
1071      dyn_h->plt_offset = x->ofs;
1072      x->ofs += PLT_ENTRY_SIZE;
1073      if (dyn_h->plt_offset < 0x2000)
1074	elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1075    }
1076  else
1077    dyn_h->want_plt = 0;
1078
1079  return TRUE;
1080}
1081
1082/* Allocate space for a STUB entry.  */
1083
1084static bfd_boolean
1085allocate_global_data_stub (dyn_h, data)
1086     struct elf64_hppa_dyn_hash_entry *dyn_h;
1087     PTR data;
1088{
1089  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1090
1091  if (dyn_h->want_stub
1092      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1093      && !((dyn_h->h->root.type == bfd_link_hash_defined
1094	    || dyn_h->h->root.type == bfd_link_hash_defweak)
1095	   && dyn_h->h->root.u.def.section->output_section != NULL))
1096    {
1097      dyn_h->stub_offset = x->ofs;
1098      x->ofs += sizeof (plt_stub);
1099    }
1100  else
1101    dyn_h->want_stub = 0;
1102  return TRUE;
1103}
1104
1105/* Allocate space for a FPTR entry.  */
1106
1107static bfd_boolean
1108allocate_global_data_opd (dyn_h, data)
1109     struct elf64_hppa_dyn_hash_entry *dyn_h;
1110     PTR data;
1111{
1112  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1113
1114  if (dyn_h->want_opd)
1115    {
1116      struct elf_link_hash_entry *h = dyn_h->h;
1117
1118      if (h)
1119	while (h->root.type == bfd_link_hash_indirect
1120	       || h->root.type == bfd_link_hash_warning)
1121	  h = (struct elf_link_hash_entry *) h->root.u.i.link;
1122
1123      /* We never need an opd entry for a symbol which is not
1124	 defined by this output file.  */
1125      if (h && (h->root.type == bfd_link_hash_undefined
1126		|| h->root.type == bfd_link_hash_undefweak
1127		|| h->root.u.def.section->output_section == NULL))
1128	dyn_h->want_opd = 0;
1129
1130      /* If we are creating a shared library, took the address of a local
1131	 function or might export this function from this object file, then
1132	 we have to create an opd descriptor.  */
1133      else if (x->info->shared
1134	       || h == NULL
1135	       || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1136	       || (h->root.type == bfd_link_hash_defined
1137		   || h->root.type == bfd_link_hash_defweak))
1138	{
1139	  /* If we are creating a shared library, then we will have to
1140	     create a runtime relocation for the symbol to properly
1141	     initialize the .opd entry.  Make sure the symbol gets
1142	     added to the dynamic symbol table.  */
1143	  if (x->info->shared
1144	      && (h == NULL || (h->dynindx == -1)))
1145	    {
1146	      bfd *owner;
1147	      owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149	      if (!bfd_elf_link_record_local_dynamic_symbol
1150		    (x->info, owner, dyn_h->sym_indx))
1151		return FALSE;
1152	    }
1153
1154	  /* This may not be necessary or desirable anymore now that
1155	     we have some support for dealing with section symbols
1156	     in dynamic relocs.  But name munging does make the result
1157	     much easier to debug.  ie, the EPLT reloc will reference
1158	     a symbol like .foobar, instead of .text + offset.  */
1159	  if (x->info->shared && h)
1160	    {
1161	      char *new_name;
1162	      struct elf_link_hash_entry *nh;
1163
1164	      new_name = alloca (strlen (h->root.root.string) + 2);
1165	      new_name[0] = '.';
1166	      strcpy (new_name + 1, h->root.root.string);
1167
1168	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1169					 new_name, TRUE, TRUE, TRUE);
1170
1171	      nh->root.type = h->root.type;
1172	      nh->root.u.def.value = h->root.u.def.value;
1173	      nh->root.u.def.section = h->root.u.def.section;
1174
1175	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1176		return FALSE;
1177
1178	     }
1179	  dyn_h->opd_offset = x->ofs;
1180	  x->ofs += OPD_ENTRY_SIZE;
1181	}
1182
1183      /* Otherwise we do not need an opd entry.  */
1184      else
1185	dyn_h->want_opd = 0;
1186    }
1187  return TRUE;
1188}
1189
1190/* HP requires the EI_OSABI field to be filled in.  The assignment to
1191   EI_ABIVERSION may not be strictly necessary.  */
1192
1193static void
1194elf64_hppa_post_process_headers (abfd, link_info)
1195     bfd * abfd;
1196     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197{
1198  Elf_Internal_Ehdr * i_ehdrp;
1199
1200  i_ehdrp = elf_elfheader (abfd);
1201
1202  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1203    {
1204      i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205    }
1206  else
1207    {
1208      i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1209      i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210    }
1211}
1212
1213/* Create function descriptor section (.opd).  This section is called .opd
1214   because it contains "official procedure descriptors".  The "official"
1215   refers to the fact that these descriptors are used when taking the address
1216   of a procedure, thus ensuring a unique address for each procedure.  */
1217
1218static bfd_boolean
1219get_opd (abfd, info, hppa_info)
1220     bfd *abfd;
1221     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1222     struct elf64_hppa_link_hash_table *hppa_info;
1223{
1224  asection *opd;
1225  bfd *dynobj;
1226
1227  opd = hppa_info->opd_sec;
1228  if (!opd)
1229    {
1230      dynobj = hppa_info->root.dynobj;
1231      if (!dynobj)
1232	hppa_info->root.dynobj = dynobj = abfd;
1233
1234      opd = bfd_make_section_with_flags (dynobj, ".opd",
1235					 (SEC_ALLOC
1236					  | SEC_LOAD
1237					  | SEC_HAS_CONTENTS
1238					  | SEC_IN_MEMORY
1239					  | SEC_LINKER_CREATED));
1240      if (!opd
1241	  || !bfd_set_section_alignment (abfd, opd, 3))
1242	{
1243	  BFD_ASSERT (0);
1244	  return FALSE;
1245	}
1246
1247      hppa_info->opd_sec = opd;
1248    }
1249
1250  return TRUE;
1251}
1252
1253/* Create the PLT section.  */
1254
1255static bfd_boolean
1256get_plt (abfd, info, hppa_info)
1257     bfd *abfd;
1258     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1259     struct elf64_hppa_link_hash_table *hppa_info;
1260{
1261  asection *plt;
1262  bfd *dynobj;
1263
1264  plt = hppa_info->plt_sec;
1265  if (!plt)
1266    {
1267      dynobj = hppa_info->root.dynobj;
1268      if (!dynobj)
1269	hppa_info->root.dynobj = dynobj = abfd;
1270
1271      plt = bfd_make_section_with_flags (dynobj, ".plt",
1272					 (SEC_ALLOC
1273					  | SEC_LOAD
1274					  | SEC_HAS_CONTENTS
1275					  | SEC_IN_MEMORY
1276					  | SEC_LINKER_CREATED));
1277      if (!plt
1278	  || !bfd_set_section_alignment (abfd, plt, 3))
1279	{
1280	  BFD_ASSERT (0);
1281	  return FALSE;
1282	}
1283
1284      hppa_info->plt_sec = plt;
1285    }
1286
1287  return TRUE;
1288}
1289
1290/* Create the DLT section.  */
1291
1292static bfd_boolean
1293get_dlt (abfd, info, hppa_info)
1294     bfd *abfd;
1295     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1296     struct elf64_hppa_link_hash_table *hppa_info;
1297{
1298  asection *dlt;
1299  bfd *dynobj;
1300
1301  dlt = hppa_info->dlt_sec;
1302  if (!dlt)
1303    {
1304      dynobj = hppa_info->root.dynobj;
1305      if (!dynobj)
1306	hppa_info->root.dynobj = dynobj = abfd;
1307
1308      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1309					 (SEC_ALLOC
1310					  | SEC_LOAD
1311					  | SEC_HAS_CONTENTS
1312					  | SEC_IN_MEMORY
1313					  | SEC_LINKER_CREATED));
1314      if (!dlt
1315	  || !bfd_set_section_alignment (abfd, dlt, 3))
1316	{
1317	  BFD_ASSERT (0);
1318	  return FALSE;
1319	}
1320
1321      hppa_info->dlt_sec = dlt;
1322    }
1323
1324  return TRUE;
1325}
1326
1327/* Create the stubs section.  */
1328
1329static bfd_boolean
1330get_stub (abfd, info, hppa_info)
1331     bfd *abfd;
1332     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1333     struct elf64_hppa_link_hash_table *hppa_info;
1334{
1335  asection *stub;
1336  bfd *dynobj;
1337
1338  stub = hppa_info->stub_sec;
1339  if (!stub)
1340    {
1341      dynobj = hppa_info->root.dynobj;
1342      if (!dynobj)
1343	hppa_info->root.dynobj = dynobj = abfd;
1344
1345      stub = bfd_make_section_with_flags (dynobj, ".stub",
1346					  (SEC_ALLOC | SEC_LOAD
1347					   | SEC_HAS_CONTENTS
1348					   | SEC_IN_MEMORY
1349					   | SEC_READONLY
1350					   | SEC_LINKER_CREATED));
1351      if (!stub
1352	  || !bfd_set_section_alignment (abfd, stub, 3))
1353	{
1354	  BFD_ASSERT (0);
1355	  return FALSE;
1356	}
1357
1358      hppa_info->stub_sec = stub;
1359    }
1360
1361  return TRUE;
1362}
1363
1364/* Create sections necessary for dynamic linking.  This is only a rough
1365   cut and will likely change as we learn more about the somewhat
1366   unusual dynamic linking scheme HP uses.
1367
1368   .stub:
1369	Contains code to implement cross-space calls.  The first time one
1370	of the stubs is used it will call into the dynamic linker, later
1371	calls will go straight to the target.
1372
1373	The only stub we support right now looks like
1374
1375	ldd OFFSET(%dp),%r1
1376	bve %r0(%r1)
1377	ldd OFFSET+8(%dp),%dp
1378
1379	Other stubs may be needed in the future.  We may want the remove
1380	the break/nop instruction.  It is only used right now to keep the
1381	offset of a .plt entry and a .stub entry in sync.
1382
1383   .dlt:
1384	This is what most people call the .got.  HP used a different name.
1385	Losers.
1386
1387   .rela.dlt:
1388	Relocations for the DLT.
1389
1390   .plt:
1391	Function pointers as address,gp pairs.
1392
1393   .rela.plt:
1394	Should contain dynamic IPLT (and EPLT?) relocations.
1395
1396   .opd:
1397	FPTRS
1398
1399   .rela.opd:
1400	EPLT relocations for symbols exported from shared libraries.  */
1401
1402static bfd_boolean
1403elf64_hppa_create_dynamic_sections (abfd, info)
1404     bfd *abfd;
1405     struct bfd_link_info *info;
1406{
1407  asection *s;
1408
1409  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1410    return FALSE;
1411
1412  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1413    return FALSE;
1414
1415  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1416    return FALSE;
1417
1418  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1419    return FALSE;
1420
1421  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1422				   (SEC_ALLOC | SEC_LOAD
1423				    | SEC_HAS_CONTENTS
1424				    | SEC_IN_MEMORY
1425				    | SEC_READONLY
1426				    | SEC_LINKER_CREATED));
1427  if (s == NULL
1428      || !bfd_set_section_alignment (abfd, s, 3))
1429    return FALSE;
1430  elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1431
1432  s = bfd_make_section_with_flags (abfd, ".rela.plt",
1433				   (SEC_ALLOC | SEC_LOAD
1434				    | SEC_HAS_CONTENTS
1435				    | SEC_IN_MEMORY
1436				    | SEC_READONLY
1437				    | SEC_LINKER_CREATED));
1438  if (s == NULL
1439      || !bfd_set_section_alignment (abfd, s, 3))
1440    return FALSE;
1441  elf64_hppa_hash_table (info)->plt_rel_sec = s;
1442
1443  s = bfd_make_section_with_flags (abfd, ".rela.data",
1444				   (SEC_ALLOC | SEC_LOAD
1445				    | SEC_HAS_CONTENTS
1446				    | SEC_IN_MEMORY
1447				    | SEC_READONLY
1448				    | SEC_LINKER_CREATED));
1449  if (s == NULL
1450      || !bfd_set_section_alignment (abfd, s, 3))
1451    return FALSE;
1452  elf64_hppa_hash_table (info)->other_rel_sec = s;
1453
1454  s = bfd_make_section_with_flags (abfd, ".rela.opd",
1455				   (SEC_ALLOC | SEC_LOAD
1456				    | SEC_HAS_CONTENTS
1457				    | SEC_IN_MEMORY
1458				    | SEC_READONLY
1459				    | SEC_LINKER_CREATED));
1460  if (s == NULL
1461      || !bfd_set_section_alignment (abfd, s, 3))
1462    return FALSE;
1463  elf64_hppa_hash_table (info)->opd_rel_sec = s;
1464
1465  return TRUE;
1466}
1467
1468/* Allocate dynamic relocations for those symbols that turned out
1469   to be dynamic.  */
1470
1471static bfd_boolean
1472allocate_dynrel_entries (dyn_h, data)
1473     struct elf64_hppa_dyn_hash_entry *dyn_h;
1474     PTR data;
1475{
1476  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1477  struct elf64_hppa_link_hash_table *hppa_info;
1478  struct elf64_hppa_dyn_reloc_entry *rent;
1479  bfd_boolean dynamic_symbol, shared;
1480
1481  hppa_info = elf64_hppa_hash_table (x->info);
1482  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1483  shared = x->info->shared;
1484
1485  /* We may need to allocate relocations for a non-dynamic symbol
1486     when creating a shared library.  */
1487  if (!dynamic_symbol && !shared)
1488    return TRUE;
1489
1490  /* Take care of the normal data relocations.  */
1491
1492  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1493    {
1494      /* Allocate one iff we are building a shared library, the relocation
1495	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1496      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1497	continue;
1498
1499      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1500
1501      /* Make sure this symbol gets into the dynamic symbol table if it is
1502	 not already recorded.  ?!? This should not be in the loop since
1503	 the symbol need only be added once.  */
1504      if (dyn_h->h == 0
1505	  || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1506	if (!bfd_elf_link_record_local_dynamic_symbol
1507	    (x->info, rent->sec->owner, dyn_h->sym_indx))
1508	  return FALSE;
1509    }
1510
1511  /* Take care of the GOT and PLT relocations.  */
1512
1513  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1514    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1515
1516  /* If we are building a shared library, then every symbol that has an
1517     opd entry will need an EPLT relocation to relocate the symbol's address
1518     and __gp value based on the runtime load address.  */
1519  if (shared && dyn_h->want_opd)
1520    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1521
1522  if (dyn_h->want_plt && dynamic_symbol)
1523    {
1524      bfd_size_type t = 0;
1525
1526      /* Dynamic symbols get one IPLT relocation.  Local symbols in
1527	 shared libraries get two REL relocations.  Local symbols in
1528	 main applications get nothing.  */
1529      if (dynamic_symbol)
1530	t = sizeof (Elf64_External_Rela);
1531      else if (shared)
1532	t = 2 * sizeof (Elf64_External_Rela);
1533
1534      hppa_info->plt_rel_sec->size += t;
1535    }
1536
1537  return TRUE;
1538}
1539
1540/* Adjust a symbol defined by a dynamic object and referenced by a
1541   regular object.  */
1542
1543static bfd_boolean
1544elf64_hppa_adjust_dynamic_symbol (info, h)
1545     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1546     struct elf_link_hash_entry *h;
1547{
1548  /* ??? Undefined symbols with PLT entries should be re-defined
1549     to be the PLT entry.  */
1550
1551  /* If this is a weak symbol, and there is a real definition, the
1552     processor independent code will have arranged for us to see the
1553     real definition first, and we can just use the same value.  */
1554  if (h->u.weakdef != NULL)
1555    {
1556      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1557		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1558      h->root.u.def.section = h->u.weakdef->root.u.def.section;
1559      h->root.u.def.value = h->u.weakdef->root.u.def.value;
1560      return TRUE;
1561    }
1562
1563  /* If this is a reference to a symbol defined by a dynamic object which
1564     is not a function, we might allocate the symbol in our .dynbss section
1565     and allocate a COPY dynamic relocation.
1566
1567     But PA64 code is canonically PIC, so as a rule we can avoid this sort
1568     of hackery.  */
1569
1570  return TRUE;
1571}
1572
1573/* This function is called via elf_link_hash_traverse to mark millicode
1574   symbols with a dynindx of -1 and to remove the string table reference
1575   from the dynamic symbol table.  If the symbol is not a millicode symbol,
1576   elf64_hppa_mark_exported_functions is called.  */
1577
1578static bfd_boolean
1579elf64_hppa_mark_milli_and_exported_functions (h, data)
1580     struct elf_link_hash_entry *h;
1581     PTR data;
1582{
1583  struct bfd_link_info *info = (struct bfd_link_info *)data;
1584  struct elf_link_hash_entry *elf = h;
1585
1586  if (elf->root.type == bfd_link_hash_warning)
1587    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1588
1589  if (elf->type == STT_PARISC_MILLI)
1590    {
1591      if (elf->dynindx != -1)
1592	{
1593	  elf->dynindx = -1;
1594	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1595				  elf->dynstr_index);
1596	}
1597      return TRUE;
1598    }
1599
1600  return elf64_hppa_mark_exported_functions (h, data);
1601}
1602
1603/* Set the final sizes of the dynamic sections and allocate memory for
1604   the contents of our special sections.  */
1605
1606static bfd_boolean
1607elf64_hppa_size_dynamic_sections (output_bfd, info)
1608     bfd *output_bfd;
1609     struct bfd_link_info *info;
1610{
1611  bfd *dynobj;
1612  asection *s;
1613  bfd_boolean plt;
1614  bfd_boolean relocs;
1615  bfd_boolean reltext;
1616  struct elf64_hppa_allocate_data data;
1617  struct elf64_hppa_link_hash_table *hppa_info;
1618
1619  hppa_info = elf64_hppa_hash_table (info);
1620
1621  dynobj = elf_hash_table (info)->dynobj;
1622  BFD_ASSERT (dynobj != NULL);
1623
1624  /* Mark each function this program exports so that we will allocate
1625     space in the .opd section for each function's FPTR.  If we are
1626     creating dynamic sections, change the dynamic index of millicode
1627     symbols to -1 and remove them from the string table for .dynstr.
1628
1629     We have to traverse the main linker hash table since we have to
1630     find functions which may not have been mentioned in any relocs.  */
1631  elf_link_hash_traverse (elf_hash_table (info),
1632			  (elf_hash_table (info)->dynamic_sections_created
1633			   ? elf64_hppa_mark_milli_and_exported_functions
1634			   : elf64_hppa_mark_exported_functions),
1635			  info);
1636
1637  if (elf_hash_table (info)->dynamic_sections_created)
1638    {
1639      /* Set the contents of the .interp section to the interpreter.  */
1640      if (info->executable)
1641	{
1642	  s = bfd_get_section_by_name (dynobj, ".interp");
1643	  BFD_ASSERT (s != NULL);
1644	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1645	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1646	}
1647    }
1648  else
1649    {
1650      /* We may have created entries in the .rela.got section.
1651	 However, if we are not creating the dynamic sections, we will
1652	 not actually use these entries.  Reset the size of .rela.dlt,
1653	 which will cause it to get stripped from the output file
1654	 below.  */
1655      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1656      if (s != NULL)
1657	s->size = 0;
1658    }
1659
1660  /* Allocate the GOT entries.  */
1661
1662  data.info = info;
1663  if (elf64_hppa_hash_table (info)->dlt_sec)
1664    {
1665      data.ofs = 0x0;
1666      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1667				    allocate_global_data_dlt, &data);
1668      hppa_info->dlt_sec->size = data.ofs;
1669
1670      data.ofs = 0x0;
1671      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672				    allocate_global_data_plt, &data);
1673      hppa_info->plt_sec->size = data.ofs;
1674
1675      data.ofs = 0x0;
1676      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677				    allocate_global_data_stub, &data);
1678      hppa_info->stub_sec->size = data.ofs;
1679    }
1680
1681  /* Allocate space for entries in the .opd section.  */
1682  if (elf64_hppa_hash_table (info)->opd_sec)
1683    {
1684      data.ofs = 0;
1685      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1686				    allocate_global_data_opd, &data);
1687      hppa_info->opd_sec->size = data.ofs;
1688    }
1689
1690  /* Now allocate space for dynamic relocations, if necessary.  */
1691  if (hppa_info->root.dynamic_sections_created)
1692    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1693				  allocate_dynrel_entries, &data);
1694
1695  /* The sizes of all the sections are set.  Allocate memory for them.  */
1696  plt = FALSE;
1697  relocs = FALSE;
1698  reltext = FALSE;
1699  for (s = dynobj->sections; s != NULL; s = s->next)
1700    {
1701      const char *name;
1702
1703      if ((s->flags & SEC_LINKER_CREATED) == 0)
1704	continue;
1705
1706      /* It's OK to base decisions on the section name, because none
1707	 of the dynobj section names depend upon the input files.  */
1708      name = bfd_get_section_name (dynobj, s);
1709
1710      if (strcmp (name, ".plt") == 0)
1711	{
1712	  /* Remember whether there is a PLT.  */
1713	  plt = s->size != 0;
1714	}
1715      else if (strcmp (name, ".opd") == 0
1716	       || CONST_STRNEQ (name, ".dlt")
1717	       || strcmp (name, ".stub") == 0
1718	       || strcmp (name, ".got") == 0)
1719	{
1720	  /* Strip this section if we don't need it; see the comment below.  */
1721	}
1722      else if (CONST_STRNEQ (name, ".rela"))
1723	{
1724	  if (s->size != 0)
1725	    {
1726	      asection *target;
1727
1728	      /* Remember whether there are any reloc sections other
1729		 than .rela.plt.  */
1730	      if (strcmp (name, ".rela.plt") != 0)
1731		{
1732		  const char *outname;
1733
1734		  relocs = TRUE;
1735
1736		  /* If this relocation section applies to a read only
1737		     section, then we probably need a DT_TEXTREL
1738		     entry.  The entries in the .rela.plt section
1739		     really apply to the .got section, which we
1740		     created ourselves and so know is not readonly.  */
1741		  outname = bfd_get_section_name (output_bfd,
1742						  s->output_section);
1743		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1744		  if (target != NULL
1745		      && (target->flags & SEC_READONLY) != 0
1746		      && (target->flags & SEC_ALLOC) != 0)
1747		    reltext = TRUE;
1748		}
1749
1750	      /* We use the reloc_count field as a counter if we need
1751		 to copy relocs into the output file.  */
1752	      s->reloc_count = 0;
1753	    }
1754	}
1755      else
1756	{
1757	  /* It's not one of our sections, so don't allocate space.  */
1758	  continue;
1759	}
1760
1761      if (s->size == 0)
1762	{
1763	  /* If we don't need this section, strip it from the
1764	     output file.  This is mostly to handle .rela.bss and
1765	     .rela.plt.  We must create both sections in
1766	     create_dynamic_sections, because they must be created
1767	     before the linker maps input sections to output
1768	     sections.  The linker does that before
1769	     adjust_dynamic_symbol is called, and it is that
1770	     function which decides whether anything needs to go
1771	     into these sections.  */
1772	  s->flags |= SEC_EXCLUDE;
1773	  continue;
1774	}
1775
1776      if ((s->flags & SEC_HAS_CONTENTS) == 0)
1777	continue;
1778
1779      /* Allocate memory for the section contents if it has not
1780	 been allocated already.  We use bfd_zalloc here in case
1781	 unused entries are not reclaimed before the section's
1782	 contents are written out.  This should not happen, but this
1783	 way if it does, we get a R_PARISC_NONE reloc instead of
1784	 garbage.  */
1785      if (s->contents == NULL)
1786	{
1787	  s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1788	  if (s->contents == NULL)
1789	    return FALSE;
1790	}
1791    }
1792
1793  if (elf_hash_table (info)->dynamic_sections_created)
1794    {
1795      /* Always create a DT_PLTGOT.  It actually has nothing to do with
1796	 the PLT, it is how we communicate the __gp value of a load
1797	 module to the dynamic linker.  */
1798#define add_dynamic_entry(TAG, VAL) \
1799  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1800
1801      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1802	  || !add_dynamic_entry (DT_PLTGOT, 0))
1803	return FALSE;
1804
1805      /* Add some entries to the .dynamic section.  We fill in the
1806	 values later, in elf64_hppa_finish_dynamic_sections, but we
1807	 must add the entries now so that we get the correct size for
1808	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1809	 dynamic linker and used by the debugger.  */
1810      if (! info->shared)
1811	{
1812	  if (!add_dynamic_entry (DT_DEBUG, 0)
1813	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1814	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1815	    return FALSE;
1816	}
1817
1818      /* Force DT_FLAGS to always be set.
1819	 Required by HPUX 11.00 patch PHSS_26559.  */
1820      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1821	return FALSE;
1822
1823      if (plt)
1824	{
1825	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1826	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1827	      || !add_dynamic_entry (DT_JMPREL, 0))
1828	    return FALSE;
1829	}
1830
1831      if (relocs)
1832	{
1833	  if (!add_dynamic_entry (DT_RELA, 0)
1834	      || !add_dynamic_entry (DT_RELASZ, 0)
1835	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1836	    return FALSE;
1837	}
1838
1839      if (reltext)
1840	{
1841	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1842	    return FALSE;
1843	  info->flags |= DF_TEXTREL;
1844	}
1845    }
1846#undef add_dynamic_entry
1847
1848  return TRUE;
1849}
1850
1851/* Called after we have output the symbol into the dynamic symbol
1852   table, but before we output the symbol into the normal symbol
1853   table.
1854
1855   For some symbols we had to change their address when outputting
1856   the dynamic symbol table.  We undo that change here so that
1857   the symbols have their expected value in the normal symbol
1858   table.  Ick.  */
1859
1860static bfd_boolean
1861elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1862     struct bfd_link_info *info;
1863     const char *name;
1864     Elf_Internal_Sym *sym;
1865     asection *input_sec ATTRIBUTE_UNUSED;
1866     struct elf_link_hash_entry *h;
1867{
1868  struct elf64_hppa_link_hash_table *hppa_info;
1869  struct elf64_hppa_dyn_hash_entry *dyn_h;
1870
1871  /* We may be called with the file symbol or section symbols.
1872     They never need munging, so it is safe to ignore them.  */
1873  if (!name)
1874    return TRUE;
1875
1876  /* Get the PA dyn_symbol (if any) associated with NAME.  */
1877  hppa_info = elf64_hppa_hash_table (info);
1878  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1879				      name, FALSE, FALSE);
1880  if (!dyn_h || dyn_h->h != h)
1881    return TRUE;
1882
1883  /* Function symbols for which we created .opd entries *may* have been
1884     munged by finish_dynamic_symbol and have to be un-munged here.
1885
1886     Note that finish_dynamic_symbol sometimes turns dynamic symbols
1887     into non-dynamic ones, so we initialize st_shndx to -1 in
1888     mark_exported_functions and check to see if it was overwritten
1889     here instead of just checking dyn_h->h->dynindx.  */
1890  if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1891    {
1892      /* Restore the saved value and section index.  */
1893      sym->st_value = dyn_h->st_value;
1894      sym->st_shndx = dyn_h->st_shndx;
1895    }
1896
1897  return TRUE;
1898}
1899
1900/* Finish up dynamic symbol handling.  We set the contents of various
1901   dynamic sections here.  */
1902
1903static bfd_boolean
1904elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1905     bfd *output_bfd;
1906     struct bfd_link_info *info;
1907     struct elf_link_hash_entry *h;
1908     Elf_Internal_Sym *sym;
1909{
1910  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1911  struct elf64_hppa_link_hash_table *hppa_info;
1912  struct elf64_hppa_dyn_hash_entry *dyn_h;
1913
1914  hppa_info = elf64_hppa_hash_table (info);
1915  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1916				      h->root.root.string, FALSE, FALSE);
1917
1918  stub = hppa_info->stub_sec;
1919  splt = hppa_info->plt_sec;
1920  sdlt = hppa_info->dlt_sec;
1921  sopd = hppa_info->opd_sec;
1922  spltrel = hppa_info->plt_rel_sec;
1923  sdltrel = hppa_info->dlt_rel_sec;
1924
1925  /* Incredible.  It is actually necessary to NOT use the symbol's real
1926     value when building the dynamic symbol table for a shared library.
1927     At least for symbols that refer to functions.
1928
1929     We will store a new value and section index into the symbol long
1930     enough to output it into the dynamic symbol table, then we restore
1931     the original values (in elf64_hppa_link_output_symbol_hook).  */
1932  if (dyn_h && dyn_h->want_opd)
1933    {
1934      BFD_ASSERT (sopd != NULL);
1935
1936      /* Save away the original value and section index so that we
1937	 can restore them later.  */
1938      dyn_h->st_value = sym->st_value;
1939      dyn_h->st_shndx = sym->st_shndx;
1940
1941      /* For the dynamic symbol table entry, we want the value to be
1942	 address of this symbol's entry within the .opd section.  */
1943      sym->st_value = (dyn_h->opd_offset
1944		       + sopd->output_offset
1945		       + sopd->output_section->vma);
1946      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1947							 sopd->output_section);
1948    }
1949
1950  /* Initialize a .plt entry if requested.  */
1951  if (dyn_h && dyn_h->want_plt
1952      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1953    {
1954      bfd_vma value;
1955      Elf_Internal_Rela rel;
1956      bfd_byte *loc;
1957
1958      BFD_ASSERT (splt != NULL && spltrel != NULL);
1959
1960      /* We do not actually care about the value in the PLT entry
1961	 if we are creating a shared library and the symbol is
1962	 still undefined, we create a dynamic relocation to fill
1963	 in the correct value.  */
1964      if (info->shared && h->root.type == bfd_link_hash_undefined)
1965	value = 0;
1966      else
1967	value = (h->root.u.def.value + h->root.u.def.section->vma);
1968
1969      /* Fill in the entry in the procedure linkage table.
1970
1971	 The format of a plt entry is
1972	 <funcaddr> <__gp>.
1973
1974	 plt_offset is the offset within the PLT section at which to
1975	 install the PLT entry.
1976
1977	 We are modifying the in-memory PLT contents here, so we do not add
1978	 in the output_offset of the PLT section.  */
1979
1980      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1981      value = _bfd_get_gp_value (splt->output_section->owner);
1982      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1983
1984      /* Create a dynamic IPLT relocation for this entry.
1985
1986	 We are creating a relocation in the output file's PLT section,
1987	 which is included within the DLT secton.  So we do need to include
1988	 the PLT's output_offset in the computation of the relocation's
1989	 address.  */
1990      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1991		      + splt->output_section->vma);
1992      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1993      rel.r_addend = 0;
1994
1995      loc = spltrel->contents;
1996      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
1997      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
1998    }
1999
2000  /* Initialize an external call stub entry if requested.  */
2001  if (dyn_h && dyn_h->want_stub
2002      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2003    {
2004      bfd_vma value;
2005      int insn;
2006      unsigned int max_offset;
2007
2008      BFD_ASSERT (stub != NULL);
2009
2010      /* Install the generic stub template.
2011
2012	 We are modifying the contents of the stub section, so we do not
2013	 need to include the stub section's output_offset here.  */
2014      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2015
2016      /* Fix up the first ldd instruction.
2017
2018	 We are modifying the contents of the STUB section in memory,
2019	 so we do not need to include its output offset in this computation.
2020
2021	 Note the plt_offset value is the value of the PLT entry relative to
2022	 the start of the PLT section.  These instructions will reference
2023	 data relative to the value of __gp, which may not necessarily have
2024	 the same address as the start of the PLT section.
2025
2026	 gp_offset contains the offset of __gp within the PLT section.  */
2027      value = dyn_h->plt_offset - hppa_info->gp_offset;
2028
2029      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2030      if (output_bfd->arch_info->mach >= 25)
2031	{
2032	  /* Wide mode allows 16 bit offsets.  */
2033	  max_offset = 32768;
2034	  insn &= ~ 0xfff1;
2035	  insn |= re_assemble_16 ((int) value);
2036	}
2037      else
2038	{
2039	  max_offset = 8192;
2040	  insn &= ~ 0x3ff1;
2041	  insn |= re_assemble_14 ((int) value);
2042	}
2043
2044      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2045	{
2046	  (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2047				 dyn_h->root.string,
2048				 (long) value);
2049	  return FALSE;
2050	}
2051
2052      bfd_put_32 (stub->owner, (bfd_vma) insn,
2053		  stub->contents + dyn_h->stub_offset);
2054
2055      /* Fix up the second ldd instruction.  */
2056      value += 8;
2057      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2058      if (output_bfd->arch_info->mach >= 25)
2059	{
2060	  insn &= ~ 0xfff1;
2061	  insn |= re_assemble_16 ((int) value);
2062	}
2063      else
2064	{
2065	  insn &= ~ 0x3ff1;
2066	  insn |= re_assemble_14 ((int) value);
2067	}
2068      bfd_put_32 (stub->owner, (bfd_vma) insn,
2069		  stub->contents + dyn_h->stub_offset + 8);
2070    }
2071
2072  return TRUE;
2073}
2074
2075/* The .opd section contains FPTRs for each function this file
2076   exports.  Initialize the FPTR entries.  */
2077
2078static bfd_boolean
2079elf64_hppa_finalize_opd (dyn_h, data)
2080     struct elf64_hppa_dyn_hash_entry *dyn_h;
2081     PTR data;
2082{
2083  struct bfd_link_info *info = (struct bfd_link_info *)data;
2084  struct elf64_hppa_link_hash_table *hppa_info;
2085  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2086  asection *sopd;
2087  asection *sopdrel;
2088
2089  hppa_info = elf64_hppa_hash_table (info);
2090  sopd = hppa_info->opd_sec;
2091  sopdrel = hppa_info->opd_rel_sec;
2092
2093  if (h && dyn_h->want_opd)
2094    {
2095      bfd_vma value;
2096
2097      /* The first two words of an .opd entry are zero.
2098
2099	 We are modifying the contents of the OPD section in memory, so we
2100	 do not need to include its output offset in this computation.  */
2101      memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2102
2103      value = (h->root.u.def.value
2104	       + h->root.u.def.section->output_section->vma
2105	       + h->root.u.def.section->output_offset);
2106
2107      /* The next word is the address of the function.  */
2108      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2109
2110      /* The last word is our local __gp value.  */
2111      value = _bfd_get_gp_value (sopd->output_section->owner);
2112      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2113    }
2114
2115  /* If we are generating a shared library, we must generate EPLT relocations
2116     for each entry in the .opd, even for static functions (they may have
2117     had their address taken).  */
2118  if (info->shared && dyn_h && dyn_h->want_opd)
2119    {
2120      Elf_Internal_Rela rel;
2121      bfd_byte *loc;
2122      int dynindx;
2123
2124      /* We may need to do a relocation against a local symbol, in
2125	 which case we have to look up it's dynamic symbol index off
2126	 the local symbol hash table.  */
2127      if (h && h->dynindx != -1)
2128	dynindx = h->dynindx;
2129      else
2130	dynindx
2131	  = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2132						dyn_h->sym_indx);
2133
2134      /* The offset of this relocation is the absolute address of the
2135	 .opd entry for this symbol.  */
2136      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2137		      + sopd->output_section->vma);
2138
2139      /* If H is non-null, then we have an external symbol.
2140
2141	 It is imperative that we use a different dynamic symbol for the
2142	 EPLT relocation if the symbol has global scope.
2143
2144	 In the dynamic symbol table, the function symbol will have a value
2145	 which is address of the function's .opd entry.
2146
2147	 Thus, we can not use that dynamic symbol for the EPLT relocation
2148	 (if we did, the data in the .opd would reference itself rather
2149	 than the actual address of the function).  Instead we have to use
2150	 a new dynamic symbol which has the same value as the original global
2151	 function symbol.
2152
2153	 We prefix the original symbol with a "." and use the new symbol in
2154	 the EPLT relocation.  This new symbol has already been recorded in
2155	 the symbol table, we just have to look it up and use it.
2156
2157	 We do not have such problems with static functions because we do
2158	 not make their addresses in the dynamic symbol table point to
2159	 the .opd entry.  Ultimately this should be safe since a static
2160	 function can not be directly referenced outside of its shared
2161	 library.
2162
2163	 We do have to play similar games for FPTR relocations in shared
2164	 libraries, including those for static symbols.  See the FPTR
2165	 handling in elf64_hppa_finalize_dynreloc.  */
2166      if (h)
2167	{
2168	  char *new_name;
2169	  struct elf_link_hash_entry *nh;
2170
2171	  new_name = alloca (strlen (h->root.root.string) + 2);
2172	  new_name[0] = '.';
2173	  strcpy (new_name + 1, h->root.root.string);
2174
2175	  nh = elf_link_hash_lookup (elf_hash_table (info),
2176				     new_name, FALSE, FALSE, FALSE);
2177
2178	  /* All we really want from the new symbol is its dynamic
2179	     symbol index.  */
2180	  dynindx = nh->dynindx;
2181	}
2182
2183      rel.r_addend = 0;
2184      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2185
2186      loc = sopdrel->contents;
2187      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2188      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2189    }
2190  return TRUE;
2191}
2192
2193/* The .dlt section contains addresses for items referenced through the
2194   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2195   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2196
2197static bfd_boolean
2198elf64_hppa_finalize_dlt (dyn_h, data)
2199     struct elf64_hppa_dyn_hash_entry *dyn_h;
2200     PTR data;
2201{
2202  struct bfd_link_info *info = (struct bfd_link_info *)data;
2203  struct elf64_hppa_link_hash_table *hppa_info;
2204  asection *sdlt, *sdltrel;
2205  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2206
2207  hppa_info = elf64_hppa_hash_table (info);
2208
2209  sdlt = hppa_info->dlt_sec;
2210  sdltrel = hppa_info->dlt_rel_sec;
2211
2212  /* H/DYN_H may refer to a local variable and we know it's
2213     address, so there is no need to create a relocation.  Just install
2214     the proper value into the DLT, note this shortcut can not be
2215     skipped when building a shared library.  */
2216  if (! info->shared && h && dyn_h->want_dlt)
2217    {
2218      bfd_vma value;
2219
2220      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2221	 to point to the FPTR entry in the .opd section.
2222
2223	 We include the OPD's output offset in this computation as
2224	 we are referring to an absolute address in the resulting
2225	 object file.  */
2226      if (dyn_h->want_opd)
2227	{
2228	  value = (dyn_h->opd_offset
2229		   + hppa_info->opd_sec->output_offset
2230		   + hppa_info->opd_sec->output_section->vma);
2231	}
2232      else if ((h->root.type == bfd_link_hash_defined
2233		|| h->root.type == bfd_link_hash_defweak)
2234	       && h->root.u.def.section)
2235	{
2236	  value = h->root.u.def.value + h->root.u.def.section->output_offset;
2237	  if (h->root.u.def.section->output_section)
2238	    value += h->root.u.def.section->output_section->vma;
2239	  else
2240	    value += h->root.u.def.section->vma;
2241	}
2242      else
2243	/* We have an undefined function reference.  */
2244	value = 0;
2245
2246      /* We do not need to include the output offset of the DLT section
2247	 here because we are modifying the in-memory contents.  */
2248      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2249    }
2250
2251  /* Create a relocation for the DLT entry associated with this symbol.
2252     When building a shared library the symbol does not have to be dynamic.  */
2253  if (dyn_h->want_dlt
2254      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2255    {
2256      Elf_Internal_Rela rel;
2257      bfd_byte *loc;
2258      int dynindx;
2259
2260      /* We may need to do a relocation against a local symbol, in
2261	 which case we have to look up it's dynamic symbol index off
2262	 the local symbol hash table.  */
2263      if (h && h->dynindx != -1)
2264	dynindx = h->dynindx;
2265      else
2266	dynindx
2267	  = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2268						dyn_h->sym_indx);
2269
2270      /* Create a dynamic relocation for this entry.  Do include the output
2271	 offset of the DLT entry since we need an absolute address in the
2272	 resulting object file.  */
2273      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2274		      + sdlt->output_section->vma);
2275      if (h && h->type == STT_FUNC)
2276	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2277      else
2278	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2279      rel.r_addend = 0;
2280
2281      loc = sdltrel->contents;
2282      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2283      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2284    }
2285  return TRUE;
2286}
2287
2288/* Finalize the dynamic relocations.  Specifically the FPTR relocations
2289   for dynamic functions used to initialize static data.  */
2290
2291static bfd_boolean
2292elf64_hppa_finalize_dynreloc (dyn_h, data)
2293     struct elf64_hppa_dyn_hash_entry *dyn_h;
2294     PTR data;
2295{
2296  struct bfd_link_info *info = (struct bfd_link_info *)data;
2297  struct elf64_hppa_link_hash_table *hppa_info;
2298  struct elf_link_hash_entry *h;
2299  int dynamic_symbol;
2300
2301  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2302
2303  if (!dynamic_symbol && !info->shared)
2304    return TRUE;
2305
2306  if (dyn_h->reloc_entries)
2307    {
2308      struct elf64_hppa_dyn_reloc_entry *rent;
2309      int dynindx;
2310
2311      hppa_info = elf64_hppa_hash_table (info);
2312      h = dyn_h->h;
2313
2314      /* We may need to do a relocation against a local symbol, in
2315	 which case we have to look up it's dynamic symbol index off
2316	 the local symbol hash table.  */
2317      if (h && h->dynindx != -1)
2318	dynindx = h->dynindx;
2319      else
2320	dynindx
2321	  = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2322						dyn_h->sym_indx);
2323
2324      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2325	{
2326	  Elf_Internal_Rela rel;
2327	  bfd_byte *loc;
2328
2329	  /* Allocate one iff we are building a shared library, the relocation
2330	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2331	  if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2332	    continue;
2333
2334	  /* Create a dynamic relocation for this entry.
2335
2336	     We need the output offset for the reloc's section because
2337	     we are creating an absolute address in the resulting object
2338	     file.  */
2339	  rel.r_offset = (rent->offset + rent->sec->output_offset
2340			  + rent->sec->output_section->vma);
2341
2342	  /* An FPTR64 relocation implies that we took the address of
2343	     a function and that the function has an entry in the .opd
2344	     section.  We want the FPTR64 relocation to reference the
2345	     entry in .opd.
2346
2347	     We could munge the symbol value in the dynamic symbol table
2348	     (in fact we already do for functions with global scope) to point
2349	     to the .opd entry.  Then we could use that dynamic symbol in
2350	     this relocation.
2351
2352	     Or we could do something sensible, not munge the symbol's
2353	     address and instead just use a different symbol to reference
2354	     the .opd entry.  At least that seems sensible until you
2355	     realize there's no local dynamic symbols we can use for that
2356	     purpose.  Thus the hair in the check_relocs routine.
2357
2358	     We use a section symbol recorded by check_relocs as the
2359	     base symbol for the relocation.  The addend is the difference
2360	     between the section symbol and the address of the .opd entry.  */
2361	  if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2362	    {
2363	      bfd_vma value, value2;
2364
2365	      /* First compute the address of the opd entry for this symbol.  */
2366	      value = (dyn_h->opd_offset
2367		       + hppa_info->opd_sec->output_section->vma
2368		       + hppa_info->opd_sec->output_offset);
2369
2370	      /* Compute the value of the start of the section with
2371		 the relocation.  */
2372	      value2 = (rent->sec->output_section->vma
2373			+ rent->sec->output_offset);
2374
2375	      /* Compute the difference between the start of the section
2376		 with the relocation and the opd entry.  */
2377	      value -= value2;
2378
2379	      /* The result becomes the addend of the relocation.  */
2380	      rel.r_addend = value;
2381
2382	      /* The section symbol becomes the symbol for the dynamic
2383		 relocation.  */
2384	      dynindx
2385		= _bfd_elf_link_lookup_local_dynindx (info,
2386						      rent->sec->owner,
2387						      rent->sec_symndx);
2388	    }
2389	  else
2390	    rel.r_addend = rent->addend;
2391
2392	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2393
2394	  loc = hppa_info->other_rel_sec->contents;
2395	  loc += (hppa_info->other_rel_sec->reloc_count++
2396		  * sizeof (Elf64_External_Rela));
2397	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2398				     &rel, loc);
2399	}
2400    }
2401
2402  return TRUE;
2403}
2404
2405/* Used to decide how to sort relocs in an optimal manner for the
2406   dynamic linker, before writing them out.  */
2407
2408static enum elf_reloc_type_class
2409elf64_hppa_reloc_type_class (rela)
2410     const Elf_Internal_Rela *rela;
2411{
2412  if (ELF64_R_SYM (rela->r_info) == 0)
2413    return reloc_class_relative;
2414
2415  switch ((int) ELF64_R_TYPE (rela->r_info))
2416    {
2417    case R_PARISC_IPLT:
2418      return reloc_class_plt;
2419    case R_PARISC_COPY:
2420      return reloc_class_copy;
2421    default:
2422      return reloc_class_normal;
2423    }
2424}
2425
2426/* Finish up the dynamic sections.  */
2427
2428static bfd_boolean
2429elf64_hppa_finish_dynamic_sections (output_bfd, info)
2430     bfd *output_bfd;
2431     struct bfd_link_info *info;
2432{
2433  bfd *dynobj;
2434  asection *sdyn;
2435  struct elf64_hppa_link_hash_table *hppa_info;
2436
2437  hppa_info = elf64_hppa_hash_table (info);
2438
2439  /* Finalize the contents of the .opd section.  */
2440  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2441				elf64_hppa_finalize_opd,
2442				info);
2443
2444  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2445				elf64_hppa_finalize_dynreloc,
2446				info);
2447
2448  /* Finalize the contents of the .dlt section.  */
2449  dynobj = elf_hash_table (info)->dynobj;
2450  /* Finalize the contents of the .dlt section.  */
2451  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2452				elf64_hppa_finalize_dlt,
2453				info);
2454
2455  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2456
2457  if (elf_hash_table (info)->dynamic_sections_created)
2458    {
2459      Elf64_External_Dyn *dyncon, *dynconend;
2460
2461      BFD_ASSERT (sdyn != NULL);
2462
2463      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2464      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2465      for (; dyncon < dynconend; dyncon++)
2466	{
2467	  Elf_Internal_Dyn dyn;
2468	  asection *s;
2469
2470	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2471
2472	  switch (dyn.d_tag)
2473	    {
2474	    default:
2475	      break;
2476
2477	    case DT_HP_LOAD_MAP:
2478	      /* Compute the absolute address of 16byte scratchpad area
2479		 for the dynamic linker.
2480
2481		 By convention the linker script will allocate the scratchpad
2482		 area at the start of the .data section.  So all we have to
2483		 to is find the start of the .data section.  */
2484	      s = bfd_get_section_by_name (output_bfd, ".data");
2485	      dyn.d_un.d_ptr = s->vma;
2486	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2487	      break;
2488
2489	    case DT_PLTGOT:
2490	      /* HP's use PLTGOT to set the GOT register.  */
2491	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2492	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2493	      break;
2494
2495	    case DT_JMPREL:
2496	      s = hppa_info->plt_rel_sec;
2497	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2498	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499	      break;
2500
2501	    case DT_PLTRELSZ:
2502	      s = hppa_info->plt_rel_sec;
2503	      dyn.d_un.d_val = s->size;
2504	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505	      break;
2506
2507	    case DT_RELA:
2508	      s = hppa_info->other_rel_sec;
2509	      if (! s || ! s->size)
2510		s = hppa_info->dlt_rel_sec;
2511	      if (! s || ! s->size)
2512		s = hppa_info->opd_rel_sec;
2513	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2515	      break;
2516
2517	    case DT_RELASZ:
2518	      s = hppa_info->other_rel_sec;
2519	      dyn.d_un.d_val = s->size;
2520	      s = hppa_info->dlt_rel_sec;
2521	      dyn.d_un.d_val += s->size;
2522	      s = hppa_info->opd_rel_sec;
2523	      dyn.d_un.d_val += s->size;
2524	      /* There is some question about whether or not the size of
2525		 the PLT relocs should be included here.  HP's tools do
2526		 it, so we'll emulate them.  */
2527	      s = hppa_info->plt_rel_sec;
2528	      dyn.d_un.d_val += s->size;
2529	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2530	      break;
2531
2532	    }
2533	}
2534    }
2535
2536  return TRUE;
2537}
2538
2539/* Support for core dump NOTE sections.  */
2540
2541static bfd_boolean
2542elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2543{
2544  int offset;
2545  size_t size;
2546
2547  switch (note->descsz)
2548    {
2549      default:
2550	return FALSE;
2551
2552      case 760:		/* Linux/hppa */
2553	/* pr_cursig */
2554	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2555
2556	/* pr_pid */
2557	elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2558
2559	/* pr_reg */
2560	offset = 112;
2561	size = 640;
2562
2563	break;
2564    }
2565
2566  /* Make a ".reg/999" section.  */
2567  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2568					  size, note->descpos + offset);
2569}
2570
2571static bfd_boolean
2572elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2573{
2574  char * command;
2575  int n;
2576
2577  switch (note->descsz)
2578    {
2579    default:
2580      return FALSE;
2581
2582    case 136:		/* Linux/hppa elf_prpsinfo.  */
2583      elf_tdata (abfd)->core_program
2584	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2585      elf_tdata (abfd)->core_command
2586	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2587    }
2588
2589  /* Note that for some reason, a spurious space is tacked
2590     onto the end of the args in some (at least one anyway)
2591     implementations, so strip it off if it exists.  */
2592  command = elf_tdata (abfd)->core_command;
2593  n = strlen (command);
2594
2595  if (0 < n && command[n - 1] == ' ')
2596    command[n - 1] = '\0';
2597
2598  return TRUE;
2599}
2600
2601/* Return the number of additional phdrs we will need.
2602
2603   The generic ELF code only creates PT_PHDRs for executables.  The HP
2604   dynamic linker requires PT_PHDRs for dynamic libraries too.
2605
2606   This routine indicates that the backend needs one additional program
2607   header for that case.
2608
2609   Note we do not have access to the link info structure here, so we have
2610   to guess whether or not we are building a shared library based on the
2611   existence of a .interp section.  */
2612
2613static int
2614elf64_hppa_additional_program_headers (bfd *abfd,
2615				       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2616{
2617  asection *s;
2618
2619  /* If we are creating a shared library, then we have to create a
2620     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2621  s = bfd_get_section_by_name (abfd, ".interp");
2622  if (! s)
2623    return 1;
2624  return 0;
2625}
2626
2627/* Allocate and initialize any program headers required by this
2628   specific backend.
2629
2630   The generic ELF code only creates PT_PHDRs for executables.  The HP
2631   dynamic linker requires PT_PHDRs for dynamic libraries too.
2632
2633   This allocates the PT_PHDR and initializes it in a manner suitable
2634   for the HP linker.
2635
2636   Note we do not have access to the link info structure here, so we have
2637   to guess whether or not we are building a shared library based on the
2638   existence of a .interp section.  */
2639
2640static bfd_boolean
2641elf64_hppa_modify_segment_map (bfd *abfd,
2642			       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2643{
2644  struct elf_segment_map *m;
2645  asection *s;
2646
2647  s = bfd_get_section_by_name (abfd, ".interp");
2648  if (! s)
2649    {
2650      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2651	if (m->p_type == PT_PHDR)
2652	  break;
2653      if (m == NULL)
2654	{
2655	  m = ((struct elf_segment_map *)
2656	       bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2657	  if (m == NULL)
2658	    return FALSE;
2659
2660	  m->p_type = PT_PHDR;
2661	  m->p_flags = PF_R | PF_X;
2662	  m->p_flags_valid = 1;
2663	  m->p_paddr_valid = 1;
2664	  m->includes_phdrs = 1;
2665
2666	  m->next = elf_tdata (abfd)->segment_map;
2667	  elf_tdata (abfd)->segment_map = m;
2668	}
2669    }
2670
2671  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2672    if (m->p_type == PT_LOAD)
2673      {
2674	unsigned int i;
2675
2676	for (i = 0; i < m->count; i++)
2677	  {
2678	    /* The code "hint" is not really a hint.  It is a requirement
2679	       for certain versions of the HP dynamic linker.  Worse yet,
2680	       it must be set even if the shared library does not have
2681	       any code in its "text" segment (thus the check for .hash
2682	       to catch this situation).  */
2683	    if (m->sections[i]->flags & SEC_CODE
2684		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2685	      m->p_flags |= (PF_X | PF_HP_CODE);
2686	  }
2687      }
2688
2689  return TRUE;
2690}
2691
2692/* Called when writing out an object file to decide the type of a
2693   symbol.  */
2694static int
2695elf64_hppa_elf_get_symbol_type (elf_sym, type)
2696     Elf_Internal_Sym *elf_sym;
2697     int type;
2698{
2699  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2700    return STT_PARISC_MILLI;
2701  else
2702    return type;
2703}
2704
2705/* Support HP specific sections for core files.  */
2706static bfd_boolean
2707elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2708			      const char *typename)
2709{
2710  if (hdr->p_type == PT_HP_CORE_KERNEL)
2711    {
2712      asection *sect;
2713
2714      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2715	return FALSE;
2716
2717      sect = bfd_make_section_anyway (abfd, ".kernel");
2718      if (sect == NULL)
2719	return FALSE;
2720      sect->size = hdr->p_filesz;
2721      sect->filepos = hdr->p_offset;
2722      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2723      return TRUE;
2724    }
2725
2726  if (hdr->p_type == PT_HP_CORE_PROC)
2727    {
2728      int sig;
2729
2730      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2731	return FALSE;
2732      if (bfd_bread (&sig, 4, abfd) != 4)
2733	return FALSE;
2734
2735      elf_tdata (abfd)->core_signal = sig;
2736
2737      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2738	return FALSE;
2739
2740      /* GDB uses the ".reg" section to read register contents.  */
2741      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2742					      hdr->p_offset);
2743    }
2744
2745  if (hdr->p_type == PT_HP_CORE_LOADABLE
2746      || hdr->p_type == PT_HP_CORE_STACK
2747      || hdr->p_type == PT_HP_CORE_MMF)
2748    hdr->p_type = PT_LOAD;
2749
2750  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2751}
2752
2753static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2754{
2755  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2756  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2757  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2758  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2759  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2760  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2761  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2762  { NULL,                    0,  0, 0,            0 }
2763};
2764
2765/* The hash bucket size is the standard one, namely 4.  */
2766
2767const struct elf_size_info hppa64_elf_size_info =
2768{
2769  sizeof (Elf64_External_Ehdr),
2770  sizeof (Elf64_External_Phdr),
2771  sizeof (Elf64_External_Shdr),
2772  sizeof (Elf64_External_Rel),
2773  sizeof (Elf64_External_Rela),
2774  sizeof (Elf64_External_Sym),
2775  sizeof (Elf64_External_Dyn),
2776  sizeof (Elf_External_Note),
2777  4,
2778  1,
2779  64, 3,
2780  ELFCLASS64, EV_CURRENT,
2781  bfd_elf64_write_out_phdrs,
2782  bfd_elf64_write_shdrs_and_ehdr,
2783  bfd_elf64_write_relocs,
2784  bfd_elf64_swap_symbol_in,
2785  bfd_elf64_swap_symbol_out,
2786  bfd_elf64_slurp_reloc_table,
2787  bfd_elf64_slurp_symbol_table,
2788  bfd_elf64_swap_dyn_in,
2789  bfd_elf64_swap_dyn_out,
2790  bfd_elf64_swap_reloc_in,
2791  bfd_elf64_swap_reloc_out,
2792  bfd_elf64_swap_reloca_in,
2793  bfd_elf64_swap_reloca_out
2794};
2795
2796#define TARGET_BIG_SYM			bfd_elf64_hppa_vec
2797#define TARGET_BIG_NAME			"elf64-hppa"
2798#define ELF_ARCH			bfd_arch_hppa
2799#define ELF_MACHINE_CODE		EM_PARISC
2800/* This is not strictly correct.  The maximum page size for PA2.0 is
2801   64M.  But everything still uses 4k.  */
2802#define ELF_MAXPAGESIZE			0x1000
2803#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2804#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
2805#define elf_info_to_howto		elf_hppa_info_to_howto
2806#define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
2807
2808#define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
2809#define elf_backend_object_p		elf64_hppa_object_p
2810#define elf_backend_final_write_processing \
2811					elf_hppa_final_write_processing
2812#define elf_backend_fake_sections	elf_hppa_fake_sections
2813#define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
2814
2815#define elf_backend_relocate_section	elf_hppa_relocate_section
2816
2817#define bfd_elf64_bfd_final_link	elf_hppa_final_link
2818
2819#define elf_backend_create_dynamic_sections \
2820					elf64_hppa_create_dynamic_sections
2821#define elf_backend_post_process_headers	elf64_hppa_post_process_headers
2822
2823#define elf_backend_omit_section_dynsym \
2824  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2825#define elf_backend_adjust_dynamic_symbol \
2826					elf64_hppa_adjust_dynamic_symbol
2827
2828#define elf_backend_size_dynamic_sections \
2829					elf64_hppa_size_dynamic_sections
2830
2831#define elf_backend_finish_dynamic_symbol \
2832					elf64_hppa_finish_dynamic_symbol
2833#define elf_backend_finish_dynamic_sections \
2834					elf64_hppa_finish_dynamic_sections
2835#define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
2836#define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
2837
2838/* Stuff for the BFD linker: */
2839#define bfd_elf64_bfd_link_hash_table_create \
2840	elf64_hppa_hash_table_create
2841
2842#define elf_backend_check_relocs \
2843	elf64_hppa_check_relocs
2844
2845#define elf_backend_size_info \
2846  hppa64_elf_size_info
2847
2848#define elf_backend_additional_program_headers \
2849	elf64_hppa_additional_program_headers
2850
2851#define elf_backend_modify_segment_map \
2852	elf64_hppa_modify_segment_map
2853
2854#define elf_backend_link_output_symbol_hook \
2855	elf64_hppa_link_output_symbol_hook
2856
2857#define elf_backend_want_got_plt	0
2858#define elf_backend_plt_readonly	0
2859#define elf_backend_want_plt_sym	0
2860#define elf_backend_got_header_size     0
2861#define elf_backend_type_change_ok	TRUE
2862#define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
2863#define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
2864#define elf_backend_rela_normal		1
2865#define elf_backend_special_sections	elf64_hppa_special_sections
2866#define elf_backend_action_discarded	elf_hppa_action_discarded
2867#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
2868
2869#define elf64_bed			elf64_hppa_hpux_bed
2870
2871#include "elf64-target.h"
2872
2873#undef TARGET_BIG_SYM
2874#define TARGET_BIG_SYM			bfd_elf64_hppa_linux_vec
2875#undef TARGET_BIG_NAME
2876#define TARGET_BIG_NAME			"elf64-hppa-linux"
2877#undef elf64_bed
2878#define elf64_bed			elf64_hppa_linux_bed
2879
2880#include "elf64-target.h"
2881