1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * Resource allocation code... the code here is responsible for making
19 * sure that nothing leaks.
20 *
21 * rst --- 4/95 --- 6/95
22 */
23
24#include "apr_private.h"
25
26#include "apr_general.h"
27#include "apr_pools.h"
28#include "apr_tables.h"
29#include "apr_strings.h"
30#include "apr_lib.h"
31#if APR_HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34#if APR_HAVE_STRING_H
35#include <string.h>
36#endif
37#if APR_HAVE_STRINGS_H
38#include <strings.h>
39#endif
40
41#if (APR_POOL_DEBUG || defined(MAKE_TABLE_PROFILE)) && APR_HAVE_STDIO_H
42#include <stdio.h>
43#endif
44
45/*****************************************************************
46 * This file contains array and apr_table_t functions only.
47 */
48
49/*****************************************************************
50 *
51 * The 'array' functions...
52 */
53
54static void make_array_core(apr_array_header_t *res, apr_pool_t *p,
55			    int nelts, int elt_size, int clear)
56{
57    /*
58     * Assure sanity if someone asks for
59     * array of zero elts.
60     */
61    if (nelts < 1) {
62        nelts = 1;
63    }
64
65    if (clear) {
66        res->elts = apr_pcalloc(p, nelts * elt_size);
67    }
68    else {
69        res->elts = apr_palloc(p, nelts * elt_size);
70    }
71
72    res->pool = p;
73    res->elt_size = elt_size;
74    res->nelts = 0;		/* No active elements yet... */
75    res->nalloc = nelts;	/* ...but this many allocated */
76}
77
78APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a)
79{
80    return ((a == NULL) || (a->nelts == 0));
81}
82
83APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
84						int nelts, int elt_size)
85{
86    apr_array_header_t *res;
87
88    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
89    make_array_core(res, p, nelts, elt_size, 1);
90    return res;
91}
92
93APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr)
94{
95    arr->nelts = 0;
96}
97
98APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr)
99{
100    if (apr_is_empty_array(arr)) {
101        return NULL;
102    }
103
104    return arr->elts + (arr->elt_size * (--arr->nelts));
105}
106
107APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr)
108{
109    if (arr->nelts == arr->nalloc) {
110        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
111        char *new_data;
112
113        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);
114
115        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
116        memset(new_data + arr->nalloc * arr->elt_size, 0,
117               arr->elt_size * (new_size - arr->nalloc));
118        arr->elts = new_data;
119        arr->nalloc = new_size;
120    }
121
122    ++arr->nelts;
123    return arr->elts + (arr->elt_size * (arr->nelts - 1));
124}
125
126static void *apr_array_push_noclear(apr_array_header_t *arr)
127{
128    if (arr->nelts == arr->nalloc) {
129        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
130        char *new_data;
131
132        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);
133
134        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
135        arr->elts = new_data;
136        arr->nalloc = new_size;
137    }
138
139    ++arr->nelts;
140    return arr->elts + (arr->elt_size * (arr->nelts - 1));
141}
142
143APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
144			       const apr_array_header_t *src)
145{
146    int elt_size = dst->elt_size;
147
148    if (dst->nelts + src->nelts > dst->nalloc) {
149	int new_size = (dst->nalloc <= 0) ? 1 : dst->nalloc * 2;
150	char *new_data;
151
152	while (dst->nelts + src->nelts > new_size) {
153	    new_size *= 2;
154	}
155
156	new_data = apr_pcalloc(dst->pool, elt_size * new_size);
157	memcpy(new_data, dst->elts, dst->nalloc * elt_size);
158
159	dst->elts = new_data;
160	dst->nalloc = new_size;
161    }
162
163    memcpy(dst->elts + dst->nelts * elt_size, src->elts,
164	   elt_size * src->nelts);
165    dst->nelts += src->nelts;
166}
167
168APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
169						const apr_array_header_t *arr)
170{
171    apr_array_header_t *res =
172        (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
173    make_array_core(res, p, arr->nalloc, arr->elt_size, 0);
174
175    memcpy(res->elts, arr->elts, arr->elt_size * arr->nelts);
176    res->nelts = arr->nelts;
177    memset(res->elts + res->elt_size * res->nelts, 0,
178           res->elt_size * (res->nalloc - res->nelts));
179    return res;
180}
181
182/* This cute function copies the array header *only*, but arranges
183 * for the data section to be copied on the first push or arraycat.
184 * It's useful when the elements of the array being copied are
185 * read only, but new stuff *might* get added on the end; we have the
186 * overhead of the full copy only where it is really needed.
187 */
188
189static APR_INLINE void copy_array_hdr_core(apr_array_header_t *res,
190					   const apr_array_header_t *arr)
191{
192    res->elts = arr->elts;
193    res->elt_size = arr->elt_size;
194    res->nelts = arr->nelts;
195    res->nalloc = arr->nelts;	/* Force overflow on push */
196}
197
198APR_DECLARE(apr_array_header_t *)
199    apr_array_copy_hdr(apr_pool_t *p,
200		       const apr_array_header_t *arr)
201{
202    apr_array_header_t *res;
203
204    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
205    res->pool = p;
206    copy_array_hdr_core(res, arr);
207    return res;
208}
209
210/* The above is used here to avoid consing multiple new array bodies... */
211
212APR_DECLARE(apr_array_header_t *)
213    apr_array_append(apr_pool_t *p,
214		      const apr_array_header_t *first,
215		      const apr_array_header_t *second)
216{
217    apr_array_header_t *res = apr_array_copy_hdr(p, first);
218
219    apr_array_cat(res, second);
220    return res;
221}
222
223/* apr_array_pstrcat generates a new string from the apr_pool_t containing
224 * the concatenated sequence of substrings referenced as elements within
225 * the array.  The string will be empty if all substrings are empty or null,
226 * or if there are no elements in the array.
227 * If sep is non-NUL, it will be inserted between elements as a separator.
228 */
229APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
230				     const apr_array_header_t *arr,
231				     const char sep)
232{
233    char *cp, *res, **strpp;
234    apr_size_t len;
235    int i;
236
237    if (arr->nelts <= 0 || arr->elts == NULL) {    /* Empty table? */
238        return (char *) apr_pcalloc(p, 1);
239    }
240
241    /* Pass one --- find length of required string */
242
243    len = 0;
244    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
245        if (strpp && *strpp != NULL) {
246            len += strlen(*strpp);
247        }
248        if (++i >= arr->nelts) {
249            break;
250	}
251        if (sep) {
252            ++len;
253	}
254    }
255
256    /* Allocate the required string */
257
258    res = (char *) apr_palloc(p, len + 1);
259    cp = res;
260
261    /* Pass two --- copy the argument strings into the result space */
262
263    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
264        if (strpp && *strpp != NULL) {
265            len = strlen(*strpp);
266            memcpy(cp, *strpp, len);
267            cp += len;
268        }
269        if (++i >= arr->nelts) {
270            break;
271	}
272        if (sep) {
273            *cp++ = sep;
274	}
275    }
276
277    *cp = '\0';
278
279    /* Return the result string */
280
281    return res;
282}
283
284
285/*****************************************************************
286 *
287 * The "table" functions.
288 */
289
290#if APR_CHARSET_EBCDIC
291#define CASE_MASK 0xbfbfbfbf
292#else
293#define CASE_MASK 0xdfdfdfdf
294#endif
295
296#define TABLE_HASH_SIZE 32
297#define TABLE_INDEX_MASK 0x1f
298#define TABLE_HASH(key)  (TABLE_INDEX_MASK & *(unsigned char *)(key))
299#define TABLE_INDEX_IS_INITIALIZED(t, i) ((t)->index_initialized & (1 << (i)))
300#define TABLE_SET_INDEX_INITIALIZED(t, i) ((t)->index_initialized |= (1 << (i)))
301
302/* Compute the "checksum" for a key, consisting of the first
303 * 4 bytes, normalized for case-insensitivity and packed into
304 * an int...this checksum allows us to do a single integer
305 * comparison as a fast check to determine whether we can
306 * skip a strcasecmp
307 */
308#define COMPUTE_KEY_CHECKSUM(key, checksum)    \
309{                                              \
310    const char *k = (key);                     \
311    apr_uint32_t c = (apr_uint32_t)*k;         \
312    (checksum) = c;                            \
313    (checksum) <<= 8;                          \
314    if (c) {                                   \
315        c = (apr_uint32_t)*++k;                \
316        checksum |= c;                         \
317    }                                          \
318    (checksum) <<= 8;                          \
319    if (c) {                                   \
320        c = (apr_uint32_t)*++k;                \
321        checksum |= c;                         \
322    }                                          \
323    (checksum) <<= 8;                          \
324    if (c) {                                   \
325        c = (apr_uint32_t)*++k;                \
326        checksum |= c;                         \
327    }                                          \
328    checksum &= CASE_MASK;                     \
329}
330
331/** The opaque string-content table type */
332struct apr_table_t {
333    /* This has to be first to promote backwards compatibility with
334     * older modules which cast a apr_table_t * to an apr_array_header_t *...
335     * they should use the apr_table_elts() function for most of the
336     * cases they do this for.
337     */
338    /** The underlying array for the table */
339    apr_array_header_t a;
340#ifdef MAKE_TABLE_PROFILE
341    /** Who created the array. */
342    void *creator;
343#endif
344    /* An index to speed up table lookups.  The way this works is:
345     *   - Hash the key into the index:
346     *     - index_first[TABLE_HASH(key)] is the offset within
347     *       the table of the first entry with that key
348     *     - index_last[TABLE_HASH(key)] is the offset within
349     *       the table of the last entry with that key
350     *   - If (and only if) there is no entry in the table whose
351     *     key hashes to index element i, then the i'th bit
352     *     of index_initialized will be zero.  (Check this before
353     *     trying to use index_first[i] or index_last[i]!)
354     */
355    apr_uint32_t index_initialized;
356    int index_first[TABLE_HASH_SIZE];
357    int index_last[TABLE_HASH_SIZE];
358};
359
360/*
361 * NOTICE: if you tweak this you should look at is_empty_table()
362 * and table_elts() in alloc.h
363 */
364#ifdef MAKE_TABLE_PROFILE
365static apr_table_entry_t *do_table_push(const char *func, apr_table_t *t)
366{
367    if (t->a.nelts == t->a.nalloc) {
368        fprintf(stderr, "%s: table created by %p hit limit of %u\n",
369                func ? func : "table_push", t->creator, t->a.nalloc);
370    }
371    return (apr_table_entry_t *) apr_array_push_noclear(&t->a);
372}
373#if defined(__GNUC__) && __GNUC__ >= 2
374#define table_push(t) do_table_push(__FUNCTION__, t)
375#else
376#define table_push(t) do_table_push(NULL, t)
377#endif
378#else /* MAKE_TABLE_PROFILE */
379#define table_push(t)	((apr_table_entry_t *) apr_array_push_noclear(&(t)->a))
380#endif /* MAKE_TABLE_PROFILE */
381
382APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t)
383{
384    return (const apr_array_header_t *)t;
385}
386
387APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t)
388{
389    return ((t == NULL) || (t->a.nelts == 0));
390}
391
392APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts)
393{
394    apr_table_t *t = apr_palloc(p, sizeof(apr_table_t));
395
396    make_array_core(&t->a, p, nelts, sizeof(apr_table_entry_t), 0);
397#ifdef MAKE_TABLE_PROFILE
398    t->creator = __builtin_return_address(0);
399#endif
400    t->index_initialized = 0;
401    return t;
402}
403
404APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p, const apr_table_t *t)
405{
406    apr_table_t *new = apr_palloc(p, sizeof(apr_table_t));
407
408#if APR_POOL_DEBUG
409    /* we don't copy keys and values, so it's necessary that t->a.pool
410     * have a life span at least as long as p
411     */
412    if (!apr_pool_is_ancestor(t->a.pool, p)) {
413	fprintf(stderr, "apr_table_copy: t's pool is not an ancestor of p\n");
414	abort();
415    }
416#endif
417    make_array_core(&new->a, p, t->a.nalloc, sizeof(apr_table_entry_t), 0);
418    memcpy(new->a.elts, t->a.elts, t->a.nelts * sizeof(apr_table_entry_t));
419    new->a.nelts = t->a.nelts;
420    memcpy(new->index_first, t->index_first, sizeof(int) * TABLE_HASH_SIZE);
421    memcpy(new->index_last, t->index_last, sizeof(int) * TABLE_HASH_SIZE);
422    new->index_initialized = t->index_initialized;
423    return new;
424}
425
426APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p, const apr_table_t *t)
427{
428    const apr_array_header_t *array = apr_table_elts(t);
429    apr_table_entry_t *elts = (apr_table_entry_t *) array->elts;
430    apr_table_t *new = apr_table_make(p, array->nelts);
431    int i;
432
433    for (i = 0; i < array->nelts; i++) {
434        apr_table_add(new, elts[i].key, elts[i].val);
435    }
436
437    return new;
438}
439
440static void table_reindex(apr_table_t *t)
441{
442    int i;
443    int hash;
444    apr_table_entry_t *next_elt = (apr_table_entry_t *) t->a.elts;
445
446    t->index_initialized = 0;
447    for (i = 0; i < t->a.nelts; i++, next_elt++) {
448        hash = TABLE_HASH(next_elt->key);
449        t->index_last[hash] = i;
450        if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
451            t->index_first[hash] = i;
452            TABLE_SET_INDEX_INITIALIZED(t, hash);
453        }
454    }
455}
456
457APR_DECLARE(void) apr_table_clear(apr_table_t *t)
458{
459    t->a.nelts = 0;
460    t->index_initialized = 0;
461}
462
463APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key)
464{
465    apr_table_entry_t *next_elt;
466    apr_table_entry_t *end_elt;
467    apr_uint32_t checksum;
468    int hash;
469
470    if (key == NULL) {
471	return NULL;
472    }
473
474    hash = TABLE_HASH(key);
475    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
476        return NULL;
477    }
478    COMPUTE_KEY_CHECKSUM(key, checksum);
479    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
480    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
481
482    for (; next_elt <= end_elt; next_elt++) {
483	if ((checksum == next_elt->key_checksum) &&
484            !strcasecmp(next_elt->key, key)) {
485	    return next_elt->val;
486	}
487    }
488
489    return NULL;
490}
491
492APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
493                                const char *val)
494{
495    apr_table_entry_t *next_elt;
496    apr_table_entry_t *end_elt;
497    apr_table_entry_t *table_end;
498    apr_uint32_t checksum;
499    int hash;
500
501    COMPUTE_KEY_CHECKSUM(key, checksum);
502    hash = TABLE_HASH(key);
503    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
504        t->index_first[hash] = t->a.nelts;
505        TABLE_SET_INDEX_INITIALIZED(t, hash);
506        goto add_new_elt;
507    }
508    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
509    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
510    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;
511
512    for (; next_elt <= end_elt; next_elt++) {
513	if ((checksum == next_elt->key_checksum) &&
514            !strcasecmp(next_elt->key, key)) {
515
516            /* Found an existing entry with the same key, so overwrite it */
517
518            int must_reindex = 0;
519            apr_table_entry_t *dst_elt = NULL;
520
521            next_elt->val = apr_pstrdup(t->a.pool, val);
522
523            /* Remove any other instances of this key */
524            for (next_elt++; next_elt <= end_elt; next_elt++) {
525                if ((checksum == next_elt->key_checksum) &&
526                    !strcasecmp(next_elt->key, key)) {
527                    t->a.nelts--;
528                    if (!dst_elt) {
529                        dst_elt = next_elt;
530                    }
531                }
532                else if (dst_elt) {
533                    *dst_elt++ = *next_elt;
534                    must_reindex = 1;
535                }
536            }
537
538            /* If we've removed anything, shift over the remainder
539             * of the table (note that the previous loop didn't
540             * run to the end of the table, just to the last match
541             * for the index)
542             */
543            if (dst_elt) {
544                for (; next_elt < table_end; next_elt++) {
545                    *dst_elt++ = *next_elt;
546                }
547                must_reindex = 1;
548            }
549            if (must_reindex) {
550                table_reindex(t);
551            }
552            return;
553        }
554    }
555
556add_new_elt:
557    t->index_last[hash] = t->a.nelts;
558    next_elt = (apr_table_entry_t *) table_push(t);
559    next_elt->key = apr_pstrdup(t->a.pool, key);
560    next_elt->val = apr_pstrdup(t->a.pool, val);
561    next_elt->key_checksum = checksum;
562}
563
564APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
565                                 const char *val)
566{
567    apr_table_entry_t *next_elt;
568    apr_table_entry_t *end_elt;
569    apr_table_entry_t *table_end;
570    apr_uint32_t checksum;
571    int hash;
572
573    COMPUTE_KEY_CHECKSUM(key, checksum);
574    hash = TABLE_HASH(key);
575    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
576        t->index_first[hash] = t->a.nelts;
577        TABLE_SET_INDEX_INITIALIZED(t, hash);
578        goto add_new_elt;
579    }
580    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
581    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
582    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;
583
584    for (; next_elt <= end_elt; next_elt++) {
585	if ((checksum == next_elt->key_checksum) &&
586            !strcasecmp(next_elt->key, key)) {
587
588            /* Found an existing entry with the same key, so overwrite it */
589
590            int must_reindex = 0;
591            apr_table_entry_t *dst_elt = NULL;
592
593            next_elt->val = (char *)val;
594
595            /* Remove any other instances of this key */
596            for (next_elt++; next_elt <= end_elt; next_elt++) {
597                if ((checksum == next_elt->key_checksum) &&
598                    !strcasecmp(next_elt->key, key)) {
599                    t->a.nelts--;
600                    if (!dst_elt) {
601                        dst_elt = next_elt;
602                    }
603                }
604                else if (dst_elt) {
605                    *dst_elt++ = *next_elt;
606                    must_reindex = 1;
607                }
608            }
609
610            /* If we've removed anything, shift over the remainder
611             * of the table (note that the previous loop didn't
612             * run to the end of the table, just to the last match
613             * for the index)
614             */
615            if (dst_elt) {
616                for (; next_elt < table_end; next_elt++) {
617                    *dst_elt++ = *next_elt;
618                }
619                must_reindex = 1;
620            }
621            if (must_reindex) {
622                table_reindex(t);
623            }
624            return;
625        }
626    }
627
628add_new_elt:
629    t->index_last[hash] = t->a.nelts;
630    next_elt = (apr_table_entry_t *) table_push(t);
631    next_elt->key = (char *)key;
632    next_elt->val = (char *)val;
633    next_elt->key_checksum = checksum;
634}
635
636APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key)
637{
638    apr_table_entry_t *next_elt;
639    apr_table_entry_t *end_elt;
640    apr_table_entry_t *dst_elt;
641    apr_uint32_t checksum;
642    int hash;
643    int must_reindex;
644
645    hash = TABLE_HASH(key);
646    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
647        return;
648    }
649    COMPUTE_KEY_CHECKSUM(key, checksum);
650    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
651    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
652    must_reindex = 0;
653    for (; next_elt <= end_elt; next_elt++) {
654	if ((checksum == next_elt->key_checksum) &&
655            !strcasecmp(next_elt->key, key)) {
656
657            /* Found a match: remove this entry, plus any additional
658             * matches for the same key that might follow
659             */
660            apr_table_entry_t *table_end = ((apr_table_entry_t *) t->a.elts) +
661                t->a.nelts;
662            t->a.nelts--;
663            dst_elt = next_elt;
664            for (next_elt++; next_elt <= end_elt; next_elt++) {
665                if ((checksum == next_elt->key_checksum) &&
666                    !strcasecmp(next_elt->key, key)) {
667                    t->a.nelts--;
668                }
669                else {
670                    *dst_elt++ = *next_elt;
671                }
672            }
673
674            /* Shift over the remainder of the table (note that
675             * the previous loop didn't run to the end of the table,
676             * just to the last match for the index)
677             */
678            for (; next_elt < table_end; next_elt++) {
679                *dst_elt++ = *next_elt;
680            }
681            must_reindex = 1;
682            break;
683        }
684    }
685    if (must_reindex) {
686        table_reindex(t);
687    }
688}
689
690APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
691				 const char *val)
692{
693    apr_table_entry_t *next_elt;
694    apr_table_entry_t *end_elt;
695    apr_uint32_t checksum;
696    int hash;
697
698    COMPUTE_KEY_CHECKSUM(key, checksum);
699    hash = TABLE_HASH(key);
700    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
701        t->index_first[hash] = t->a.nelts;
702        TABLE_SET_INDEX_INITIALIZED(t, hash);
703        goto add_new_elt;
704    }
705    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
706    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
707
708    for (; next_elt <= end_elt; next_elt++) {
709	if ((checksum == next_elt->key_checksum) &&
710            !strcasecmp(next_elt->key, key)) {
711
712            /* Found an existing entry with the same key, so merge with it */
713	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
714                                        val, NULL);
715            return;
716        }
717    }
718
719add_new_elt:
720    t->index_last[hash] = t->a.nelts;
721    next_elt = (apr_table_entry_t *) table_push(t);
722    next_elt->key = apr_pstrdup(t->a.pool, key);
723    next_elt->val = apr_pstrdup(t->a.pool, val);
724    next_elt->key_checksum = checksum;
725}
726
727APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
728				  const char *val)
729{
730    apr_table_entry_t *next_elt;
731    apr_table_entry_t *end_elt;
732    apr_uint32_t checksum;
733    int hash;
734
735#if APR_POOL_DEBUG
736    {
737	apr_pool_t *pool;
738	pool = apr_pool_find(key);
739	if ((pool != key) && (!apr_pool_is_ancestor(pool, t->a.pool))) {
740	    fprintf(stderr, "apr_table_mergen: key not in ancestor pool of t\n");
741	    abort();
742	}
743	pool = apr_pool_find(val);
744	if ((pool != val) && (!apr_pool_is_ancestor(pool, t->a.pool))) {
745	    fprintf(stderr, "apr_table_mergen: val not in ancestor pool of t\n");
746	    abort();
747	}
748    }
749#endif
750
751    COMPUTE_KEY_CHECKSUM(key, checksum);
752    hash = TABLE_HASH(key);
753    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
754        t->index_first[hash] = t->a.nelts;
755        TABLE_SET_INDEX_INITIALIZED(t, hash);
756        goto add_new_elt;
757    }
758    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
759    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
760
761    for (; next_elt <= end_elt; next_elt++) {
762	if ((checksum == next_elt->key_checksum) &&
763            !strcasecmp(next_elt->key, key)) {
764
765            /* Found an existing entry with the same key, so merge with it */
766	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
767                                        val, NULL);
768            return;
769        }
770    }
771
772add_new_elt:
773    t->index_last[hash] = t->a.nelts;
774    next_elt = (apr_table_entry_t *) table_push(t);
775    next_elt->key = (char *)key;
776    next_elt->val = (char *)val;
777    next_elt->key_checksum = checksum;
778}
779
780APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
781			       const char *val)
782{
783    apr_table_entry_t *elts;
784    apr_uint32_t checksum;
785    int hash;
786
787    hash = TABLE_HASH(key);
788    t->index_last[hash] = t->a.nelts;
789    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
790        t->index_first[hash] = t->a.nelts;
791        TABLE_SET_INDEX_INITIALIZED(t, hash);
792    }
793    COMPUTE_KEY_CHECKSUM(key, checksum);
794    elts = (apr_table_entry_t *) table_push(t);
795    elts->key = apr_pstrdup(t->a.pool, key);
796    elts->val = apr_pstrdup(t->a.pool, val);
797    elts->key_checksum = checksum;
798}
799
800APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
801				const char *val)
802{
803    apr_table_entry_t *elts;
804    apr_uint32_t checksum;
805    int hash;
806
807#if APR_POOL_DEBUG
808    {
809	if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
810	    fprintf(stderr, "apr_table_addn: key not in ancestor pool of t\n");
811	    abort();
812	}
813	if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
814	    fprintf(stderr, "apr_table_addn: val not in ancestor pool of t\n");
815	    abort();
816	}
817    }
818#endif
819
820    hash = TABLE_HASH(key);
821    t->index_last[hash] = t->a.nelts;
822    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
823        t->index_first[hash] = t->a.nelts;
824        TABLE_SET_INDEX_INITIALIZED(t, hash);
825    }
826    COMPUTE_KEY_CHECKSUM(key, checksum);
827    elts = (apr_table_entry_t *) table_push(t);
828    elts->key = (char *)key;
829    elts->val = (char *)val;
830    elts->key_checksum = checksum;
831}
832
833APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
834					     const apr_table_t *overlay,
835					     const apr_table_t *base)
836{
837    apr_table_t *res;
838
839#if APR_POOL_DEBUG
840    /* we don't copy keys and values, so it's necessary that
841     * overlay->a.pool and base->a.pool have a life span at least
842     * as long as p
843     */
844    if (!apr_pool_is_ancestor(overlay->a.pool, p)) {
845	fprintf(stderr,
846		"apr_table_overlay: overlay's pool is not an ancestor of p\n");
847	abort();
848    }
849    if (!apr_pool_is_ancestor(base->a.pool, p)) {
850	fprintf(stderr,
851		"apr_table_overlay: base's pool is not an ancestor of p\n");
852	abort();
853    }
854#endif
855
856    res = apr_palloc(p, sizeof(apr_table_t));
857    /* behave like append_arrays */
858    res->a.pool = p;
859    copy_array_hdr_core(&res->a, &overlay->a);
860    apr_array_cat(&res->a, &base->a);
861    table_reindex(res);
862    return res;
863}
864
865/* And now for something completely abstract ...
866
867 * For each key value given as a vararg:
868 *   run the function pointed to as
869 *     int comp(void *r, char *key, char *value);
870 *   on each valid key-value pair in the apr_table_t t that matches the vararg key,
871 *   or once for every valid key-value pair if the vararg list is empty,
872 *   until the function returns false (0) or we finish the table.
873 *
874 * Note that we restart the traversal for each vararg, which means that
875 * duplicate varargs will result in multiple executions of the function
876 * for each matching key.  Note also that if the vararg list is empty,
877 * only one traversal will be made and will cut short if comp returns 0.
878 *
879 * Note that the table_get and table_merge functions assume that each key in
880 * the apr_table_t is unique (i.e., no multiple entries with the same key).  This
881 * function does not make that assumption, since it (unfortunately) isn't
882 * true for some of Apache's tables.
883 *
884 * Note that rec is simply passed-on to the comp function, so that the
885 * caller can pass additional info for the task.
886 *
887 * ADDENDUM for apr_table_vdo():
888 *
889 * The caching api will allow a user to walk the header values:
890 *
891 * apr_status_t apr_cache_el_header_walk(apr_cache_el *el,
892 *    int (*comp)(void *, const char *, const char *), void *rec, ...);
893 *
894 * So it can be ..., however from there I use a  callback that use a va_list:
895 *
896 * apr_status_t (*cache_el_header_walk)(apr_cache_el *el,
897 *    int (*comp)(void *, const char *, const char *), void *rec, va_list);
898 *
899 * To pass those ...'s on down to the actual module that will handle walking
900 * their headers, in the file case this is actually just an apr_table - and
901 * rather than reimplementing apr_table_do (which IMHO would be bad) I just
902 * called it with the va_list. For mod_shmem_cache I don't need it since I
903 * can't use apr_table's, but mod_file_cache should (though a good hash would
904 * be better, but that's a different issue :).
905 *
906 * So to make mod_file_cache easier to maintain, it's a good thing
907 */
908APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
909                                     void *rec, const apr_table_t *t, ...)
910{
911    int rv;
912
913    va_list vp;
914    va_start(vp, t);
915    rv = apr_table_vdo(comp, rec, t, vp);
916    va_end(vp);
917
918    return rv;
919}
920
921/* XXX: do the semantics of this routine make any sense?  Right now,
922 * if the caller passed in a non-empty va_list of keys to search for,
923 * the "early termination" facility only terminates on *that* key; other
924 * keys will continue to process.  Note that this only has any effect
925 * at all if there are multiple entries in the table with the same key,
926 * otherwise the called function can never effectively early-terminate
927 * this function, as the zero return value is effectively ignored.
928 *
929 * Note also that this behavior is at odds with the behavior seen if an
930 * empty va_list is passed in -- in that case, a zero return value terminates
931 * the entire apr_table_vdo (which is what I think should happen in
932 * both cases).
933 *
934 * If nobody objects soon, I'm going to change the order of the nested
935 * loops in this function so that any zero return value from the (*comp)
936 * function will cause a full termination of apr_table_vdo.  I'm hesitant
937 * at the moment because these (funky) semantics have been around for a
938 * very long time, and although Apache doesn't seem to use them at all,
939 * some third-party vendor might.  I can only think of one possible reason
940 * the existing semantics would make any sense, and it's very Apache-centric,
941 * which is this: if (*comp) is looking for matches of a particular
942 * substring in request headers (let's say it's looking for a particular
943 * cookie name in the Set-Cookie headers), then maybe it wants to be
944 * able to stop searching early as soon as it finds that one and move
945 * on to the next key.  That's only an optimization of course, but changing
946 * the behavior of this function would mean that any code that tried
947 * to do that would stop working right.
948 *
949 * Sigh.  --JCW, 06/28/02
950 */
951APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
952                               void *rec, const apr_table_t *t, va_list vp)
953{
954    char *argp;
955    apr_table_entry_t *elts = (apr_table_entry_t *) t->a.elts;
956    int vdorv = 1;
957
958    argp = va_arg(vp, char *);
959    do {
960        int rv = 1, i;
961        if (argp) {
962            /* Scan for entries that match the next key */
963            int hash = TABLE_HASH(argp);
964            if (TABLE_INDEX_IS_INITIALIZED(t, hash)) {
965                apr_uint32_t checksum;
966                COMPUTE_KEY_CHECKSUM(argp, checksum);
967                for (i = t->index_first[hash];
968                     rv && (i <= t->index_last[hash]); ++i) {
969                    if (elts[i].key && (checksum == elts[i].key_checksum) &&
970                                        !strcasecmp(elts[i].key, argp)) {
971                        rv = (*comp) (rec, elts[i].key, elts[i].val);
972                    }
973                }
974            }
975        }
976        else {
977            /* Scan the entire table */
978            for (i = 0; rv && (i < t->a.nelts); ++i) {
979                if (elts[i].key) {
980                    rv = (*comp) (rec, elts[i].key, elts[i].val);
981                }
982            }
983        }
984        if (rv == 0) {
985            vdorv = 0;
986        }
987    } while (argp && ((argp = va_arg(vp, char *)) != NULL));
988
989    return vdorv;
990}
991
992static apr_table_entry_t **table_mergesort(apr_pool_t *pool,
993                                           apr_table_entry_t **values,
994                                           apr_size_t n)
995{
996    /* Bottom-up mergesort, based on design in Sedgewick's "Algorithms
997     * in C," chapter 8
998     */
999    apr_table_entry_t **values_tmp =
1000        (apr_table_entry_t **)apr_palloc(pool, n * sizeof(apr_table_entry_t*));
1001    apr_size_t i;
1002    apr_size_t blocksize;
1003
1004    /* First pass: sort pairs of elements (blocksize=1) */
1005    for (i = 0; i + 1 < n; i += 2) {
1006        if (strcasecmp(values[i]->key, values[i + 1]->key) > 0) {
1007            apr_table_entry_t *swap = values[i];
1008            values[i] = values[i + 1];
1009            values[i + 1] = swap;
1010        }
1011    }
1012
1013    /* Merge successively larger blocks */
1014    blocksize = 2;
1015    while (blocksize < n) {
1016        apr_table_entry_t **dst = values_tmp;
1017        apr_size_t next_start;
1018        apr_table_entry_t **swap;
1019
1020        /* Merge consecutive pairs blocks of the next blocksize.
1021         * Within a block, elements are in sorted order due to
1022         * the previous iteration.
1023         */
1024        for (next_start = 0; next_start + blocksize < n;
1025             next_start += (blocksize + blocksize)) {
1026
1027            apr_size_t block1_start = next_start;
1028            apr_size_t block2_start = block1_start + blocksize;
1029            apr_size_t block1_end = block2_start;
1030            apr_size_t block2_end = block2_start + blocksize;
1031            if (block2_end > n) {
1032                /* The last block may be smaller than blocksize */
1033                block2_end = n;
1034            }
1035            for (;;) {
1036
1037                /* Merge the next two blocks:
1038                 * Pick the smaller of the next element from
1039                 * block 1 and the next element from block 2.
1040                 * Once either of the blocks is emptied, copy
1041                 * over all the remaining elements from the
1042                 * other block
1043                 */
1044                if (block1_start == block1_end) {
1045                    for (; block2_start < block2_end; block2_start++) {
1046                        *dst++ = values[block2_start];
1047                    }
1048                    break;
1049                }
1050                else if (block2_start == block2_end) {
1051                    for (; block1_start < block1_end; block1_start++) {
1052                        *dst++ = values[block1_start];
1053                    }
1054                    break;
1055                }
1056                if (strcasecmp(values[block1_start]->key,
1057                               values[block2_start]->key) > 0) {
1058                    *dst++ = values[block2_start++];
1059                }
1060                else {
1061                    *dst++ = values[block1_start++];
1062                }
1063            }
1064        }
1065
1066        /* If n is not a multiple of 2*blocksize, some elements
1067         * will be left over at the end of the array.
1068         */
1069        for (i = dst - values_tmp; i < n; i++) {
1070            values_tmp[i] = values[i];
1071        }
1072
1073        /* The output array of this pass becomes the input
1074         * array of the next pass, and vice versa
1075         */
1076        swap = values_tmp;
1077        values_tmp = values;
1078        values = swap;
1079
1080        blocksize += blocksize;
1081    }
1082
1083    return values;
1084}
1085
1086APR_DECLARE(void) apr_table_compress(apr_table_t *t, unsigned flags)
1087{
1088    apr_table_entry_t **sort_array;
1089    apr_table_entry_t **sort_next;
1090    apr_table_entry_t **sort_end;
1091    apr_table_entry_t *table_next;
1092    apr_table_entry_t **last;
1093    int i;
1094    int dups_found;
1095
1096    if (t->a.nelts <= 1) {
1097        return;
1098    }
1099
1100    /* Copy pointers to all the table elements into an
1101     * array and sort to allow for easy detection of
1102     * duplicate keys
1103     */
1104    sort_array = (apr_table_entry_t **)
1105        apr_palloc(t->a.pool, t->a.nelts * sizeof(apr_table_entry_t*));
1106    sort_next = sort_array;
1107    table_next = (apr_table_entry_t *)t->a.elts;
1108    i = t->a.nelts;
1109    do {
1110        *sort_next++ = table_next++;
1111    } while (--i);
1112
1113    /* Note: the merge is done with mergesort instead of quicksort
1114     * because mergesort is a stable sort and runs in n*log(n)
1115     * time regardless of its inputs (quicksort is quadratic in
1116     * the worst case)
1117     */
1118    sort_array = table_mergesort(t->a.pool, sort_array, t->a.nelts);
1119
1120    /* Process any duplicate keys */
1121    dups_found = 0;
1122    sort_next = sort_array;
1123    sort_end = sort_array + t->a.nelts;
1124    last = sort_next++;
1125    while (sort_next < sort_end) {
1126        if (((*sort_next)->key_checksum == (*last)->key_checksum) &&
1127            !strcasecmp((*sort_next)->key, (*last)->key)) {
1128            apr_table_entry_t **dup_last = sort_next + 1;
1129            dups_found = 1;
1130            while ((dup_last < sort_end) &&
1131                   ((*dup_last)->key_checksum == (*last)->key_checksum) &&
1132                   !strcasecmp((*dup_last)->key, (*last)->key)) {
1133                dup_last++;
1134            }
1135            dup_last--; /* Elements from last through dup_last, inclusive,
1136                         * all have the same key
1137                         */
1138            if (flags == APR_OVERLAP_TABLES_MERGE) {
1139                apr_size_t len = 0;
1140                apr_table_entry_t **next = last;
1141                char *new_val;
1142                char *val_dst;
1143                do {
1144                    len += strlen((*next)->val);
1145                    len += 2; /* for ", " or trailing null */
1146                } while (++next <= dup_last);
1147                new_val = (char *)apr_palloc(t->a.pool, len);
1148                val_dst = new_val;
1149                next = last;
1150                for (;;) {
1151                    strcpy(val_dst, (*next)->val);
1152                    val_dst += strlen((*next)->val);
1153                    next++;
1154                    if (next > dup_last) {
1155                        *val_dst = 0;
1156                        break;
1157                    }
1158                    else {
1159                        *val_dst++ = ',';
1160                        *val_dst++ = ' ';
1161                    }
1162                }
1163                (*last)->val = new_val;
1164            }
1165            else { /* overwrite */
1166                (*last)->val = (*dup_last)->val;
1167            }
1168            do {
1169                (*sort_next)->key = NULL;
1170            } while (++sort_next <= dup_last);
1171        }
1172        else {
1173            last = sort_next++;
1174        }
1175    }
1176
1177    /* Shift elements to the left to fill holes left by removing duplicates */
1178    if (dups_found) {
1179        apr_table_entry_t *src = (apr_table_entry_t *)t->a.elts;
1180        apr_table_entry_t *dst = (apr_table_entry_t *)t->a.elts;
1181        apr_table_entry_t *last_elt = src + t->a.nelts;
1182        do {
1183            if (src->key) {
1184                *dst++ = *src;
1185            }
1186        } while (++src < last_elt);
1187        t->a.nelts -= (int)(last_elt - dst);
1188    }
1189
1190    table_reindex(t);
1191}
1192
1193static void apr_table_cat(apr_table_t *t, const apr_table_t *s)
1194{
1195    const int n = t->a.nelts;
1196    register int idx;
1197
1198    apr_array_cat(&t->a,&s->a);
1199
1200    if (n == 0) {
1201        memcpy(t->index_first,s->index_first,sizeof(int) * TABLE_HASH_SIZE);
1202        memcpy(t->index_last, s->index_last, sizeof(int) * TABLE_HASH_SIZE);
1203        t->index_initialized = s->index_initialized;
1204        return;
1205    }
1206
1207    for (idx = 0; idx < TABLE_HASH_SIZE; ++idx) {
1208        if (TABLE_INDEX_IS_INITIALIZED(s, idx)) {
1209            t->index_last[idx] = s->index_last[idx] + n;
1210            if (!TABLE_INDEX_IS_INITIALIZED(t, idx)) {
1211                t->index_first[idx] = s->index_first[idx] + n;
1212            }
1213        }
1214    }
1215
1216    t->index_initialized |= s->index_initialized;
1217}
1218
1219APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
1220				    unsigned flags)
1221{
1222    if (a->a.nelts + b->a.nelts == 0) {
1223        return;
1224    }
1225
1226#if APR_POOL_DEBUG
1227    /* Since the keys and values are not copied, it's required that
1228     * b->a.pool has a lifetime at least as long as a->a.pool. */
1229    if (!apr_pool_is_ancestor(b->a.pool, a->a.pool)) {
1230        fprintf(stderr, "apr_table_overlap: b's pool is not an ancestor of a's\n");
1231        abort();
1232    }
1233#endif
1234
1235    apr_table_cat(a, b);
1236
1237    apr_table_compress(a, flags);
1238}
1239