1/*
2*******************************************************************************
3* Copyright (C) 2013-2014, International Business Machines
4* Corporation and others.  All Rights Reserved.
5*******************************************************************************
6* collationbuilder.cpp
7*
8* (replaced the former ucol_bld.cpp)
9*
10* created on: 2013may06
11* created by: Markus W. Scherer
12*/
13
14#ifdef DEBUG_COLLATION_BUILDER
15#include <stdio.h>
16#endif
17
18#include "unicode/utypes.h"
19
20#if !UCONFIG_NO_COLLATION
21
22#include "unicode/caniter.h"
23#include "unicode/normalizer2.h"
24#include "unicode/tblcoll.h"
25#include "unicode/parseerr.h"
26#include "unicode/uchar.h"
27#include "unicode/ucol.h"
28#include "unicode/unistr.h"
29#include "unicode/usetiter.h"
30#include "unicode/utf16.h"
31#include "unicode/uversion.h"
32#include "cmemory.h"
33#include "collation.h"
34#include "collationbuilder.h"
35#include "collationdata.h"
36#include "collationdatabuilder.h"
37#include "collationfastlatin.h"
38#include "collationroot.h"
39#include "collationrootelements.h"
40#include "collationruleparser.h"
41#include "collationsettings.h"
42#include "collationtailoring.h"
43#include "collationweights.h"
44#include "normalizer2impl.h"
45#include "uassert.h"
46#include "ucol_imp.h"
47#include "utf16collationiterator.h"
48
49#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
50
51U_NAMESPACE_BEGIN
52
53namespace {
54
55class BundleImporter : public CollationRuleParser::Importer {
56public:
57    BundleImporter() : rules(NULL) {}
58    virtual ~BundleImporter();
59    virtual const UnicodeString *getRules(
60            const char *localeID, const char *collationType,
61            const char *&errorReason, UErrorCode &errorCode);
62
63private:
64    UnicodeString *rules;
65};
66
67BundleImporter::~BundleImporter() {
68    delete rules;
69}
70
71const UnicodeString *
72BundleImporter::getRules(
73        const char *localeID, const char *collationType,
74        const char *& /*errorReason*/, UErrorCode &errorCode) {
75    delete rules;
76    return rules = CollationLoader::loadRules(localeID, collationType, errorCode);
77}
78
79}  // namespace
80
81// RuleBasedCollator implementation ---------------------------------------- ***
82
83// These methods are here, rather than in rulebasedcollator.cpp,
84// for modularization:
85// Most code using Collator does not need to build a Collator from rules.
86// By moving these constructors and helper methods to a separate file,
87// most code will not have a static dependency on the builder code.
88
89RuleBasedCollator::RuleBasedCollator()
90        : data(NULL),
91          settings(NULL),
92          tailoring(NULL),
93          validLocale(""),
94          explicitlySetAttributes(0),
95          actualLocaleIsSameAsValid(FALSE) {
96}
97
98RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
99        : data(NULL),
100          settings(NULL),
101          tailoring(NULL),
102          validLocale(""),
103          explicitlySetAttributes(0),
104          actualLocaleIsSameAsValid(FALSE) {
105    internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
106}
107
108RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
109                                     UErrorCode &errorCode)
110        : data(NULL),
111          settings(NULL),
112          tailoring(NULL),
113          validLocale(""),
114          explicitlySetAttributes(0),
115          actualLocaleIsSameAsValid(FALSE) {
116    internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
117}
118
119RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
120                                     UColAttributeValue decompositionMode,
121                                     UErrorCode &errorCode)
122        : data(NULL),
123          settings(NULL),
124          tailoring(NULL),
125          validLocale(""),
126          explicitlySetAttributes(0),
127          actualLocaleIsSameAsValid(FALSE) {
128    internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
129}
130
131RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132                                     ECollationStrength strength,
133                                     UColAttributeValue decompositionMode,
134                                     UErrorCode &errorCode)
135        : data(NULL),
136          settings(NULL),
137          tailoring(NULL),
138          validLocale(""),
139          explicitlySetAttributes(0),
140          actualLocaleIsSameAsValid(FALSE) {
141    internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
142}
143
144RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
145                                     UParseError &parseError, UnicodeString &reason,
146                                     UErrorCode &errorCode)
147        : data(NULL),
148          settings(NULL),
149          tailoring(NULL),
150          validLocale(""),
151          explicitlySetAttributes(0),
152          actualLocaleIsSameAsValid(FALSE) {
153    internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
154}
155
156void
157RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
158                                          int32_t strength,
159                                          UColAttributeValue decompositionMode,
160                                          UParseError *outParseError, UnicodeString *outReason,
161                                          UErrorCode &errorCode) {
162    const CollationTailoring *base = CollationRoot::getRoot(errorCode);
163    if(U_FAILURE(errorCode)) { return; }
164    if(outReason != NULL) { outReason->remove(); }
165    CollationBuilder builder(base, errorCode);
166    UVersionInfo noVersion = { 0, 0, 0, 0 };
167    BundleImporter importer;
168    LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
169                                                             &importer,
170                                                             outParseError, errorCode));
171    if(U_FAILURE(errorCode)) {
172        const char *reason = builder.getErrorReason();
173        if(reason != NULL && outReason != NULL) {
174            *outReason = UnicodeString(reason, -1, US_INV);
175        }
176        return;
177    }
178    const CollationSettings &ts = *t->settings;
179    uint16_t fastLatinPrimaries[CollationFastLatin::LATIN_LIMIT];
180    int32_t fastLatinOptions = CollationFastLatin::getOptions(
181            t->data, ts, fastLatinPrimaries, LENGTHOF(fastLatinPrimaries));
182    if((strength != UCOL_DEFAULT && strength != ts.getStrength()) ||
183            (decompositionMode != UCOL_DEFAULT &&
184                decompositionMode != ts.getFlag(CollationSettings::CHECK_FCD)) ||
185            fastLatinOptions != ts.fastLatinOptions ||
186            (fastLatinOptions >= 0 &&
187                uprv_memcmp(fastLatinPrimaries, ts.fastLatinPrimaries,
188                            sizeof(fastLatinPrimaries)) != 0)) {
189        CollationSettings *ownedSettings = SharedObject::copyOnWrite(t->settings);
190        if(ownedSettings == NULL) {
191            errorCode = U_MEMORY_ALLOCATION_ERROR;
192            return;
193        }
194        if(strength != UCOL_DEFAULT) {
195            ownedSettings->setStrength(strength, 0, errorCode);
196        }
197        if(decompositionMode != UCOL_DEFAULT) {
198            ownedSettings->setFlag(CollationSettings::CHECK_FCD, decompositionMode, 0, errorCode);
199        }
200        ownedSettings->fastLatinOptions = CollationFastLatin::getOptions(
201            t->data, *ownedSettings,
202            ownedSettings->fastLatinPrimaries, LENGTHOF(ownedSettings->fastLatinPrimaries));
203    }
204    if(U_FAILURE(errorCode)) { return; }
205    t->actualLocale.setToBogus();
206    adoptTailoring(t.orphan());
207}
208
209// CollationBuilder implementation ----------------------------------------- ***
210
211CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
212        : nfd(*Normalizer2::getNFDInstance(errorCode)),
213          fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
214          nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
215          base(b),
216          baseData(b->data),
217          rootElements(b->data->rootElements, b->data->rootElementsLength),
218          variableTop(0),
219          dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
220          errorReason(NULL),
221          cesLength(0),
222          rootPrimaryIndexes(errorCode), nodes(errorCode) {
223    nfcImpl.ensureCanonIterData(errorCode);
224    if(U_FAILURE(errorCode)) {
225        errorReason = "CollationBuilder fields initialization failed";
226        return;
227    }
228    if(dataBuilder == NULL) {
229        errorCode = U_MEMORY_ALLOCATION_ERROR;
230        return;
231    }
232    dataBuilder->initForTailoring(baseData, errorCode);
233    if(U_FAILURE(errorCode)) {
234        errorReason = "CollationBuilder initialization failed";
235    }
236}
237
238CollationBuilder::~CollationBuilder() {
239    delete dataBuilder;
240}
241
242CollationTailoring *
243CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
244                                const UVersionInfo rulesVersion,
245                                CollationRuleParser::Importer *importer,
246                                UParseError *outParseError,
247                                UErrorCode &errorCode) {
248    if(U_FAILURE(errorCode)) { return NULL; }
249    if(baseData->rootElements == NULL) {
250        errorCode = U_MISSING_RESOURCE_ERROR;
251        errorReason = "missing root elements data, tailoring not supported";
252        return NULL;
253    }
254    LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
255    if(tailoring.isNull() || tailoring->isBogus()) {
256        errorCode = U_MEMORY_ALLOCATION_ERROR;
257        return NULL;
258    }
259    CollationRuleParser parser(baseData, errorCode);
260    if(U_FAILURE(errorCode)) { return NULL; }
261    // Note: This always bases &[last variable] and &[first regular]
262    // on the root collator's maxVariable/variableTop.
263    // If we wanted this to change after [maxVariable x], then we would keep
264    // the tailoring.settings pointer here and read its variableTop when we need it.
265    // See http://unicode.org/cldr/trac/ticket/6070
266    variableTop = base->settings->variableTop;
267    parser.setSink(this);
268    parser.setImporter(importer);
269    parser.parse(ruleString, *SharedObject::copyOnWrite(tailoring->settings),
270                 outParseError, errorCode);
271    errorReason = parser.getErrorReason();
272    if(U_FAILURE(errorCode)) { return NULL; }
273    if(dataBuilder->hasMappings()) {
274        makeTailoredCEs(errorCode);
275        closeOverComposites(errorCode);
276        finalizeCEs(errorCode);
277        // Copy all of ASCII, and Latin-1 letters, into each tailoring.
278        optimizeSet.add(0, 0x7f);
279        optimizeSet.add(0xc0, 0xff);
280        // Hangul is decomposed on the fly during collation,
281        // and the tailoring data is always built with HANGUL_TAG specials.
282        optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
283        dataBuilder->optimize(optimizeSet, errorCode);
284        tailoring->ensureOwnedData(errorCode);
285        if(U_FAILURE(errorCode)) { return NULL; }
286        if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
287        dataBuilder->build(*tailoring->ownedData, errorCode);
288        tailoring->builder = dataBuilder;
289        dataBuilder = NULL;
290    } else {
291        tailoring->data = baseData;
292    }
293    if(U_FAILURE(errorCode)) { return NULL; }
294    tailoring->rules = ruleString;
295    tailoring->rules.getTerminatedBuffer();  // ensure NUL-termination
296    tailoring->setVersion(base->version, rulesVersion);
297    return tailoring.orphan();
298}
299
300void
301CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
302                           const char *&parserErrorReason, UErrorCode &errorCode) {
303    if(U_FAILURE(errorCode)) { return; }
304    U_ASSERT(!str.isEmpty());
305    if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
306        ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
307        cesLength = 1;
308        if(U_FAILURE(errorCode)) { return; }
309        U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
310    } else {
311        // normal reset to a character or string
312        UnicodeString nfdString = nfd.normalize(str, errorCode);
313        if(U_FAILURE(errorCode)) {
314            parserErrorReason = "normalizing the reset position";
315            return;
316        }
317        cesLength = dataBuilder->getCEs(nfdString, ces, 0);
318        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
319            errorCode = U_ILLEGAL_ARGUMENT_ERROR;
320            parserErrorReason = "reset position maps to too many collation elements (more than 31)";
321            return;
322        }
323    }
324    if(strength == UCOL_IDENTICAL) { return; }  // simple reset-at-position
325
326    // &[before strength]position
327    U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
328    int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
329    if(U_FAILURE(errorCode)) { return; }
330
331    int64_t node = nodes.elementAti(index);
332    // If the index is for a "weaker" tailored node,
333    // then skip backwards over this and further "weaker" nodes.
334    while(strengthFromNode(node) > strength) {
335        index = previousIndexFromNode(node);
336        node = nodes.elementAti(index);
337    }
338
339    // Find or insert a node whose index we will put into a temporary CE.
340    if(strengthFromNode(node) == strength && isTailoredNode(node)) {
341        // Reset to just before this same-strength tailored node.
342        index = previousIndexFromNode(node);
343    } else if(strength == UCOL_PRIMARY) {
344        // root primary node (has no previous index)
345        uint32_t p = weight32FromNode(node);
346        if(p == 0) {
347            errorCode = U_UNSUPPORTED_ERROR;
348            parserErrorReason = "reset primary-before ignorable not possible";
349            return;
350        }
351        if(p <= rootElements.getFirstPrimary()) {
352            // There is no primary gap between ignorables and the space-first-primary.
353            errorCode = U_UNSUPPORTED_ERROR;
354            parserErrorReason = "reset primary-before first non-ignorable not supported";
355            return;
356        }
357        if(p == Collation::FIRST_TRAILING_PRIMARY) {
358            // We do not support tailoring to an unassigned-implicit CE.
359            errorCode = U_UNSUPPORTED_ERROR;
360            parserErrorReason = "reset primary-before [first trailing] not supported";
361            return;
362        }
363        p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
364        index = findOrInsertNodeForPrimary(p, errorCode);
365        // Go to the last node in this list:
366        // Tailor after the last node between adjacent root nodes.
367        for(;;) {
368            node = nodes.elementAti(index);
369            int32_t nextIndex = nextIndexFromNode(node);
370            if(nextIndex == 0) { break; }
371            index = nextIndex;
372        }
373    } else {
374        // &[before 2] or &[before 3]
375        index = findCommonNode(index, UCOL_SECONDARY);
376        if(strength >= UCOL_TERTIARY) {
377            index = findCommonNode(index, UCOL_TERTIARY);
378        }
379        node = nodes.elementAti(index);
380        if(strengthFromNode(node) == strength) {
381            // Found a same-strength node with an explicit weight.
382            uint32_t weight16 = weight16FromNode(node);
383            if(weight16 == 0) {
384                errorCode = U_UNSUPPORTED_ERROR;
385                if(strength == UCOL_SECONDARY) {
386                    parserErrorReason = "reset secondary-before secondary ignorable not possible";
387                } else {
388                    parserErrorReason = "reset tertiary-before completely ignorable not possible";
389                }
390                return;
391            }
392            U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16);
393            int32_t previousIndex = previousIndexFromNode(node);
394            if(weight16 == Collation::COMMON_WEIGHT16) {
395                // Reset to just before this same-strength common-weight node.
396                index = previousIndex;
397            } else {
398                // A non-common weight is only possible from a root CE.
399                // Find the higher-level weights, which must all be explicit,
400                // and then find the preceding weight for this level.
401                uint32_t previousWeight16 = 0;
402                int32_t previousWeightIndex = -1;
403                int32_t i = index;
404                if(strength == UCOL_SECONDARY) {
405                    uint32_t p;
406                    do {
407                        i = previousIndexFromNode(node);
408                        node = nodes.elementAti(i);
409                        if(strengthFromNode(node) == UCOL_SECONDARY && !isTailoredNode(node) &&
410                                previousWeightIndex < 0) {
411                            previousWeightIndex = i;
412                            previousWeight16 = weight16FromNode(node);
413                        }
414                    } while(strengthFromNode(node) > UCOL_PRIMARY);
415                    U_ASSERT(!isTailoredNode(node));
416                    p = weight32FromNode(node);
417                    weight16 = rootElements.getSecondaryBefore(p, weight16);
418                } else {
419                    uint32_t p, s;
420                    do {
421                        i = previousIndexFromNode(node);
422                        node = nodes.elementAti(i);
423                        if(strengthFromNode(node) == UCOL_TERTIARY && !isTailoredNode(node) &&
424                                previousWeightIndex < 0) {
425                            previousWeightIndex = i;
426                            previousWeight16 = weight16FromNode(node);
427                        }
428                    } while(strengthFromNode(node) > UCOL_SECONDARY);
429                    U_ASSERT(!isTailoredNode(node));
430                    if(strengthFromNode(node) == UCOL_SECONDARY) {
431                        s = weight16FromNode(node);
432                        do {
433                            i = previousIndexFromNode(node);
434                            node = nodes.elementAti(i);
435                        } while(strengthFromNode(node) > UCOL_PRIMARY);
436                        U_ASSERT(!isTailoredNode(node));
437                    } else {
438                        U_ASSERT(!nodeHasBefore2(node));
439                        s = Collation::COMMON_WEIGHT16;
440                    }
441                    p = weight32FromNode(node);
442                    weight16 = rootElements.getTertiaryBefore(p, s, weight16);
443                    U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
444                }
445                // Find or insert the new explicit weight before the current one.
446                if(previousWeightIndex >= 0 && weight16 == previousWeight16) {
447                    // Tailor after the last node between adjacent root nodes.
448                    index = previousIndex;
449                } else {
450                    node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
451                    index = insertNodeBetween(previousIndex, index, node, errorCode);
452                }
453            }
454        } else {
455            // Found a stronger node with implied strength-common weight.
456            int64_t hasBefore3 = 0;
457            if(strength == UCOL_SECONDARY) {
458                U_ASSERT(!nodeHasBefore2(node));
459                // Move the HAS_BEFORE3 flag from the parent node
460                // to the new secondary common node.
461                hasBefore3 = node & HAS_BEFORE3;
462                node = (node & ~(int64_t)HAS_BEFORE3) | HAS_BEFORE2;
463            } else {
464                U_ASSERT(!nodeHasBefore3(node));
465                node |= HAS_BEFORE3;
466            }
467            nodes.setElementAt(node, index);
468            int32_t nextIndex = nextIndexFromNode(node);
469            // Insert default nodes with weights 02 and 05, reset to the 02 node.
470            node = nodeFromWeight16(BEFORE_WEIGHT16) | nodeFromStrength(strength);
471            index = insertNodeBetween(index, nextIndex, node, errorCode);
472            node = nodeFromWeight16(Collation::COMMON_WEIGHT16) | hasBefore3 |
473                    nodeFromStrength(strength);
474            insertNodeBetween(index, nextIndex, node, errorCode);
475        }
476        // Strength of the temporary CE = strength of its reset position.
477        // Code above raises an error if the before-strength is stronger.
478        strength = ceStrength(ces[cesLength - 1]);
479    }
480    if(U_FAILURE(errorCode)) {
481        parserErrorReason = "inserting reset position for &[before n]";
482        return;
483    }
484    ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
485}
486
487int64_t
488CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
489                                          const char *&parserErrorReason, UErrorCode &errorCode) {
490    U_ASSERT(str.length() == 2);
491    int64_t ce;
492    int32_t strength = UCOL_PRIMARY;
493    UBool isBoundary = FALSE;
494    UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
495    U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
496    switch(pos) {
497    case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
498        // Quaternary CEs are not supported.
499        // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
500        return 0;
501    case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
502        return 0;
503    case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
504        // Look for a tailored tertiary node after [0, 0, 0].
505        int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
506        if(U_FAILURE(errorCode)) { return 0; }
507        int64_t node = nodes.elementAti(index);
508        if((index = nextIndexFromNode(node)) != 0) {
509            node = nodes.elementAti(index);
510            U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
511            if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
512                return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
513            }
514        }
515        return rootElements.getFirstTertiaryCE();
516        // No need to look for nodeHasAnyBefore() on a tertiary node.
517    }
518    case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
519        ce = rootElements.getLastTertiaryCE();
520        strength = UCOL_TERTIARY;
521        break;
522    case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
523        // Look for a tailored secondary node after [0, 0, *].
524        int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
525        if(U_FAILURE(errorCode)) { return 0; }
526        int64_t node = nodes.elementAti(index);
527        while((index = nextIndexFromNode(node)) != 0) {
528            node = nodes.elementAti(index);
529            strength = strengthFromNode(node);
530            if(strength < UCOL_SECONDARY) { break; }
531            if(strength == UCOL_SECONDARY) {
532                if(isTailoredNode(node)) {
533                    if(nodeHasBefore3(node)) {
534                        index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
535                        U_ASSERT(isTailoredNode(nodes.elementAti(index)));
536                    }
537                    return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
538                } else {
539                    break;
540                }
541            }
542        }
543        ce = rootElements.getFirstSecondaryCE();
544        strength = UCOL_SECONDARY;
545        break;
546    }
547    case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
548        ce = rootElements.getLastSecondaryCE();
549        strength = UCOL_SECONDARY;
550        break;
551    case CollationRuleParser::FIRST_VARIABLE:
552        ce = rootElements.getFirstPrimaryCE();
553        isBoundary = TRUE;  // FractionalUCA.txt: FDD1 00A0, SPACE first primary
554        break;
555    case CollationRuleParser::LAST_VARIABLE:
556        ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
557        break;
558    case CollationRuleParser::FIRST_REGULAR:
559        ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
560        isBoundary = TRUE;  // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
561        break;
562    case CollationRuleParser::LAST_REGULAR:
563        // Use the Hani-first-primary rather than the actual last "regular" CE before it,
564        // for backward compatibility with behavior before the introduction of
565        // script-first-primary CEs in the root collator.
566        ce = rootElements.firstCEWithPrimaryAtLeast(
567            baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
568        break;
569    case CollationRuleParser::FIRST_IMPLICIT: {
570        uint32_t ce32 = baseData->getCE32(0x4e00);
571        U_ASSERT(Collation::hasCE32Tag(ce32, Collation::OFFSET_TAG));
572        ce = baseData->getCEFromOffsetCE32(0x4e00, ce32);
573        break;
574    }
575    case CollationRuleParser::LAST_IMPLICIT:
576        // We do not support tailoring to an unassigned-implicit CE.
577        errorCode = U_UNSUPPORTED_ERROR;
578        parserErrorReason = "reset to [last implicit] not supported";
579        return 0;
580    case CollationRuleParser::FIRST_TRAILING:
581        ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
582        isBoundary = TRUE;  // trailing first primary (there is no mapping for it)
583        break;
584    case CollationRuleParser::LAST_TRAILING:
585        errorCode = U_ILLEGAL_ARGUMENT_ERROR;
586        parserErrorReason = "LDML forbids tailoring to U+FFFF";
587        return 0;
588    default:
589        U_ASSERT(FALSE);
590        return 0;
591    }
592
593    int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
594    if(U_FAILURE(errorCode)) { return 0; }
595    int64_t node = nodes.elementAti(index);
596    if((pos & 1) == 0) {
597        // even pos = [first xyz]
598        if(!nodeHasAnyBefore(node) && isBoundary) {
599            // A <group> first primary boundary is artificially added to FractionalUCA.txt.
600            // It is reachable via its special contraction, but is not normally used.
601            // Find the first character tailored after the boundary CE,
602            // or the first real root CE after it.
603            if((index = nextIndexFromNode(node)) != 0) {
604                // If there is a following node, then it must be tailored
605                // because there are no root CEs with a boundary primary
606                // and non-common secondary/tertiary weights.
607                node = nodes.elementAti(index);
608                U_ASSERT(isTailoredNode(node));
609                ce = tempCEFromIndexAndStrength(index, strength);
610            } else {
611                U_ASSERT(strength == UCOL_PRIMARY);
612                uint32_t p = (uint32_t)(ce >> 32);
613                int32_t pIndex = rootElements.findPrimary(p);
614                UBool isCompressible = baseData->isCompressiblePrimary(p);
615                p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
616                ce = Collation::makeCE(p);
617                index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
618                if(U_FAILURE(errorCode)) { return 0; }
619                node = nodes.elementAti(index);
620            }
621        }
622        if(nodeHasAnyBefore(node)) {
623            // Get the first node that was tailored before this one at a weaker strength.
624            if(nodeHasBefore2(node)) {
625                index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
626                node = nodes.elementAti(index);
627            }
628            if(nodeHasBefore3(node)) {
629                index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
630            }
631            U_ASSERT(isTailoredNode(nodes.elementAti(index)));
632            ce = tempCEFromIndexAndStrength(index, strength);
633        }
634    } else {
635        // odd pos = [last xyz]
636        // Find the last node that was tailored after the [last xyz]
637        // at a strength no greater than the position's strength.
638        for(;;) {
639            int32_t nextIndex = nextIndexFromNode(node);
640            if(nextIndex == 0) { break; }
641            int64_t nextNode = nodes.elementAti(nextIndex);
642            if(strengthFromNode(nextNode) < strength) { break; }
643            index = nextIndex;
644            node = nextNode;
645        }
646        // Do not make a temporary CE for a root node.
647        // This last node might be the node for the root CE itself,
648        // or a node with a common secondary or tertiary weight.
649        if(isTailoredNode(node)) {
650            ce = tempCEFromIndexAndStrength(index, strength);
651        }
652    }
653    return ce;
654}
655
656void
657CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
658                              const UnicodeString &str, const UnicodeString &extension,
659                              const char *&parserErrorReason, UErrorCode &errorCode) {
660    if(U_FAILURE(errorCode)) { return; }
661    UnicodeString nfdPrefix;
662    if(!prefix.isEmpty()) {
663        nfd.normalize(prefix, nfdPrefix, errorCode);
664        if(U_FAILURE(errorCode)) {
665            parserErrorReason = "normalizing the relation prefix";
666            return;
667        }
668    }
669    UnicodeString nfdString = nfd.normalize(str, errorCode);
670    if(U_FAILURE(errorCode)) {
671        parserErrorReason = "normalizing the relation string";
672        return;
673    }
674
675    // The runtime code decomposes Hangul syllables on the fly,
676    // with recursive processing but without making the Jamo pieces visible for matching.
677    // It does not work with certain types of contextual mappings.
678    int32_t nfdLength = nfdString.length();
679    if(nfdLength >= 2) {
680        UChar c = nfdString.charAt(0);
681        if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
682            // While handling a Hangul syllable, contractions starting with Jamo L or V
683            // would not see the following Jamo of that syllable.
684            errorCode = U_UNSUPPORTED_ERROR;
685            parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
686            return;
687        }
688        c = nfdString.charAt(nfdLength - 1);
689        if(Hangul::isJamoL(c) ||
690                (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
691            // A contraction ending with Jamo L or L+V would require
692            // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
693            // or decomposing a following Hangul syllable on the fly, during contraction matching.
694            errorCode = U_UNSUPPORTED_ERROR;
695            parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
696            return;
697        }
698        // A Hangul syllable completely inside a contraction is ok.
699    }
700    // Note: If there is a prefix, then the parser checked that
701    // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
702    // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
703    // (While handling a Hangul syllable, prefixes on Jamo V or T
704    // would not see the previous Jamo of that syllable.)
705
706    if(strength != UCOL_IDENTICAL) {
707        // Find the node index after which we insert the new tailored node.
708        int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
709        U_ASSERT(cesLength > 0);
710        int64_t ce = ces[cesLength - 1];
711        if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
712            // There is no primary gap between ignorables and the space-first-primary.
713            errorCode = U_UNSUPPORTED_ERROR;
714            parserErrorReason = "tailoring primary after ignorables not supported";
715            return;
716        }
717        if(strength == UCOL_QUATERNARY && ce == 0) {
718            // The CE data structure does not support non-zero quaternary weights
719            // on tertiary ignorables.
720            errorCode = U_UNSUPPORTED_ERROR;
721            parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
722            return;
723        }
724        // Insert the new tailored node.
725        index = insertTailoredNodeAfter(index, strength, errorCode);
726        if(U_FAILURE(errorCode)) {
727            parserErrorReason = "modifying collation elements";
728            return;
729        }
730        // Strength of the temporary CE:
731        // The new relation may yield a stronger CE but not a weaker one.
732        int32_t tempStrength = ceStrength(ce);
733        if(strength < tempStrength) { tempStrength = strength; }
734        ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
735    }
736
737    setCaseBits(nfdString, parserErrorReason, errorCode);
738    if(U_FAILURE(errorCode)) { return; }
739
740    int32_t cesLengthBeforeExtension = cesLength;
741    if(!extension.isEmpty()) {
742        UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
743        if(U_FAILURE(errorCode)) {
744            parserErrorReason = "normalizing the relation extension";
745            return;
746        }
747        cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
748        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
749            errorCode = U_ILLEGAL_ARGUMENT_ERROR;
750            parserErrorReason =
751                "extension string adds too many collation elements (more than 31 total)";
752            return;
753        }
754    }
755    uint32_t ce32 = Collation::UNASSIGNED_CE32;
756    if((prefix != nfdPrefix || str != nfdString) &&
757            !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
758        // Map from the original input to the CEs.
759        // We do this in case the canonical closure is incomplete,
760        // so that it is possible to explicitly provide the missing mappings.
761        ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
762    }
763    addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
764    if(U_FAILURE(errorCode)) {
765        parserErrorReason = "writing collation elements";
766        return;
767    }
768    cesLength = cesLengthBeforeExtension;
769}
770
771int32_t
772CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
773                                         UErrorCode &errorCode) {
774    if(U_FAILURE(errorCode)) { return 0; }
775    U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
776
777    // Find the last CE that is at least as "strong" as the requested difference.
778    // Note: Stronger is smaller (UCOL_PRIMARY=0).
779    int64_t ce;
780    for(;; --cesLength) {
781        if(cesLength == 0) {
782            ce = ces[0] = 0;
783            cesLength = 1;
784            break;
785        } else {
786            ce = ces[cesLength - 1];
787        }
788        if(ceStrength(ce) <= strength) { break; }
789    }
790
791    if(isTempCE(ce)) {
792        // No need to findCommonNode() here for lower levels
793        // because insertTailoredNodeAfter() will do that anyway.
794        return indexFromTempCE(ce);
795    }
796
797    // root CE
798    if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
799        errorCode = U_UNSUPPORTED_ERROR;
800        parserErrorReason = "tailoring relative to an unassigned code point not supported";
801        return 0;
802    }
803    return findOrInsertNodeForRootCE(ce, strength, errorCode);
804}
805
806int32_t
807CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
808    if(U_FAILURE(errorCode)) { return 0; }
809    U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
810
811    // Find or insert the node for each of the root CE's weights,
812    // down to the requested level/strength.
813    // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
814    U_ASSERT((ce & 0xc0) == 0);
815    int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32) , errorCode);
816    if(strength >= UCOL_SECONDARY) {
817        uint32_t lower32 = (uint32_t)ce;
818        index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
819        if(strength >= UCOL_TERTIARY) {
820            index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
821                                         UCOL_TERTIARY, errorCode);
822        }
823    }
824    return index;
825}
826
827namespace {
828
829/**
830 * Like Java Collections.binarySearch(List, key, Comparator).
831 *
832 * @return the index>=0 where the item was found,
833 *         or the index<0 for inserting the string at ~index in sorted order
834 *         (index into rootPrimaryIndexes)
835 */
836int32_t
837binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
838                               const int64_t *nodes, uint32_t p) {
839    if(length == 0) { return ~0; }
840    int32_t start = 0;
841    int32_t limit = length;
842    for (;;) {
843        int32_t i = (start + limit) / 2;
844        int64_t node = nodes[rootPrimaryIndexes[i]];
845        uint32_t nodePrimary = (uint32_t)(node >> 32);  // weight32FromNode(node)
846        if (p == nodePrimary) {
847            return i;
848        } else if (p < nodePrimary) {
849            if (i == start) {
850                return ~start;  // insert s before i
851            }
852            limit = i;
853        } else {
854            if (i == start) {
855                return ~(start + 1);  // insert s after i
856            }
857            start = i;
858        }
859    }
860}
861
862}  // namespace
863
864int32_t
865CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
866    if(U_FAILURE(errorCode)) { return 0; }
867
868    int32_t rootIndex = binarySearchForRootPrimaryNode(
869        rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
870    if(rootIndex >= 0) {
871        return rootPrimaryIndexes.elementAti(rootIndex);
872    } else {
873        // Start a new list of nodes with this primary.
874        int32_t index = nodes.size();
875        nodes.addElement(nodeFromWeight32(p), errorCode);
876        rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
877        return index;
878    }
879}
880
881int32_t
882CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
883    if(U_FAILURE(errorCode)) { return 0; }
884    U_ASSERT(0 <= index && index < nodes.size());
885
886    U_ASSERT(weight16 == 0 || weight16 >= Collation::COMMON_WEIGHT16);
887    // Only reset-before inserts common weights.
888    if(weight16 == Collation::COMMON_WEIGHT16) {
889        return findCommonNode(index, level);
890    }
891    // Find the root CE's weight for this level.
892    // Postpone insertion if not found:
893    // Insert the new root node before the next stronger node,
894    // or before the next root node with the same strength and a larger weight.
895    int64_t node = nodes.elementAti(index);
896    int32_t nextIndex;
897    while((nextIndex = nextIndexFromNode(node)) != 0) {
898        node = nodes.elementAti(nextIndex);
899        int32_t nextStrength = strengthFromNode(node);
900        if(nextStrength <= level) {
901            // Insert before a stronger node.
902            if(nextStrength < level) { break; }
903            // nextStrength == level
904            if(!isTailoredNode(node)) {
905                uint32_t nextWeight16 = weight16FromNode(node);
906                if(nextWeight16 == weight16) {
907                    // Found the node for the root CE up to this level.
908                    return nextIndex;
909                }
910                // Insert before a node with a larger same-strength weight.
911                if(nextWeight16 > weight16) { break; }
912            }
913        }
914        // Skip the next node.
915        index = nextIndex;
916    }
917    node = nodeFromWeight16(weight16) | nodeFromStrength(level);
918    return insertNodeBetween(index, nextIndex, node, errorCode);
919}
920
921int32_t
922CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
923    if(U_FAILURE(errorCode)) { return 0; }
924    U_ASSERT(0 <= index && index < nodes.size());
925    if(strength >= UCOL_SECONDARY) {
926        index = findCommonNode(index, UCOL_SECONDARY);
927        if(strength >= UCOL_TERTIARY) {
928            index = findCommonNode(index, UCOL_TERTIARY);
929        }
930    }
931    // Postpone insertion:
932    // Insert the new node before the next one with a strength at least as strong.
933    int64_t node = nodes.elementAti(index);
934    int32_t nextIndex;
935    while((nextIndex = nextIndexFromNode(node)) != 0) {
936        node = nodes.elementAti(nextIndex);
937        if(strengthFromNode(node) <= strength) { break; }
938        // Skip the next node which has a weaker (larger) strength than the new one.
939        index = nextIndex;
940    }
941    node = IS_TAILORED | nodeFromStrength(strength);
942    return insertNodeBetween(index, nextIndex, node, errorCode);
943}
944
945int32_t
946CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
947                                    UErrorCode &errorCode) {
948    if(U_FAILURE(errorCode)) { return 0; }
949    U_ASSERT(previousIndexFromNode(node) == 0);
950    U_ASSERT(nextIndexFromNode(node) == 0);
951    U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
952    // Append the new node and link it to the existing nodes.
953    int32_t newIndex = nodes.size();
954    node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
955    nodes.addElement(node, errorCode);
956    if(U_FAILURE(errorCode)) { return 0; }
957    // nodes[index].nextIndex = newIndex
958    node = nodes.elementAti(index);
959    nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
960    // nodes[nextIndex].previousIndex = newIndex
961    if(nextIndex != 0) {
962        node = nodes.elementAti(nextIndex);
963        nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
964    }
965    return newIndex;
966}
967
968int32_t
969CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
970    U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
971    int64_t node = nodes.elementAti(index);
972    if(strengthFromNode(node) >= strength) {
973        // The current node is no stronger.
974        return index;
975    }
976    if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
977        // The current node implies the strength-common weight.
978        return index;
979    }
980    index = nextIndexFromNode(node);
981    node = nodes.elementAti(index);
982    U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
983            weight16FromNode(node) == BEFORE_WEIGHT16);
984    // Skip to the explicit common node.
985    do {
986        index = nextIndexFromNode(node);
987        node = nodes.elementAti(index);
988        U_ASSERT(strengthFromNode(node) >= strength);
989    } while(isTailoredNode(node) || strengthFromNode(node) > strength);
990    U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
991    return index;
992}
993
994void
995CollationBuilder::setCaseBits(const UnicodeString &nfdString,
996                              const char *&parserErrorReason, UErrorCode &errorCode) {
997    if(U_FAILURE(errorCode)) { return; }
998    int32_t numTailoredPrimaries = 0;
999    for(int32_t i = 0; i < cesLength; ++i) {
1000        if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
1001    }
1002    // We should not be able to get too many case bits because
1003    // cesLength<=31==MAX_EXPANSION_LENGTH.
1004    // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1005    U_ASSERT(numTailoredPrimaries <= 31);
1006
1007    int64_t cases = 0;
1008    if(numTailoredPrimaries > 0) {
1009        const UChar *s = nfdString.getBuffer();
1010        UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
1011        int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
1012        if(U_FAILURE(errorCode)) {
1013            parserErrorReason = "fetching root CEs for tailored string";
1014            return;
1015        }
1016        U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1017
1018        uint32_t lastCase = 0;
1019        int32_t numBasePrimaries = 0;
1020        for(int32_t i = 0; i < baseCEsLength; ++i) {
1021            int64_t ce = baseCEs.getCE(i);
1022            if((ce >> 32) != 0) {
1023                ++numBasePrimaries;
1024                uint32_t c = ((uint32_t)ce >> 14) & 3;
1025                U_ASSERT(c == 0 || c == 2);  // lowercase or uppercase, no mixed case in any base CE
1026                if(numBasePrimaries < numTailoredPrimaries) {
1027                    cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1028                } else if(numBasePrimaries == numTailoredPrimaries) {
1029                    lastCase = c;
1030                } else if(c != lastCase) {
1031                    // There are more base primary CEs than tailored primaries.
1032                    // Set mixed case if the case bits of the remainder differ.
1033                    lastCase = 1;
1034                    // Nothing more can change.
1035                    break;
1036                }
1037            }
1038        }
1039        if(numBasePrimaries >= numTailoredPrimaries) {
1040            cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1041        }
1042    }
1043
1044    for(int32_t i = 0; i < cesLength; ++i) {
1045        int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff);  // clear old case bits
1046        int32_t strength = ceStrength(ce);
1047        if(strength == UCOL_PRIMARY) {
1048            ce |= (cases & 3) << 14;
1049            cases >>= 2;
1050        } else if(strength == UCOL_TERTIARY) {
1051            // Tertiary CEs must have uppercase bits.
1052            // See the LDML spec, and comments in class CollationCompare.
1053            ce |= 0x8000;
1054        }
1055        // Tertiary ignorable CEs must have 0 case bits.
1056        // We set 0 case bits for secondary CEs too
1057        // since currently only U+0345 is cased and maps to a secondary CE,
1058        // and it is lowercase. Other secondaries are uncased.
1059        // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1060        ces[i] = ce;
1061    }
1062}
1063
1064void
1065CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1066                                       UErrorCode &errorCode) {
1067    if(U_FAILURE(errorCode)) { return; }
1068    dataBuilder->suppressContractions(set, errorCode);
1069    if(U_FAILURE(errorCode)) {
1070        parserErrorReason = "application of [suppressContractions [set]] failed";
1071    }
1072}
1073
1074void
1075CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1076                           UErrorCode &errorCode) {
1077    if(U_FAILURE(errorCode)) { return; }
1078    optimizeSet.addAll(set);
1079}
1080
1081uint32_t
1082CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1083                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1084                                 UErrorCode &errorCode) {
1085    // Map from the NFD input to the CEs.
1086    ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1087    ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1088    addTailComposites(nfdPrefix, nfdString, errorCode);
1089    return ce32;
1090}
1091
1092uint32_t
1093CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1094                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1095                                 UErrorCode &errorCode) {
1096    if(U_FAILURE(errorCode)) { return ce32; }
1097
1098    // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1099    if(nfdPrefix.isEmpty()) {
1100        CanonicalIterator stringIter(nfdString, errorCode);
1101        if(U_FAILURE(errorCode)) { return ce32; }
1102        UnicodeString prefix;
1103        for(;;) {
1104            UnicodeString str = stringIter.next();
1105            if(str.isBogus()) { break; }
1106            if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1107            ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1108            if(U_FAILURE(errorCode)) { return ce32; }
1109        }
1110    } else {
1111        CanonicalIterator prefixIter(nfdPrefix, errorCode);
1112        CanonicalIterator stringIter(nfdString, errorCode);
1113        if(U_FAILURE(errorCode)) { return ce32; }
1114        for(;;) {
1115            UnicodeString prefix = prefixIter.next();
1116            if(prefix.isBogus()) { break; }
1117            if(ignorePrefix(prefix, errorCode)) { continue; }
1118            UBool samePrefix = prefix == nfdPrefix;
1119            for(;;) {
1120                UnicodeString str = stringIter.next();
1121                if(str.isBogus()) { break; }
1122                if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1123                ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1124                if(U_FAILURE(errorCode)) { return ce32; }
1125            }
1126            stringIter.reset();
1127        }
1128    }
1129    return ce32;
1130}
1131
1132void
1133CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1134                                    UErrorCode &errorCode) {
1135    if(U_FAILURE(errorCode)) { return; }
1136
1137    // Look for the last starter in the NFD string.
1138    UChar32 lastStarter;
1139    int32_t indexAfterLastStarter = nfdString.length();
1140    for(;;) {
1141        if(indexAfterLastStarter == 0) { return; }  // no starter at all
1142        lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1143        if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1144        indexAfterLastStarter -= U16_LENGTH(lastStarter);
1145    }
1146    // No closure to Hangul syllables since we decompose them on the fly.
1147    if(Hangul::isJamoL(lastStarter)) { return; }
1148
1149    // Are there any composites whose decomposition starts with the lastStarter?
1150    // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1151    // We might find some more equivalent mappings here if it did.
1152    UnicodeSet composites;
1153    if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1154
1155    UnicodeString decomp;
1156    UnicodeString newNFDString, newString;
1157    int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1158    UnicodeSetIterator iter(composites);
1159    while(iter.next()) {
1160        U_ASSERT(!iter.isString());
1161        UChar32 composite = iter.getCodepoint();
1162        nfd.getDecomposition(composite, decomp);
1163        if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1164                                     newNFDString, newString, errorCode)) {
1165            continue;
1166        }
1167        int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1168        if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1169            // Ignore mappings that we cannot store.
1170            continue;
1171        }
1172        // Note: It is possible that the newCEs do not make use of the mapping
1173        // for which we are adding the tail composites, in which case we might be adding
1174        // unnecessary mappings.
1175        // For example, when we add tail composites for ae^ (^=combining circumflex),
1176        // UCA discontiguous-contraction matching does not find any matches
1177        // for ae_^ (_=any combining diacritic below) *unless* there is also
1178        // a contraction mapping for ae.
1179        // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1180        // while fetching the newCEs for ae_^.
1181        // TODO: Try to detect this effectively.
1182        // (Alternatively, print a warning when prefix contractions are missing.)
1183
1184        // We do not need an explicit mapping for the NFD strings.
1185        // It is fine if the NFD input collates like this via a sequence of mappings.
1186        // It also saves a little bit of space, and may reduce the set of characters with contractions.
1187        uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1188                                       newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1189        if(ce32 != Collation::UNASSIGNED_CE32) {
1190            // was different, was added
1191            addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1192        }
1193    }
1194}
1195
1196UBool
1197CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1198                                           int32_t indexAfterLastStarter,
1199                                           UChar32 composite, const UnicodeString &decomp,
1200                                           UnicodeString &newNFDString, UnicodeString &newString,
1201                                           UErrorCode &errorCode) const {
1202    if(U_FAILURE(errorCode)) { return FALSE; }
1203    U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1204    int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1205    if(lastStarterLength == decomp.length()) {
1206        // Singleton decompositions should be found by addWithClosure()
1207        // and the CanonicalIterator, so we can ignore them here.
1208        return FALSE;
1209    }
1210    if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1211                         decomp, lastStarterLength, 0x7fffffff) == 0) {
1212        // same strings, nothing new to be found here
1213        return FALSE;
1214    }
1215
1216    // Make new FCD strings that combine a composite, or its decomposition,
1217    // into the nfdString's last starter and the combining marks following it.
1218    // Make an NFD version, and a version with the composite.
1219    newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1220    newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1221
1222    // The following is related to discontiguous contraction matching,
1223    // but builds only FCD strings (or else returns FALSE).
1224    int32_t sourceIndex = indexAfterLastStarter;
1225    int32_t decompIndex = lastStarterLength;
1226    // Small optimization: We keep the source character across loop iterations
1227    // because we do not always consume it,
1228    // and then need not fetch it again nor look up its combining class again.
1229    UChar32 sourceChar = U_SENTINEL;
1230    // The cc variables need to be declared before the loop so that at the end
1231    // they are set to the last combining classes seen.
1232    uint8_t sourceCC = 0;
1233    uint8_t decompCC = 0;
1234    for(;;) {
1235        if(sourceChar < 0) {
1236            if(sourceIndex >= nfdString.length()) { break; }
1237            sourceChar = nfdString.char32At(sourceIndex);
1238            sourceCC = nfd.getCombiningClass(sourceChar);
1239            U_ASSERT(sourceCC != 0);
1240        }
1241        // We consume a decomposition character in each iteration.
1242        if(decompIndex >= decomp.length()) { break; }
1243        UChar32 decompChar = decomp.char32At(decompIndex);
1244        decompCC = nfd.getCombiningClass(decompChar);
1245        // Compare the two characters and their combining classes.
1246        if(decompCC == 0) {
1247            // Unable to merge because the source contains a non-zero combining mark
1248            // but the composite's decomposition contains another starter.
1249            // The strings would not be equivalent.
1250            return FALSE;
1251        } else if(sourceCC < decompCC) {
1252            // Composite + sourceChar would not be FCD.
1253            return FALSE;
1254        } else if(decompCC < sourceCC) {
1255            newNFDString.append(decompChar);
1256            decompIndex += U16_LENGTH(decompChar);
1257        } else if(decompChar != sourceChar) {
1258            // Blocked because same combining class.
1259            return FALSE;
1260        } else {  // match: decompChar == sourceChar
1261            newNFDString.append(decompChar);
1262            decompIndex += U16_LENGTH(decompChar);
1263            sourceIndex += U16_LENGTH(decompChar);
1264            sourceChar = U_SENTINEL;
1265        }
1266    }
1267    // We are at the end of at least one of the two inputs.
1268    if(sourceChar >= 0) {  // more characters from nfdString but not from decomp
1269        if(sourceCC < decompCC) {
1270            // Appending the next source character to the composite would not be FCD.
1271            return FALSE;
1272        }
1273        newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1274        newString.append(nfdString, sourceIndex, 0x7fffffff);
1275    } else if(decompIndex < decomp.length()) {  // more characters from decomp, not from nfdString
1276        newNFDString.append(decomp, decompIndex, 0x7fffffff);
1277    }
1278    U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1279    U_ASSERT(fcd.isNormalized(newString, errorCode));
1280    U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString);  // canonically equivalent
1281    return TRUE;
1282}
1283
1284UBool
1285CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1286    // Do not map non-FCD prefixes.
1287    return !isFCD(s, errorCode);
1288}
1289
1290UBool
1291CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1292    // Do not map non-FCD strings.
1293    // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1294    return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1295}
1296
1297UBool
1298CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1299    return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1300}
1301
1302void
1303CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1304    UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode);  // Java: static final
1305    if(U_FAILURE(errorCode)) { return; }
1306    // Hangul is decomposed on the fly during collation.
1307    composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1308    UnicodeString prefix;  // empty
1309    UnicodeString nfdString;
1310    UnicodeSetIterator iter(composites);
1311    while(iter.next()) {
1312        U_ASSERT(!iter.isString());
1313        nfd.getDecomposition(iter.getCodepoint(), nfdString);
1314        cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1315        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1316            // Too many CEs from the decomposition (unusual), ignore this composite.
1317            // We could add a capacity parameter to getCEs() and reallocate if necessary.
1318            // However, this can only really happen in contrived cases.
1319            continue;
1320        }
1321        const UnicodeString &composite(iter.getString());
1322        addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1323    }
1324}
1325
1326uint32_t
1327CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1328                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1329                                 UErrorCode &errorCode) {
1330    if(U_FAILURE(errorCode)) { return ce32; }
1331    int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1332    int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1333    if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1334        if(ce32 == Collation::UNASSIGNED_CE32) {
1335            ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1336        }
1337        dataBuilder->addCE32(prefix, str, ce32, errorCode);
1338    }
1339    return ce32;
1340}
1341
1342UBool
1343CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1344                          const int64_t ces2[], int32_t ces2Length) {
1345    if(ces1Length != ces2Length) {
1346        return FALSE;
1347    }
1348    U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1349    for(int32_t i = 0; i < ces1Length; ++i) {
1350        if(ces1[i] != ces2[i]) { return FALSE; }
1351    }
1352    return TRUE;
1353}
1354
1355#ifdef DEBUG_COLLATION_BUILDER
1356
1357uint32_t
1358alignWeightRight(uint32_t w) {
1359    if(w != 0) {
1360        while((w & 0xff) == 0) { w >>= 8; }
1361    }
1362    return w;
1363}
1364
1365#endif
1366
1367void
1368CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1369    if(U_FAILURE(errorCode)) { return; }
1370
1371    CollationWeights primaries, secondaries, tertiaries;
1372    int64_t *nodesArray = nodes.getBuffer();
1373
1374    for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1375        int32_t i = rootPrimaryIndexes.elementAti(rpi);
1376        int64_t node = nodesArray[i];
1377        uint32_t p = weight32FromNode(node);
1378        uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1379        uint32_t t = s;
1380        uint32_t q = 0;
1381        UBool pIsTailored = FALSE;
1382        UBool sIsTailored = FALSE;
1383        UBool tIsTailored = FALSE;
1384#ifdef DEBUG_COLLATION_BUILDER
1385        printf("\nprimary     %lx\n", (long)alignWeightRight(p));
1386#endif
1387        int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1388        int32_t nextIndex = nextIndexFromNode(node);
1389        while(nextIndex != 0) {
1390            i = nextIndex;
1391            node = nodesArray[i];
1392            nextIndex = nextIndexFromNode(node);
1393            int32_t strength = strengthFromNode(node);
1394            if(strength == UCOL_QUATERNARY) {
1395                U_ASSERT(isTailoredNode(node));
1396#ifdef DEBUG_COLLATION_BUILDER
1397                printf("      quat+     ");
1398#endif
1399                if(q == 3) {
1400                    errorCode = U_BUFFER_OVERFLOW_ERROR;
1401                    errorReason = "quaternary tailoring gap too small";
1402                    return;
1403                }
1404                ++q;
1405            } else {
1406                if(strength == UCOL_TERTIARY) {
1407                    if(isTailoredNode(node)) {
1408#ifdef DEBUG_COLLATION_BUILDER
1409                        printf("    ter+        ");
1410#endif
1411                        if(!tIsTailored) {
1412                            // First tailored tertiary node for [p, s].
1413                            int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1414                                                                UCOL_TERTIARY) + 1;
1415                            uint32_t tLimit;
1416                            if(t == 0) {
1417                                // Gap at the beginning of the tertiary CE range.
1418                                t = rootElements.getTertiaryBoundary() - 0x100;
1419                                tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1420                            } else if(t == BEFORE_WEIGHT16) {
1421                                tLimit = Collation::COMMON_WEIGHT16;
1422                            } else if(!pIsTailored && !sIsTailored) {
1423                                // p and s are root weights.
1424                                tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1425                            } else {
1426                                // [p, s] is tailored.
1427                                U_ASSERT(t == Collation::COMMON_WEIGHT16);
1428                                tLimit = rootElements.getTertiaryBoundary();
1429                            }
1430                            U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1431                            tertiaries.initForTertiary();
1432                            if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1433                                errorCode = U_BUFFER_OVERFLOW_ERROR;
1434                                errorReason = "tertiary tailoring gap too small";
1435                                return;
1436                            }
1437                            tIsTailored = TRUE;
1438                        }
1439                        t = tertiaries.nextWeight();
1440                        U_ASSERT(t != 0xffffffff);
1441                    } else {
1442                        t = weight16FromNode(node);
1443                        tIsTailored = FALSE;
1444#ifdef DEBUG_COLLATION_BUILDER
1445                        printf("    ter     %lx\n", (long)alignWeightRight(t));
1446#endif
1447                    }
1448                } else {
1449                    if(strength == UCOL_SECONDARY) {
1450                        if(isTailoredNode(node)) {
1451#ifdef DEBUG_COLLATION_BUILDER
1452                            printf("  sec+          ");
1453#endif
1454                            if(!sIsTailored) {
1455                                // First tailored secondary node for p.
1456                                int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1457                                                                    UCOL_SECONDARY) + 1;
1458                                uint32_t sLimit;
1459                                if(s == 0) {
1460                                    // Gap at the beginning of the secondary CE range.
1461                                    s = rootElements.getSecondaryBoundary() - 0x100;
1462                                    sLimit = rootElements.getFirstSecondaryCE() >> 16;
1463                                } else if(s == BEFORE_WEIGHT16) {
1464                                    sLimit = Collation::COMMON_WEIGHT16;
1465                                } else if(!pIsTailored) {
1466                                    // p is a root primary.
1467                                    sLimit = rootElements.getSecondaryAfter(pIndex, s);
1468                                } else {
1469                                    // p is a tailored primary.
1470                                    U_ASSERT(s == Collation::COMMON_WEIGHT16);
1471                                    sLimit = rootElements.getSecondaryBoundary();
1472                                }
1473                                if(s == Collation::COMMON_WEIGHT16) {
1474                                    // Do not tailor into the getSortKey() range of
1475                                    // compressed common secondaries.
1476                                    s = rootElements.getLastCommonSecondary();
1477                                }
1478                                secondaries.initForSecondary();
1479                                if(!secondaries.allocWeights(s, sLimit, sCount)) {
1480                                    errorCode = U_BUFFER_OVERFLOW_ERROR;
1481                                    errorReason = "secondary tailoring gap too small";
1482                                    return;
1483                                }
1484                                sIsTailored = TRUE;
1485                            }
1486                            s = secondaries.nextWeight();
1487                            U_ASSERT(s != 0xffffffff);
1488                        } else {
1489                            s = weight16FromNode(node);
1490                            sIsTailored = FALSE;
1491#ifdef DEBUG_COLLATION_BUILDER
1492                            printf("  sec       %lx\n", (long)alignWeightRight(s));
1493#endif
1494                        }
1495                    } else /* UCOL_PRIMARY */ {
1496                        U_ASSERT(isTailoredNode(node));
1497#ifdef DEBUG_COLLATION_BUILDER
1498                        printf("pri+            ");
1499#endif
1500                        if(!pIsTailored) {
1501                            // First tailored primary node in this list.
1502                            int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1503                                                                UCOL_PRIMARY) + 1;
1504                            UBool isCompressible = baseData->isCompressiblePrimary(p);
1505                            uint32_t pLimit =
1506                                rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1507                            primaries.initForPrimary(isCompressible);
1508                            if(!primaries.allocWeights(p, pLimit, pCount)) {
1509                                errorCode = U_BUFFER_OVERFLOW_ERROR;  // TODO: introduce a more specific UErrorCode?
1510                                errorReason = "primary tailoring gap too small";
1511                                return;
1512                            }
1513                            pIsTailored = TRUE;
1514                        }
1515                        p = primaries.nextWeight();
1516                        U_ASSERT(p != 0xffffffff);
1517                        s = Collation::COMMON_WEIGHT16;
1518                        sIsTailored = FALSE;
1519                    }
1520                    t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1521                    tIsTailored = FALSE;
1522                }
1523                q = 0;
1524            }
1525            if(isTailoredNode(node)) {
1526                nodesArray[i] = Collation::makeCE(p, s, t, q);
1527#ifdef DEBUG_COLLATION_BUILDER
1528                printf("%016llx\n", (long long)nodesArray[i]);
1529#endif
1530            }
1531        }
1532    }
1533}
1534
1535int32_t
1536CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1537    int32_t count = 0;
1538    for(;;) {
1539        if(i == 0) { break; }
1540        int64_t node = nodesArray[i];
1541        if(strengthFromNode(node) < strength) { break; }
1542        if(strengthFromNode(node) == strength) {
1543            if(isTailoredNode(node)) {
1544                ++count;
1545            } else {
1546                break;
1547            }
1548        }
1549        i = nextIndexFromNode(node);
1550    }
1551    return count;
1552}
1553
1554class CEFinalizer : public CollationDataBuilder::CEModifier {
1555public:
1556    CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1557    virtual ~CEFinalizer();
1558    virtual int64_t modifyCE32(uint32_t ce32) const {
1559        U_ASSERT(!Collation::isSpecialCE32(ce32));
1560        if(CollationBuilder::isTempCE32(ce32)) {
1561            // retain case bits
1562            return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1563        } else {
1564            return Collation::NO_CE;
1565        }
1566    }
1567    virtual int64_t modifyCE(int64_t ce) const {
1568        if(CollationBuilder::isTempCE(ce)) {
1569            // retain case bits
1570            return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1571        } else {
1572            return Collation::NO_CE;
1573        }
1574    }
1575
1576private:
1577    const int64_t *finalCEs;
1578};
1579
1580CEFinalizer::~CEFinalizer() {}
1581
1582void
1583CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1584    if(U_FAILURE(errorCode)) { return; }
1585    LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode));
1586    if(newBuilder.isNull()) {
1587        errorCode = U_MEMORY_ALLOCATION_ERROR;
1588        return;
1589    }
1590    newBuilder->initForTailoring(baseData, errorCode);
1591    CEFinalizer finalizer(nodes.getBuffer());
1592    newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1593    if(U_FAILURE(errorCode)) { return; }
1594    delete dataBuilder;
1595    dataBuilder = newBuilder.orphan();
1596}
1597
1598int32_t
1599CollationBuilder::ceStrength(int64_t ce) {
1600    return
1601        isTempCE(ce) ? strengthFromTempCE(ce) :
1602        (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1603        ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1604        ce != 0 ? UCOL_TERTIARY :
1605        UCOL_IDENTICAL;
1606}
1607
1608U_NAMESPACE_END
1609
1610U_NAMESPACE_USE
1611
1612U_CAPI UCollator * U_EXPORT2
1613ucol_openRules(const UChar *rules, int32_t rulesLength,
1614               UColAttributeValue normalizationMode, UCollationStrength strength,
1615               UParseError *parseError, UErrorCode *pErrorCode) {
1616    if(U_FAILURE(*pErrorCode)) { return NULL; }
1617    if(rules == NULL && rulesLength != 0) {
1618        *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1619        return NULL;
1620    }
1621    RuleBasedCollator *coll = new RuleBasedCollator();
1622    if(coll == NULL) {
1623        *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1624        return NULL;
1625    }
1626    UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1627    coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1628    if(U_FAILURE(*pErrorCode)) {
1629        delete coll;
1630        return NULL;
1631    }
1632    return coll->toUCollator();
1633}
1634
1635static const int32_t internalBufferSize = 512;
1636
1637// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1638// because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1639// and the rest of the collation "runtime" code only depends on normalization.
1640// This function is not related to the collation builder,
1641// but it did not seem worth moving it into its own .cpp file,
1642// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1643U_CAPI int32_t U_EXPORT2
1644ucol_getUnsafeSet( const UCollator *coll,
1645                  USet *unsafe,
1646                  UErrorCode *status)
1647{
1648    UChar buffer[internalBufferSize];
1649    int32_t len = 0;
1650
1651    uset_clear(unsafe);
1652
1653    // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1654    static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1655                                    0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1656
1657    // add chars that fail the fcd check
1658    uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1659
1660    // add lead/trail surrogates
1661    // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1662    // not when testing code *points*)
1663    uset_addRange(unsafe, 0xd800, 0xdfff);
1664
1665    USet *contractions = uset_open(0,0);
1666
1667    int32_t i = 0, j = 0;
1668    ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1669    int32_t contsSize = uset_size(contractions);
1670    UChar32 c = 0;
1671    // Contraction set consists only of strings
1672    // to get unsafe code points, we need to
1673    // break the strings apart and add them to the unsafe set
1674    for(i = 0; i < contsSize; i++) {
1675        len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1676        if(len > 0) {
1677            j = 0;
1678            while(j < len) {
1679                U16_NEXT(buffer, j, len, c);
1680                if(j < len) {
1681                    uset_add(unsafe, c);
1682                }
1683            }
1684        }
1685    }
1686
1687    uset_close(contractions);
1688
1689    return uset_size(unsafe);
1690}
1691
1692#endif  // !UCONFIG_NO_COLLATION
1693