1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vsock test utilities
4 *
5 * Copyright (C) 2017 Red Hat, Inc.
6 *
7 * Author: Stefan Hajnoczi <stefanha@redhat.com>
8 */
9
10#include <errno.h>
11#include <stdio.h>
12#include <stdint.h>
13#include <stdlib.h>
14#include <string.h>
15#include <signal.h>
16#include <unistd.h>
17#include <assert.h>
18#include <sys/epoll.h>
19#include <sys/mman.h>
20
21#include "timeout.h"
22#include "control.h"
23#include "util.h"
24
25/* Install signal handlers */
26void init_signals(void)
27{
28	struct sigaction act = {
29		.sa_handler = sigalrm,
30	};
31
32	sigaction(SIGALRM, &act, NULL);
33	signal(SIGPIPE, SIG_IGN);
34}
35
36static unsigned int parse_uint(const char *str, const char *err_str)
37{
38	char *endptr = NULL;
39	unsigned long n;
40
41	errno = 0;
42	n = strtoul(str, &endptr, 10);
43	if (errno || *endptr != '\0') {
44		fprintf(stderr, "malformed %s \"%s\"\n", err_str, str);
45		exit(EXIT_FAILURE);
46	}
47	return n;
48}
49
50/* Parse a CID in string representation */
51unsigned int parse_cid(const char *str)
52{
53	return parse_uint(str, "CID");
54}
55
56/* Parse a port in string representation */
57unsigned int parse_port(const char *str)
58{
59	return parse_uint(str, "port");
60}
61
62/* Wait for the remote to close the connection */
63void vsock_wait_remote_close(int fd)
64{
65	struct epoll_event ev;
66	int epollfd, nfds;
67
68	epollfd = epoll_create1(0);
69	if (epollfd == -1) {
70		perror("epoll_create1");
71		exit(EXIT_FAILURE);
72	}
73
74	ev.events = EPOLLRDHUP | EPOLLHUP;
75	ev.data.fd = fd;
76	if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
77		perror("epoll_ctl");
78		exit(EXIT_FAILURE);
79	}
80
81	nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
82	if (nfds == -1) {
83		perror("epoll_wait");
84		exit(EXIT_FAILURE);
85	}
86
87	if (nfds == 0) {
88		fprintf(stderr, "epoll_wait timed out\n");
89		exit(EXIT_FAILURE);
90	}
91
92	assert(nfds == 1);
93	assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
94	assert(ev.data.fd == fd);
95
96	close(epollfd);
97}
98
99/* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */
100int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type)
101{
102	struct sockaddr_vm sa_client = {
103		.svm_family = AF_VSOCK,
104		.svm_cid = VMADDR_CID_ANY,
105		.svm_port = bind_port,
106	};
107	struct sockaddr_vm sa_server = {
108		.svm_family = AF_VSOCK,
109		.svm_cid = cid,
110		.svm_port = port,
111	};
112
113	int client_fd, ret;
114
115	client_fd = socket(AF_VSOCK, type, 0);
116	if (client_fd < 0) {
117		perror("socket");
118		exit(EXIT_FAILURE);
119	}
120
121	if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) {
122		perror("bind");
123		exit(EXIT_FAILURE);
124	}
125
126	timeout_begin(TIMEOUT);
127	do {
128		ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server));
129		timeout_check("connect");
130	} while (ret < 0 && errno == EINTR);
131	timeout_end();
132
133	if (ret < 0) {
134		perror("connect");
135		exit(EXIT_FAILURE);
136	}
137
138	return client_fd;
139}
140
141/* Connect to <cid, port> and return the file descriptor. */
142static int vsock_connect(unsigned int cid, unsigned int port, int type)
143{
144	union {
145		struct sockaddr sa;
146		struct sockaddr_vm svm;
147	} addr = {
148		.svm = {
149			.svm_family = AF_VSOCK,
150			.svm_port = port,
151			.svm_cid = cid,
152		},
153	};
154	int ret;
155	int fd;
156
157	control_expectln("LISTENING");
158
159	fd = socket(AF_VSOCK, type, 0);
160	if (fd < 0) {
161		perror("socket");
162		exit(EXIT_FAILURE);
163	}
164
165	timeout_begin(TIMEOUT);
166	do {
167		ret = connect(fd, &addr.sa, sizeof(addr.svm));
168		timeout_check("connect");
169	} while (ret < 0 && errno == EINTR);
170	timeout_end();
171
172	if (ret < 0) {
173		int old_errno = errno;
174
175		close(fd);
176		fd = -1;
177		errno = old_errno;
178	}
179	return fd;
180}
181
182int vsock_stream_connect(unsigned int cid, unsigned int port)
183{
184	return vsock_connect(cid, port, SOCK_STREAM);
185}
186
187int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
188{
189	return vsock_connect(cid, port, SOCK_SEQPACKET);
190}
191
192/* Listen on <cid, port> and return the file descriptor. */
193static int vsock_listen(unsigned int cid, unsigned int port, int type)
194{
195	union {
196		struct sockaddr sa;
197		struct sockaddr_vm svm;
198	} addr = {
199		.svm = {
200			.svm_family = AF_VSOCK,
201			.svm_port = port,
202			.svm_cid = cid,
203		},
204	};
205	int fd;
206
207	fd = socket(AF_VSOCK, type, 0);
208	if (fd < 0) {
209		perror("socket");
210		exit(EXIT_FAILURE);
211	}
212
213	if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
214		perror("bind");
215		exit(EXIT_FAILURE);
216	}
217
218	if (listen(fd, 1) < 0) {
219		perror("listen");
220		exit(EXIT_FAILURE);
221	}
222
223	return fd;
224}
225
226/* Listen on <cid, port> and return the first incoming connection.  The remote
227 * address is stored to clientaddrp.  clientaddrp may be NULL.
228 */
229static int vsock_accept(unsigned int cid, unsigned int port,
230			struct sockaddr_vm *clientaddrp, int type)
231{
232	union {
233		struct sockaddr sa;
234		struct sockaddr_vm svm;
235	} clientaddr;
236	socklen_t clientaddr_len = sizeof(clientaddr.svm);
237	int fd, client_fd, old_errno;
238
239	fd = vsock_listen(cid, port, type);
240
241	control_writeln("LISTENING");
242
243	timeout_begin(TIMEOUT);
244	do {
245		client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
246		timeout_check("accept");
247	} while (client_fd < 0 && errno == EINTR);
248	timeout_end();
249
250	old_errno = errno;
251	close(fd);
252	errno = old_errno;
253
254	if (client_fd < 0)
255		return client_fd;
256
257	if (clientaddr_len != sizeof(clientaddr.svm)) {
258		fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
259			(size_t)clientaddr_len);
260		exit(EXIT_FAILURE);
261	}
262	if (clientaddr.sa.sa_family != AF_VSOCK) {
263		fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
264			clientaddr.sa.sa_family);
265		exit(EXIT_FAILURE);
266	}
267
268	if (clientaddrp)
269		*clientaddrp = clientaddr.svm;
270	return client_fd;
271}
272
273int vsock_stream_accept(unsigned int cid, unsigned int port,
274			struct sockaddr_vm *clientaddrp)
275{
276	return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
277}
278
279int vsock_stream_listen(unsigned int cid, unsigned int port)
280{
281	return vsock_listen(cid, port, SOCK_STREAM);
282}
283
284int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
285			   struct sockaddr_vm *clientaddrp)
286{
287	return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
288}
289
290/* Transmit bytes from a buffer and check the return value.
291 *
292 * expected_ret:
293 *  <0 Negative errno (for testing errors)
294 *   0 End-of-file
295 *  >0 Success (bytes successfully written)
296 */
297void send_buf(int fd, const void *buf, size_t len, int flags,
298	      ssize_t expected_ret)
299{
300	ssize_t nwritten = 0;
301	ssize_t ret;
302
303	timeout_begin(TIMEOUT);
304	do {
305		ret = send(fd, buf + nwritten, len - nwritten, flags);
306		timeout_check("send");
307
308		if (ret == 0 || (ret < 0 && errno != EINTR))
309			break;
310
311		nwritten += ret;
312	} while (nwritten < len);
313	timeout_end();
314
315	if (expected_ret < 0) {
316		if (ret != -1) {
317			fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n",
318				ret, expected_ret);
319			exit(EXIT_FAILURE);
320		}
321		if (errno != -expected_ret) {
322			perror("send");
323			exit(EXIT_FAILURE);
324		}
325		return;
326	}
327
328	if (ret < 0) {
329		perror("send");
330		exit(EXIT_FAILURE);
331	}
332
333	if (nwritten != expected_ret) {
334		if (ret == 0)
335			fprintf(stderr, "unexpected EOF while sending bytes\n");
336
337		fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n",
338			nwritten, expected_ret);
339		exit(EXIT_FAILURE);
340	}
341}
342
343/* Receive bytes in a buffer and check the return value.
344 *
345 * expected_ret:
346 *  <0 Negative errno (for testing errors)
347 *   0 End-of-file
348 *  >0 Success (bytes successfully read)
349 */
350void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret)
351{
352	ssize_t nread = 0;
353	ssize_t ret;
354
355	timeout_begin(TIMEOUT);
356	do {
357		ret = recv(fd, buf + nread, len - nread, flags);
358		timeout_check("recv");
359
360		if (ret == 0 || (ret < 0 && errno != EINTR))
361			break;
362
363		nread += ret;
364	} while (nread < len);
365	timeout_end();
366
367	if (expected_ret < 0) {
368		if (ret != -1) {
369			fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n",
370				ret, expected_ret);
371			exit(EXIT_FAILURE);
372		}
373		if (errno != -expected_ret) {
374			perror("recv");
375			exit(EXIT_FAILURE);
376		}
377		return;
378	}
379
380	if (ret < 0) {
381		perror("recv");
382		exit(EXIT_FAILURE);
383	}
384
385	if (nread != expected_ret) {
386		if (ret == 0)
387			fprintf(stderr, "unexpected EOF while receiving bytes\n");
388
389		fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n",
390			nread, expected_ret);
391		exit(EXIT_FAILURE);
392	}
393}
394
395/* Transmit one byte and check the return value.
396 *
397 * expected_ret:
398 *  <0 Negative errno (for testing errors)
399 *   0 End-of-file
400 *   1 Success
401 */
402void send_byte(int fd, int expected_ret, int flags)
403{
404	const uint8_t byte = 'A';
405
406	send_buf(fd, &byte, sizeof(byte), flags, expected_ret);
407}
408
409/* Receive one byte and check the return value.
410 *
411 * expected_ret:
412 *  <0 Negative errno (for testing errors)
413 *   0 End-of-file
414 *   1 Success
415 */
416void recv_byte(int fd, int expected_ret, int flags)
417{
418	uint8_t byte;
419
420	recv_buf(fd, &byte, sizeof(byte), flags, expected_ret);
421
422	if (byte != 'A') {
423		fprintf(stderr, "unexpected byte read %c\n", byte);
424		exit(EXIT_FAILURE);
425	}
426}
427
428/* Run test cases.  The program terminates if a failure occurs. */
429void run_tests(const struct test_case *test_cases,
430	       const struct test_opts *opts)
431{
432	int i;
433
434	for (i = 0; test_cases[i].name; i++) {
435		void (*run)(const struct test_opts *opts);
436		char *line;
437
438		printf("%d - %s...", i, test_cases[i].name);
439		fflush(stdout);
440
441		/* Full barrier before executing the next test.  This
442		 * ensures that client and server are executing the
443		 * same test case.  In particular, it means whoever is
444		 * faster will not see the peer still executing the
445		 * last test.  This is important because port numbers
446		 * can be used by multiple test cases.
447		 */
448		if (test_cases[i].skip)
449			control_writeln("SKIP");
450		else
451			control_writeln("NEXT");
452
453		line = control_readln();
454		if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
455
456			printf("skipped\n");
457
458			free(line);
459			continue;
460		}
461
462		control_cmpln(line, "NEXT", true);
463		free(line);
464
465		if (opts->mode == TEST_MODE_CLIENT)
466			run = test_cases[i].run_client;
467		else
468			run = test_cases[i].run_server;
469
470		if (run)
471			run(opts);
472
473		printf("ok\n");
474	}
475}
476
477void list_tests(const struct test_case *test_cases)
478{
479	int i;
480
481	printf("ID\tTest name\n");
482
483	for (i = 0; test_cases[i].name; i++)
484		printf("%d\t%s\n", i, test_cases[i].name);
485
486	exit(EXIT_FAILURE);
487}
488
489void skip_test(struct test_case *test_cases, size_t test_cases_len,
490	       const char *test_id_str)
491{
492	unsigned long test_id;
493	char *endptr = NULL;
494
495	errno = 0;
496	test_id = strtoul(test_id_str, &endptr, 10);
497	if (errno || *endptr != '\0') {
498		fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
499		exit(EXIT_FAILURE);
500	}
501
502	if (test_id >= test_cases_len) {
503		fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
504			test_id, test_cases_len - 1);
505		exit(EXIT_FAILURE);
506	}
507
508	test_cases[test_id].skip = true;
509}
510
511unsigned long hash_djb2(const void *data, size_t len)
512{
513	unsigned long hash = 5381;
514	int i = 0;
515
516	while (i < len) {
517		hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
518		i++;
519	}
520
521	return hash;
522}
523
524size_t iovec_bytes(const struct iovec *iov, size_t iovnum)
525{
526	size_t bytes;
527	int i;
528
529	for (bytes = 0, i = 0; i < iovnum; i++)
530		bytes += iov[i].iov_len;
531
532	return bytes;
533}
534
535unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum)
536{
537	unsigned long hash;
538	size_t iov_bytes;
539	size_t offs;
540	void *tmp;
541	int i;
542
543	iov_bytes = iovec_bytes(iov, iovnum);
544
545	tmp = malloc(iov_bytes);
546	if (!tmp) {
547		perror("malloc");
548		exit(EXIT_FAILURE);
549	}
550
551	for (offs = 0, i = 0; i < iovnum; i++) {
552		memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len);
553		offs += iov[i].iov_len;
554	}
555
556	hash = hash_djb2(tmp, iov_bytes);
557	free(tmp);
558
559	return hash;
560}
561
562/* Allocates and returns new 'struct iovec *' according pattern
563 * in the 'test_iovec'. For each element in the 'test_iovec' it
564 * allocates new element in the resulting 'iovec'. 'iov_len'
565 * of the new element is copied from 'test_iovec'. 'iov_base' is
566 * allocated depending on the 'iov_base' of 'test_iovec':
567 *
568 * 'iov_base' == NULL -> valid buf: mmap('iov_len').
569 *
570 * 'iov_base' == MAP_FAILED -> invalid buf:
571 *               mmap('iov_len'), then munmap('iov_len').
572 *               'iov_base' still contains result of
573 *               mmap().
574 *
575 * 'iov_base' == number -> unaligned valid buf:
576 *               mmap('iov_len') + number.
577 *
578 * 'iovnum' is number of elements in 'test_iovec'.
579 *
580 * Returns new 'iovec' or calls 'exit()' on error.
581 */
582struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum)
583{
584	struct iovec *iovec;
585	int i;
586
587	iovec = malloc(sizeof(*iovec) * iovnum);
588	if (!iovec) {
589		perror("malloc");
590		exit(EXIT_FAILURE);
591	}
592
593	for (i = 0; i < iovnum; i++) {
594		iovec[i].iov_len = test_iovec[i].iov_len;
595
596		iovec[i].iov_base = mmap(NULL, iovec[i].iov_len,
597					 PROT_READ | PROT_WRITE,
598					 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
599					 -1, 0);
600		if (iovec[i].iov_base == MAP_FAILED) {
601			perror("mmap");
602			exit(EXIT_FAILURE);
603		}
604
605		if (test_iovec[i].iov_base != MAP_FAILED)
606			iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base;
607	}
608
609	/* Unmap "invalid" elements. */
610	for (i = 0; i < iovnum; i++) {
611		if (test_iovec[i].iov_base == MAP_FAILED) {
612			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
613				perror("munmap");
614				exit(EXIT_FAILURE);
615			}
616		}
617	}
618
619	for (i = 0; i < iovnum; i++) {
620		int j;
621
622		if (test_iovec[i].iov_base == MAP_FAILED)
623			continue;
624
625		for (j = 0; j < iovec[i].iov_len; j++)
626			((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff;
627	}
628
629	return iovec;
630}
631
632/* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'.
633 * On error calls 'exit()'.
634 */
635void free_test_iovec(const struct iovec *test_iovec,
636		     struct iovec *iovec, int iovnum)
637{
638	int i;
639
640	for (i = 0; i < iovnum; i++) {
641		if (test_iovec[i].iov_base != MAP_FAILED) {
642			if (test_iovec[i].iov_base)
643				iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base;
644
645			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
646				perror("munmap");
647				exit(EXIT_FAILURE);
648			}
649		}
650	}
651
652	free(iovec);
653}
654