1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#include <asm/msr-index.h>
9
10#include "test_util.h"
11#include "kvm_util.h"
12#include "processor.h"
13#include "vmx.h"
14
15#define PAGE_SHIFT_4K  12
16
17#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
18
19bool enable_evmcs;
20
21struct hv_enlightened_vmcs *current_evmcs;
22struct hv_vp_assist_page *current_vp_assist;
23
24struct eptPageTableEntry {
25	uint64_t readable:1;
26	uint64_t writable:1;
27	uint64_t executable:1;
28	uint64_t memory_type:3;
29	uint64_t ignore_pat:1;
30	uint64_t page_size:1;
31	uint64_t accessed:1;
32	uint64_t dirty:1;
33	uint64_t ignored_11_10:2;
34	uint64_t address:40;
35	uint64_t ignored_62_52:11;
36	uint64_t suppress_ve:1;
37};
38
39struct eptPageTablePointer {
40	uint64_t memory_type:3;
41	uint64_t page_walk_length:3;
42	uint64_t ad_enabled:1;
43	uint64_t reserved_11_07:5;
44	uint64_t address:40;
45	uint64_t reserved_63_52:12;
46};
47int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
48{
49	uint16_t evmcs_ver;
50
51	vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52			(unsigned long)&evmcs_ver);
53
54	/* KVM should return supported EVMCS version range */
55	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
56		    (evmcs_ver & 0xff) > 0,
57		    "Incorrect EVMCS version range: %x:%x",
58		    evmcs_ver & 0xff, evmcs_ver >> 8);
59
60	return evmcs_ver;
61}
62
63/* Allocate memory regions for nested VMX tests.
64 *
65 * Input Args:
66 *   vm - The VM to allocate guest-virtual addresses in.
67 *
68 * Output Args:
69 *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
70 *
71 * Return:
72 *   Pointer to structure with the addresses of the VMX areas.
73 */
74struct vmx_pages *
75vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
76{
77	vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
78	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
79
80	/* Setup of a region of guest memory for the vmxon region. */
81	vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
82	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
83	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
84
85	/* Setup of a region of guest memory for a vmcs. */
86	vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
87	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
88	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
89
90	/* Setup of a region of guest memory for the MSR bitmap. */
91	vmx->msr = (void *)vm_vaddr_alloc_page(vm);
92	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
93	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
94	memset(vmx->msr_hva, 0, getpagesize());
95
96	/* Setup of a region of guest memory for the shadow VMCS. */
97	vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
98	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
99	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100
101	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102	vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
103	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105	memset(vmx->vmread_hva, 0, getpagesize());
106
107	vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
108	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110	memset(vmx->vmwrite_hva, 0, getpagesize());
111
112	*p_vmx_gva = vmx_gva;
113	return vmx;
114}
115
116bool prepare_for_vmx_operation(struct vmx_pages *vmx)
117{
118	uint64_t feature_control;
119	uint64_t required;
120	unsigned long cr0;
121	unsigned long cr4;
122
123	/*
124	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
125	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
126	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
127	 */
128	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
129	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
130	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
131	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
132
133	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
134	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
135	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
136	/* Enable VMX operation */
137	cr4 |= X86_CR4_VMXE;
138	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
139
140	/*
141	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
142	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
143	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
144	 *    outside of SMX causes a #GP.
145	 */
146	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
147	required |= FEAT_CTL_LOCKED;
148	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
149	if ((feature_control & required) != required)
150		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
151
152	/* Enter VMX root operation. */
153	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
154	if (vmxon(vmx->vmxon_gpa))
155		return false;
156
157	return true;
158}
159
160bool load_vmcs(struct vmx_pages *vmx)
161{
162	/* Load a VMCS. */
163	*(uint32_t *)(vmx->vmcs) = vmcs_revision();
164	if (vmclear(vmx->vmcs_gpa))
165		return false;
166
167	if (vmptrld(vmx->vmcs_gpa))
168		return false;
169
170	/* Setup shadow VMCS, do not load it yet. */
171	*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
172	if (vmclear(vmx->shadow_vmcs_gpa))
173		return false;
174
175	return true;
176}
177
178static bool ept_vpid_cap_supported(uint64_t mask)
179{
180	return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
181}
182
183bool ept_1g_pages_supported(void)
184{
185	return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
186}
187
188/*
189 * Initialize the control fields to the most basic settings possible.
190 */
191static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
192{
193	uint32_t sec_exec_ctl = 0;
194
195	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
196	vmwrite(POSTED_INTR_NV, 0);
197
198	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
199
200	if (vmx->eptp_gpa) {
201		uint64_t ept_paddr;
202		struct eptPageTablePointer eptp = {
203			.memory_type = VMX_BASIC_MEM_TYPE_WB,
204			.page_walk_length = 3, /* + 1 */
205			.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
206			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
207		};
208
209		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
210		vmwrite(EPT_POINTER, ept_paddr);
211		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
212	}
213
214	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
215		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
216			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
217	else {
218		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
219		GUEST_ASSERT(!sec_exec_ctl);
220	}
221
222	vmwrite(EXCEPTION_BITMAP, 0);
223	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
224	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
225	vmwrite(CR3_TARGET_COUNT, 0);
226	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
227		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
228	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
229	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
230	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
231		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
232	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
233	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
234	vmwrite(TPR_THRESHOLD, 0);
235
236	vmwrite(CR0_GUEST_HOST_MASK, 0);
237	vmwrite(CR4_GUEST_HOST_MASK, 0);
238	vmwrite(CR0_READ_SHADOW, get_cr0());
239	vmwrite(CR4_READ_SHADOW, get_cr4());
240
241	vmwrite(MSR_BITMAP, vmx->msr_gpa);
242	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
243	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
244}
245
246/*
247 * Initialize the host state fields based on the current host state, with
248 * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
249 * or vmresume.
250 */
251static inline void init_vmcs_host_state(void)
252{
253	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
254
255	vmwrite(HOST_ES_SELECTOR, get_es());
256	vmwrite(HOST_CS_SELECTOR, get_cs());
257	vmwrite(HOST_SS_SELECTOR, get_ss());
258	vmwrite(HOST_DS_SELECTOR, get_ds());
259	vmwrite(HOST_FS_SELECTOR, get_fs());
260	vmwrite(HOST_GS_SELECTOR, get_gs());
261	vmwrite(HOST_TR_SELECTOR, get_tr());
262
263	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
264		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
265	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
266		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
267	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
268		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
269			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
270
271	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
272
273	vmwrite(HOST_CR0, get_cr0());
274	vmwrite(HOST_CR3, get_cr3());
275	vmwrite(HOST_CR4, get_cr4());
276	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
277	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
278	vmwrite(HOST_TR_BASE,
279		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
280	vmwrite(HOST_GDTR_BASE, get_gdt().address);
281	vmwrite(HOST_IDTR_BASE, get_idt().address);
282	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
283	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
284}
285
286/*
287 * Initialize the guest state fields essentially as a clone of
288 * the host state fields. Some host state fields have fixed
289 * values, and we set the corresponding guest state fields accordingly.
290 */
291static inline void init_vmcs_guest_state(void *rip, void *rsp)
292{
293	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
294	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
295	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
296	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
297	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
298	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
299	vmwrite(GUEST_LDTR_SELECTOR, 0);
300	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
301	vmwrite(GUEST_INTR_STATUS, 0);
302	vmwrite(GUEST_PML_INDEX, 0);
303
304	vmwrite(VMCS_LINK_POINTER, -1ll);
305	vmwrite(GUEST_IA32_DEBUGCTL, 0);
306	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
307	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
308	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
309		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
310
311	vmwrite(GUEST_ES_LIMIT, -1);
312	vmwrite(GUEST_CS_LIMIT, -1);
313	vmwrite(GUEST_SS_LIMIT, -1);
314	vmwrite(GUEST_DS_LIMIT, -1);
315	vmwrite(GUEST_FS_LIMIT, -1);
316	vmwrite(GUEST_GS_LIMIT, -1);
317	vmwrite(GUEST_LDTR_LIMIT, -1);
318	vmwrite(GUEST_TR_LIMIT, 0x67);
319	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
320	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
321	vmwrite(GUEST_ES_AR_BYTES,
322		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
323	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
324	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
325	vmwrite(GUEST_DS_AR_BYTES,
326		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327	vmwrite(GUEST_FS_AR_BYTES,
328		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329	vmwrite(GUEST_GS_AR_BYTES,
330		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
331	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
332	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
333	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
334	vmwrite(GUEST_ACTIVITY_STATE, 0);
335	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
336	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
337
338	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
339	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
340	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
341	vmwrite(GUEST_ES_BASE, 0);
342	vmwrite(GUEST_CS_BASE, 0);
343	vmwrite(GUEST_SS_BASE, 0);
344	vmwrite(GUEST_DS_BASE, 0);
345	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
346	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
347	vmwrite(GUEST_LDTR_BASE, 0);
348	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
349	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
350	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
351	vmwrite(GUEST_DR7, 0x400);
352	vmwrite(GUEST_RSP, (uint64_t)rsp);
353	vmwrite(GUEST_RIP, (uint64_t)rip);
354	vmwrite(GUEST_RFLAGS, 2);
355	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
356	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
357	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
358}
359
360void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
361{
362	init_vmcs_control_fields(vmx);
363	init_vmcs_host_state();
364	init_vmcs_guest_state(guest_rip, guest_rsp);
365}
366
367static void nested_create_pte(struct kvm_vm *vm,
368			      struct eptPageTableEntry *pte,
369			      uint64_t nested_paddr,
370			      uint64_t paddr,
371			      int current_level,
372			      int target_level)
373{
374	if (!pte->readable) {
375		pte->writable = true;
376		pte->readable = true;
377		pte->executable = true;
378		pte->page_size = (current_level == target_level);
379		if (pte->page_size)
380			pte->address = paddr >> vm->page_shift;
381		else
382			pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
383	} else {
384		/*
385		 * Entry already present.  Assert that the caller doesn't want
386		 * a hugepage at this level, and that there isn't a hugepage at
387		 * this level.
388		 */
389		TEST_ASSERT(current_level != target_level,
390			    "Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
391			    current_level, nested_paddr);
392		TEST_ASSERT(!pte->page_size,
393			    "Cannot create page table at level: %u, nested_paddr: 0x%lx",
394			    current_level, nested_paddr);
395	}
396}
397
398
399void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
400		     uint64_t nested_paddr, uint64_t paddr, int target_level)
401{
402	const uint64_t page_size = PG_LEVEL_SIZE(target_level);
403	struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
404	uint16_t index;
405
406	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
407		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
408
409	TEST_ASSERT((nested_paddr >> 48) == 0,
410		    "Nested physical address 0x%lx requires 5-level paging",
411		    nested_paddr);
412	TEST_ASSERT((nested_paddr % page_size) == 0,
413		    "Nested physical address not on page boundary,\n"
414		    "  nested_paddr: 0x%lx page_size: 0x%lx",
415		    nested_paddr, page_size);
416	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
417		    "Physical address beyond beyond maximum supported,\n"
418		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
419		    paddr, vm->max_gfn, vm->page_size);
420	TEST_ASSERT((paddr % page_size) == 0,
421		    "Physical address not on page boundary,\n"
422		    "  paddr: 0x%lx page_size: 0x%lx",
423		    paddr, page_size);
424	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
425		    "Physical address beyond beyond maximum supported,\n"
426		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
427		    paddr, vm->max_gfn, vm->page_size);
428
429	for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
430		index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
431		pte = &pt[index];
432
433		nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
434
435		if (pte->page_size)
436			break;
437
438		pt = addr_gpa2hva(vm, pte->address * vm->page_size);
439	}
440
441	/*
442	 * For now mark these as accessed and dirty because the only
443	 * testcase we have needs that.  Can be reconsidered later.
444	 */
445	pte->accessed = true;
446	pte->dirty = true;
447
448}
449
450void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
451		   uint64_t nested_paddr, uint64_t paddr)
452{
453	__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
454}
455
456/*
457 * Map a range of EPT guest physical addresses to the VM's physical address
458 *
459 * Input Args:
460 *   vm - Virtual Machine
461 *   nested_paddr - Nested guest physical address to map
462 *   paddr - VM Physical Address
463 *   size - The size of the range to map
464 *   level - The level at which to map the range
465 *
466 * Output Args: None
467 *
468 * Return: None
469 *
470 * Within the VM given by vm, creates a nested guest translation for the
471 * page range starting at nested_paddr to the page range starting at paddr.
472 */
473void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
474		  uint64_t nested_paddr, uint64_t paddr, uint64_t size,
475		  int level)
476{
477	size_t page_size = PG_LEVEL_SIZE(level);
478	size_t npages = size / page_size;
479
480	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
481	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
482
483	while (npages--) {
484		__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
485		nested_paddr += page_size;
486		paddr += page_size;
487	}
488}
489
490void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
491		uint64_t nested_paddr, uint64_t paddr, uint64_t size)
492{
493	__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
494}
495
496/* Prepare an identity extended page table that maps all the
497 * physical pages in VM.
498 */
499void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
500			uint32_t memslot)
501{
502	sparsebit_idx_t i, last;
503	struct userspace_mem_region *region =
504		memslot2region(vm, memslot);
505
506	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
507	last = i + (region->region.memory_size >> vm->page_shift);
508	for (;;) {
509		i = sparsebit_next_clear(region->unused_phy_pages, i);
510		if (i > last)
511			break;
512
513		nested_map(vmx, vm,
514			   (uint64_t)i << vm->page_shift,
515			   (uint64_t)i << vm->page_shift,
516			   1 << vm->page_shift);
517	}
518}
519
520/* Identity map a region with 1GiB Pages. */
521void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
522			    uint64_t addr, uint64_t size)
523{
524	__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
525}
526
527bool kvm_cpu_has_ept(void)
528{
529	uint64_t ctrl;
530
531	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
532	if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
533		return false;
534
535	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
536	return ctrl & SECONDARY_EXEC_ENABLE_EPT;
537}
538
539void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
540		  uint32_t eptp_memslot)
541{
542	TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
543
544	vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
545	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
546	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
547}
548
549void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
550{
551	vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
552	vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
553	vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
554}
555