1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Sparse bit array
4 *
5 * Copyright (C) 2018, Google LLC.
6 * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
7 *
8 * This library provides functions to support a memory efficient bit array,
9 * with an index size of 2^64.  A sparsebit array is allocated through
10 * the use sparsebit_alloc() and free'd via sparsebit_free(),
11 * such as in the following:
12 *
13 *   struct sparsebit *s;
14 *   s = sparsebit_alloc();
15 *   sparsebit_free(&s);
16 *
17 * The struct sparsebit type resolves down to a struct sparsebit.
18 * Note that, sparsebit_free() takes a pointer to the sparsebit
19 * structure.  This is so that sparsebit_free() is able to poison
20 * the pointer (e.g. set it to NULL) to the struct sparsebit before
21 * returning to the caller.
22 *
23 * Between the return of sparsebit_alloc() and the call of
24 * sparsebit_free(), there are multiple query and modifying operations
25 * that can be performed on the allocated sparsebit array.  All of
26 * these operations take as a parameter the value returned from
27 * sparsebit_alloc() and most also take a bit index.  Frequently
28 * used routines include:
29 *
30 *  ---- Query Operations
31 *  sparsebit_is_set(s, idx)
32 *  sparsebit_is_clear(s, idx)
33 *  sparsebit_any_set(s)
34 *  sparsebit_first_set(s)
35 *  sparsebit_next_set(s, prev_idx)
36 *
37 *  ---- Modifying Operations
38 *  sparsebit_set(s, idx)
39 *  sparsebit_clear(s, idx)
40 *  sparsebit_set_num(s, idx, num);
41 *  sparsebit_clear_num(s, idx, num);
42 *
43 * A common operation, is to itterate over all the bits set in a test
44 * sparsebit array.  This can be done via code with the following structure:
45 *
46 *   sparsebit_idx_t idx;
47 *   if (sparsebit_any_set(s)) {
48 *     idx = sparsebit_first_set(s);
49 *     do {
50 *       ...
51 *       idx = sparsebit_next_set(s, idx);
52 *     } while (idx != 0);
53 *   }
54 *
55 * The index of the first bit set needs to be obtained via
56 * sparsebit_first_set(), because sparsebit_next_set(), needs
57 * the index of the previously set.  The sparsebit_idx_t type is
58 * unsigned, so there is no previous index before 0 that is available.
59 * Also, the call to sparsebit_first_set() is not made unless there
60 * is at least 1 bit in the array set.  This is because sparsebit_first_set()
61 * aborts if sparsebit_first_set() is called with no bits set.
62 * It is the callers responsibility to assure that the
63 * sparsebit array has at least a single bit set before calling
64 * sparsebit_first_set().
65 *
66 * ==== Implementation Overview ====
67 * For the most part the internal implementation of sparsebit is
68 * opaque to the caller.  One important implementation detail that the
69 * caller may need to be aware of is the spatial complexity of the
70 * implementation.  This implementation of a sparsebit array is not
71 * only sparse, in that it uses memory proportional to the number of bits
72 * set.  It is also efficient in memory usage when most of the bits are
73 * set.
74 *
75 * At a high-level the state of the bit settings are maintained through
76 * the use of a binary-search tree, where each node contains at least
77 * the following members:
78 *
79 *   typedef uint64_t sparsebit_idx_t;
80 *   typedef uint64_t sparsebit_num_t;
81 *
82 *   sparsebit_idx_t idx;
83 *   uint32_t mask;
84 *   sparsebit_num_t num_after;
85 *
86 * The idx member contains the bit index of the first bit described by this
87 * node, while the mask member stores the setting of the first 32-bits.
88 * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
89 * mask member at 1 << n.
90 *
91 * Nodes are sorted by idx and the bits described by two nodes will never
92 * overlap. The idx member is always aligned to the mask size, i.e. a
93 * multiple of 32.
94 *
95 * Beyond a typical implementation, the nodes in this implementation also
96 * contains a member named num_after.  The num_after member holds the
97 * number of bits immediately after the mask bits that are contiguously set.
98 * The use of the num_after member allows this implementation to efficiently
99 * represent cases where most bits are set.  For example, the case of all
100 * but the last two bits set, is represented by the following two nodes:
101 *
102 *   node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
103 *   node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
104 *
105 * ==== Invariants ====
106 * This implementation usses the following invariants:
107 *
108 *   + Node are only used to represent bits that are set.
109 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
110 *
111 *   + Sum of bits set in all the nodes is equal to the value of
112 *     the struct sparsebit_pvt num_set member.
113 *
114 *   + The setting of at least one bit is always described in a nodes
115 *     mask (mask >= 1).
116 *
117 *   + A node with all mask bits set only occurs when the last bit
118 *     described by the previous node is not equal to this nodes
119 *     starting index - 1.  All such occurences of this condition are
120 *     avoided by moving the setting of the nodes mask bits into
121 *     the previous nodes num_after setting.
122 *
123 *   + Node starting index is evenly divisible by the number of bits
124 *     within a nodes mask member.
125 *
126 *   + Nodes never represent a range of bits that wrap around the
127 *     highest supported index.
128 *
129 *      (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
130 *
131 *     As a consequence of the above, the num_after member of a node
132 *     will always be <=:
133 *
134 *       maximum_index - nodes_starting_index - number_of_mask_bits
135 *
136 *   + Nodes within the binary search tree are sorted based on each
137 *     nodes starting index.
138 *
139 *   + The range of bits described by any two nodes do not overlap.  The
140 *     range of bits described by a single node is:
141 *
142 *       start: node->idx
143 *       end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
144 *
145 * Note, at times these invariants are temporarily violated for a
146 * specific portion of the code.  For example, when setting a mask
147 * bit, there is a small delay between when the mask bit is set and the
148 * value in the struct sparsebit_pvt num_set member is updated.  Other
149 * temporary violations occur when node_split() is called with a specified
150 * index and assures that a node where its mask represents the bit
151 * at the specified index exists.  At times to do this node_split()
152 * must split an existing node into two nodes or create a node that
153 * has no bits set.  Such temporary violations must be corrected before
154 * returning to the caller.  These corrections are typically performed
155 * by the local function node_reduce().
156 */
157
158#include "test_util.h"
159#include "sparsebit.h"
160#include <limits.h>
161#include <assert.h>
162
163#define DUMP_LINE_MAX 100 /* Does not include indent amount */
164
165typedef uint32_t mask_t;
166#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
167
168struct node {
169	struct node *parent;
170	struct node *left;
171	struct node *right;
172	sparsebit_idx_t idx; /* index of least-significant bit in mask */
173	sparsebit_num_t num_after; /* num contiguously set after mask */
174	mask_t mask;
175};
176
177struct sparsebit {
178	/*
179	 * Points to root node of the binary search
180	 * tree.  Equal to NULL when no bits are set in
181	 * the entire sparsebit array.
182	 */
183	struct node *root;
184
185	/*
186	 * A redundant count of the total number of bits set.  Used for
187	 * diagnostic purposes and to change the time complexity of
188	 * sparsebit_num_set() from O(n) to O(1).
189	 * Note: Due to overflow, a value of 0 means none or all set.
190	 */
191	sparsebit_num_t num_set;
192};
193
194/* Returns the number of set bits described by the settings
195 * of the node pointed to by nodep.
196 */
197static sparsebit_num_t node_num_set(struct node *nodep)
198{
199	return nodep->num_after + __builtin_popcount(nodep->mask);
200}
201
202/* Returns a pointer to the node that describes the
203 * lowest bit index.
204 */
205static struct node *node_first(const struct sparsebit *s)
206{
207	struct node *nodep;
208
209	for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
210		;
211
212	return nodep;
213}
214
215/* Returns a pointer to the node that describes the
216 * lowest bit index > the index of the node pointed to by np.
217 * Returns NULL if no node with a higher index exists.
218 */
219static struct node *node_next(const struct sparsebit *s, struct node *np)
220{
221	struct node *nodep = np;
222
223	/*
224	 * If current node has a right child, next node is the left-most
225	 * of the right child.
226	 */
227	if (nodep->right) {
228		for (nodep = nodep->right; nodep->left; nodep = nodep->left)
229			;
230		return nodep;
231	}
232
233	/*
234	 * No right child.  Go up until node is left child of a parent.
235	 * That parent is then the next node.
236	 */
237	while (nodep->parent && nodep == nodep->parent->right)
238		nodep = nodep->parent;
239
240	return nodep->parent;
241}
242
243/* Searches for and returns a pointer to the node that describes the
244 * highest index < the index of the node pointed to by np.
245 * Returns NULL if no node with a lower index exists.
246 */
247static struct node *node_prev(const struct sparsebit *s, struct node *np)
248{
249	struct node *nodep = np;
250
251	/*
252	 * If current node has a left child, next node is the right-most
253	 * of the left child.
254	 */
255	if (nodep->left) {
256		for (nodep = nodep->left; nodep->right; nodep = nodep->right)
257			;
258		return (struct node *) nodep;
259	}
260
261	/*
262	 * No left child.  Go up until node is right child of a parent.
263	 * That parent is then the next node.
264	 */
265	while (nodep->parent && nodep == nodep->parent->left)
266		nodep = nodep->parent;
267
268	return (struct node *) nodep->parent;
269}
270
271
272/* Allocates space to hold a copy of the node sub-tree pointed to by
273 * subtree and duplicates the bit settings to the newly allocated nodes.
274 * Returns the newly allocated copy of subtree.
275 */
276static struct node *node_copy_subtree(const struct node *subtree)
277{
278	struct node *root;
279
280	/* Duplicate the node at the root of the subtree */
281	root = calloc(1, sizeof(*root));
282	if (!root) {
283		perror("calloc");
284		abort();
285	}
286
287	root->idx = subtree->idx;
288	root->mask = subtree->mask;
289	root->num_after = subtree->num_after;
290
291	/* As needed, recursively duplicate the left and right subtrees */
292	if (subtree->left) {
293		root->left = node_copy_subtree(subtree->left);
294		root->left->parent = root;
295	}
296
297	if (subtree->right) {
298		root->right = node_copy_subtree(subtree->right);
299		root->right->parent = root;
300	}
301
302	return root;
303}
304
305/* Searches for and returns a pointer to the node that describes the setting
306 * of the bit given by idx.  A node describes the setting of a bit if its
307 * index is within the bits described by the mask bits or the number of
308 * contiguous bits set after the mask.  Returns NULL if there is no such node.
309 */
310static struct node *node_find(const struct sparsebit *s, sparsebit_idx_t idx)
311{
312	struct node *nodep;
313
314	/* Find the node that describes the setting of the bit at idx */
315	for (nodep = s->root; nodep;
316	     nodep = nodep->idx > idx ? nodep->left : nodep->right) {
317		if (idx >= nodep->idx &&
318		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
319			break;
320	}
321
322	return nodep;
323}
324
325/* Entry Requirements:
326 *   + A node that describes the setting of idx is not already present.
327 *
328 * Adds a new node to describe the setting of the bit at the index given
329 * by idx.  Returns a pointer to the newly added node.
330 *
331 * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
332 */
333static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
334{
335	struct node *nodep, *parentp, *prev;
336
337	/* Allocate and initialize the new node. */
338	nodep = calloc(1, sizeof(*nodep));
339	if (!nodep) {
340		perror("calloc");
341		abort();
342	}
343
344	nodep->idx = idx & -MASK_BITS;
345
346	/* If no nodes, set it up as the root node. */
347	if (!s->root) {
348		s->root = nodep;
349		return nodep;
350	}
351
352	/*
353	 * Find the parent where the new node should be attached
354	 * and add the node there.
355	 */
356	parentp = s->root;
357	while (true) {
358		if (idx < parentp->idx) {
359			if (!parentp->left) {
360				parentp->left = nodep;
361				nodep->parent = parentp;
362				break;
363			}
364			parentp = parentp->left;
365		} else {
366			assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
367			if (!parentp->right) {
368				parentp->right = nodep;
369				nodep->parent = parentp;
370				break;
371			}
372			parentp = parentp->right;
373		}
374	}
375
376	/*
377	 * Does num_after bits of previous node overlap with the mask
378	 * of the new node?  If so set the bits in the new nodes mask
379	 * and reduce the previous nodes num_after.
380	 */
381	prev = node_prev(s, nodep);
382	while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
383		unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
384			- nodep->idx;
385		assert(prev->num_after > 0);
386		assert(n1 < MASK_BITS);
387		assert(!(nodep->mask & (1 << n1)));
388		nodep->mask |= (1 << n1);
389		prev->num_after--;
390	}
391
392	return nodep;
393}
394
395/* Returns whether all the bits in the sparsebit array are set.  */
396bool sparsebit_all_set(const struct sparsebit *s)
397{
398	/*
399	 * If any nodes there must be at least one bit set.  Only case
400	 * where a bit is set and total num set is 0, is when all bits
401	 * are set.
402	 */
403	return s->root && s->num_set == 0;
404}
405
406/* Clears all bits described by the node pointed to by nodep, then
407 * removes the node.
408 */
409static void node_rm(struct sparsebit *s, struct node *nodep)
410{
411	struct node *tmp;
412	sparsebit_num_t num_set;
413
414	num_set = node_num_set(nodep);
415	assert(s->num_set >= num_set || sparsebit_all_set(s));
416	s->num_set -= node_num_set(nodep);
417
418	/* Have both left and right child */
419	if (nodep->left && nodep->right) {
420		/*
421		 * Move left children to the leftmost leaf node
422		 * of the right child.
423		 */
424		for (tmp = nodep->right; tmp->left; tmp = tmp->left)
425			;
426		tmp->left = nodep->left;
427		nodep->left = NULL;
428		tmp->left->parent = tmp;
429	}
430
431	/* Left only child */
432	if (nodep->left) {
433		if (!nodep->parent) {
434			s->root = nodep->left;
435			nodep->left->parent = NULL;
436		} else {
437			nodep->left->parent = nodep->parent;
438			if (nodep == nodep->parent->left)
439				nodep->parent->left = nodep->left;
440			else {
441				assert(nodep == nodep->parent->right);
442				nodep->parent->right = nodep->left;
443			}
444		}
445
446		nodep->parent = nodep->left = nodep->right = NULL;
447		free(nodep);
448
449		return;
450	}
451
452
453	/* Right only child */
454	if (nodep->right) {
455		if (!nodep->parent) {
456			s->root = nodep->right;
457			nodep->right->parent = NULL;
458		} else {
459			nodep->right->parent = nodep->parent;
460			if (nodep == nodep->parent->left)
461				nodep->parent->left = nodep->right;
462			else {
463				assert(nodep == nodep->parent->right);
464				nodep->parent->right = nodep->right;
465			}
466		}
467
468		nodep->parent = nodep->left = nodep->right = NULL;
469		free(nodep);
470
471		return;
472	}
473
474	/* Leaf Node */
475	if (!nodep->parent) {
476		s->root = NULL;
477	} else {
478		if (nodep->parent->left == nodep)
479			nodep->parent->left = NULL;
480		else {
481			assert(nodep == nodep->parent->right);
482			nodep->parent->right = NULL;
483		}
484	}
485
486	nodep->parent = nodep->left = nodep->right = NULL;
487	free(nodep);
488
489	return;
490}
491
492/* Splits the node containing the bit at idx so that there is a node
493 * that starts at the specified index.  If no such node exists, a new
494 * node at the specified index is created.  Returns the new node.
495 *
496 * idx must start of a mask boundary.
497 */
498static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
499{
500	struct node *nodep1, *nodep2;
501	sparsebit_idx_t offset;
502	sparsebit_num_t orig_num_after;
503
504	assert(!(idx % MASK_BITS));
505
506	/*
507	 * Is there a node that describes the setting of idx?
508	 * If not, add it.
509	 */
510	nodep1 = node_find(s, idx);
511	if (!nodep1)
512		return node_add(s, idx);
513
514	/*
515	 * All done if the starting index of the node is where the
516	 * split should occur.
517	 */
518	if (nodep1->idx == idx)
519		return nodep1;
520
521	/*
522	 * Split point not at start of mask, so it must be part of
523	 * bits described by num_after.
524	 */
525
526	/*
527	 * Calculate offset within num_after for where the split is
528	 * to occur.
529	 */
530	offset = idx - (nodep1->idx + MASK_BITS);
531	orig_num_after = nodep1->num_after;
532
533	/*
534	 * Add a new node to describe the bits starting at
535	 * the split point.
536	 */
537	nodep1->num_after = offset;
538	nodep2 = node_add(s, idx);
539
540	/* Move bits after the split point into the new node */
541	nodep2->num_after = orig_num_after - offset;
542	if (nodep2->num_after >= MASK_BITS) {
543		nodep2->mask = ~(mask_t) 0;
544		nodep2->num_after -= MASK_BITS;
545	} else {
546		nodep2->mask = (1 << nodep2->num_after) - 1;
547		nodep2->num_after = 0;
548	}
549
550	return nodep2;
551}
552
553/* Iteratively reduces the node pointed to by nodep and its adjacent
554 * nodes into a more compact form.  For example, a node with a mask with
555 * all bits set adjacent to a previous node, will get combined into a
556 * single node with an increased num_after setting.
557 *
558 * After each reduction, a further check is made to see if additional
559 * reductions are possible with the new previous and next nodes.  Note,
560 * a search for a reduction is only done across the nodes nearest nodep
561 * and those that became part of a reduction.  Reductions beyond nodep
562 * and the adjacent nodes that are reduced are not discovered.  It is the
563 * responsibility of the caller to pass a nodep that is within one node
564 * of each possible reduction.
565 *
566 * This function does not fix the temporary violation of all invariants.
567 * For example it does not fix the case where the bit settings described
568 * by two or more nodes overlap.  Such a violation introduces the potential
569 * complication of a bit setting for a specific index having different settings
570 * in different nodes.  This would then introduce the further complication
571 * of which node has the correct setting of the bit and thus such conditions
572 * are not allowed.
573 *
574 * This function is designed to fix invariant violations that are introduced
575 * by node_split() and by changes to the nodes mask or num_after members.
576 * For example, when setting a bit within a nodes mask, the function that
577 * sets the bit doesn't have to worry about whether the setting of that
578 * bit caused the mask to have leading only or trailing only bits set.
579 * Instead, the function can call node_reduce(), with nodep equal to the
580 * node address that it set a mask bit in, and node_reduce() will notice
581 * the cases of leading or trailing only bits and that there is an
582 * adjacent node that the bit settings could be merged into.
583 *
584 * This implementation specifically detects and corrects violation of the
585 * following invariants:
586 *
587 *   + Node are only used to represent bits that are set.
588 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
589 *
590 *   + The setting of at least one bit is always described in a nodes
591 *     mask (mask >= 1).
592 *
593 *   + A node with all mask bits set only occurs when the last bit
594 *     described by the previous node is not equal to this nodes
595 *     starting index - 1.  All such occurences of this condition are
596 *     avoided by moving the setting of the nodes mask bits into
597 *     the previous nodes num_after setting.
598 */
599static void node_reduce(struct sparsebit *s, struct node *nodep)
600{
601	bool reduction_performed;
602
603	do {
604		reduction_performed = false;
605		struct node *prev, *next, *tmp;
606
607		/* 1) Potential reductions within the current node. */
608
609		/* Nodes with all bits cleared may be removed. */
610		if (nodep->mask == 0 && nodep->num_after == 0) {
611			/*
612			 * About to remove the node pointed to by
613			 * nodep, which normally would cause a problem
614			 * for the next pass through the reduction loop,
615			 * because the node at the starting point no longer
616			 * exists.  This potential problem is handled
617			 * by first remembering the location of the next
618			 * or previous nodes.  Doesn't matter which, because
619			 * once the node at nodep is removed, there will be
620			 * no other nodes between prev and next.
621			 *
622			 * Note, the checks performed on nodep against both
623			 * both prev and next both check for an adjacent
624			 * node that can be reduced into a single node.  As
625			 * such, after removing the node at nodep, doesn't
626			 * matter whether the nodep for the next pass
627			 * through the loop is equal to the previous pass
628			 * prev or next node.  Either way, on the next pass
629			 * the one not selected will become either the
630			 * prev or next node.
631			 */
632			tmp = node_next(s, nodep);
633			if (!tmp)
634				tmp = node_prev(s, nodep);
635
636			node_rm(s, nodep);
637
638			nodep = tmp;
639			reduction_performed = true;
640			continue;
641		}
642
643		/*
644		 * When the mask is 0, can reduce the amount of num_after
645		 * bits by moving the initial num_after bits into the mask.
646		 */
647		if (nodep->mask == 0) {
648			assert(nodep->num_after != 0);
649			assert(nodep->idx + MASK_BITS > nodep->idx);
650
651			nodep->idx += MASK_BITS;
652
653			if (nodep->num_after >= MASK_BITS) {
654				nodep->mask = ~0;
655				nodep->num_after -= MASK_BITS;
656			} else {
657				nodep->mask = (1u << nodep->num_after) - 1;
658				nodep->num_after = 0;
659			}
660
661			reduction_performed = true;
662			continue;
663		}
664
665		/*
666		 * 2) Potential reductions between the current and
667		 * previous nodes.
668		 */
669		prev = node_prev(s, nodep);
670		if (prev) {
671			sparsebit_idx_t prev_highest_bit;
672
673			/* Nodes with no bits set can be removed. */
674			if (prev->mask == 0 && prev->num_after == 0) {
675				node_rm(s, prev);
676
677				reduction_performed = true;
678				continue;
679			}
680
681			/*
682			 * All mask bits set and previous node has
683			 * adjacent index.
684			 */
685			if (nodep->mask + 1 == 0 &&
686			    prev->idx + MASK_BITS == nodep->idx) {
687				prev->num_after += MASK_BITS + nodep->num_after;
688				nodep->mask = 0;
689				nodep->num_after = 0;
690
691				reduction_performed = true;
692				continue;
693			}
694
695			/*
696			 * Is node adjacent to previous node and the node
697			 * contains a single contiguous range of bits
698			 * starting from the beginning of the mask?
699			 */
700			prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
701			if (prev_highest_bit + 1 == nodep->idx &&
702			    (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
703				/*
704				 * How many contiguous bits are there?
705				 * Is equal to the total number of set
706				 * bits, due to an earlier check that
707				 * there is a single contiguous range of
708				 * set bits.
709				 */
710				unsigned int num_contiguous
711					= __builtin_popcount(nodep->mask);
712				assert((num_contiguous > 0) &&
713				       ((1ULL << num_contiguous) - 1) == nodep->mask);
714
715				prev->num_after += num_contiguous;
716				nodep->mask = 0;
717
718				/*
719				 * For predictable performance, handle special
720				 * case where all mask bits are set and there
721				 * is a non-zero num_after setting.  This code
722				 * is functionally correct without the following
723				 * conditionalized statements, but without them
724				 * the value of num_after is only reduced by
725				 * the number of mask bits per pass.  There are
726				 * cases where num_after can be close to 2^64.
727				 * Without this code it could take nearly
728				 * (2^64) / 32 passes to perform the full
729				 * reduction.
730				 */
731				if (num_contiguous == MASK_BITS) {
732					prev->num_after += nodep->num_after;
733					nodep->num_after = 0;
734				}
735
736				reduction_performed = true;
737				continue;
738			}
739		}
740
741		/*
742		 * 3) Potential reductions between the current and
743		 * next nodes.
744		 */
745		next = node_next(s, nodep);
746		if (next) {
747			/* Nodes with no bits set can be removed. */
748			if (next->mask == 0 && next->num_after == 0) {
749				node_rm(s, next);
750				reduction_performed = true;
751				continue;
752			}
753
754			/*
755			 * Is next node index adjacent to current node
756			 * and has a mask with all bits set?
757			 */
758			if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
759			    next->mask == ~(mask_t) 0) {
760				nodep->num_after += MASK_BITS;
761				next->mask = 0;
762				nodep->num_after += next->num_after;
763				next->num_after = 0;
764
765				node_rm(s, next);
766				next = NULL;
767
768				reduction_performed = true;
769				continue;
770			}
771		}
772	} while (nodep && reduction_performed);
773}
774
775/* Returns whether the bit at the index given by idx, within the
776 * sparsebit array is set or not.
777 */
778bool sparsebit_is_set(const struct sparsebit *s, sparsebit_idx_t idx)
779{
780	struct node *nodep;
781
782	/* Find the node that describes the setting of the bit at idx */
783	for (nodep = s->root; nodep;
784	     nodep = nodep->idx > idx ? nodep->left : nodep->right)
785		if (idx >= nodep->idx &&
786		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
787			goto have_node;
788
789	return false;
790
791have_node:
792	/* Bit is set if it is any of the bits described by num_after */
793	if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
794		return true;
795
796	/* Is the corresponding mask bit set */
797	assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
798	return !!(nodep->mask & (1 << (idx - nodep->idx)));
799}
800
801/* Within the sparsebit array pointed to by s, sets the bit
802 * at the index given by idx.
803 */
804static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
805{
806	struct node *nodep;
807
808	/* Skip bits that are already set */
809	if (sparsebit_is_set(s, idx))
810		return;
811
812	/*
813	 * Get a node where the bit at idx is described by the mask.
814	 * The node_split will also create a node, if there isn't
815	 * already a node that describes the setting of bit.
816	 */
817	nodep = node_split(s, idx & -MASK_BITS);
818
819	/* Set the bit within the nodes mask */
820	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
821	assert(!(nodep->mask & (1 << (idx - nodep->idx))));
822	nodep->mask |= 1 << (idx - nodep->idx);
823	s->num_set++;
824
825	node_reduce(s, nodep);
826}
827
828/* Within the sparsebit array pointed to by s, clears the bit
829 * at the index given by idx.
830 */
831static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
832{
833	struct node *nodep;
834
835	/* Skip bits that are already cleared */
836	if (!sparsebit_is_set(s, idx))
837		return;
838
839	/* Is there a node that describes the setting of this bit? */
840	nodep = node_find(s, idx);
841	if (!nodep)
842		return;
843
844	/*
845	 * If a num_after bit, split the node, so that the bit is
846	 * part of a node mask.
847	 */
848	if (idx >= nodep->idx + MASK_BITS)
849		nodep = node_split(s, idx & -MASK_BITS);
850
851	/*
852	 * After node_split above, bit at idx should be within the mask.
853	 * Clear that bit.
854	 */
855	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
856	assert(nodep->mask & (1 << (idx - nodep->idx)));
857	nodep->mask &= ~(1 << (idx - nodep->idx));
858	assert(s->num_set > 0 || sparsebit_all_set(s));
859	s->num_set--;
860
861	node_reduce(s, nodep);
862}
863
864/* Recursively dumps to the FILE stream given by stream the contents
865 * of the sub-tree of nodes pointed to by nodep.  Each line of output
866 * is prefixed by the number of spaces given by indent.  On each
867 * recursion, the indent amount is increased by 2.  This causes nodes
868 * at each level deeper into the binary search tree to be displayed
869 * with a greater indent.
870 */
871static void dump_nodes(FILE *stream, struct node *nodep,
872	unsigned int indent)
873{
874	char *node_type;
875
876	/* Dump contents of node */
877	if (!nodep->parent)
878		node_type = "root";
879	else if (nodep == nodep->parent->left)
880		node_type = "left";
881	else {
882		assert(nodep == nodep->parent->right);
883		node_type = "right";
884	}
885	fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
886	fprintf(stream, "%*s  parent: %p left: %p right: %p\n", indent, "",
887		nodep->parent, nodep->left, nodep->right);
888	fprintf(stream, "%*s  idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
889		indent, "", nodep->idx, nodep->mask, nodep->num_after);
890
891	/* If present, dump contents of left child nodes */
892	if (nodep->left)
893		dump_nodes(stream, nodep->left, indent + 2);
894
895	/* If present, dump contents of right child nodes */
896	if (nodep->right)
897		dump_nodes(stream, nodep->right, indent + 2);
898}
899
900static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
901{
902	mask_t leading = (mask_t)1 << start;
903	int n1 = __builtin_ctz(nodep->mask & -leading);
904
905	return nodep->idx + n1;
906}
907
908static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
909{
910	mask_t leading = (mask_t)1 << start;
911	int n1 = __builtin_ctz(~nodep->mask & -leading);
912
913	return nodep->idx + n1;
914}
915
916/* Dumps to the FILE stream specified by stream, the implementation dependent
917 * internal state of s.  Each line of output is prefixed with the number
918 * of spaces given by indent.  The output is completely implementation
919 * dependent and subject to change.  Output from this function should only
920 * be used for diagnostic purposes.  For example, this function can be
921 * used by test cases after they detect an unexpected condition, as a means
922 * to capture diagnostic information.
923 */
924static void sparsebit_dump_internal(FILE *stream, const struct sparsebit *s,
925	unsigned int indent)
926{
927	/* Dump the contents of s */
928	fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
929	fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
930
931	if (s->root)
932		dump_nodes(stream, s->root, indent);
933}
934
935/* Allocates and returns a new sparsebit array. The initial state
936 * of the newly allocated sparsebit array has all bits cleared.
937 */
938struct sparsebit *sparsebit_alloc(void)
939{
940	struct sparsebit *s;
941
942	/* Allocate top level structure. */
943	s = calloc(1, sizeof(*s));
944	if (!s) {
945		perror("calloc");
946		abort();
947	}
948
949	return s;
950}
951
952/* Frees the implementation dependent data for the sparsebit array
953 * pointed to by s and poisons the pointer to that data.
954 */
955void sparsebit_free(struct sparsebit **sbitp)
956{
957	struct sparsebit *s = *sbitp;
958
959	if (!s)
960		return;
961
962	sparsebit_clear_all(s);
963	free(s);
964	*sbitp = NULL;
965}
966
967/* Makes a copy of the sparsebit array given by s, to the sparsebit
968 * array given by d.  Note, d must have already been allocated via
969 * sparsebit_alloc().  It can though already have bits set, which
970 * if different from src will be cleared.
971 */
972void sparsebit_copy(struct sparsebit *d, const struct sparsebit *s)
973{
974	/* First clear any bits already set in the destination */
975	sparsebit_clear_all(d);
976
977	if (s->root) {
978		d->root = node_copy_subtree(s->root);
979		d->num_set = s->num_set;
980	}
981}
982
983/* Returns whether num consecutive bits starting at idx are all set.  */
984bool sparsebit_is_set_num(const struct sparsebit *s,
985	sparsebit_idx_t idx, sparsebit_num_t num)
986{
987	sparsebit_idx_t next_cleared;
988
989	assert(num > 0);
990	assert(idx + num - 1 >= idx);
991
992	/* With num > 0, the first bit must be set. */
993	if (!sparsebit_is_set(s, idx))
994		return false;
995
996	/* Find the next cleared bit */
997	next_cleared = sparsebit_next_clear(s, idx);
998
999	/*
1000	 * If no cleared bits beyond idx, then there are at least num
1001	 * set bits. idx + num doesn't wrap.  Otherwise check if
1002	 * there are enough set bits between idx and the next cleared bit.
1003	 */
1004	return next_cleared == 0 || next_cleared - idx >= num;
1005}
1006
1007/* Returns whether the bit at the index given by idx.  */
1008bool sparsebit_is_clear(const struct sparsebit *s,
1009	sparsebit_idx_t idx)
1010{
1011	return !sparsebit_is_set(s, idx);
1012}
1013
1014/* Returns whether num consecutive bits starting at idx are all cleared.  */
1015bool sparsebit_is_clear_num(const struct sparsebit *s,
1016	sparsebit_idx_t idx, sparsebit_num_t num)
1017{
1018	sparsebit_idx_t next_set;
1019
1020	assert(num > 0);
1021	assert(idx + num - 1 >= idx);
1022
1023	/* With num > 0, the first bit must be cleared. */
1024	if (!sparsebit_is_clear(s, idx))
1025		return false;
1026
1027	/* Find the next set bit */
1028	next_set = sparsebit_next_set(s, idx);
1029
1030	/*
1031	 * If no set bits beyond idx, then there are at least num
1032	 * cleared bits. idx + num doesn't wrap.  Otherwise check if
1033	 * there are enough cleared bits between idx and the next set bit.
1034	 */
1035	return next_set == 0 || next_set - idx >= num;
1036}
1037
1038/* Returns the total number of bits set.  Note: 0 is also returned for
1039 * the case of all bits set.  This is because with all bits set, there
1040 * is 1 additional bit set beyond what can be represented in the return
1041 * value.  Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
1042 * to determine if the sparsebit array has any bits set.
1043 */
1044sparsebit_num_t sparsebit_num_set(const struct sparsebit *s)
1045{
1046	return s->num_set;
1047}
1048
1049/* Returns whether any bit is set in the sparsebit array.  */
1050bool sparsebit_any_set(const struct sparsebit *s)
1051{
1052	/*
1053	 * Nodes only describe set bits.  If any nodes then there
1054	 * is at least 1 bit set.
1055	 */
1056	if (!s->root)
1057		return false;
1058
1059	/*
1060	 * Every node should have a non-zero mask.  For now will
1061	 * just assure that the root node has a non-zero mask,
1062	 * which is a quick check that at least 1 bit is set.
1063	 */
1064	assert(s->root->mask != 0);
1065	assert(s->num_set > 0 ||
1066	       (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
1067		s->root->mask == ~(mask_t) 0));
1068
1069	return true;
1070}
1071
1072/* Returns whether all the bits in the sparsebit array are cleared.  */
1073bool sparsebit_all_clear(const struct sparsebit *s)
1074{
1075	return !sparsebit_any_set(s);
1076}
1077
1078/* Returns whether all the bits in the sparsebit array are set.  */
1079bool sparsebit_any_clear(const struct sparsebit *s)
1080{
1081	return !sparsebit_all_set(s);
1082}
1083
1084/* Returns the index of the first set bit.  Abort if no bits are set.
1085 */
1086sparsebit_idx_t sparsebit_first_set(const struct sparsebit *s)
1087{
1088	struct node *nodep;
1089
1090	/* Validate at least 1 bit is set */
1091	assert(sparsebit_any_set(s));
1092
1093	nodep = node_first(s);
1094	return node_first_set(nodep, 0);
1095}
1096
1097/* Returns the index of the first cleared bit.  Abort if
1098 * no bits are cleared.
1099 */
1100sparsebit_idx_t sparsebit_first_clear(const struct sparsebit *s)
1101{
1102	struct node *nodep1, *nodep2;
1103
1104	/* Validate at least 1 bit is cleared. */
1105	assert(sparsebit_any_clear(s));
1106
1107	/* If no nodes or first node index > 0 then lowest cleared is 0 */
1108	nodep1 = node_first(s);
1109	if (!nodep1 || nodep1->idx > 0)
1110		return 0;
1111
1112	/* Does the mask in the first node contain any cleared bits. */
1113	if (nodep1->mask != ~(mask_t) 0)
1114		return node_first_clear(nodep1, 0);
1115
1116	/*
1117	 * All mask bits set in first node.  If there isn't a second node
1118	 * then the first cleared bit is the first bit after the bits
1119	 * described by the first node.
1120	 */
1121	nodep2 = node_next(s, nodep1);
1122	if (!nodep2) {
1123		/*
1124		 * No second node.  First cleared bit is first bit beyond
1125		 * bits described by first node.
1126		 */
1127		assert(nodep1->mask == ~(mask_t) 0);
1128		assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
1129		return nodep1->idx + MASK_BITS + nodep1->num_after;
1130	}
1131
1132	/*
1133	 * There is a second node.
1134	 * If it is not adjacent to the first node, then there is a gap
1135	 * of cleared bits between the nodes, and the first cleared bit
1136	 * is the first bit within the gap.
1137	 */
1138	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1139		return nodep1->idx + MASK_BITS + nodep1->num_after;
1140
1141	/*
1142	 * Second node is adjacent to the first node.
1143	 * Because it is adjacent, its mask should be non-zero.  If all
1144	 * its mask bits are set, then with it being adjacent, it should
1145	 * have had the mask bits moved into the num_after setting of the
1146	 * previous node.
1147	 */
1148	return node_first_clear(nodep2, 0);
1149}
1150
1151/* Returns index of next bit set within s after the index given by prev.
1152 * Returns 0 if there are no bits after prev that are set.
1153 */
1154sparsebit_idx_t sparsebit_next_set(const struct sparsebit *s,
1155	sparsebit_idx_t prev)
1156{
1157	sparsebit_idx_t lowest_possible = prev + 1;
1158	sparsebit_idx_t start;
1159	struct node *nodep;
1160
1161	/* A bit after the highest index can't be set. */
1162	if (lowest_possible == 0)
1163		return 0;
1164
1165	/*
1166	 * Find the leftmost 'candidate' overlapping or to the right
1167	 * of lowest_possible.
1168	 */
1169	struct node *candidate = NULL;
1170
1171	/* True iff lowest_possible is within candidate */
1172	bool contains = false;
1173
1174	/*
1175	 * Find node that describes setting of bit at lowest_possible.
1176	 * If such a node doesn't exist, find the node with the lowest
1177	 * starting index that is > lowest_possible.
1178	 */
1179	for (nodep = s->root; nodep;) {
1180		if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
1181			>= lowest_possible) {
1182			candidate = nodep;
1183			if (candidate->idx <= lowest_possible) {
1184				contains = true;
1185				break;
1186			}
1187			nodep = nodep->left;
1188		} else {
1189			nodep = nodep->right;
1190		}
1191	}
1192	if (!candidate)
1193		return 0;
1194
1195	assert(candidate->mask != 0);
1196
1197	/* Does the candidate node describe the setting of lowest_possible? */
1198	if (!contains) {
1199		/*
1200		 * Candidate doesn't describe setting of bit at lowest_possible.
1201		 * Candidate points to the first node with a starting index
1202		 * > lowest_possible.
1203		 */
1204		assert(candidate->idx > lowest_possible);
1205
1206		return node_first_set(candidate, 0);
1207	}
1208
1209	/*
1210	 * Candidate describes setting of bit at lowest_possible.
1211	 * Note: although the node describes the setting of the bit
1212	 * at lowest_possible, its possible that its setting and the
1213	 * setting of all latter bits described by this node are 0.
1214	 * For now, just handle the cases where this node describes
1215	 * a bit at or after an index of lowest_possible that is set.
1216	 */
1217	start = lowest_possible - candidate->idx;
1218
1219	if (start < MASK_BITS && candidate->mask >= (1 << start))
1220		return node_first_set(candidate, start);
1221
1222	if (candidate->num_after) {
1223		sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
1224
1225		return lowest_possible < first_num_after_idx
1226			? first_num_after_idx : lowest_possible;
1227	}
1228
1229	/*
1230	 * Although candidate node describes setting of bit at
1231	 * the index of lowest_possible, all bits at that index and
1232	 * latter that are described by candidate are cleared.  With
1233	 * this, the next bit is the first bit in the next node, if
1234	 * such a node exists.  If a next node doesn't exist, then
1235	 * there is no next set bit.
1236	 */
1237	candidate = node_next(s, candidate);
1238	if (!candidate)
1239		return 0;
1240
1241	return node_first_set(candidate, 0);
1242}
1243
1244/* Returns index of next bit cleared within s after the index given by prev.
1245 * Returns 0 if there are no bits after prev that are cleared.
1246 */
1247sparsebit_idx_t sparsebit_next_clear(const struct sparsebit *s,
1248	sparsebit_idx_t prev)
1249{
1250	sparsebit_idx_t lowest_possible = prev + 1;
1251	sparsebit_idx_t idx;
1252	struct node *nodep1, *nodep2;
1253
1254	/* A bit after the highest index can't be set. */
1255	if (lowest_possible == 0)
1256		return 0;
1257
1258	/*
1259	 * Does a node describing the setting of lowest_possible exist?
1260	 * If not, the bit at lowest_possible is cleared.
1261	 */
1262	nodep1 = node_find(s, lowest_possible);
1263	if (!nodep1)
1264		return lowest_possible;
1265
1266	/* Does a mask bit in node 1 describe the next cleared bit. */
1267	for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
1268		if (!(nodep1->mask & (1 << idx)))
1269			return nodep1->idx + idx;
1270
1271	/*
1272	 * Next cleared bit is not described by node 1.  If there
1273	 * isn't a next node, then next cleared bit is described
1274	 * by bit after the bits described by the first node.
1275	 */
1276	nodep2 = node_next(s, nodep1);
1277	if (!nodep2)
1278		return nodep1->idx + MASK_BITS + nodep1->num_after;
1279
1280	/*
1281	 * There is a second node.
1282	 * If it is not adjacent to the first node, then there is a gap
1283	 * of cleared bits between the nodes, and the next cleared bit
1284	 * is the first bit within the gap.
1285	 */
1286	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1287		return nodep1->idx + MASK_BITS + nodep1->num_after;
1288
1289	/*
1290	 * Second node is adjacent to the first node.
1291	 * Because it is adjacent, its mask should be non-zero.  If all
1292	 * its mask bits are set, then with it being adjacent, it should
1293	 * have had the mask bits moved into the num_after setting of the
1294	 * previous node.
1295	 */
1296	return node_first_clear(nodep2, 0);
1297}
1298
1299/* Starting with the index 1 greater than the index given by start, finds
1300 * and returns the index of the first sequence of num consecutively set
1301 * bits.  Returns a value of 0 of no such sequence exists.
1302 */
1303sparsebit_idx_t sparsebit_next_set_num(const struct sparsebit *s,
1304	sparsebit_idx_t start, sparsebit_num_t num)
1305{
1306	sparsebit_idx_t idx;
1307
1308	assert(num >= 1);
1309
1310	for (idx = sparsebit_next_set(s, start);
1311		idx != 0 && idx + num - 1 >= idx;
1312		idx = sparsebit_next_set(s, idx)) {
1313		assert(sparsebit_is_set(s, idx));
1314
1315		/*
1316		 * Does the sequence of bits starting at idx consist of
1317		 * num set bits?
1318		 */
1319		if (sparsebit_is_set_num(s, idx, num))
1320			return idx;
1321
1322		/*
1323		 * Sequence of set bits at idx isn't large enough.
1324		 * Skip this entire sequence of set bits.
1325		 */
1326		idx = sparsebit_next_clear(s, idx);
1327		if (idx == 0)
1328			return 0;
1329	}
1330
1331	return 0;
1332}
1333
1334/* Starting with the index 1 greater than the index given by start, finds
1335 * and returns the index of the first sequence of num consecutively cleared
1336 * bits.  Returns a value of 0 of no such sequence exists.
1337 */
1338sparsebit_idx_t sparsebit_next_clear_num(const struct sparsebit *s,
1339	sparsebit_idx_t start, sparsebit_num_t num)
1340{
1341	sparsebit_idx_t idx;
1342
1343	assert(num >= 1);
1344
1345	for (idx = sparsebit_next_clear(s, start);
1346		idx != 0 && idx + num - 1 >= idx;
1347		idx = sparsebit_next_clear(s, idx)) {
1348		assert(sparsebit_is_clear(s, idx));
1349
1350		/*
1351		 * Does the sequence of bits starting at idx consist of
1352		 * num cleared bits?
1353		 */
1354		if (sparsebit_is_clear_num(s, idx, num))
1355			return idx;
1356
1357		/*
1358		 * Sequence of cleared bits at idx isn't large enough.
1359		 * Skip this entire sequence of cleared bits.
1360		 */
1361		idx = sparsebit_next_set(s, idx);
1362		if (idx == 0)
1363			return 0;
1364	}
1365
1366	return 0;
1367}
1368
1369/* Sets the bits * in the inclusive range idx through idx + num - 1.  */
1370void sparsebit_set_num(struct sparsebit *s,
1371	sparsebit_idx_t start, sparsebit_num_t num)
1372{
1373	struct node *nodep, *next;
1374	unsigned int n1;
1375	sparsebit_idx_t idx;
1376	sparsebit_num_t n;
1377	sparsebit_idx_t middle_start, middle_end;
1378
1379	assert(num > 0);
1380	assert(start + num - 1 >= start);
1381
1382	/*
1383	 * Leading - bits before first mask boundary.
1384	 *
1385	 * TODO(lhuemill): With some effort it may be possible to
1386	 *   replace the following loop with a sequential sequence
1387	 *   of statements.  High level sequence would be:
1388	 *
1389	 *     1. Use node_split() to force node that describes setting
1390	 *        of idx to be within the mask portion of a node.
1391	 *     2. Form mask of bits to be set.
1392	 *     3. Determine number of mask bits already set in the node
1393	 *        and store in a local variable named num_already_set.
1394	 *     4. Set the appropriate mask bits within the node.
1395	 *     5. Increment struct sparsebit_pvt num_set member
1396	 *        by the number of bits that were actually set.
1397	 *        Exclude from the counts bits that were already set.
1398	 *     6. Before returning to the caller, use node_reduce() to
1399	 *        handle the multiple corner cases that this method
1400	 *        introduces.
1401	 */
1402	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1403		bit_set(s, idx);
1404
1405	/* Middle - bits spanning one or more entire mask */
1406	middle_start = idx;
1407	middle_end = middle_start + (n & -MASK_BITS) - 1;
1408	if (n >= MASK_BITS) {
1409		nodep = node_split(s, middle_start);
1410
1411		/*
1412		 * As needed, split just after end of middle bits.
1413		 * No split needed if end of middle bits is at highest
1414		 * supported bit index.
1415		 */
1416		if (middle_end + 1 > middle_end)
1417			(void) node_split(s, middle_end + 1);
1418
1419		/* Delete nodes that only describe bits within the middle. */
1420		for (next = node_next(s, nodep);
1421			next && (next->idx < middle_end);
1422			next = node_next(s, nodep)) {
1423			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1424			node_rm(s, next);
1425			next = NULL;
1426		}
1427
1428		/* As needed set each of the mask bits */
1429		for (n1 = 0; n1 < MASK_BITS; n1++) {
1430			if (!(nodep->mask & (1 << n1))) {
1431				nodep->mask |= 1 << n1;
1432				s->num_set++;
1433			}
1434		}
1435
1436		s->num_set -= nodep->num_after;
1437		nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
1438		s->num_set += nodep->num_after;
1439
1440		node_reduce(s, nodep);
1441	}
1442	idx = middle_end + 1;
1443	n -= middle_end - middle_start + 1;
1444
1445	/* Trailing - bits at and beyond last mask boundary */
1446	assert(n < MASK_BITS);
1447	for (; n > 0; idx++, n--)
1448		bit_set(s, idx);
1449}
1450
1451/* Clears the bits * in the inclusive range idx through idx + num - 1.  */
1452void sparsebit_clear_num(struct sparsebit *s,
1453	sparsebit_idx_t start, sparsebit_num_t num)
1454{
1455	struct node *nodep, *next;
1456	unsigned int n1;
1457	sparsebit_idx_t idx;
1458	sparsebit_num_t n;
1459	sparsebit_idx_t middle_start, middle_end;
1460
1461	assert(num > 0);
1462	assert(start + num - 1 >= start);
1463
1464	/* Leading - bits before first mask boundary */
1465	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1466		bit_clear(s, idx);
1467
1468	/* Middle - bits spanning one or more entire mask */
1469	middle_start = idx;
1470	middle_end = middle_start + (n & -MASK_BITS) - 1;
1471	if (n >= MASK_BITS) {
1472		nodep = node_split(s, middle_start);
1473
1474		/*
1475		 * As needed, split just after end of middle bits.
1476		 * No split needed if end of middle bits is at highest
1477		 * supported bit index.
1478		 */
1479		if (middle_end + 1 > middle_end)
1480			(void) node_split(s, middle_end + 1);
1481
1482		/* Delete nodes that only describe bits within the middle. */
1483		for (next = node_next(s, nodep);
1484			next && (next->idx < middle_end);
1485			next = node_next(s, nodep)) {
1486			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1487			node_rm(s, next);
1488			next = NULL;
1489		}
1490
1491		/* As needed clear each of the mask bits */
1492		for (n1 = 0; n1 < MASK_BITS; n1++) {
1493			if (nodep->mask & (1 << n1)) {
1494				nodep->mask &= ~(1 << n1);
1495				s->num_set--;
1496			}
1497		}
1498
1499		/* Clear any bits described by num_after */
1500		s->num_set -= nodep->num_after;
1501		nodep->num_after = 0;
1502
1503		/*
1504		 * Delete the node that describes the beginning of
1505		 * the middle bits and perform any allowed reductions
1506		 * with the nodes prev or next of nodep.
1507		 */
1508		node_reduce(s, nodep);
1509		nodep = NULL;
1510	}
1511	idx = middle_end + 1;
1512	n -= middle_end - middle_start + 1;
1513
1514	/* Trailing - bits at and beyond last mask boundary */
1515	assert(n < MASK_BITS);
1516	for (; n > 0; idx++, n--)
1517		bit_clear(s, idx);
1518}
1519
1520/* Sets the bit at the index given by idx.  */
1521void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
1522{
1523	sparsebit_set_num(s, idx, 1);
1524}
1525
1526/* Clears the bit at the index given by idx.  */
1527void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
1528{
1529	sparsebit_clear_num(s, idx, 1);
1530}
1531
1532/* Sets the bits in the entire addressable range of the sparsebit array.  */
1533void sparsebit_set_all(struct sparsebit *s)
1534{
1535	sparsebit_set(s, 0);
1536	sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
1537	assert(sparsebit_all_set(s));
1538}
1539
1540/* Clears the bits in the entire addressable range of the sparsebit array.  */
1541void sparsebit_clear_all(struct sparsebit *s)
1542{
1543	sparsebit_clear(s, 0);
1544	sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
1545	assert(!sparsebit_any_set(s));
1546}
1547
1548static size_t display_range(FILE *stream, sparsebit_idx_t low,
1549	sparsebit_idx_t high, bool prepend_comma_space)
1550{
1551	char *fmt_str;
1552	size_t sz;
1553
1554	/* Determine the printf format string */
1555	if (low == high)
1556		fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
1557	else
1558		fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
1559
1560	/*
1561	 * When stream is NULL, just determine the size of what would
1562	 * have been printed, else print the range.
1563	 */
1564	if (!stream)
1565		sz = snprintf(NULL, 0, fmt_str, low, high);
1566	else
1567		sz = fprintf(stream, fmt_str, low, high);
1568
1569	return sz;
1570}
1571
1572
1573/* Dumps to the FILE stream given by stream, the bit settings
1574 * of s.  Each line of output is prefixed with the number of
1575 * spaces given by indent.  The length of each line is implementation
1576 * dependent and does not depend on the indent amount.  The following
1577 * is an example output of a sparsebit array that has bits:
1578 *
1579 *   0x5, 0x8, 0xa:0xe, 0x12
1580 *
1581 * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
1582 * are set.  Note that a ':', instead of a '-' is used to specify a range of
1583 * contiguous bits.  This is done because '-' is used to specify command-line
1584 * options, and sometimes ranges are specified as command-line arguments.
1585 */
1586void sparsebit_dump(FILE *stream, const struct sparsebit *s,
1587	unsigned int indent)
1588{
1589	size_t current_line_len = 0;
1590	size_t sz;
1591	struct node *nodep;
1592
1593	if (!sparsebit_any_set(s))
1594		return;
1595
1596	/* Display initial indent */
1597	fprintf(stream, "%*s", indent, "");
1598
1599	/* For each node */
1600	for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
1601		unsigned int n1;
1602		sparsebit_idx_t low, high;
1603
1604		/* For each group of bits in the mask */
1605		for (n1 = 0; n1 < MASK_BITS; n1++) {
1606			if (nodep->mask & (1 << n1)) {
1607				low = high = nodep->idx + n1;
1608
1609				for (; n1 < MASK_BITS; n1++) {
1610					if (nodep->mask & (1 << n1))
1611						high = nodep->idx + n1;
1612					else
1613						break;
1614				}
1615
1616				if ((n1 == MASK_BITS) && nodep->num_after)
1617					high += nodep->num_after;
1618
1619				/*
1620				 * How much room will it take to display
1621				 * this range.
1622				 */
1623				sz = display_range(NULL, low, high,
1624					current_line_len != 0);
1625
1626				/*
1627				 * If there is not enough room, display
1628				 * a newline plus the indent of the next
1629				 * line.
1630				 */
1631				if (current_line_len + sz > DUMP_LINE_MAX) {
1632					fputs("\n", stream);
1633					fprintf(stream, "%*s", indent, "");
1634					current_line_len = 0;
1635				}
1636
1637				/* Display the range */
1638				sz = display_range(stream, low, high,
1639					current_line_len != 0);
1640				current_line_len += sz;
1641			}
1642		}
1643
1644		/*
1645		 * If num_after and most significant-bit of mask is not
1646		 * set, then still need to display a range for the bits
1647		 * described by num_after.
1648		 */
1649		if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
1650			low = nodep->idx + MASK_BITS;
1651			high = nodep->idx + MASK_BITS + nodep->num_after - 1;
1652
1653			/*
1654			 * How much room will it take to display
1655			 * this range.
1656			 */
1657			sz = display_range(NULL, low, high,
1658				current_line_len != 0);
1659
1660			/*
1661			 * If there is not enough room, display
1662			 * a newline plus the indent of the next
1663			 * line.
1664			 */
1665			if (current_line_len + sz > DUMP_LINE_MAX) {
1666				fputs("\n", stream);
1667				fprintf(stream, "%*s", indent, "");
1668				current_line_len = 0;
1669			}
1670
1671			/* Display the range */
1672			sz = display_range(stream, low, high,
1673				current_line_len != 0);
1674			current_line_len += sz;
1675		}
1676	}
1677	fputs("\n", stream);
1678}
1679
1680/* Validates the internal state of the sparsebit array given by
1681 * s.  On error, diagnostic information is printed to stderr and
1682 * abort is called.
1683 */
1684void sparsebit_validate_internal(const struct sparsebit *s)
1685{
1686	bool error_detected = false;
1687	struct node *nodep, *prev = NULL;
1688	sparsebit_num_t total_bits_set = 0;
1689	unsigned int n1;
1690
1691	/* For each node */
1692	for (nodep = node_first(s); nodep;
1693		prev = nodep, nodep = node_next(s, nodep)) {
1694
1695		/*
1696		 * Increase total bits set by the number of bits set
1697		 * in this node.
1698		 */
1699		for (n1 = 0; n1 < MASK_BITS; n1++)
1700			if (nodep->mask & (1 << n1))
1701				total_bits_set++;
1702
1703		total_bits_set += nodep->num_after;
1704
1705		/*
1706		 * Arbitrary choice as to whether a mask of 0 is allowed
1707		 * or not.  For diagnostic purposes it is beneficial to
1708		 * have only one valid means to represent a set of bits.
1709		 * To support this an arbitrary choice has been made
1710		 * to not allow a mask of zero.
1711		 */
1712		if (nodep->mask == 0) {
1713			fprintf(stderr, "Node mask of zero, "
1714				"nodep: %p nodep->mask: 0x%x",
1715				nodep, nodep->mask);
1716			error_detected = true;
1717			break;
1718		}
1719
1720		/*
1721		 * Validate num_after is not greater than the max index
1722		 * - the number of mask bits.  The num_after member
1723		 * uses 0-based indexing and thus has no value that
1724		 * represents all bits set.  This limitation is handled
1725		 * by requiring a non-zero mask.  With a non-zero mask,
1726		 * MASK_BITS worth of bits are described by the mask,
1727		 * which makes the largest needed num_after equal to:
1728		 *
1729		 *    (~(sparsebit_num_t) 0) - MASK_BITS + 1
1730		 */
1731		if (nodep->num_after
1732			> (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
1733			fprintf(stderr, "num_after too large, "
1734				"nodep: %p nodep->num_after: 0x%lx",
1735				nodep, nodep->num_after);
1736			error_detected = true;
1737			break;
1738		}
1739
1740		/* Validate node index is divisible by the mask size */
1741		if (nodep->idx % MASK_BITS) {
1742			fprintf(stderr, "Node index not divisible by "
1743				"mask size,\n"
1744				"  nodep: %p nodep->idx: 0x%lx "
1745				"MASK_BITS: %lu\n",
1746				nodep, nodep->idx, MASK_BITS);
1747			error_detected = true;
1748			break;
1749		}
1750
1751		/*
1752		 * Validate bits described by node don't wrap beyond the
1753		 * highest supported index.
1754		 */
1755		if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
1756			fprintf(stderr, "Bits described by node wrap "
1757				"beyond highest supported index,\n"
1758				"  nodep: %p nodep->idx: 0x%lx\n"
1759				"  MASK_BITS: %lu nodep->num_after: 0x%lx",
1760				nodep, nodep->idx, MASK_BITS, nodep->num_after);
1761			error_detected = true;
1762			break;
1763		}
1764
1765		/* Check parent pointers. */
1766		if (nodep->left) {
1767			if (nodep->left->parent != nodep) {
1768				fprintf(stderr, "Left child parent pointer "
1769					"doesn't point to this node,\n"
1770					"  nodep: %p nodep->left: %p "
1771					"nodep->left->parent: %p",
1772					nodep, nodep->left,
1773					nodep->left->parent);
1774				error_detected = true;
1775				break;
1776			}
1777		}
1778
1779		if (nodep->right) {
1780			if (nodep->right->parent != nodep) {
1781				fprintf(stderr, "Right child parent pointer "
1782					"doesn't point to this node,\n"
1783					"  nodep: %p nodep->right: %p "
1784					"nodep->right->parent: %p",
1785					nodep, nodep->right,
1786					nodep->right->parent);
1787				error_detected = true;
1788				break;
1789			}
1790		}
1791
1792		if (!nodep->parent) {
1793			if (s->root != nodep) {
1794				fprintf(stderr, "Unexpected root node, "
1795					"s->root: %p nodep: %p",
1796					s->root, nodep);
1797				error_detected = true;
1798				break;
1799			}
1800		}
1801
1802		if (prev) {
1803			/*
1804			 * Is index of previous node before index of
1805			 * current node?
1806			 */
1807			if (prev->idx >= nodep->idx) {
1808				fprintf(stderr, "Previous node index "
1809					">= current node index,\n"
1810					"  prev: %p prev->idx: 0x%lx\n"
1811					"  nodep: %p nodep->idx: 0x%lx",
1812					prev, prev->idx, nodep, nodep->idx);
1813				error_detected = true;
1814				break;
1815			}
1816
1817			/*
1818			 * Nodes occur in asscending order, based on each
1819			 * nodes starting index.
1820			 */
1821			if ((prev->idx + MASK_BITS + prev->num_after - 1)
1822				>= nodep->idx) {
1823				fprintf(stderr, "Previous node bit range "
1824					"overlap with current node bit range,\n"
1825					"  prev: %p prev->idx: 0x%lx "
1826					"prev->num_after: 0x%lx\n"
1827					"  nodep: %p nodep->idx: 0x%lx "
1828					"nodep->num_after: 0x%lx\n"
1829					"  MASK_BITS: %lu",
1830					prev, prev->idx, prev->num_after,
1831					nodep, nodep->idx, nodep->num_after,
1832					MASK_BITS);
1833				error_detected = true;
1834				break;
1835			}
1836
1837			/*
1838			 * When the node has all mask bits set, it shouldn't
1839			 * be adjacent to the last bit described by the
1840			 * previous node.
1841			 */
1842			if (nodep->mask == ~(mask_t) 0 &&
1843			    prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
1844				fprintf(stderr, "Current node has mask with "
1845					"all bits set and is adjacent to the "
1846					"previous node,\n"
1847					"  prev: %p prev->idx: 0x%lx "
1848					"prev->num_after: 0x%lx\n"
1849					"  nodep: %p nodep->idx: 0x%lx "
1850					"nodep->num_after: 0x%lx\n"
1851					"  MASK_BITS: %lu",
1852					prev, prev->idx, prev->num_after,
1853					nodep, nodep->idx, nodep->num_after,
1854					MASK_BITS);
1855
1856				error_detected = true;
1857				break;
1858			}
1859		}
1860	}
1861
1862	if (!error_detected) {
1863		/*
1864		 * Is sum of bits set in each node equal to the count
1865		 * of total bits set.
1866		 */
1867		if (s->num_set != total_bits_set) {
1868			fprintf(stderr, "Number of bits set mismatch,\n"
1869				"  s->num_set: 0x%lx total_bits_set: 0x%lx",
1870				s->num_set, total_bits_set);
1871
1872			error_detected = true;
1873		}
1874	}
1875
1876	if (error_detected) {
1877		fputs("  dump_internal:\n", stderr);
1878		sparsebit_dump_internal(stderr, s, 4);
1879		abort();
1880	}
1881}
1882
1883
1884#ifdef FUZZ
1885/* A simple but effective fuzzing driver.  Look for bugs with the help
1886 * of some invariants and of a trivial representation of sparsebit.
1887 * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
1888 * afl-fuzz do the magic. :)
1889 */
1890
1891#include <stdlib.h>
1892
1893struct range {
1894	sparsebit_idx_t first, last;
1895	bool set;
1896};
1897
1898struct sparsebit *s;
1899struct range ranges[1000];
1900int num_ranges;
1901
1902static bool get_value(sparsebit_idx_t idx)
1903{
1904	int i;
1905
1906	for (i = num_ranges; --i >= 0; )
1907		if (ranges[i].first <= idx && idx <= ranges[i].last)
1908			return ranges[i].set;
1909
1910	return false;
1911}
1912
1913static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
1914{
1915	sparsebit_num_t num;
1916	sparsebit_idx_t next;
1917
1918	if (first < last) {
1919		num = last - first + 1;
1920	} else {
1921		num = first - last + 1;
1922		first = last;
1923		last = first + num - 1;
1924	}
1925
1926	switch (code) {
1927	case 0:
1928		sparsebit_set(s, first);
1929		assert(sparsebit_is_set(s, first));
1930		assert(!sparsebit_is_clear(s, first));
1931		assert(sparsebit_any_set(s));
1932		assert(!sparsebit_all_clear(s));
1933		if (get_value(first))
1934			return;
1935		if (num_ranges == 1000)
1936			exit(0);
1937		ranges[num_ranges++] = (struct range)
1938			{ .first = first, .last = first, .set = true };
1939		break;
1940	case 1:
1941		sparsebit_clear(s, first);
1942		assert(!sparsebit_is_set(s, first));
1943		assert(sparsebit_is_clear(s, first));
1944		assert(sparsebit_any_clear(s));
1945		assert(!sparsebit_all_set(s));
1946		if (!get_value(first))
1947			return;
1948		if (num_ranges == 1000)
1949			exit(0);
1950		ranges[num_ranges++] = (struct range)
1951			{ .first = first, .last = first, .set = false };
1952		break;
1953	case 2:
1954		assert(sparsebit_is_set(s, first) == get_value(first));
1955		assert(sparsebit_is_clear(s, first) == !get_value(first));
1956		break;
1957	case 3:
1958		if (sparsebit_any_set(s))
1959			assert(get_value(sparsebit_first_set(s)));
1960		if (sparsebit_any_clear(s))
1961			assert(!get_value(sparsebit_first_clear(s)));
1962		sparsebit_set_all(s);
1963		assert(!sparsebit_any_clear(s));
1964		assert(sparsebit_all_set(s));
1965		num_ranges = 0;
1966		ranges[num_ranges++] = (struct range)
1967			{ .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
1968		break;
1969	case 4:
1970		if (sparsebit_any_set(s))
1971			assert(get_value(sparsebit_first_set(s)));
1972		if (sparsebit_any_clear(s))
1973			assert(!get_value(sparsebit_first_clear(s)));
1974		sparsebit_clear_all(s);
1975		assert(!sparsebit_any_set(s));
1976		assert(sparsebit_all_clear(s));
1977		num_ranges = 0;
1978		break;
1979	case 5:
1980		next = sparsebit_next_set(s, first);
1981		assert(next == 0 || next > first);
1982		assert(next == 0 || get_value(next));
1983		break;
1984	case 6:
1985		next = sparsebit_next_clear(s, first);
1986		assert(next == 0 || next > first);
1987		assert(next == 0 || !get_value(next));
1988		break;
1989	case 7:
1990		next = sparsebit_next_clear(s, first);
1991		if (sparsebit_is_set_num(s, first, num)) {
1992			assert(next == 0 || next > last);
1993			if (first)
1994				next = sparsebit_next_set(s, first - 1);
1995			else if (sparsebit_any_set(s))
1996				next = sparsebit_first_set(s);
1997			else
1998				return;
1999			assert(next == first);
2000		} else {
2001			assert(sparsebit_is_clear(s, first) || next <= last);
2002		}
2003		break;
2004	case 8:
2005		next = sparsebit_next_set(s, first);
2006		if (sparsebit_is_clear_num(s, first, num)) {
2007			assert(next == 0 || next > last);
2008			if (first)
2009				next = sparsebit_next_clear(s, first - 1);
2010			else if (sparsebit_any_clear(s))
2011				next = sparsebit_first_clear(s);
2012			else
2013				return;
2014			assert(next == first);
2015		} else {
2016			assert(sparsebit_is_set(s, first) || next <= last);
2017		}
2018		break;
2019	case 9:
2020		sparsebit_set_num(s, first, num);
2021		assert(sparsebit_is_set_num(s, first, num));
2022		assert(!sparsebit_is_clear_num(s, first, num));
2023		assert(sparsebit_any_set(s));
2024		assert(!sparsebit_all_clear(s));
2025		if (num_ranges == 1000)
2026			exit(0);
2027		ranges[num_ranges++] = (struct range)
2028			{ .first = first, .last = last, .set = true };
2029		break;
2030	case 10:
2031		sparsebit_clear_num(s, first, num);
2032		assert(!sparsebit_is_set_num(s, first, num));
2033		assert(sparsebit_is_clear_num(s, first, num));
2034		assert(sparsebit_any_clear(s));
2035		assert(!sparsebit_all_set(s));
2036		if (num_ranges == 1000)
2037			exit(0);
2038		ranges[num_ranges++] = (struct range)
2039			{ .first = first, .last = last, .set = false };
2040		break;
2041	case 11:
2042		sparsebit_validate_internal(s);
2043		break;
2044	default:
2045		break;
2046	}
2047}
2048
2049unsigned char get8(void)
2050{
2051	int ch;
2052
2053	ch = getchar();
2054	if (ch == EOF)
2055		exit(0);
2056	return ch;
2057}
2058
2059uint64_t get64(void)
2060{
2061	uint64_t x;
2062
2063	x = get8();
2064	x = (x << 8) | get8();
2065	x = (x << 8) | get8();
2066	x = (x << 8) | get8();
2067	x = (x << 8) | get8();
2068	x = (x << 8) | get8();
2069	x = (x << 8) | get8();
2070	return (x << 8) | get8();
2071}
2072
2073int main(void)
2074{
2075	s = sparsebit_alloc();
2076	for (;;) {
2077		uint8_t op = get8() & 0xf;
2078		uint64_t first = get64();
2079		uint64_t last = get64();
2080
2081		operate(op, first, last);
2082	}
2083}
2084#endif
2085