1// SPDX-License-Identifier: GPL-2.0
2/*
3 * page_fault_test.c - Test stage 2 faults.
4 *
5 * This test tries different combinations of guest accesses (e.g., write,
6 * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7 * hugetlbfs with a hole). It checks that the expected handling method is
8 * called (e.g., uffd faults with the right address and write/read flag).
9 */
10#define _GNU_SOURCE
11#include <linux/bitmap.h>
12#include <fcntl.h>
13#include <test_util.h>
14#include <kvm_util.h>
15#include <processor.h>
16#include <asm/sysreg.h>
17#include <linux/bitfield.h>
18#include "guest_modes.h"
19#include "userfaultfd_util.h"
20
21/* Guest virtual addresses that point to the test page and its PTE. */
22#define TEST_GVA				0xc0000000
23#define TEST_EXEC_GVA				(TEST_GVA + 0x8)
24#define TEST_PTE_GVA				0xb0000000
25#define TEST_DATA				0x0123456789ABCDEF
26
27static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
28
29#define CMD_NONE				(0)
30#define CMD_SKIP_TEST				(1ULL << 1)
31#define CMD_HOLE_PT				(1ULL << 2)
32#define CMD_HOLE_DATA				(1ULL << 3)
33#define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
34#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
35#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
36#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
37#define CMD_SET_PTE_AF				(1ULL << 8)
38
39#define PREPARE_FN_NR				10
40#define CHECK_FN_NR				10
41
42static struct event_cnt {
43	int mmio_exits;
44	int fail_vcpu_runs;
45	int uffd_faults;
46	/* uffd_faults is incremented from multiple threads. */
47	pthread_mutex_t uffd_faults_mutex;
48} events;
49
50struct test_desc {
51	const char *name;
52	uint64_t mem_mark_cmd;
53	/* Skip the test if any prepare function returns false */
54	bool (*guest_prepare[PREPARE_FN_NR])(void);
55	void (*guest_test)(void);
56	void (*guest_test_check[CHECK_FN_NR])(void);
57	uffd_handler_t uffd_pt_handler;
58	uffd_handler_t uffd_data_handler;
59	void (*dabt_handler)(struct ex_regs *regs);
60	void (*iabt_handler)(struct ex_regs *regs);
61	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
62	void (*fail_vcpu_run_handler)(int ret);
63	uint32_t pt_memslot_flags;
64	uint32_t data_memslot_flags;
65	bool skip;
66	struct event_cnt expected_events;
67};
68
69struct test_params {
70	enum vm_mem_backing_src_type src_type;
71	struct test_desc *test_desc;
72};
73
74static inline void flush_tlb_page(uint64_t vaddr)
75{
76	uint64_t page = vaddr >> 12;
77
78	dsb(ishst);
79	asm volatile("tlbi vaae1is, %0" :: "r" (page));
80	dsb(ish);
81	isb();
82}
83
84static void guest_write64(void)
85{
86	uint64_t val;
87
88	WRITE_ONCE(*guest_test_memory, TEST_DATA);
89	val = READ_ONCE(*guest_test_memory);
90	GUEST_ASSERT_EQ(val, TEST_DATA);
91}
92
93/* Check the system for atomic instructions. */
94static bool guest_check_lse(void)
95{
96	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
97	uint64_t atomic;
98
99	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
100	return atomic >= 2;
101}
102
103static bool guest_check_dc_zva(void)
104{
105	uint64_t dczid = read_sysreg(dczid_el0);
106	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
107
108	return dzp == 0;
109}
110
111/* Compare and swap instruction. */
112static void guest_cas(void)
113{
114	uint64_t val;
115
116	GUEST_ASSERT(guest_check_lse());
117	asm volatile(".arch_extension lse\n"
118		     "casal %0, %1, [%2]\n"
119		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
120	val = READ_ONCE(*guest_test_memory);
121	GUEST_ASSERT_EQ(val, TEST_DATA);
122}
123
124static void guest_read64(void)
125{
126	uint64_t val;
127
128	val = READ_ONCE(*guest_test_memory);
129	GUEST_ASSERT_EQ(val, 0);
130}
131
132/* Address translation instruction */
133static void guest_at(void)
134{
135	uint64_t par;
136
137	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
138	isb();
139	par = read_sysreg(par_el1);
140
141	/* Bit 1 indicates whether the AT was successful */
142	GUEST_ASSERT_EQ(par & 1, 0);
143}
144
145/*
146 * The size of the block written by "dc zva" is guaranteed to be between (2 <<
147 * 0) and (2 << 9), which is safe in our case as we need the write to happen
148 * for at least a word, and not more than a page.
149 */
150static void guest_dc_zva(void)
151{
152	uint16_t val;
153
154	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
155	dsb(ish);
156	val = READ_ONCE(*guest_test_memory);
157	GUEST_ASSERT_EQ(val, 0);
158}
159
160/*
161 * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
162 * And that's special because KVM must take special care with those: they
163 * should still count as accesses for dirty logging or user-faulting, but
164 * should be handled differently on mmio.
165 */
166static void guest_ld_preidx(void)
167{
168	uint64_t val;
169	uint64_t addr = TEST_GVA - 8;
170
171	/*
172	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
173	 * in a gap between memslots not backing by anything.
174	 */
175	asm volatile("ldr %0, [%1, #8]!"
176		     : "=r" (val), "+r" (addr));
177	GUEST_ASSERT_EQ(val, 0);
178	GUEST_ASSERT_EQ(addr, TEST_GVA);
179}
180
181static void guest_st_preidx(void)
182{
183	uint64_t val = TEST_DATA;
184	uint64_t addr = TEST_GVA - 8;
185
186	asm volatile("str %0, [%1, #8]!"
187		     : "+r" (val), "+r" (addr));
188
189	GUEST_ASSERT_EQ(addr, TEST_GVA);
190	val = READ_ONCE(*guest_test_memory);
191}
192
193static bool guest_set_ha(void)
194{
195	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
196	uint64_t hadbs, tcr;
197
198	/* Skip if HA is not supported. */
199	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
200	if (hadbs == 0)
201		return false;
202
203	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
204	write_sysreg(tcr, tcr_el1);
205	isb();
206
207	return true;
208}
209
210static bool guest_clear_pte_af(void)
211{
212	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
213	flush_tlb_page(TEST_GVA);
214
215	return true;
216}
217
218static void guest_check_pte_af(void)
219{
220	dsb(ish);
221	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
222}
223
224static void guest_check_write_in_dirty_log(void)
225{
226	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
227}
228
229static void guest_check_no_write_in_dirty_log(void)
230{
231	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
232}
233
234static void guest_check_s1ptw_wr_in_dirty_log(void)
235{
236	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
237}
238
239static void guest_check_no_s1ptw_wr_in_dirty_log(void)
240{
241	GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
242}
243
244static void guest_exec(void)
245{
246	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
247	int ret;
248
249	ret = code();
250	GUEST_ASSERT_EQ(ret, 0x77);
251}
252
253static bool guest_prepare(struct test_desc *test)
254{
255	bool (*prepare_fn)(void);
256	int i;
257
258	for (i = 0; i < PREPARE_FN_NR; i++) {
259		prepare_fn = test->guest_prepare[i];
260		if (prepare_fn && !prepare_fn())
261			return false;
262	}
263
264	return true;
265}
266
267static void guest_test_check(struct test_desc *test)
268{
269	void (*check_fn)(void);
270	int i;
271
272	for (i = 0; i < CHECK_FN_NR; i++) {
273		check_fn = test->guest_test_check[i];
274		if (check_fn)
275			check_fn();
276	}
277}
278
279static void guest_code(struct test_desc *test)
280{
281	if (!guest_prepare(test))
282		GUEST_SYNC(CMD_SKIP_TEST);
283
284	GUEST_SYNC(test->mem_mark_cmd);
285
286	if (test->guest_test)
287		test->guest_test();
288
289	guest_test_check(test);
290	GUEST_DONE();
291}
292
293static void no_dabt_handler(struct ex_regs *regs)
294{
295	GUEST_FAIL("Unexpected dabt, far_el1 = 0x%lx", read_sysreg(far_el1));
296}
297
298static void no_iabt_handler(struct ex_regs *regs)
299{
300	GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
301}
302
303static struct uffd_args {
304	char *copy;
305	void *hva;
306	uint64_t paging_size;
307} pt_args, data_args;
308
309/* Returns true to continue the test, and false if it should be skipped. */
310static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
311				struct uffd_args *args)
312{
313	uint64_t addr = msg->arg.pagefault.address;
314	uint64_t flags = msg->arg.pagefault.flags;
315	struct uffdio_copy copy;
316	int ret;
317
318	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
319		    "The only expected UFFD mode is MISSING");
320	TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
321
322	pr_debug("uffd fault: addr=%p write=%d\n",
323		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
324
325	copy.src = (uint64_t)args->copy;
326	copy.dst = addr;
327	copy.len = args->paging_size;
328	copy.mode = 0;
329
330	ret = ioctl(uffd, UFFDIO_COPY, &copy);
331	if (ret == -1) {
332		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
333			addr, errno);
334		return ret;
335	}
336
337	pthread_mutex_lock(&events.uffd_faults_mutex);
338	events.uffd_faults += 1;
339	pthread_mutex_unlock(&events.uffd_faults_mutex);
340	return 0;
341}
342
343static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
344{
345	return uffd_generic_handler(mode, uffd, msg, &pt_args);
346}
347
348static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
349{
350	return uffd_generic_handler(mode, uffd, msg, &data_args);
351}
352
353static void setup_uffd_args(struct userspace_mem_region *region,
354			    struct uffd_args *args)
355{
356	args->hva = (void *)region->region.userspace_addr;
357	args->paging_size = region->region.memory_size;
358
359	args->copy = malloc(args->paging_size);
360	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
361	memcpy(args->copy, args->hva, args->paging_size);
362}
363
364static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
365		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
366{
367	struct test_desc *test = p->test_desc;
368	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
369
370	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
371	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
372
373	*pt_uffd = NULL;
374	if (test->uffd_pt_handler)
375		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
376						    pt_args.hva,
377						    pt_args.paging_size,
378						    test->uffd_pt_handler);
379
380	*data_uffd = NULL;
381	if (test->uffd_data_handler)
382		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
383						      data_args.hva,
384						      data_args.paging_size,
385						      test->uffd_data_handler);
386}
387
388static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
389		      struct uffd_desc *data_uffd)
390{
391	if (test->uffd_pt_handler)
392		uffd_stop_demand_paging(pt_uffd);
393	if (test->uffd_data_handler)
394		uffd_stop_demand_paging(data_uffd);
395
396	free(pt_args.copy);
397	free(data_args.copy);
398}
399
400static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
401{
402	TEST_FAIL("There was no UFFD fault expected.");
403	return -1;
404}
405
406/* Returns false if the test should be skipped. */
407static bool punch_hole_in_backing_store(struct kvm_vm *vm,
408					struct userspace_mem_region *region)
409{
410	void *hva = (void *)region->region.userspace_addr;
411	uint64_t paging_size = region->region.memory_size;
412	int ret, fd = region->fd;
413
414	if (fd != -1) {
415		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
416				0, paging_size);
417		TEST_ASSERT(ret == 0, "fallocate failed");
418	} else {
419		ret = madvise(hva, paging_size, MADV_DONTNEED);
420		TEST_ASSERT(ret == 0, "madvise failed");
421	}
422
423	return true;
424}
425
426static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
427{
428	struct userspace_mem_region *region;
429	void *hva;
430
431	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
432	hva = (void *)region->region.userspace_addr;
433
434	TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
435
436	memcpy(hva, run->mmio.data, run->mmio.len);
437	events.mmio_exits += 1;
438}
439
440static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
441{
442	uint64_t data;
443
444	memcpy(&data, run->mmio.data, sizeof(data));
445	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
446		 run->mmio.phys_addr, run->mmio.len,
447		 run->mmio.is_write, data);
448	TEST_FAIL("There was no MMIO exit expected.");
449}
450
451static bool check_write_in_dirty_log(struct kvm_vm *vm,
452				     struct userspace_mem_region *region,
453				     uint64_t host_pg_nr)
454{
455	unsigned long *bmap;
456	bool first_page_dirty;
457	uint64_t size = region->region.memory_size;
458
459	/* getpage_size() is not always equal to vm->page_size */
460	bmap = bitmap_zalloc(size / getpagesize());
461	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
462	first_page_dirty = test_bit(host_pg_nr, bmap);
463	free(bmap);
464	return first_page_dirty;
465}
466
467/* Returns true to continue the test, and false if it should be skipped. */
468static bool handle_cmd(struct kvm_vm *vm, int cmd)
469{
470	struct userspace_mem_region *data_region, *pt_region;
471	bool continue_test = true;
472	uint64_t pte_gpa, pte_pg;
473
474	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
475	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
476	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
477	pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
478
479	if (cmd == CMD_SKIP_TEST)
480		continue_test = false;
481
482	if (cmd & CMD_HOLE_PT)
483		continue_test = punch_hole_in_backing_store(vm, pt_region);
484	if (cmd & CMD_HOLE_DATA)
485		continue_test = punch_hole_in_backing_store(vm, data_region);
486	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
487		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
488			    "Missing write in dirty log");
489	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
490		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
491			    "Missing s1ptw write in dirty log");
492	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
493		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
494			    "Unexpected write in dirty log");
495	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
496		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
497			    "Unexpected s1ptw write in dirty log");
498
499	return continue_test;
500}
501
502void fail_vcpu_run_no_handler(int ret)
503{
504	TEST_FAIL("Unexpected vcpu run failure");
505}
506
507void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
508{
509	TEST_ASSERT(errno == ENOSYS,
510		    "The mmio handler should have returned not implemented.");
511	events.fail_vcpu_runs += 1;
512}
513
514typedef uint32_t aarch64_insn_t;
515extern aarch64_insn_t __exec_test[2];
516
517noinline void __return_0x77(void)
518{
519	asm volatile("__exec_test: mov x0, #0x77\n"
520		     "ret\n");
521}
522
523/*
524 * Note that this function runs on the host before the test VM starts: there's
525 * no need to sync the D$ and I$ caches.
526 */
527static void load_exec_code_for_test(struct kvm_vm *vm)
528{
529	uint64_t *code;
530	struct userspace_mem_region *region;
531	void *hva;
532
533	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
534	hva = (void *)region->region.userspace_addr;
535
536	assert(TEST_EXEC_GVA > TEST_GVA);
537	code = hva + TEST_EXEC_GVA - TEST_GVA;
538	memcpy(code, __exec_test, sizeof(__exec_test));
539}
540
541static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
542				 struct test_desc *test)
543{
544	vm_init_descriptor_tables(vm);
545	vcpu_init_descriptor_tables(vcpu);
546
547	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
548				ESR_EC_DABT, no_dabt_handler);
549	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
550				ESR_EC_IABT, no_iabt_handler);
551}
552
553static void setup_gva_maps(struct kvm_vm *vm)
554{
555	struct userspace_mem_region *region;
556	uint64_t pte_gpa;
557
558	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
559	/* Map TEST_GVA first. This will install a new PTE. */
560	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
561	/* Then map TEST_PTE_GVA to the above PTE. */
562	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
563	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
564}
565
566enum pf_test_memslots {
567	CODE_AND_DATA_MEMSLOT,
568	PAGE_TABLE_MEMSLOT,
569	TEST_DATA_MEMSLOT,
570};
571
572/*
573 * Create a memslot for code and data at pfn=0, and test-data and PT ones
574 * at max_gfn.
575 */
576static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
577{
578	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
579	uint64_t guest_page_size = vm->page_size;
580	uint64_t max_gfn = vm_compute_max_gfn(vm);
581	/* Enough for 2M of code when using 4K guest pages. */
582	uint64_t code_npages = 512;
583	uint64_t pt_size, data_size, data_gpa;
584
585	/*
586	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
587	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
588	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
589	 * twice that just in case.
590	 */
591	pt_size = 26 * guest_page_size;
592
593	/* memslot sizes and gpa's must be aligned to the backing page size */
594	pt_size = align_up(pt_size, backing_src_pagesz);
595	data_size = align_up(guest_page_size, backing_src_pagesz);
596	data_gpa = (max_gfn * guest_page_size) - data_size;
597	data_gpa = align_down(data_gpa, backing_src_pagesz);
598
599	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
600				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
601	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
602	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
603
604	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
605				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
606				    p->test_desc->pt_memslot_flags);
607	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
608
609	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
610				    data_size / guest_page_size,
611				    p->test_desc->data_memslot_flags);
612	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
613}
614
615static void setup_ucall(struct kvm_vm *vm)
616{
617	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
618
619	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
620}
621
622static void setup_default_handlers(struct test_desc *test)
623{
624	if (!test->mmio_handler)
625		test->mmio_handler = mmio_no_handler;
626
627	if (!test->fail_vcpu_run_handler)
628		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
629}
630
631static void check_event_counts(struct test_desc *test)
632{
633	TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
634	TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
635	TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
636}
637
638static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
639{
640	struct test_desc *test = p->test_desc;
641
642	pr_debug("Test: %s\n", test->name);
643	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
644	pr_debug("Testing memory backing src type: %s\n",
645		 vm_mem_backing_src_alias(p->src_type)->name);
646}
647
648static void reset_event_counts(void)
649{
650	memset(&events, 0, sizeof(events));
651}
652
653/*
654 * This function either succeeds, skips the test (after setting test->skip), or
655 * fails with a TEST_FAIL that aborts all tests.
656 */
657static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
658			  struct test_desc *test)
659{
660	struct kvm_run *run;
661	struct ucall uc;
662	int ret;
663
664	run = vcpu->run;
665
666	for (;;) {
667		ret = _vcpu_run(vcpu);
668		if (ret) {
669			test->fail_vcpu_run_handler(ret);
670			goto done;
671		}
672
673		switch (get_ucall(vcpu, &uc)) {
674		case UCALL_SYNC:
675			if (!handle_cmd(vm, uc.args[1])) {
676				test->skip = true;
677				goto done;
678			}
679			break;
680		case UCALL_ABORT:
681			REPORT_GUEST_ASSERT(uc);
682			break;
683		case UCALL_DONE:
684			goto done;
685		case UCALL_NONE:
686			if (run->exit_reason == KVM_EXIT_MMIO)
687				test->mmio_handler(vm, run);
688			break;
689		default:
690			TEST_FAIL("Unknown ucall %lu", uc.cmd);
691		}
692	}
693
694done:
695	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
696}
697
698static void run_test(enum vm_guest_mode mode, void *arg)
699{
700	struct test_params *p = (struct test_params *)arg;
701	struct test_desc *test = p->test_desc;
702	struct kvm_vm *vm;
703	struct kvm_vcpu *vcpu;
704	struct uffd_desc *pt_uffd, *data_uffd;
705
706	print_test_banner(mode, p);
707
708	vm = ____vm_create(VM_SHAPE(mode));
709	setup_memslots(vm, p);
710	kvm_vm_elf_load(vm, program_invocation_name);
711	setup_ucall(vm);
712	vcpu = vm_vcpu_add(vm, 0, guest_code);
713
714	setup_gva_maps(vm);
715
716	reset_event_counts();
717
718	/*
719	 * Set some code in the data memslot for the guest to execute (only
720	 * applicable to the EXEC tests). This has to be done before
721	 * setup_uffd() as that function copies the memslot data for the uffd
722	 * handler.
723	 */
724	load_exec_code_for_test(vm);
725	setup_uffd(vm, p, &pt_uffd, &data_uffd);
726	setup_abort_handlers(vm, vcpu, test);
727	setup_default_handlers(test);
728	vcpu_args_set(vcpu, 1, test);
729
730	vcpu_run_loop(vm, vcpu, test);
731
732	kvm_vm_free(vm);
733	free_uffd(test, pt_uffd, data_uffd);
734
735	/*
736	 * Make sure we check the events after the uffd threads have exited,
737	 * which means they updated their respective event counters.
738	 */
739	if (!test->skip)
740		check_event_counts(test);
741}
742
743static void help(char *name)
744{
745	puts("");
746	printf("usage: %s [-h] [-s mem-type]\n", name);
747	puts("");
748	guest_modes_help();
749	backing_src_help("-s");
750	puts("");
751}
752
753#define SNAME(s)			#s
754#define SCAT2(a, b)			SNAME(a ## _ ## b)
755#define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
756#define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))
757
758#define _CHECK(_test)			_CHECK_##_test
759#define _PREPARE(_test)			_PREPARE_##_test
760#define _PREPARE_guest_read64		NULL
761#define _PREPARE_guest_ld_preidx	NULL
762#define _PREPARE_guest_write64		NULL
763#define _PREPARE_guest_st_preidx	NULL
764#define _PREPARE_guest_exec		NULL
765#define _PREPARE_guest_at		NULL
766#define _PREPARE_guest_dc_zva		guest_check_dc_zva
767#define _PREPARE_guest_cas		guest_check_lse
768
769/* With or without access flag checks */
770#define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
771#define _PREPARE_no_af			NULL
772#define _CHECK_with_af			guest_check_pte_af
773#define _CHECK_no_af			NULL
774
775/* Performs an access and checks that no faults were triggered. */
776#define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
777{										\
778	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
779	.guest_prepare		= { _PREPARE(_with_af),				\
780				    _PREPARE(_access) },			\
781	.mem_mark_cmd		= _mark_cmd,					\
782	.guest_test		= _access,					\
783	.guest_test_check	= { _CHECK(_with_af) },				\
784	.expected_events	= { 0 },					\
785}
786
787#define TEST_UFFD(_access, _with_af, _mark_cmd,					\
788		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
789{										\
790	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
791	.guest_prepare		= { _PREPARE(_with_af),				\
792				    _PREPARE(_access) },			\
793	.guest_test		= _access,					\
794	.mem_mark_cmd		= _mark_cmd,					\
795	.guest_test_check	= { _CHECK(_with_af) },				\
796	.uffd_data_handler	= _uffd_data_handler,				\
797	.uffd_pt_handler	= _uffd_pt_handler,				\
798	.expected_events	= { .uffd_faults = _uffd_faults, },		\
799}
800
801#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)		\
802{										\
803	.name			= SCAT3(dirty_log, _access, _with_af),		\
804	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
805	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
806	.guest_prepare		= { _PREPARE(_with_af),				\
807				    _PREPARE(_access) },			\
808	.guest_test		= _access,					\
809	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
810	.expected_events	= { 0 },					\
811}
812
813#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
814				_uffd_faults, _test_check, _pt_check)		\
815{										\
816	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
817	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
818	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
819	.guest_prepare		= { _PREPARE(_with_af),				\
820				    _PREPARE(_access) },			\
821	.guest_test		= _access,					\
822	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
823	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
824	.uffd_data_handler	= _uffd_data_handler,				\
825	.uffd_pt_handler	= uffd_pt_handler,				\
826	.expected_events	= { .uffd_faults = _uffd_faults, },		\
827}
828
829#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
830{										\
831	.name			= SCAT2(ro_memslot, _access),			\
832	.data_memslot_flags	= KVM_MEM_READONLY,				\
833	.pt_memslot_flags	= KVM_MEM_READONLY,				\
834	.guest_prepare		= { _PREPARE(_access) },			\
835	.guest_test		= _access,					\
836	.mmio_handler		= _mmio_handler,				\
837	.expected_events	= { .mmio_exits = _mmio_exits },		\
838}
839
840#define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
841{										\
842	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
843	.data_memslot_flags	= KVM_MEM_READONLY,				\
844	.pt_memslot_flags	= KVM_MEM_READONLY,				\
845	.guest_prepare		= { _PREPARE(_access) },			\
846	.guest_test		= _access,					\
847	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
848	.expected_events	= { .fail_vcpu_runs = 1 },			\
849}
850
851#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
852				      _test_check)				\
853{										\
854	.name			= SCAT2(ro_memslot, _access),			\
855	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
856	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
857	.guest_prepare		= { _PREPARE(_access) },			\
858	.guest_test		= _access,					\
859	.guest_test_check	= { _test_check },				\
860	.mmio_handler		= _mmio_handler,				\
861	.expected_events	= { .mmio_exits = _mmio_exits},			\
862}
863
864#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
865{										\
866	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
867	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
868	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
869	.guest_prepare		= { _PREPARE(_access) },			\
870	.guest_test		= _access,					\
871	.guest_test_check	= { _test_check },				\
872	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
873	.expected_events	= { .fail_vcpu_runs = 1 },			\
874}
875
876#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
877				 _uffd_data_handler, _uffd_faults)		\
878{										\
879	.name			= SCAT2(ro_memslot_uffd, _access),		\
880	.data_memslot_flags	= KVM_MEM_READONLY,				\
881	.pt_memslot_flags	= KVM_MEM_READONLY,				\
882	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
883	.guest_prepare		= { _PREPARE(_access) },			\
884	.guest_test		= _access,					\
885	.uffd_data_handler	= _uffd_data_handler,				\
886	.uffd_pt_handler	= uffd_pt_handler,				\
887	.mmio_handler		= _mmio_handler,				\
888	.expected_events	= { .mmio_exits = _mmio_exits,			\
889				    .uffd_faults = _uffd_faults },		\
890}
891
892#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
893					     _uffd_faults)			\
894{										\
895	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
896	.data_memslot_flags	= KVM_MEM_READONLY,				\
897	.pt_memslot_flags	= KVM_MEM_READONLY,				\
898	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
899	.guest_prepare		= { _PREPARE(_access) },			\
900	.guest_test		= _access,					\
901	.uffd_data_handler	= _uffd_data_handler,				\
902	.uffd_pt_handler	= uffd_pt_handler,			\
903	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
904	.expected_events	= { .fail_vcpu_runs = 1,			\
905				    .uffd_faults = _uffd_faults },		\
906}
907
908static struct test_desc tests[] = {
909
910	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
911	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
912	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
913	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
914	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
915	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
916	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
917	TEST_ACCESS(guest_exec, with_af, CMD_NONE),
918
919	/*
920	 * Punch a hole in the data backing store, and then try multiple
921	 * accesses: reads should rturn zeroes, and writes should
922	 * re-populate the page. Moreover, the test also check that no
923	 * exception was generated in the guest.  Note that this
924	 * reading/writing behavior is the same as reading/writing a
925	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
926	 * userspace.
927	 */
928	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
929	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
930	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
931	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
932	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
933	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
934	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
935
936	/*
937	 * Punch holes in the data and PT backing stores and mark them for
938	 * userfaultfd handling. This should result in 2 faults: the access
939	 * on the data backing store, and its respective S1 page table walk
940	 * (S1PTW).
941	 */
942	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
943		  uffd_data_handler, uffd_pt_handler, 2),
944	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
945		  uffd_data_handler, uffd_pt_handler, 2),
946	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
947		  uffd_data_handler, uffd_pt_handler, 2),
948	/*
949	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
950	 * The S1PTW fault should still be marked as a write.
951	 */
952	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
953		  uffd_no_handler, uffd_pt_handler, 1),
954	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
955		  uffd_data_handler, uffd_pt_handler, 2),
956	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
957		  uffd_data_handler, uffd_pt_handler, 2),
958	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
959		  uffd_data_handler, uffd_pt_handler, 2),
960	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
961		  uffd_data_handler, uffd_pt_handler, 2),
962	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
963		  uffd_data_handler, uffd_pt_handler, 2),
964
965	/*
966	 * Try accesses when the data and PT memory regions are both
967	 * tracked for dirty logging.
968	 */
969	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
970		       guest_check_s1ptw_wr_in_dirty_log),
971	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
972		       guest_check_no_s1ptw_wr_in_dirty_log),
973	TEST_DIRTY_LOG(guest_ld_preidx, with_af,
974		       guest_check_no_write_in_dirty_log,
975		       guest_check_s1ptw_wr_in_dirty_log),
976	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
977		       guest_check_no_s1ptw_wr_in_dirty_log),
978	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
979		       guest_check_s1ptw_wr_in_dirty_log),
980	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
981		       guest_check_s1ptw_wr_in_dirty_log),
982	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
983		       guest_check_s1ptw_wr_in_dirty_log),
984	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
985		       guest_check_s1ptw_wr_in_dirty_log),
986	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
987		       guest_check_s1ptw_wr_in_dirty_log),
988
989	/*
990	 * Access when the data and PT memory regions are both marked for
991	 * dirty logging and UFFD at the same time. The expected result is
992	 * that writes should mark the dirty log and trigger a userfaultfd
993	 * write fault.  Reads/execs should result in a read userfaultfd
994	 * fault, and nothing in the dirty log.  Any S1PTW should result in
995	 * a write in the dirty log and a userfaultfd write.
996	 */
997	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
998				uffd_data_handler, 2,
999				guest_check_no_write_in_dirty_log,
1000				guest_check_s1ptw_wr_in_dirty_log),
1001	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
1002				uffd_data_handler, 2,
1003				guest_check_no_write_in_dirty_log,
1004				guest_check_no_s1ptw_wr_in_dirty_log),
1005	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1006				uffd_data_handler,
1007				2, guest_check_no_write_in_dirty_log,
1008				guest_check_s1ptw_wr_in_dirty_log),
1009	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1010				guest_check_no_write_in_dirty_log,
1011				guest_check_s1ptw_wr_in_dirty_log),
1012	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1013				uffd_data_handler, 2,
1014				guest_check_no_write_in_dirty_log,
1015				guest_check_s1ptw_wr_in_dirty_log),
1016	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1017				uffd_data_handler,
1018				2, guest_check_write_in_dirty_log,
1019				guest_check_s1ptw_wr_in_dirty_log),
1020	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1021				uffd_data_handler, 2,
1022				guest_check_write_in_dirty_log,
1023				guest_check_s1ptw_wr_in_dirty_log),
1024	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1025				uffd_data_handler,
1026				2, guest_check_write_in_dirty_log,
1027				guest_check_s1ptw_wr_in_dirty_log),
1028	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1029				uffd_data_handler, 2,
1030				guest_check_write_in_dirty_log,
1031				guest_check_s1ptw_wr_in_dirty_log),
1032	/*
1033	 * Access when both the PT and data regions are marked read-only
1034	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1035	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1036	 * failed vcpu run, and reads/execs with and without syndroms do
1037	 * not fault.
1038	 */
1039	TEST_RO_MEMSLOT(guest_read64, 0, 0),
1040	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1041	TEST_RO_MEMSLOT(guest_at, 0, 0),
1042	TEST_RO_MEMSLOT(guest_exec, 0, 0),
1043	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1044	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1045	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1046	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1047
1048	/*
1049	 * The PT and data regions are both read-only and marked
1050	 * for dirty logging at the same time. The expected result is that
1051	 * for writes there should be no write in the dirty log. The
1052	 * readonly handling is the same as if the memslot was not marked
1053	 * for dirty logging: writes with a syndrome result in an MMIO
1054	 * exit, and writes with no syndrome result in a failed vcpu run.
1055	 */
1056	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1057				      guest_check_no_write_in_dirty_log),
1058	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1059				      guest_check_no_write_in_dirty_log),
1060	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1061				      guest_check_no_write_in_dirty_log),
1062	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1063				      guest_check_no_write_in_dirty_log),
1064	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1065				      1, guest_check_no_write_in_dirty_log),
1066	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1067						  guest_check_no_write_in_dirty_log),
1068	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1069						  guest_check_no_write_in_dirty_log),
1070	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1071						  guest_check_no_write_in_dirty_log),
1072
1073	/*
1074	 * The PT and data regions are both read-only and punched with
1075	 * holes tracked with userfaultfd.  The expected result is the
1076	 * union of both userfaultfd and read-only behaviors. For example,
1077	 * write accesses result in a userfaultfd write fault and an MMIO
1078	 * exit.  Writes with no syndrome result in a failed vcpu run and
1079	 * no userfaultfd write fault. Reads result in userfaultfd getting
1080	 * triggered.
1081	 */
1082	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1083	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1084	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1085	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1086	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1087				 uffd_data_handler, 2),
1088	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1089	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1090	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1091
1092	{ 0 }
1093};
1094
1095static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1096{
1097	struct test_desc *t;
1098
1099	for (t = &tests[0]; t->name; t++) {
1100		if (t->skip)
1101			continue;
1102
1103		struct test_params p = {
1104			.src_type = src_type,
1105			.test_desc = t,
1106		};
1107
1108		for_each_guest_mode(run_test, &p);
1109	}
1110}
1111
1112int main(int argc, char *argv[])
1113{
1114	enum vm_mem_backing_src_type src_type;
1115	int opt;
1116
1117	src_type = DEFAULT_VM_MEM_SRC;
1118
1119	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1120		switch (opt) {
1121		case 'm':
1122			guest_modes_cmdline(optarg);
1123			break;
1124		case 's':
1125			src_type = parse_backing_src_type(optarg);
1126			break;
1127		case 'h':
1128		default:
1129			help(argv[0]);
1130			exit(0);
1131		}
1132	}
1133
1134	for_each_test_and_guest_mode(src_type);
1135	return 0;
1136}
1137