1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Testsuite for eBPF verifier
4 *
5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6 * Copyright (c) 2017 Facebook
7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8 */
9
10#include <endian.h>
11#include <asm/types.h>
12#include <linux/types.h>
13#include <stdint.h>
14#include <stdio.h>
15#include <stdlib.h>
16#include <unistd.h>
17#include <errno.h>
18#include <string.h>
19#include <stddef.h>
20#include <stdbool.h>
21#include <sched.h>
22#include <limits.h>
23#include <assert.h>
24
25#include <linux/unistd.h>
26#include <linux/filter.h>
27#include <linux/bpf_perf_event.h>
28#include <linux/bpf.h>
29#include <linux/if_ether.h>
30#include <linux/btf.h>
31
32#include <bpf/btf.h>
33#include <bpf/bpf.h>
34#include <bpf/libbpf.h>
35
36#include "autoconf_helper.h"
37#include "unpriv_helpers.h"
38#include "cap_helpers.h"
39#include "bpf_rand.h"
40#include "bpf_util.h"
41#include "test_btf.h"
42#include "../../../include/linux/filter.h"
43#include "testing_helpers.h"
44
45#ifndef ENOTSUPP
46#define ENOTSUPP 524
47#endif
48
49#define MAX_INSNS	BPF_MAXINSNS
50#define MAX_EXPECTED_INSNS	32
51#define MAX_UNEXPECTED_INSNS	32
52#define MAX_TEST_INSNS	1000000
53#define MAX_FIXUPS	8
54#define MAX_NR_MAPS	23
55#define MAX_TEST_RUNS	8
56#define POINTER_VALUE	0xcafe4all
57#define TEST_DATA_LEN	64
58#define MAX_FUNC_INFOS	8
59#define MAX_BTF_STRINGS	256
60#define MAX_BTF_TYPES	256
61
62#define INSN_OFF_MASK	((__s16)0xFFFF)
63#define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
64#define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65
66#define DEFAULT_LIBBPF_LOG_LEVEL	4
67
68#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
69#define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
70#define F_NEEDS_JIT_ENABLED			(1 << 2)
71
72/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
73#define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
74		    1ULL << CAP_PERFMON |	\
75		    1ULL << CAP_BPF)
76#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
77static bool unpriv_disabled = false;
78static bool jit_disabled;
79static int skips;
80static bool verbose = false;
81static int verif_log_level = 0;
82
83struct kfunc_btf_id_pair {
84	const char *kfunc;
85	int insn_idx;
86};
87
88struct bpf_test {
89	const char *descr;
90	struct bpf_insn	insns[MAX_INSNS];
91	struct bpf_insn	*fill_insns;
92	/* If specified, test engine looks for this sequence of
93	 * instructions in the BPF program after loading. Allows to
94	 * test rewrites applied by verifier.  Use values
95	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
96	 * fields if content does not matter.  The test case fails if
97	 * specified instructions are not found.
98	 *
99	 * The sequence could be split into sub-sequences by adding
100	 * SKIP_INSNS instruction at the end of each sub-sequence. In
101	 * such case sub-sequences are searched for one after another.
102	 */
103	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
104	/* If specified, test engine applies same pattern matching
105	 * logic as for `expected_insns`. If the specified pattern is
106	 * matched test case is marked as failed.
107	 */
108	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
109	int fixup_map_hash_8b[MAX_FIXUPS];
110	int fixup_map_hash_48b[MAX_FIXUPS];
111	int fixup_map_hash_16b[MAX_FIXUPS];
112	int fixup_map_array_48b[MAX_FIXUPS];
113	int fixup_map_sockmap[MAX_FIXUPS];
114	int fixup_map_sockhash[MAX_FIXUPS];
115	int fixup_map_xskmap[MAX_FIXUPS];
116	int fixup_map_stacktrace[MAX_FIXUPS];
117	int fixup_prog1[MAX_FIXUPS];
118	int fixup_prog2[MAX_FIXUPS];
119	int fixup_map_in_map[MAX_FIXUPS];
120	int fixup_cgroup_storage[MAX_FIXUPS];
121	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
122	int fixup_map_spin_lock[MAX_FIXUPS];
123	int fixup_map_array_ro[MAX_FIXUPS];
124	int fixup_map_array_wo[MAX_FIXUPS];
125	int fixup_map_array_small[MAX_FIXUPS];
126	int fixup_sk_storage_map[MAX_FIXUPS];
127	int fixup_map_event_output[MAX_FIXUPS];
128	int fixup_map_reuseport_array[MAX_FIXUPS];
129	int fixup_map_ringbuf[MAX_FIXUPS];
130	int fixup_map_timer[MAX_FIXUPS];
131	int fixup_map_kptr[MAX_FIXUPS];
132	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
133	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
134	 * Can be a tab-separated sequence of expected strings. An empty string
135	 * means no log verification.
136	 */
137	const char *errstr;
138	const char *errstr_unpriv;
139	uint32_t insn_processed;
140	int prog_len;
141	enum {
142		UNDEF,
143		ACCEPT,
144		REJECT,
145		VERBOSE_ACCEPT,
146	} result, result_unpriv;
147	enum bpf_prog_type prog_type;
148	uint8_t flags;
149	void (*fill_helper)(struct bpf_test *self);
150	int runs;
151#define bpf_testdata_struct_t					\
152	struct {						\
153		uint32_t retval, retval_unpriv;			\
154		union {						\
155			__u8 data[TEST_DATA_LEN];		\
156			__u64 data64[TEST_DATA_LEN / 8];	\
157		};						\
158	}
159	union {
160		bpf_testdata_struct_t;
161		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
162	};
163	enum bpf_attach_type expected_attach_type;
164	const char *kfunc;
165	struct bpf_func_info func_info[MAX_FUNC_INFOS];
166	int func_info_cnt;
167	char btf_strings[MAX_BTF_STRINGS];
168	/* A set of BTF types to load when specified,
169	 * use macro definitions from test_btf.h,
170	 * must end with BTF_END_RAW
171	 */
172	__u32 btf_types[MAX_BTF_TYPES];
173};
174
175/* Note we want this to be 64 bit aligned so that the end of our array is
176 * actually the end of the structure.
177 */
178#define MAX_ENTRIES 11
179
180struct test_val {
181	unsigned int index;
182	int foo[MAX_ENTRIES];
183};
184
185struct other_val {
186	long long foo;
187	long long bar;
188};
189
190static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
191{
192	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
193#define PUSH_CNT 51
194	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
195	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
196	struct bpf_insn *insn = self->fill_insns;
197	int i = 0, j, k = 0;
198
199	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
200loop:
201	for (j = 0; j < PUSH_CNT; j++) {
202		insn[i++] = BPF_LD_ABS(BPF_B, 0);
203		/* jump to error label */
204		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
205		i++;
206		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
207		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
208		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
209		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
210					 BPF_FUNC_skb_vlan_push);
211		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
212		i++;
213	}
214
215	for (j = 0; j < PUSH_CNT; j++) {
216		insn[i++] = BPF_LD_ABS(BPF_B, 0);
217		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
218		i++;
219		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
220		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
221					 BPF_FUNC_skb_vlan_pop);
222		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
223		i++;
224	}
225	if (++k < 5)
226		goto loop;
227
228	for (; i < len - 3; i++)
229		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
230	insn[len - 3] = BPF_JMP_A(1);
231	/* error label */
232	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
233	insn[len - 1] = BPF_EXIT_INSN();
234	self->prog_len = len;
235}
236
237static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
238{
239	struct bpf_insn *insn = self->fill_insns;
240	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
241	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
242	 * to extend the error value of the inlined ld_abs sequence which then
243	 * contains 7 insns. so, set the dividend to 7 so the testcase could
244	 * work on all arches.
245	 */
246	unsigned int len = (1 << 15) / 7;
247	int i = 0;
248
249	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
250	insn[i++] = BPF_LD_ABS(BPF_B, 0);
251	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
252	i++;
253	while (i < len - 1)
254		insn[i++] = BPF_LD_ABS(BPF_B, 1);
255	insn[i] = BPF_EXIT_INSN();
256	self->prog_len = i + 1;
257}
258
259static void bpf_fill_rand_ld_dw(struct bpf_test *self)
260{
261	struct bpf_insn *insn = self->fill_insns;
262	uint64_t res = 0;
263	int i = 0;
264
265	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
266	while (i < self->retval) {
267		uint64_t val = bpf_semi_rand_get();
268		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
269
270		res ^= val;
271		insn[i++] = tmp[0];
272		insn[i++] = tmp[1];
273		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
274	}
275	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
276	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
277	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
278	insn[i] = BPF_EXIT_INSN();
279	self->prog_len = i + 1;
280	res ^= (res >> 32);
281	self->retval = (uint32_t)res;
282}
283
284#define MAX_JMP_SEQ 8192
285
286/* test the sequence of 8k jumps */
287static void bpf_fill_scale1(struct bpf_test *self)
288{
289	struct bpf_insn *insn = self->fill_insns;
290	int i = 0, k = 0;
291
292	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
293	/* test to check that the long sequence of jumps is acceptable */
294	while (k++ < MAX_JMP_SEQ) {
295		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
296					 BPF_FUNC_get_prandom_u32);
297		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
298		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
299		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
300					-8 * (k % 64 + 1));
301	}
302	/* is_state_visited() doesn't allocate state for pruning for every jump.
303	 * Hence multiply jmps by 4 to accommodate that heuristic
304	 */
305	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
306		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
307	insn[i] = BPF_EXIT_INSN();
308	self->prog_len = i + 1;
309	self->retval = 42;
310}
311
312/* test the sequence of 8k jumps in inner most function (function depth 8)*/
313static void bpf_fill_scale2(struct bpf_test *self)
314{
315	struct bpf_insn *insn = self->fill_insns;
316	int i = 0, k = 0;
317
318#define FUNC_NEST 7
319	for (k = 0; k < FUNC_NEST; k++) {
320		insn[i++] = BPF_CALL_REL(1);
321		insn[i++] = BPF_EXIT_INSN();
322	}
323	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
324	/* test to check that the long sequence of jumps is acceptable */
325	k = 0;
326	while (k++ < MAX_JMP_SEQ) {
327		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
328					 BPF_FUNC_get_prandom_u32);
329		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
330		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
331		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
332					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
333	}
334	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
335		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
336	insn[i] = BPF_EXIT_INSN();
337	self->prog_len = i + 1;
338	self->retval = 42;
339}
340
341static void bpf_fill_scale(struct bpf_test *self)
342{
343	switch (self->retval) {
344	case 1:
345		return bpf_fill_scale1(self);
346	case 2:
347		return bpf_fill_scale2(self);
348	default:
349		self->prog_len = 0;
350		break;
351	}
352}
353
354static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
355{
356	unsigned int len = 259, hlen = 128;
357	int i;
358
359	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
360	for (i = 1; i <= hlen; i++) {
361		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
362		insn[i + hlen] = BPF_JMP_A(hlen - i);
363	}
364	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
365	insn[len - 1] = BPF_EXIT_INSN();
366
367	return len;
368}
369
370static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
371{
372	unsigned int len = 4100, jmp_off = 2048;
373	int i, j;
374
375	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
376	for (i = 1; i <= jmp_off; i++) {
377		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
378	}
379	insn[i++] = BPF_JMP_A(jmp_off);
380	for (; i <= jmp_off * 2 + 1; i+=16) {
381		for (j = 0; j < 16; j++) {
382			insn[i + j] = BPF_JMP_A(16 - j - 1);
383		}
384	}
385
386	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
387	insn[len - 1] = BPF_EXIT_INSN();
388
389	return len;
390}
391
392static void bpf_fill_torturous_jumps(struct bpf_test *self)
393{
394	struct bpf_insn *insn = self->fill_insns;
395	int i = 0;
396
397	switch (self->retval) {
398	case 1:
399		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
400		return;
401	case 2:
402		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
403		return;
404	case 3:
405		/* main */
406		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
407		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
408		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
409		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
410		insn[i++] = BPF_EXIT_INSN();
411
412		/* subprog 1 */
413		i += bpf_fill_torturous_jumps_insn_1(insn + i);
414
415		/* subprog 2 */
416		i += bpf_fill_torturous_jumps_insn_2(insn + i);
417
418		self->prog_len = i;
419		return;
420	default:
421		self->prog_len = 0;
422		break;
423	}
424}
425
426static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
427{
428	struct bpf_insn *insn = self->fill_insns;
429	/* This test was added to catch a specific use after free
430	 * error, which happened upon BPF program reallocation.
431	 * Reallocation is handled by core.c:bpf_prog_realloc, which
432	 * reuses old memory if page boundary is not crossed. The
433	 * value of `len` is chosen to cross this boundary on bpf_loop
434	 * patching.
435	 */
436	const int len = getpagesize() - 25;
437	int callback_load_idx;
438	int callback_idx;
439	int i = 0;
440
441	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
442	callback_load_idx = i;
443	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
444				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
445				 777 /* filled below */);
446	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
447	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
448	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
449	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
450
451	while (i < len - 3)
452		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
453	insn[i++] = BPF_EXIT_INSN();
454
455	callback_idx = i;
456	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
457	insn[i++] = BPF_EXIT_INSN();
458
459	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
460	self->func_info[1].insn_off = callback_idx;
461	self->prog_len = i;
462	assert(i == len);
463}
464
465/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
466#define BPF_SK_LOOKUP(func)						\
467	/* struct bpf_sock_tuple tuple = {} */				\
468	BPF_MOV64_IMM(BPF_REG_2, 0),					\
469	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
470	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
471	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
472	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
473	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
474	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
475	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
476	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
477	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
478	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
479	BPF_MOV64_IMM(BPF_REG_4, 0),					\
480	BPF_MOV64_IMM(BPF_REG_5, 0),					\
481	BPF_EMIT_CALL(BPF_FUNC_ ## func)
482
483/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
484 * value into 0 and does necessary preparation for direct packet access
485 * through r2. The allowed access range is 8 bytes.
486 */
487#define BPF_DIRECT_PKT_R2						\
488	BPF_MOV64_IMM(BPF_REG_0, 0),					\
489	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
490		    offsetof(struct __sk_buff, data)),			\
491	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
492		    offsetof(struct __sk_buff, data_end)),		\
493	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
494	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
495	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
496	BPF_EXIT_INSN()
497
498/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
499 * positive u32, and zero-extend it into 64-bit.
500 */
501#define BPF_RAND_UEXT_R7						\
502	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
503		     BPF_FUNC_get_prandom_u32),				\
504	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
505	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
506	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
507
508/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
509 * negative u32, and sign-extend it into 64-bit.
510 */
511#define BPF_RAND_SEXT_R7						\
512	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
513		     BPF_FUNC_get_prandom_u32),				\
514	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
515	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
516	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
517	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
518
519static struct bpf_test tests[] = {
520#define FILL_ARRAY
521#include <verifier/tests.h>
522#undef FILL_ARRAY
523};
524
525static int probe_filter_length(const struct bpf_insn *fp)
526{
527	int len;
528
529	for (len = MAX_INSNS - 1; len > 0; --len)
530		if (fp[len].code != 0 || fp[len].imm != 0)
531			break;
532	return len + 1;
533}
534
535static bool skip_unsupported_map(enum bpf_map_type map_type)
536{
537	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
538		printf("SKIP (unsupported map type %d)\n", map_type);
539		skips++;
540		return true;
541	}
542	return false;
543}
544
545static int __create_map(uint32_t type, uint32_t size_key,
546			uint32_t size_value, uint32_t max_elem,
547			uint32_t extra_flags)
548{
549	LIBBPF_OPTS(bpf_map_create_opts, opts);
550	int fd;
551
552	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
553	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
554	if (fd < 0) {
555		if (skip_unsupported_map(type))
556			return -1;
557		printf("Failed to create hash map '%s'!\n", strerror(errno));
558	}
559
560	return fd;
561}
562
563static int create_map(uint32_t type, uint32_t size_key,
564		      uint32_t size_value, uint32_t max_elem)
565{
566	return __create_map(type, size_key, size_value, max_elem, 0);
567}
568
569static void update_map(int fd, int index)
570{
571	struct test_val value = {
572		.index = (6 + 1) * sizeof(int),
573		.foo[6] = 0xabcdef12,
574	};
575
576	assert(!bpf_map_update_elem(fd, &index, &value, 0));
577}
578
579static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
580{
581	struct bpf_insn prog[] = {
582		BPF_MOV64_IMM(BPF_REG_0, ret),
583		BPF_EXIT_INSN(),
584	};
585
586	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
587}
588
589static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
590				  int idx, int ret)
591{
592	struct bpf_insn prog[] = {
593		BPF_MOV64_IMM(BPF_REG_3, idx),
594		BPF_LD_MAP_FD(BPF_REG_2, mfd),
595		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
596			     BPF_FUNC_tail_call),
597		BPF_MOV64_IMM(BPF_REG_0, ret),
598		BPF_EXIT_INSN(),
599	};
600
601	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
602}
603
604static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
605			     int p1key, int p2key, int p3key)
606{
607	int mfd, p1fd, p2fd, p3fd;
608
609	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
610			     sizeof(int), max_elem, NULL);
611	if (mfd < 0) {
612		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
613			return -1;
614		printf("Failed to create prog array '%s'!\n", strerror(errno));
615		return -1;
616	}
617
618	p1fd = create_prog_dummy_simple(prog_type, 42);
619	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
620	p3fd = create_prog_dummy_simple(prog_type, 24);
621	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
622		goto err;
623	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
624		goto err;
625	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
626		goto err;
627	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
628err:
629		close(mfd);
630		mfd = -1;
631	}
632	close(p3fd);
633	close(p2fd);
634	close(p1fd);
635	return mfd;
636}
637
638static int create_map_in_map(void)
639{
640	LIBBPF_OPTS(bpf_map_create_opts, opts);
641	int inner_map_fd, outer_map_fd;
642
643	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
644				      sizeof(int), 1, NULL);
645	if (inner_map_fd < 0) {
646		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
647			return -1;
648		printf("Failed to create array '%s'!\n", strerror(errno));
649		return inner_map_fd;
650	}
651
652	opts.inner_map_fd = inner_map_fd;
653	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
654				      sizeof(int), sizeof(int), 1, &opts);
655	if (outer_map_fd < 0) {
656		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
657			return -1;
658		printf("Failed to create array of maps '%s'!\n",
659		       strerror(errno));
660	}
661
662	close(inner_map_fd);
663
664	return outer_map_fd;
665}
666
667static int create_cgroup_storage(bool percpu)
668{
669	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
670		BPF_MAP_TYPE_CGROUP_STORAGE;
671	int fd;
672
673	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
674			    TEST_DATA_LEN, 0, NULL);
675	if (fd < 0) {
676		if (skip_unsupported_map(type))
677			return -1;
678		printf("Failed to create cgroup storage '%s'!\n",
679		       strerror(errno));
680	}
681
682	return fd;
683}
684
685/* struct bpf_spin_lock {
686 *   int val;
687 * };
688 * struct val {
689 *   int cnt;
690 *   struct bpf_spin_lock l;
691 * };
692 * struct bpf_timer {
693 *   __u64 :64;
694 *   __u64 :64;
695 * } __attribute__((aligned(8)));
696 * struct timer {
697 *   struct bpf_timer t;
698 * };
699 * struct btf_ptr {
700 *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
701 *   struct prog_test_ref_kfunc __kptr *ptr;
702 *   struct prog_test_member __kptr *ptr;
703 * }
704 */
705static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
706				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
707				  "\0prog_test_member";
708static __u32 btf_raw_types[] = {
709	/* int */
710	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
711	/* struct bpf_spin_lock */                      /* [2] */
712	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
713	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
714	/* struct val */                                /* [3] */
715	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
716	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
717	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
718	/* struct bpf_timer */                          /* [4] */
719	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
720	/* struct timer */                              /* [5] */
721	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
722	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
723	/* struct prog_test_ref_kfunc */		/* [6] */
724	BTF_STRUCT_ENC(51, 0, 0),
725	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
726	/* type tag "kptr_untrusted" */
727	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
728	/* type tag "kptr" */
729	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
730	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
731	BTF_PTR_ENC(8),					/* [11] */
732	BTF_PTR_ENC(9),					/* [12] */
733	BTF_PTR_ENC(10),				/* [13] */
734	/* struct btf_ptr */				/* [14] */
735	BTF_STRUCT_ENC(43, 3, 24),
736	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
737	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
738	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
739};
740
741static char bpf_vlog[UINT_MAX >> 8];
742
743static int load_btf_spec(__u32 *types, int types_len,
744			 const char *strings, int strings_len)
745{
746	struct btf_header hdr = {
747		.magic = BTF_MAGIC,
748		.version = BTF_VERSION,
749		.hdr_len = sizeof(struct btf_header),
750		.type_len = types_len,
751		.str_off = types_len,
752		.str_len = strings_len,
753	};
754	void *ptr, *raw_btf;
755	int btf_fd;
756	LIBBPF_OPTS(bpf_btf_load_opts, opts,
757		    .log_buf = bpf_vlog,
758		    .log_size = sizeof(bpf_vlog),
759		    .log_level = (verbose
760				  ? verif_log_level
761				  : DEFAULT_LIBBPF_LOG_LEVEL),
762	);
763
764	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
765
766	ptr = raw_btf;
767	memcpy(ptr, &hdr, sizeof(hdr));
768	ptr += sizeof(hdr);
769	memcpy(ptr, types, hdr.type_len);
770	ptr += hdr.type_len;
771	memcpy(ptr, strings, hdr.str_len);
772	ptr += hdr.str_len;
773
774	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
775	if (btf_fd < 0)
776		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
777
778	free(raw_btf);
779
780	return btf_fd < 0 ? -1 : btf_fd;
781}
782
783static int load_btf(void)
784{
785	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
786			     btf_str_sec, sizeof(btf_str_sec));
787}
788
789static int load_btf_for_test(struct bpf_test *test)
790{
791	int types_num = 0;
792
793	while (types_num < MAX_BTF_TYPES &&
794	       test->btf_types[types_num] != BTF_END_RAW)
795		++types_num;
796
797	int types_len = types_num * sizeof(test->btf_types[0]);
798
799	return load_btf_spec(test->btf_types, types_len,
800			     test->btf_strings, sizeof(test->btf_strings));
801}
802
803static int create_map_spin_lock(void)
804{
805	LIBBPF_OPTS(bpf_map_create_opts, opts,
806		.btf_key_type_id = 1,
807		.btf_value_type_id = 3,
808	);
809	int fd, btf_fd;
810
811	btf_fd = load_btf();
812	if (btf_fd < 0)
813		return -1;
814	opts.btf_fd = btf_fd;
815	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
816	if (fd < 0)
817		printf("Failed to create map with spin_lock\n");
818	return fd;
819}
820
821static int create_sk_storage_map(void)
822{
823	LIBBPF_OPTS(bpf_map_create_opts, opts,
824		.map_flags = BPF_F_NO_PREALLOC,
825		.btf_key_type_id = 1,
826		.btf_value_type_id = 3,
827	);
828	int fd, btf_fd;
829
830	btf_fd = load_btf();
831	if (btf_fd < 0)
832		return -1;
833	opts.btf_fd = btf_fd;
834	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
835	close(opts.btf_fd);
836	if (fd < 0)
837		printf("Failed to create sk_storage_map\n");
838	return fd;
839}
840
841static int create_map_timer(void)
842{
843	LIBBPF_OPTS(bpf_map_create_opts, opts,
844		.btf_key_type_id = 1,
845		.btf_value_type_id = 5,
846	);
847	int fd, btf_fd;
848
849	btf_fd = load_btf();
850	if (btf_fd < 0)
851		return -1;
852
853	opts.btf_fd = btf_fd;
854	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
855	if (fd < 0)
856		printf("Failed to create map with timer\n");
857	return fd;
858}
859
860static int create_map_kptr(void)
861{
862	LIBBPF_OPTS(bpf_map_create_opts, opts,
863		.btf_key_type_id = 1,
864		.btf_value_type_id = 14,
865	);
866	int fd, btf_fd;
867
868	btf_fd = load_btf();
869	if (btf_fd < 0)
870		return -1;
871
872	opts.btf_fd = btf_fd;
873	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
874	if (fd < 0)
875		printf("Failed to create map with btf_id pointer\n");
876	return fd;
877}
878
879static void set_root(bool set)
880{
881	__u64 caps;
882
883	if (set) {
884		if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
885			perror("cap_disable_effective(CAP_SYS_ADMIN)");
886	} else {
887		if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
888			perror("cap_disable_effective(CAP_SYS_ADMIN)");
889	}
890}
891
892static __u64 ptr_to_u64(const void *ptr)
893{
894	return (uintptr_t) ptr;
895}
896
897static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
898{
899	struct bpf_btf_info info;
900	__u32 len = sizeof(info);
901	struct btf *btf = NULL;
902	char name[64];
903	__u32 id = 0;
904	int err, fd;
905
906	/* Iterate all loaded BTF objects and find bpf_testmod,
907	 * we need SYS_ADMIN cap for that.
908	 */
909	set_root(true);
910
911	while (true) {
912		err = bpf_btf_get_next_id(id, &id);
913		if (err) {
914			if (errno == ENOENT)
915				break;
916			perror("bpf_btf_get_next_id failed");
917			break;
918		}
919
920		fd = bpf_btf_get_fd_by_id(id);
921		if (fd < 0) {
922			if (errno == ENOENT)
923				continue;
924			perror("bpf_btf_get_fd_by_id failed");
925			break;
926		}
927
928		memset(&info, 0, sizeof(info));
929		info.name_len = sizeof(name);
930		info.name = ptr_to_u64(name);
931		len = sizeof(info);
932
933		err = bpf_obj_get_info_by_fd(fd, &info, &len);
934		if (err) {
935			close(fd);
936			perror("bpf_obj_get_info_by_fd failed");
937			break;
938		}
939
940		if (strcmp("bpf_testmod", name)) {
941			close(fd);
942			continue;
943		}
944
945		btf = btf__load_from_kernel_by_id_split(id, vmlinux);
946		if (!btf) {
947			close(fd);
948			break;
949		}
950
951		/* We need the fd to stay open so it can be used in fd_array.
952		 * The final cleanup call to btf__free will free btf object
953		 * and close the file descriptor.
954		 */
955		btf__set_fd(btf, fd);
956		break;
957	}
958
959	set_root(false);
960	return btf;
961}
962
963static struct btf *testmod_btf;
964static struct btf *vmlinux_btf;
965
966static void kfuncs_cleanup(void)
967{
968	btf__free(testmod_btf);
969	btf__free(vmlinux_btf);
970}
971
972static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
973			      struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
974{
975	/* Patch in kfunc BTF IDs */
976	while (fixup_kfunc_btf_id->kfunc) {
977		int btf_id = 0;
978
979		/* try to find kfunc in kernel BTF */
980		vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
981		if (vmlinux_btf) {
982			btf_id = btf__find_by_name_kind(vmlinux_btf,
983							fixup_kfunc_btf_id->kfunc,
984							BTF_KIND_FUNC);
985			btf_id = btf_id < 0 ? 0 : btf_id;
986		}
987
988		/* kfunc not found in kernel BTF, try bpf_testmod BTF */
989		if (!btf_id) {
990			testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
991			if (testmod_btf) {
992				btf_id = btf__find_by_name_kind(testmod_btf,
993								fixup_kfunc_btf_id->kfunc,
994								BTF_KIND_FUNC);
995				btf_id = btf_id < 0 ? 0 : btf_id;
996				if (btf_id) {
997					/* We put bpf_testmod module fd into fd_array
998					 * and its index 1 into instruction 'off'.
999					 */
1000					*fd_array = btf__fd(testmod_btf);
1001					prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1002				}
1003			}
1004		}
1005
1006		prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1007		fixup_kfunc_btf_id++;
1008	}
1009}
1010
1011static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1012			  struct bpf_insn *prog, int *map_fds, int *fd_array)
1013{
1014	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1015	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1016	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1017	int *fixup_map_array_48b = test->fixup_map_array_48b;
1018	int *fixup_map_sockmap = test->fixup_map_sockmap;
1019	int *fixup_map_sockhash = test->fixup_map_sockhash;
1020	int *fixup_map_xskmap = test->fixup_map_xskmap;
1021	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1022	int *fixup_prog1 = test->fixup_prog1;
1023	int *fixup_prog2 = test->fixup_prog2;
1024	int *fixup_map_in_map = test->fixup_map_in_map;
1025	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1026	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1027	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1028	int *fixup_map_array_ro = test->fixup_map_array_ro;
1029	int *fixup_map_array_wo = test->fixup_map_array_wo;
1030	int *fixup_map_array_small = test->fixup_map_array_small;
1031	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1032	int *fixup_map_event_output = test->fixup_map_event_output;
1033	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1034	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1035	int *fixup_map_timer = test->fixup_map_timer;
1036	int *fixup_map_kptr = test->fixup_map_kptr;
1037
1038	if (test->fill_helper) {
1039		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1040		test->fill_helper(test);
1041	}
1042
1043	/* Allocating HTs with 1 elem is fine here, since we only test
1044	 * for verifier and not do a runtime lookup, so the only thing
1045	 * that really matters is value size in this case.
1046	 */
1047	if (*fixup_map_hash_8b) {
1048		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1049					sizeof(long long), 1);
1050		do {
1051			prog[*fixup_map_hash_8b].imm = map_fds[0];
1052			fixup_map_hash_8b++;
1053		} while (*fixup_map_hash_8b);
1054	}
1055
1056	if (*fixup_map_hash_48b) {
1057		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1058					sizeof(struct test_val), 1);
1059		do {
1060			prog[*fixup_map_hash_48b].imm = map_fds[1];
1061			fixup_map_hash_48b++;
1062		} while (*fixup_map_hash_48b);
1063	}
1064
1065	if (*fixup_map_hash_16b) {
1066		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1067					sizeof(struct other_val), 1);
1068		do {
1069			prog[*fixup_map_hash_16b].imm = map_fds[2];
1070			fixup_map_hash_16b++;
1071		} while (*fixup_map_hash_16b);
1072	}
1073
1074	if (*fixup_map_array_48b) {
1075		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1076					sizeof(struct test_val), 1);
1077		update_map(map_fds[3], 0);
1078		do {
1079			prog[*fixup_map_array_48b].imm = map_fds[3];
1080			fixup_map_array_48b++;
1081		} while (*fixup_map_array_48b);
1082	}
1083
1084	if (*fixup_prog1) {
1085		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
1086		do {
1087			prog[*fixup_prog1].imm = map_fds[4];
1088			fixup_prog1++;
1089		} while (*fixup_prog1);
1090	}
1091
1092	if (*fixup_prog2) {
1093		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
1094		do {
1095			prog[*fixup_prog2].imm = map_fds[5];
1096			fixup_prog2++;
1097		} while (*fixup_prog2);
1098	}
1099
1100	if (*fixup_map_in_map) {
1101		map_fds[6] = create_map_in_map();
1102		do {
1103			prog[*fixup_map_in_map].imm = map_fds[6];
1104			fixup_map_in_map++;
1105		} while (*fixup_map_in_map);
1106	}
1107
1108	if (*fixup_cgroup_storage) {
1109		map_fds[7] = create_cgroup_storage(false);
1110		do {
1111			prog[*fixup_cgroup_storage].imm = map_fds[7];
1112			fixup_cgroup_storage++;
1113		} while (*fixup_cgroup_storage);
1114	}
1115
1116	if (*fixup_percpu_cgroup_storage) {
1117		map_fds[8] = create_cgroup_storage(true);
1118		do {
1119			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1120			fixup_percpu_cgroup_storage++;
1121		} while (*fixup_percpu_cgroup_storage);
1122	}
1123	if (*fixup_map_sockmap) {
1124		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
1125					sizeof(int), 1);
1126		do {
1127			prog[*fixup_map_sockmap].imm = map_fds[9];
1128			fixup_map_sockmap++;
1129		} while (*fixup_map_sockmap);
1130	}
1131	if (*fixup_map_sockhash) {
1132		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1133					sizeof(int), 1);
1134		do {
1135			prog[*fixup_map_sockhash].imm = map_fds[10];
1136			fixup_map_sockhash++;
1137		} while (*fixup_map_sockhash);
1138	}
1139	if (*fixup_map_xskmap) {
1140		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1141					sizeof(int), 1);
1142		do {
1143			prog[*fixup_map_xskmap].imm = map_fds[11];
1144			fixup_map_xskmap++;
1145		} while (*fixup_map_xskmap);
1146	}
1147	if (*fixup_map_stacktrace) {
1148		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1149					 sizeof(u64), 1);
1150		do {
1151			prog[*fixup_map_stacktrace].imm = map_fds[12];
1152			fixup_map_stacktrace++;
1153		} while (*fixup_map_stacktrace);
1154	}
1155	if (*fixup_map_spin_lock) {
1156		map_fds[13] = create_map_spin_lock();
1157		do {
1158			prog[*fixup_map_spin_lock].imm = map_fds[13];
1159			fixup_map_spin_lock++;
1160		} while (*fixup_map_spin_lock);
1161	}
1162	if (*fixup_map_array_ro) {
1163		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1164					   sizeof(struct test_val), 1,
1165					   BPF_F_RDONLY_PROG);
1166		update_map(map_fds[14], 0);
1167		do {
1168			prog[*fixup_map_array_ro].imm = map_fds[14];
1169			fixup_map_array_ro++;
1170		} while (*fixup_map_array_ro);
1171	}
1172	if (*fixup_map_array_wo) {
1173		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1174					   sizeof(struct test_val), 1,
1175					   BPF_F_WRONLY_PROG);
1176		update_map(map_fds[15], 0);
1177		do {
1178			prog[*fixup_map_array_wo].imm = map_fds[15];
1179			fixup_map_array_wo++;
1180		} while (*fixup_map_array_wo);
1181	}
1182	if (*fixup_map_array_small) {
1183		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1184					   1, 1, 0);
1185		update_map(map_fds[16], 0);
1186		do {
1187			prog[*fixup_map_array_small].imm = map_fds[16];
1188			fixup_map_array_small++;
1189		} while (*fixup_map_array_small);
1190	}
1191	if (*fixup_sk_storage_map) {
1192		map_fds[17] = create_sk_storage_map();
1193		do {
1194			prog[*fixup_sk_storage_map].imm = map_fds[17];
1195			fixup_sk_storage_map++;
1196		} while (*fixup_sk_storage_map);
1197	}
1198	if (*fixup_map_event_output) {
1199		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1200					   sizeof(int), sizeof(int), 1, 0);
1201		do {
1202			prog[*fixup_map_event_output].imm = map_fds[18];
1203			fixup_map_event_output++;
1204		} while (*fixup_map_event_output);
1205	}
1206	if (*fixup_map_reuseport_array) {
1207		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1208					   sizeof(u32), sizeof(u64), 1, 0);
1209		do {
1210			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1211			fixup_map_reuseport_array++;
1212		} while (*fixup_map_reuseport_array);
1213	}
1214	if (*fixup_map_ringbuf) {
1215		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1216					 0, getpagesize());
1217		do {
1218			prog[*fixup_map_ringbuf].imm = map_fds[20];
1219			fixup_map_ringbuf++;
1220		} while (*fixup_map_ringbuf);
1221	}
1222	if (*fixup_map_timer) {
1223		map_fds[21] = create_map_timer();
1224		do {
1225			prog[*fixup_map_timer].imm = map_fds[21];
1226			fixup_map_timer++;
1227		} while (*fixup_map_timer);
1228	}
1229	if (*fixup_map_kptr) {
1230		map_fds[22] = create_map_kptr();
1231		do {
1232			prog[*fixup_map_kptr].imm = map_fds[22];
1233			fixup_map_kptr++;
1234		} while (*fixup_map_kptr);
1235	}
1236
1237	fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
1238}
1239
1240struct libcap {
1241	struct __user_cap_header_struct hdr;
1242	struct __user_cap_data_struct data[2];
1243};
1244
1245static int set_admin(bool admin)
1246{
1247	int err;
1248
1249	if (admin) {
1250		err = cap_enable_effective(ADMIN_CAPS, NULL);
1251		if (err)
1252			perror("cap_enable_effective(ADMIN_CAPS)");
1253	} else {
1254		err = cap_disable_effective(ADMIN_CAPS, NULL);
1255		if (err)
1256			perror("cap_disable_effective(ADMIN_CAPS)");
1257	}
1258
1259	return err;
1260}
1261
1262static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1263			    void *data, size_t size_data)
1264{
1265	__u8 tmp[TEST_DATA_LEN << 2];
1266	__u32 size_tmp = sizeof(tmp);
1267	int err, saved_errno;
1268	LIBBPF_OPTS(bpf_test_run_opts, topts,
1269		.data_in = data,
1270		.data_size_in = size_data,
1271		.data_out = tmp,
1272		.data_size_out = size_tmp,
1273		.repeat = 1,
1274	);
1275
1276	if (unpriv)
1277		set_admin(true);
1278	err = bpf_prog_test_run_opts(fd_prog, &topts);
1279	saved_errno = errno;
1280
1281	if (unpriv)
1282		set_admin(false);
1283
1284	if (err) {
1285		switch (saved_errno) {
1286		case ENOTSUPP:
1287			printf("Did not run the program (not supported) ");
1288			return 0;
1289		case EPERM:
1290			if (unpriv) {
1291				printf("Did not run the program (no permission) ");
1292				return 0;
1293			}
1294			/* fallthrough; */
1295		default:
1296			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1297				strerror(saved_errno));
1298			return err;
1299		}
1300	}
1301
1302	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1303		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1304		return 1;
1305	}
1306
1307	return 0;
1308}
1309
1310/* Returns true if every part of exp (tab-separated) appears in log, in order.
1311 *
1312 * If exp is an empty string, returns true.
1313 */
1314static bool cmp_str_seq(const char *log, const char *exp)
1315{
1316	char needle[200];
1317	const char *p, *q;
1318	int len;
1319
1320	do {
1321		if (!strlen(exp))
1322			break;
1323		p = strchr(exp, '\t');
1324		if (!p)
1325			p = exp + strlen(exp);
1326
1327		len = p - exp;
1328		if (len >= sizeof(needle) || !len) {
1329			printf("FAIL\nTestcase bug\n");
1330			return false;
1331		}
1332		strncpy(needle, exp, len);
1333		needle[len] = 0;
1334		q = strstr(log, needle);
1335		if (!q) {
1336			printf("FAIL\nUnexpected verifier log!\n"
1337			       "EXP: %s\nRES:\n", needle);
1338			return false;
1339		}
1340		log = q + len;
1341		exp = p + 1;
1342	} while (*p);
1343	return true;
1344}
1345
1346static bool is_null_insn(struct bpf_insn *insn)
1347{
1348	struct bpf_insn null_insn = {};
1349
1350	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1351}
1352
1353static bool is_skip_insn(struct bpf_insn *insn)
1354{
1355	struct bpf_insn skip_insn = SKIP_INSNS();
1356
1357	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1358}
1359
1360static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1361{
1362	int i;
1363
1364	for (i = 0; i < max_len; ++i) {
1365		if (is_null_insn(&seq[i]))
1366			return i;
1367	}
1368	return max_len;
1369}
1370
1371static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1372{
1373	struct bpf_insn orig_masked;
1374
1375	memcpy(&orig_masked, orig, sizeof(orig_masked));
1376	if (masked->imm == INSN_IMM_MASK)
1377		orig_masked.imm = INSN_IMM_MASK;
1378	if (masked->off == INSN_OFF_MASK)
1379		orig_masked.off = INSN_OFF_MASK;
1380
1381	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1382}
1383
1384static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1385			    int seq_len, int subseq_len)
1386{
1387	int i, j;
1388
1389	if (subseq_len > seq_len)
1390		return -1;
1391
1392	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1393		bool found = true;
1394
1395		for (j = 0; j < subseq_len; ++j) {
1396			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1397				found = false;
1398				break;
1399			}
1400		}
1401		if (found)
1402			return i;
1403	}
1404
1405	return -1;
1406}
1407
1408static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1409{
1410	int i;
1411
1412	for (i = 0; i < len; ++i)
1413		if (is_skip_insn(&seq[i]))
1414			return i;
1415
1416	return -1;
1417}
1418
1419/* Return true if all sub-sequences in `subseqs` could be found in
1420 * `seq` one after another. Sub-sequences are separated by a single
1421 * nil instruction.
1422 */
1423static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1424				  int seq_len, int max_subseqs_len)
1425{
1426	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1427
1428	while (subseqs_len > 0) {
1429		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1430		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1431		int subseq_idx = find_insn_subseq(seq, subseqs,
1432						  seq_len, cur_subseq_len);
1433
1434		if (subseq_idx < 0)
1435			return false;
1436		seq += subseq_idx + cur_subseq_len;
1437		seq_len -= subseq_idx + cur_subseq_len;
1438		subseqs += cur_subseq_len + 1;
1439		subseqs_len -= cur_subseq_len + 1;
1440	}
1441
1442	return true;
1443}
1444
1445static void print_insn(struct bpf_insn *buf, int cnt)
1446{
1447	int i;
1448
1449	printf("  addr  op d s off  imm\n");
1450	for (i = 0; i < cnt; ++i) {
1451		struct bpf_insn *insn = &buf[i];
1452
1453		if (is_null_insn(insn))
1454			break;
1455
1456		if (is_skip_insn(insn))
1457			printf("  ...\n");
1458		else
1459			printf("  %04x: %02x %1x %x %04hx %08x\n",
1460			       i, insn->code, insn->dst_reg,
1461			       insn->src_reg, insn->off, insn->imm);
1462	}
1463}
1464
1465static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1466{
1467	struct bpf_insn *buf;
1468	unsigned int cnt;
1469	bool result = true;
1470	bool check_expected = !is_null_insn(test->expected_insns);
1471	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1472
1473	if (!check_expected && !check_unexpected)
1474		goto out;
1475
1476	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1477		printf("FAIL: can't get xlated program\n");
1478		result = false;
1479		goto out;
1480	}
1481
1482	if (check_expected &&
1483	    !find_all_insn_subseqs(buf, test->expected_insns,
1484				   cnt, MAX_EXPECTED_INSNS)) {
1485		printf("FAIL: can't find expected subsequence of instructions\n");
1486		result = false;
1487		if (verbose) {
1488			printf("Program:\n");
1489			print_insn(buf, cnt);
1490			printf("Expected subsequence:\n");
1491			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1492		}
1493	}
1494
1495	if (check_unexpected &&
1496	    find_all_insn_subseqs(buf, test->unexpected_insns,
1497				  cnt, MAX_UNEXPECTED_INSNS)) {
1498		printf("FAIL: found unexpected subsequence of instructions\n");
1499		result = false;
1500		if (verbose) {
1501			printf("Program:\n");
1502			print_insn(buf, cnt);
1503			printf("Un-expected subsequence:\n");
1504			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1505		}
1506	}
1507
1508	free(buf);
1509 out:
1510	return result;
1511}
1512
1513static void do_test_single(struct bpf_test *test, bool unpriv,
1514			   int *passes, int *errors)
1515{
1516	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1517	int prog_len, prog_type = test->prog_type;
1518	struct bpf_insn *prog = test->insns;
1519	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1520	int run_errs, run_successes;
1521	int map_fds[MAX_NR_MAPS];
1522	const char *expected_err;
1523	int fd_array[2] = { -1, -1 };
1524	int saved_errno;
1525	int fixup_skips;
1526	__u32 pflags;
1527	int i, err;
1528
1529	if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) {
1530		printf("SKIP (requires BPF JIT)\n");
1531		skips++;
1532		sched_yield();
1533		return;
1534	}
1535
1536	fd_prog = -1;
1537	for (i = 0; i < MAX_NR_MAPS; i++)
1538		map_fds[i] = -1;
1539	btf_fd = -1;
1540
1541	if (!prog_type)
1542		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1543	fixup_skips = skips;
1544	do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
1545	if (test->fill_insns) {
1546		prog = test->fill_insns;
1547		prog_len = test->prog_len;
1548	} else {
1549		prog_len = probe_filter_length(prog);
1550	}
1551	/* If there were some map skips during fixup due to missing bpf
1552	 * features, skip this test.
1553	 */
1554	if (fixup_skips != skips)
1555		return;
1556
1557	pflags = testing_prog_flags();
1558	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1559		pflags |= BPF_F_STRICT_ALIGNMENT;
1560	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1561		pflags |= BPF_F_ANY_ALIGNMENT;
1562	if (test->flags & ~3)
1563		pflags |= test->flags;
1564
1565	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1566		       test->result_unpriv : test->result;
1567	expected_err = unpriv && test->errstr_unpriv ?
1568		       test->errstr_unpriv : test->errstr;
1569
1570	opts.expected_attach_type = test->expected_attach_type;
1571	if (verbose)
1572		opts.log_level = verif_log_level | 4; /* force stats */
1573	else if (expected_ret == VERBOSE_ACCEPT)
1574		opts.log_level = 2;
1575	else
1576		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1577	opts.prog_flags = pflags;
1578	if (fd_array[1] != -1)
1579		opts.fd_array = &fd_array[0];
1580
1581	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1582	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1583		int attach_btf_id;
1584
1585		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1586						opts.expected_attach_type);
1587		if (attach_btf_id < 0) {
1588			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1589				test->kfunc);
1590			(*errors)++;
1591			return;
1592		}
1593
1594		opts.attach_btf_id = attach_btf_id;
1595	}
1596
1597	if (test->btf_types[0] != 0) {
1598		btf_fd = load_btf_for_test(test);
1599		if (btf_fd < 0)
1600			goto fail_log;
1601		opts.prog_btf_fd = btf_fd;
1602	}
1603
1604	if (test->func_info_cnt != 0) {
1605		opts.func_info = test->func_info;
1606		opts.func_info_cnt = test->func_info_cnt;
1607		opts.func_info_rec_size = sizeof(test->func_info[0]);
1608	}
1609
1610	opts.log_buf = bpf_vlog;
1611	opts.log_size = sizeof(bpf_vlog);
1612	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1613	saved_errno = errno;
1614
1615	/* BPF_PROG_TYPE_TRACING requires more setup and
1616	 * bpf_probe_prog_type won't give correct answer
1617	 */
1618	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1619	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1620		printf("SKIP (unsupported program type %d)\n", prog_type);
1621		skips++;
1622		goto close_fds;
1623	}
1624
1625	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1626		printf("SKIP (program uses an unsupported feature)\n");
1627		skips++;
1628		goto close_fds;
1629	}
1630
1631	alignment_prevented_execution = 0;
1632
1633	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1634		if (fd_prog < 0) {
1635			printf("FAIL\nFailed to load prog '%s'!\n",
1636			       strerror(saved_errno));
1637			goto fail_log;
1638		}
1639#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1640		if (fd_prog >= 0 &&
1641		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1642			alignment_prevented_execution = 1;
1643#endif
1644		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1645			goto fail_log;
1646		}
1647	} else {
1648		if (fd_prog >= 0) {
1649			printf("FAIL\nUnexpected success to load!\n");
1650			goto fail_log;
1651		}
1652		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1653			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1654			      expected_err, bpf_vlog);
1655			goto fail_log;
1656		}
1657	}
1658
1659	if (!unpriv && test->insn_processed) {
1660		uint32_t insn_processed;
1661		char *proc;
1662
1663		proc = strstr(bpf_vlog, "processed ");
1664		insn_processed = atoi(proc + 10);
1665		if (test->insn_processed != insn_processed) {
1666			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1667			       insn_processed, test->insn_processed);
1668			goto fail_log;
1669		}
1670	}
1671
1672	if (verbose)
1673		printf(", verifier log:\n%s", bpf_vlog);
1674
1675	if (!check_xlated_program(test, fd_prog))
1676		goto fail_log;
1677
1678	run_errs = 0;
1679	run_successes = 0;
1680	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1681		uint32_t expected_val;
1682		int i;
1683
1684		if (!test->runs)
1685			test->runs = 1;
1686
1687		for (i = 0; i < test->runs; i++) {
1688			if (unpriv && test->retvals[i].retval_unpriv)
1689				expected_val = test->retvals[i].retval_unpriv;
1690			else
1691				expected_val = test->retvals[i].retval;
1692
1693			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1694					       test->retvals[i].data,
1695					       sizeof(test->retvals[i].data));
1696			if (err) {
1697				printf("(run %d/%d) ", i + 1, test->runs);
1698				run_errs++;
1699			} else {
1700				run_successes++;
1701			}
1702		}
1703	}
1704
1705	if (!run_errs) {
1706		(*passes)++;
1707		if (run_successes > 1)
1708			printf("%d cases ", run_successes);
1709		printf("OK");
1710		if (alignment_prevented_execution)
1711			printf(" (NOTE: not executed due to unknown alignment)");
1712		printf("\n");
1713	} else {
1714		printf("\n");
1715		goto fail_log;
1716	}
1717close_fds:
1718	if (test->fill_insns)
1719		free(test->fill_insns);
1720	close(fd_prog);
1721	close(btf_fd);
1722	for (i = 0; i < MAX_NR_MAPS; i++)
1723		close(map_fds[i]);
1724	sched_yield();
1725	return;
1726fail_log:
1727	(*errors)++;
1728	printf("%s", bpf_vlog);
1729	goto close_fds;
1730}
1731
1732static bool is_admin(void)
1733{
1734	__u64 caps;
1735
1736	/* The test checks for finer cap as CAP_NET_ADMIN,
1737	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1738	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1739	 */
1740	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1741		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1742		return false;
1743	}
1744
1745	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1746}
1747
1748static bool test_as_unpriv(struct bpf_test *test)
1749{
1750#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1751	/* Some architectures have strict alignment requirements. In
1752	 * that case, the BPF verifier detects if a program has
1753	 * unaligned accesses and rejects them. A user can pass
1754	 * BPF_F_ANY_ALIGNMENT to a program to override this
1755	 * check. That, however, will only work when a privileged user
1756	 * loads a program. An unprivileged user loading a program
1757	 * with this flag will be rejected prior entering the
1758	 * verifier.
1759	 */
1760	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1761		return false;
1762#endif
1763	return !test->prog_type ||
1764	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1765	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1766}
1767
1768static int do_test(bool unpriv, unsigned int from, unsigned int to)
1769{
1770	int i, passes = 0, errors = 0;
1771
1772	/* ensure previous instance of the module is unloaded */
1773	unload_bpf_testmod(verbose);
1774
1775	if (load_bpf_testmod(verbose))
1776		return EXIT_FAILURE;
1777
1778	for (i = from; i < to; i++) {
1779		struct bpf_test *test = &tests[i];
1780
1781		/* Program types that are not supported by non-root we
1782		 * skip right away.
1783		 */
1784		if (test_as_unpriv(test) && unpriv_disabled) {
1785			printf("#%d/u %s SKIP\n", i, test->descr);
1786			skips++;
1787		} else if (test_as_unpriv(test)) {
1788			if (!unpriv)
1789				set_admin(false);
1790			printf("#%d/u %s ", i, test->descr);
1791			do_test_single(test, true, &passes, &errors);
1792			if (!unpriv)
1793				set_admin(true);
1794		}
1795
1796		if (unpriv) {
1797			printf("#%d/p %s SKIP\n", i, test->descr);
1798			skips++;
1799		} else {
1800			printf("#%d/p %s ", i, test->descr);
1801			do_test_single(test, false, &passes, &errors);
1802		}
1803	}
1804
1805	unload_bpf_testmod(verbose);
1806	kfuncs_cleanup();
1807
1808	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1809	       skips, errors);
1810	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1811}
1812
1813int main(int argc, char **argv)
1814{
1815	unsigned int from = 0, to = ARRAY_SIZE(tests);
1816	bool unpriv = !is_admin();
1817	int arg = 1;
1818
1819	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1820		arg++;
1821		verbose = true;
1822		verif_log_level = 1;
1823		argc--;
1824	}
1825	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1826		arg++;
1827		verbose = true;
1828		verif_log_level = 2;
1829		argc--;
1830	}
1831
1832	if (argc == 3) {
1833		unsigned int l = atoi(argv[arg]);
1834		unsigned int u = atoi(argv[arg + 1]);
1835
1836		if (l < to && u < to) {
1837			from = l;
1838			to   = u + 1;
1839		}
1840	} else if (argc == 2) {
1841		unsigned int t = atoi(argv[arg]);
1842
1843		if (t < to) {
1844			from = t;
1845			to   = t + 1;
1846		}
1847	}
1848
1849	unpriv_disabled = get_unpriv_disabled();
1850	if (unpriv && unpriv_disabled) {
1851		printf("Cannot run as unprivileged user with sysctl %s.\n",
1852		       UNPRIV_SYSCTL);
1853		return EXIT_FAILURE;
1854	}
1855
1856	jit_disabled = !is_jit_enabled();
1857
1858	/* Use libbpf 1.0 API mode */
1859	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1860
1861	bpf_semi_rand_init();
1862	return do_test(unpriv, from, to);
1863}
1864