1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48	return map__dso(machine->vmlinux_map);
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53	INIT_LIST_HEAD(&dsos->head);
54	dsos->root = RB_ROOT;
55	init_rwsem(&dsos->lock);
56}
57
58static int machine__set_mmap_name(struct machine *machine)
59{
60	if (machine__is_host(machine))
61		machine->mmap_name = strdup("[kernel.kallsyms]");
62	else if (machine__is_default_guest(machine))
63		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
64	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
65			  machine->pid) < 0)
66		machine->mmap_name = NULL;
67
68	return machine->mmap_name ? 0 : -ENOMEM;
69}
70
71static void thread__set_guest_comm(struct thread *thread, pid_t pid)
72{
73	char comm[64];
74
75	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
76	thread__set_comm(thread, comm, 0);
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81	int err = -ENOMEM;
82
83	memset(machine, 0, sizeof(*machine));
84	machine->kmaps = maps__new(machine);
85	if (machine->kmaps == NULL)
86		return -ENOMEM;
87
88	RB_CLEAR_NODE(&machine->rb_node);
89	dsos__init(&machine->dsos);
90
91	threads__init(&machine->threads);
92
93	machine->vdso_info = NULL;
94	machine->env = NULL;
95
96	machine->pid = pid;
97
98	machine->id_hdr_size = 0;
99	machine->kptr_restrict_warned = false;
100	machine->comm_exec = false;
101	machine->kernel_start = 0;
102	machine->vmlinux_map = NULL;
103
104	machine->root_dir = strdup(root_dir);
105	if (machine->root_dir == NULL)
106		goto out;
107
108	if (machine__set_mmap_name(machine))
109		goto out;
110
111	if (pid != HOST_KERNEL_ID) {
112		struct thread *thread = machine__findnew_thread(machine, -1,
113								pid);
114
115		if (thread == NULL)
116			goto out;
117
118		thread__set_guest_comm(thread, pid);
119		thread__put(thread);
120	}
121
122	machine->current_tid = NULL;
123	err = 0;
124
125out:
126	if (err) {
127		zfree(&machine->kmaps);
128		zfree(&machine->root_dir);
129		zfree(&machine->mmap_name);
130	}
131	return 0;
132}
133
134struct machine *machine__new_host(void)
135{
136	struct machine *machine = malloc(sizeof(*machine));
137
138	if (machine != NULL) {
139		machine__init(machine, "", HOST_KERNEL_ID);
140
141		if (machine__create_kernel_maps(machine) < 0)
142			goto out_delete;
143	}
144
145	return machine;
146out_delete:
147	free(machine);
148	return NULL;
149}
150
151struct machine *machine__new_kallsyms(void)
152{
153	struct machine *machine = machine__new_host();
154	/*
155	 * FIXME:
156	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
157	 *    ask for not using the kcore parsing code, once this one is fixed
158	 *    to create a map per module.
159	 */
160	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
161		machine__delete(machine);
162		machine = NULL;
163	}
164
165	return machine;
166}
167
168static void dsos__purge(struct dsos *dsos)
169{
170	struct dso *pos, *n;
171
172	down_write(&dsos->lock);
173
174	list_for_each_entry_safe(pos, n, &dsos->head, node) {
175		RB_CLEAR_NODE(&pos->rb_node);
176		pos->root = NULL;
177		list_del_init(&pos->node);
178		dso__put(pos);
179	}
180
181	up_write(&dsos->lock);
182}
183
184static void dsos__exit(struct dsos *dsos)
185{
186	dsos__purge(dsos);
187	exit_rwsem(&dsos->lock);
188}
189
190void machine__delete_threads(struct machine *machine)
191{
192	threads__remove_all_threads(&machine->threads);
193}
194
195void machine__exit(struct machine *machine)
196{
197	if (machine == NULL)
198		return;
199
200	machine__destroy_kernel_maps(machine);
201	maps__zput(machine->kmaps);
202	dsos__exit(&machine->dsos);
203	machine__exit_vdso(machine);
204	zfree(&machine->root_dir);
205	zfree(&machine->mmap_name);
206	zfree(&machine->current_tid);
207	zfree(&machine->kallsyms_filename);
208
209	threads__exit(&machine->threads);
210}
211
212void machine__delete(struct machine *machine)
213{
214	if (machine) {
215		machine__exit(machine);
216		free(machine);
217	}
218}
219
220void machines__init(struct machines *machines)
221{
222	machine__init(&machines->host, "", HOST_KERNEL_ID);
223	machines->guests = RB_ROOT_CACHED;
224}
225
226void machines__exit(struct machines *machines)
227{
228	machine__exit(&machines->host);
229	/* XXX exit guest */
230}
231
232struct machine *machines__add(struct machines *machines, pid_t pid,
233			      const char *root_dir)
234{
235	struct rb_node **p = &machines->guests.rb_root.rb_node;
236	struct rb_node *parent = NULL;
237	struct machine *pos, *machine = malloc(sizeof(*machine));
238	bool leftmost = true;
239
240	if (machine == NULL)
241		return NULL;
242
243	if (machine__init(machine, root_dir, pid) != 0) {
244		free(machine);
245		return NULL;
246	}
247
248	while (*p != NULL) {
249		parent = *p;
250		pos = rb_entry(parent, struct machine, rb_node);
251		if (pid < pos->pid)
252			p = &(*p)->rb_left;
253		else {
254			p = &(*p)->rb_right;
255			leftmost = false;
256		}
257	}
258
259	rb_link_node(&machine->rb_node, parent, p);
260	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
261
262	machine->machines = machines;
263
264	return machine;
265}
266
267void machines__set_comm_exec(struct machines *machines, bool comm_exec)
268{
269	struct rb_node *nd;
270
271	machines->host.comm_exec = comm_exec;
272
273	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
274		struct machine *machine = rb_entry(nd, struct machine, rb_node);
275
276		machine->comm_exec = comm_exec;
277	}
278}
279
280struct machine *machines__find(struct machines *machines, pid_t pid)
281{
282	struct rb_node **p = &machines->guests.rb_root.rb_node;
283	struct rb_node *parent = NULL;
284	struct machine *machine;
285	struct machine *default_machine = NULL;
286
287	if (pid == HOST_KERNEL_ID)
288		return &machines->host;
289
290	while (*p != NULL) {
291		parent = *p;
292		machine = rb_entry(parent, struct machine, rb_node);
293		if (pid < machine->pid)
294			p = &(*p)->rb_left;
295		else if (pid > machine->pid)
296			p = &(*p)->rb_right;
297		else
298			return machine;
299		if (!machine->pid)
300			default_machine = machine;
301	}
302
303	return default_machine;
304}
305
306struct machine *machines__findnew(struct machines *machines, pid_t pid)
307{
308	char path[PATH_MAX];
309	const char *root_dir = "";
310	struct machine *machine = machines__find(machines, pid);
311
312	if (machine && (machine->pid == pid))
313		goto out;
314
315	if ((pid != HOST_KERNEL_ID) &&
316	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
317	    (symbol_conf.guestmount)) {
318		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
319		if (access(path, R_OK)) {
320			static struct strlist *seen;
321
322			if (!seen)
323				seen = strlist__new(NULL, NULL);
324
325			if (!strlist__has_entry(seen, path)) {
326				pr_err("Can't access file %s\n", path);
327				strlist__add(seen, path);
328			}
329			machine = NULL;
330			goto out;
331		}
332		root_dir = path;
333	}
334
335	machine = machines__add(machines, pid, root_dir);
336out:
337	return machine;
338}
339
340struct machine *machines__find_guest(struct machines *machines, pid_t pid)
341{
342	struct machine *machine = machines__find(machines, pid);
343
344	if (!machine)
345		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
346	return machine;
347}
348
349/*
350 * A common case for KVM test programs is that the test program acts as the
351 * hypervisor, creating, running and destroying the virtual machine, and
352 * providing the guest object code from its own object code. In this case,
353 * the VM is not running an OS, but only the functions loaded into it by the
354 * hypervisor test program, and conveniently, loaded at the same virtual
355 * addresses.
356 *
357 * Normally to resolve addresses, MMAP events are needed to map addresses
358 * back to the object code and debug symbols for that object code.
359 *
360 * Currently, there is no way to get such mapping information from guests
361 * but, in the scenario described above, the guest has the same mappings
362 * as the hypervisor, so support for that scenario can be achieved.
363 *
364 * To support that, copy the host thread's maps to the guest thread's maps.
365 * Note, we do not discover the guest until we encounter a guest event,
366 * which works well because it is not until then that we know that the host
367 * thread's maps have been set up.
368 *
369 * This function returns the guest thread. Apart from keeping the data
370 * structures sane, using a thread belonging to the guest machine, instead
371 * of the host thread, allows it to have its own comm (refer
372 * thread__set_guest_comm()).
373 */
374static struct thread *findnew_guest_code(struct machine *machine,
375					 struct machine *host_machine,
376					 pid_t pid)
377{
378	struct thread *host_thread;
379	struct thread *thread;
380	int err;
381
382	if (!machine)
383		return NULL;
384
385	thread = machine__findnew_thread(machine, -1, pid);
386	if (!thread)
387		return NULL;
388
389	/* Assume maps are set up if there are any */
390	if (!maps__empty(thread__maps(thread)))
391		return thread;
392
393	host_thread = machine__find_thread(host_machine, -1, pid);
394	if (!host_thread)
395		goto out_err;
396
397	thread__set_guest_comm(thread, pid);
398
399	/*
400	 * Guest code can be found in hypervisor process at the same address
401	 * so copy host maps.
402	 */
403	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
404	thread__put(host_thread);
405	if (err)
406		goto out_err;
407
408	return thread;
409
410out_err:
411	thread__zput(thread);
412	return NULL;
413}
414
415struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
416{
417	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
418	struct machine *machine = machines__findnew(machines, pid);
419
420	return findnew_guest_code(machine, host_machine, pid);
421}
422
423struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
424{
425	struct machines *machines = machine->machines;
426	struct machine *host_machine;
427
428	if (!machines)
429		return NULL;
430
431	host_machine = machines__find(machines, HOST_KERNEL_ID);
432
433	return findnew_guest_code(machine, host_machine, pid);
434}
435
436void machines__process_guests(struct machines *machines,
437			      machine__process_t process, void *data)
438{
439	struct rb_node *nd;
440
441	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
442		struct machine *pos = rb_entry(nd, struct machine, rb_node);
443		process(pos, data);
444	}
445}
446
447void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
448{
449	struct rb_node *node;
450	struct machine *machine;
451
452	machines->host.id_hdr_size = id_hdr_size;
453
454	for (node = rb_first_cached(&machines->guests); node;
455	     node = rb_next(node)) {
456		machine = rb_entry(node, struct machine, rb_node);
457		machine->id_hdr_size = id_hdr_size;
458	}
459
460	return;
461}
462
463static void machine__update_thread_pid(struct machine *machine,
464				       struct thread *th, pid_t pid)
465{
466	struct thread *leader;
467
468	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
469		return;
470
471	thread__set_pid(th, pid);
472
473	if (thread__pid(th) == thread__tid(th))
474		return;
475
476	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
477	if (!leader)
478		goto out_err;
479
480	if (!thread__maps(leader))
481		thread__set_maps(leader, maps__new(machine));
482
483	if (!thread__maps(leader))
484		goto out_err;
485
486	if (thread__maps(th) == thread__maps(leader))
487		goto out_put;
488
489	if (thread__maps(th)) {
490		/*
491		 * Maps are created from MMAP events which provide the pid and
492		 * tid.  Consequently there never should be any maps on a thread
493		 * with an unknown pid.  Just print an error if there are.
494		 */
495		if (!maps__empty(thread__maps(th)))
496			pr_err("Discarding thread maps for %d:%d\n",
497				thread__pid(th), thread__tid(th));
498		maps__put(thread__maps(th));
499	}
500
501	thread__set_maps(th, maps__get(thread__maps(leader)));
502out_put:
503	thread__put(leader);
504	return;
505out_err:
506	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
507	goto out_put;
508}
509
510/*
511 * Caller must eventually drop thread->refcnt returned with a successful
512 * lookup/new thread inserted.
513 */
514static struct thread *__machine__findnew_thread(struct machine *machine,
515						pid_t pid,
516						pid_t tid,
517						bool create)
518{
519	struct thread *th = threads__find(&machine->threads, tid);
520	bool created;
521
522	if (th) {
523		machine__update_thread_pid(machine, th, pid);
524		return th;
525	}
526	if (!create)
527		return NULL;
528
529	th = threads__findnew(&machine->threads, pid, tid, &created);
530	if (created) {
531		/*
532		 * We have to initialize maps separately after rb tree is
533		 * updated.
534		 *
535		 * The reason is that we call machine__findnew_thread within
536		 * thread__init_maps to find the thread leader and that would
537		 * screwed the rb tree.
538		 */
539		if (thread__init_maps(th, machine)) {
540			pr_err("Thread init failed thread %d\n", pid);
541			threads__remove(&machine->threads, th);
542			thread__put(th);
543			return NULL;
544		}
545	} else
546		machine__update_thread_pid(machine, th, pid);
547
548	return th;
549}
550
551struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552{
553	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
554}
555
556struct thread *machine__find_thread(struct machine *machine, pid_t pid,
557				    pid_t tid)
558{
559	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
560}
561
562/*
563 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
564 * So here a single thread is created for that, but actually there is a separate
565 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
566 * is only 1. That causes problems for some tools, requiring workarounds. For
567 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
568 */
569struct thread *machine__idle_thread(struct machine *machine)
570{
571	struct thread *thread = machine__findnew_thread(machine, 0, 0);
572
573	if (!thread || thread__set_comm(thread, "swapper", 0) ||
574	    thread__set_namespaces(thread, 0, NULL))
575		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
576
577	return thread;
578}
579
580struct comm *machine__thread_exec_comm(struct machine *machine,
581				       struct thread *thread)
582{
583	if (machine->comm_exec)
584		return thread__exec_comm(thread);
585	else
586		return thread__comm(thread);
587}
588
589int machine__process_comm_event(struct machine *machine, union perf_event *event,
590				struct perf_sample *sample)
591{
592	struct thread *thread = machine__findnew_thread(machine,
593							event->comm.pid,
594							event->comm.tid);
595	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596	int err = 0;
597
598	if (exec)
599		machine->comm_exec = true;
600
601	if (dump_trace)
602		perf_event__fprintf_comm(event, stdout);
603
604	if (thread == NULL ||
605	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607		err = -1;
608	}
609
610	thread__put(thread);
611
612	return err;
613}
614
615int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616				      union perf_event *event,
617				      struct perf_sample *sample __maybe_unused)
618{
619	struct thread *thread = machine__findnew_thread(machine,
620							event->namespaces.pid,
621							event->namespaces.tid);
622	int err = 0;
623
624	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625		  "\nWARNING: kernel seems to support more namespaces than perf"
626		  " tool.\nTry updating the perf tool..\n\n");
627
628	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629		  "\nWARNING: perf tool seems to support more namespaces than"
630		  " the kernel.\nTry updating the kernel..\n\n");
631
632	if (dump_trace)
633		perf_event__fprintf_namespaces(event, stdout);
634
635	if (thread == NULL ||
636	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638		err = -1;
639	}
640
641	thread__put(thread);
642
643	return err;
644}
645
646int machine__process_cgroup_event(struct machine *machine,
647				  union perf_event *event,
648				  struct perf_sample *sample __maybe_unused)
649{
650	struct cgroup *cgrp;
651
652	if (dump_trace)
653		perf_event__fprintf_cgroup(event, stdout);
654
655	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
656	if (cgrp == NULL)
657		return -ENOMEM;
658
659	return 0;
660}
661
662int machine__process_lost_event(struct machine *machine __maybe_unused,
663				union perf_event *event, struct perf_sample *sample __maybe_unused)
664{
665	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
666		    event->lost.id, event->lost.lost);
667	return 0;
668}
669
670int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
671					union perf_event *event, struct perf_sample *sample)
672{
673	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
674		    sample->id, event->lost_samples.lost);
675	return 0;
676}
677
678static struct dso *machine__findnew_module_dso(struct machine *machine,
679					       struct kmod_path *m,
680					       const char *filename)
681{
682	struct dso *dso;
683
684	down_write(&machine->dsos.lock);
685
686	dso = __dsos__find(&machine->dsos, m->name, true);
687	if (!dso) {
688		dso = __dsos__addnew(&machine->dsos, m->name);
689		if (dso == NULL)
690			goto out_unlock;
691
692		dso__set_module_info(dso, m, machine);
693		dso__set_long_name(dso, strdup(filename), true);
694		dso->kernel = DSO_SPACE__KERNEL;
695	}
696
697	dso__get(dso);
698out_unlock:
699	up_write(&machine->dsos.lock);
700	return dso;
701}
702
703int machine__process_aux_event(struct machine *machine __maybe_unused,
704			       union perf_event *event)
705{
706	if (dump_trace)
707		perf_event__fprintf_aux(event, stdout);
708	return 0;
709}
710
711int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
712					union perf_event *event)
713{
714	if (dump_trace)
715		perf_event__fprintf_itrace_start(event, stdout);
716	return 0;
717}
718
719int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
720					    union perf_event *event)
721{
722	if (dump_trace)
723		perf_event__fprintf_aux_output_hw_id(event, stdout);
724	return 0;
725}
726
727int machine__process_switch_event(struct machine *machine __maybe_unused,
728				  union perf_event *event)
729{
730	if (dump_trace)
731		perf_event__fprintf_switch(event, stdout);
732	return 0;
733}
734
735static int machine__process_ksymbol_register(struct machine *machine,
736					     union perf_event *event,
737					     struct perf_sample *sample __maybe_unused)
738{
739	struct symbol *sym;
740	struct dso *dso;
741	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
742	int err = 0;
743
744	if (!map) {
745		dso = dso__new(event->ksymbol.name);
746
747		if (!dso) {
748			err = -ENOMEM;
749			goto out;
750		}
751		dso->kernel = DSO_SPACE__KERNEL;
752		map = map__new2(0, dso);
753		dso__put(dso);
754		if (!map) {
755			err = -ENOMEM;
756			goto out;
757		}
758		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
759			dso->binary_type = DSO_BINARY_TYPE__OOL;
760			dso->data.file_size = event->ksymbol.len;
761			dso__set_loaded(dso);
762		}
763
764		map__set_start(map, event->ksymbol.addr);
765		map__set_end(map, map__start(map) + event->ksymbol.len);
766		err = maps__insert(machine__kernel_maps(machine), map);
767		if (err) {
768			err = -ENOMEM;
769			goto out;
770		}
771
772		dso__set_loaded(dso);
773
774		if (is_bpf_image(event->ksymbol.name)) {
775			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
776			dso__set_long_name(dso, "", false);
777		}
778	} else {
779		dso = map__dso(map);
780	}
781
782	sym = symbol__new(map__map_ip(map, map__start(map)),
783			  event->ksymbol.len,
784			  0, 0, event->ksymbol.name);
785	if (!sym) {
786		err = -ENOMEM;
787		goto out;
788	}
789	dso__insert_symbol(dso, sym);
790out:
791	map__put(map);
792	return err;
793}
794
795static int machine__process_ksymbol_unregister(struct machine *machine,
796					       union perf_event *event,
797					       struct perf_sample *sample __maybe_unused)
798{
799	struct symbol *sym;
800	struct map *map;
801
802	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
803	if (!map)
804		return 0;
805
806	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
807		maps__remove(machine__kernel_maps(machine), map);
808	else {
809		struct dso *dso = map__dso(map);
810
811		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
812		if (sym)
813			dso__delete_symbol(dso, sym);
814	}
815	map__put(map);
816	return 0;
817}
818
819int machine__process_ksymbol(struct machine *machine __maybe_unused,
820			     union perf_event *event,
821			     struct perf_sample *sample)
822{
823	if (dump_trace)
824		perf_event__fprintf_ksymbol(event, stdout);
825
826	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
827		return machine__process_ksymbol_unregister(machine, event,
828							   sample);
829	return machine__process_ksymbol_register(machine, event, sample);
830}
831
832int machine__process_text_poke(struct machine *machine, union perf_event *event,
833			       struct perf_sample *sample __maybe_unused)
834{
835	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
836	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
837	struct dso *dso = map ? map__dso(map) : NULL;
838
839	if (dump_trace)
840		perf_event__fprintf_text_poke(event, machine, stdout);
841
842	if (!event->text_poke.new_len)
843		goto out;
844
845	if (cpumode != PERF_RECORD_MISC_KERNEL) {
846		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
847		goto out;
848	}
849
850	if (dso) {
851		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
852		int ret;
853
854		/*
855		 * Kernel maps might be changed when loading symbols so loading
856		 * must be done prior to using kernel maps.
857		 */
858		map__load(map);
859		ret = dso__data_write_cache_addr(dso, map, machine,
860						 event->text_poke.addr,
861						 new_bytes,
862						 event->text_poke.new_len);
863		if (ret != event->text_poke.new_len)
864			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
865				 event->text_poke.addr);
866	} else {
867		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
868			 event->text_poke.addr);
869	}
870out:
871	map__put(map);
872	return 0;
873}
874
875static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
876					      const char *filename)
877{
878	struct map *map = NULL;
879	struct kmod_path m;
880	struct dso *dso;
881	int err;
882
883	if (kmod_path__parse_name(&m, filename))
884		return NULL;
885
886	dso = machine__findnew_module_dso(machine, &m, filename);
887	if (dso == NULL)
888		goto out;
889
890	map = map__new2(start, dso);
891	if (map == NULL)
892		goto out;
893
894	err = maps__insert(machine__kernel_maps(machine), map);
895	/* If maps__insert failed, return NULL. */
896	if (err) {
897		map__put(map);
898		map = NULL;
899	}
900out:
901	/* put the dso here, corresponding to  machine__findnew_module_dso */
902	dso__put(dso);
903	zfree(&m.name);
904	return map;
905}
906
907size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
908{
909	struct rb_node *nd;
910	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
911
912	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913		struct machine *pos = rb_entry(nd, struct machine, rb_node);
914		ret += __dsos__fprintf(&pos->dsos.head, fp);
915	}
916
917	return ret;
918}
919
920size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
921				     bool (skip)(struct dso *dso, int parm), int parm)
922{
923	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
924}
925
926size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
927				     bool (skip)(struct dso *dso, int parm), int parm)
928{
929	struct rb_node *nd;
930	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
931
932	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933		struct machine *pos = rb_entry(nd, struct machine, rb_node);
934		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
935	}
936	return ret;
937}
938
939size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
940{
941	int i;
942	size_t printed = 0;
943	struct dso *kdso = machine__kernel_dso(machine);
944
945	if (kdso->has_build_id) {
946		char filename[PATH_MAX];
947		if (dso__build_id_filename(kdso, filename, sizeof(filename),
948					   false))
949			printed += fprintf(fp, "[0] %s\n", filename);
950	}
951
952	for (i = 0; i < vmlinux_path__nr_entries; ++i)
953		printed += fprintf(fp, "[%d] %s\n",
954				   i + kdso->has_build_id, vmlinux_path[i]);
955
956	return printed;
957}
958
959struct machine_fprintf_cb_args {
960	FILE *fp;
961	size_t printed;
962};
963
964static int machine_fprintf_cb(struct thread *thread, void *data)
965{
966	struct machine_fprintf_cb_args *args = data;
967
968	/* TODO: handle fprintf errors. */
969	args->printed += thread__fprintf(thread, args->fp);
970	return 0;
971}
972
973size_t machine__fprintf(struct machine *machine, FILE *fp)
974{
975	struct machine_fprintf_cb_args args = {
976		.fp = fp,
977		.printed = 0,
978	};
979	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
980
981	machine__for_each_thread(machine, machine_fprintf_cb, &args);
982	return ret + args.printed;
983}
984
985static struct dso *machine__get_kernel(struct machine *machine)
986{
987	const char *vmlinux_name = machine->mmap_name;
988	struct dso *kernel;
989
990	if (machine__is_host(machine)) {
991		if (symbol_conf.vmlinux_name)
992			vmlinux_name = symbol_conf.vmlinux_name;
993
994		kernel = machine__findnew_kernel(machine, vmlinux_name,
995						 "[kernel]", DSO_SPACE__KERNEL);
996	} else {
997		if (symbol_conf.default_guest_vmlinux_name)
998			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
999
1000		kernel = machine__findnew_kernel(machine, vmlinux_name,
1001						 "[guest.kernel]",
1002						 DSO_SPACE__KERNEL_GUEST);
1003	}
1004
1005	if (kernel != NULL && (!kernel->has_build_id))
1006		dso__read_running_kernel_build_id(kernel, machine);
1007
1008	return kernel;
1009}
1010
1011void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012				    size_t bufsz)
1013{
1014	if (machine__is_default_guest(machine))
1015		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016	else
1017		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018}
1019
1020const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021
1022/* Figure out the start address of kernel map from /proc/kallsyms.
1023 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024 * symbol_name if it's not that important.
1025 */
1026static int machine__get_running_kernel_start(struct machine *machine,
1027					     const char **symbol_name,
1028					     u64 *start, u64 *end)
1029{
1030	char filename[PATH_MAX];
1031	int i, err = -1;
1032	const char *name;
1033	u64 addr = 0;
1034
1035	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036
1037	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038		return 0;
1039
1040	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041		err = kallsyms__get_function_start(filename, name, &addr);
1042		if (!err)
1043			break;
1044	}
1045
1046	if (err)
1047		return -1;
1048
1049	if (symbol_name)
1050		*symbol_name = name;
1051
1052	*start = addr;
1053
1054	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055	if (err)
1056		err = kallsyms__get_function_start(filename, "_etext", &addr);
1057	if (!err)
1058		*end = addr;
1059
1060	return 0;
1061}
1062
1063int machine__create_extra_kernel_map(struct machine *machine,
1064				     struct dso *kernel,
1065				     struct extra_kernel_map *xm)
1066{
1067	struct kmap *kmap;
1068	struct map *map;
1069	int err;
1070
1071	map = map__new2(xm->start, kernel);
1072	if (!map)
1073		return -ENOMEM;
1074
1075	map__set_end(map, xm->end);
1076	map__set_pgoff(map, xm->pgoff);
1077
1078	kmap = map__kmap(map);
1079
1080	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081
1082	err = maps__insert(machine__kernel_maps(machine), map);
1083
1084	if (!err) {
1085		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086			kmap->name, map__start(map), map__end(map));
1087	}
1088
1089	map__put(map);
1090
1091	return err;
1092}
1093
1094static u64 find_entry_trampoline(struct dso *dso)
1095{
1096	/* Duplicates are removed so lookup all aliases */
1097	const char *syms[] = {
1098		"_entry_trampoline",
1099		"__entry_trampoline_start",
1100		"entry_SYSCALL_64_trampoline",
1101	};
1102	struct symbol *sym = dso__first_symbol(dso);
1103	unsigned int i;
1104
1105	for (; sym; sym = dso__next_symbol(sym)) {
1106		if (sym->binding != STB_GLOBAL)
1107			continue;
1108		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109			if (!strcmp(sym->name, syms[i]))
1110				return sym->start;
1111		}
1112	}
1113
1114	return 0;
1115}
1116
1117/*
1118 * These values can be used for kernels that do not have symbols for the entry
1119 * trampolines in kallsyms.
1120 */
1121#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1122#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1123#define X86_64_ENTRY_TRAMPOLINE		0x6000
1124
1125struct machine__map_x86_64_entry_trampolines_args {
1126	struct maps *kmaps;
1127	bool found;
1128};
1129
1130static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131{
1132	struct machine__map_x86_64_entry_trampolines_args *args = data;
1133	struct map *dest_map;
1134	struct kmap *kmap = __map__kmap(map);
1135
1136	if (!kmap || !is_entry_trampoline(kmap->name))
1137		return 0;
1138
1139	dest_map = maps__find(args->kmaps, map__pgoff(map));
1140	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142
1143	map__put(dest_map);
1144	args->found = true;
1145	return 0;
1146}
1147
1148/* Map x86_64 PTI entry trampolines */
1149int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150					  struct dso *kernel)
1151{
1152	struct machine__map_x86_64_entry_trampolines_args args = {
1153		.kmaps = machine__kernel_maps(machine),
1154		.found = false,
1155	};
1156	int nr_cpus_avail, cpu;
1157	u64 pgoff;
1158
1159	/*
1160	 * In the vmlinux case, pgoff is a virtual address which must now be
1161	 * mapped to a vmlinux offset.
1162	 */
1163	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164
1165	if (args.found || machine->trampolines_mapped)
1166		return 0;
1167
1168	pgoff = find_entry_trampoline(kernel);
1169	if (!pgoff)
1170		return 0;
1171
1172	nr_cpus_avail = machine__nr_cpus_avail(machine);
1173
1174	/* Add a 1 page map for each CPU's entry trampoline */
1175	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178			 X86_64_ENTRY_TRAMPOLINE;
1179		struct extra_kernel_map xm = {
1180			.start = va,
1181			.end   = va + page_size,
1182			.pgoff = pgoff,
1183		};
1184
1185		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186
1187		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188			return -1;
1189	}
1190
1191	machine->trampolines_mapped = nr_cpus_avail;
1192
1193	return 0;
1194}
1195
1196int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197					     struct dso *kernel __maybe_unused)
1198{
1199	return 0;
1200}
1201
1202static int
1203__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204{
1205	/* In case of renewal the kernel map, destroy previous one */
1206	machine__destroy_kernel_maps(machine);
1207
1208	map__put(machine->vmlinux_map);
1209	machine->vmlinux_map = map__new2(0, kernel);
1210	if (machine->vmlinux_map == NULL)
1211		return -ENOMEM;
1212
1213	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215}
1216
1217void machine__destroy_kernel_maps(struct machine *machine)
1218{
1219	struct kmap *kmap;
1220	struct map *map = machine__kernel_map(machine);
1221
1222	if (map == NULL)
1223		return;
1224
1225	kmap = map__kmap(map);
1226	maps__remove(machine__kernel_maps(machine), map);
1227	if (kmap && kmap->ref_reloc_sym) {
1228		zfree((char **)&kmap->ref_reloc_sym->name);
1229		zfree(&kmap->ref_reloc_sym);
1230	}
1231
1232	map__zput(machine->vmlinux_map);
1233}
1234
1235int machines__create_guest_kernel_maps(struct machines *machines)
1236{
1237	int ret = 0;
1238	struct dirent **namelist = NULL;
1239	int i, items = 0;
1240	char path[PATH_MAX];
1241	pid_t pid;
1242	char *endp;
1243
1244	if (symbol_conf.default_guest_vmlinux_name ||
1245	    symbol_conf.default_guest_modules ||
1246	    symbol_conf.default_guest_kallsyms) {
1247		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248	}
1249
1250	if (symbol_conf.guestmount) {
1251		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252		if (items <= 0)
1253			return -ENOENT;
1254		for (i = 0; i < items; i++) {
1255			if (!isdigit(namelist[i]->d_name[0])) {
1256				/* Filter out . and .. */
1257				continue;
1258			}
1259			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260			if ((*endp != '\0') ||
1261			    (endp == namelist[i]->d_name) ||
1262			    (errno == ERANGE)) {
1263				pr_debug("invalid directory (%s). Skipping.\n",
1264					 namelist[i]->d_name);
1265				continue;
1266			}
1267			sprintf(path, "%s/%s/proc/kallsyms",
1268				symbol_conf.guestmount,
1269				namelist[i]->d_name);
1270			ret = access(path, R_OK);
1271			if (ret) {
1272				pr_debug("Can't access file %s\n", path);
1273				goto failure;
1274			}
1275			machines__create_kernel_maps(machines, pid);
1276		}
1277failure:
1278		free(namelist);
1279	}
1280
1281	return ret;
1282}
1283
1284void machines__destroy_kernel_maps(struct machines *machines)
1285{
1286	struct rb_node *next = rb_first_cached(&machines->guests);
1287
1288	machine__destroy_kernel_maps(&machines->host);
1289
1290	while (next) {
1291		struct machine *pos = rb_entry(next, struct machine, rb_node);
1292
1293		next = rb_next(&pos->rb_node);
1294		rb_erase_cached(&pos->rb_node, &machines->guests);
1295		machine__delete(pos);
1296	}
1297}
1298
1299int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300{
1301	struct machine *machine = machines__findnew(machines, pid);
1302
1303	if (machine == NULL)
1304		return -1;
1305
1306	return machine__create_kernel_maps(machine);
1307}
1308
1309int machine__load_kallsyms(struct machine *machine, const char *filename)
1310{
1311	struct map *map = machine__kernel_map(machine);
1312	struct dso *dso = map__dso(map);
1313	int ret = __dso__load_kallsyms(dso, filename, map, true);
1314
1315	if (ret > 0) {
1316		dso__set_loaded(dso);
1317		/*
1318		 * Since /proc/kallsyms will have multiple sessions for the
1319		 * kernel, with modules between them, fixup the end of all
1320		 * sections.
1321		 */
1322		maps__fixup_end(machine__kernel_maps(machine));
1323	}
1324
1325	return ret;
1326}
1327
1328int machine__load_vmlinux_path(struct machine *machine)
1329{
1330	struct map *map = machine__kernel_map(machine);
1331	struct dso *dso = map__dso(map);
1332	int ret = dso__load_vmlinux_path(dso, map);
1333
1334	if (ret > 0)
1335		dso__set_loaded(dso);
1336
1337	return ret;
1338}
1339
1340static char *get_kernel_version(const char *root_dir)
1341{
1342	char version[PATH_MAX];
1343	FILE *file;
1344	char *name, *tmp;
1345	const char *prefix = "Linux version ";
1346
1347	sprintf(version, "%s/proc/version", root_dir);
1348	file = fopen(version, "r");
1349	if (!file)
1350		return NULL;
1351
1352	tmp = fgets(version, sizeof(version), file);
1353	fclose(file);
1354	if (!tmp)
1355		return NULL;
1356
1357	name = strstr(version, prefix);
1358	if (!name)
1359		return NULL;
1360	name += strlen(prefix);
1361	tmp = strchr(name, ' ');
1362	if (tmp)
1363		*tmp = '\0';
1364
1365	return strdup(name);
1366}
1367
1368static bool is_kmod_dso(struct dso *dso)
1369{
1370	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372}
1373
1374static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375{
1376	char *long_name;
1377	struct dso *dso;
1378	struct map *map = maps__find_by_name(maps, m->name);
1379
1380	if (map == NULL)
1381		return 0;
1382
1383	long_name = strdup(path);
1384	if (long_name == NULL) {
1385		map__put(map);
1386		return -ENOMEM;
1387	}
1388
1389	dso = map__dso(map);
1390	dso__set_long_name(dso, long_name, true);
1391	dso__kernel_module_get_build_id(dso, "");
1392
1393	/*
1394	 * Full name could reveal us kmod compression, so
1395	 * we need to update the symtab_type if needed.
1396	 */
1397	if (m->comp && is_kmod_dso(dso)) {
1398		dso->symtab_type++;
1399		dso->comp = m->comp;
1400	}
1401	map__put(map);
1402	return 0;
1403}
1404
1405static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406{
1407	struct dirent *dent;
1408	DIR *dir = opendir(dir_name);
1409	int ret = 0;
1410
1411	if (!dir) {
1412		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413		return -1;
1414	}
1415
1416	while ((dent = readdir(dir)) != NULL) {
1417		char path[PATH_MAX];
1418		struct stat st;
1419
1420		/*sshfs might return bad dent->d_type, so we have to stat*/
1421		path__join(path, sizeof(path), dir_name, dent->d_name);
1422		if (stat(path, &st))
1423			continue;
1424
1425		if (S_ISDIR(st.st_mode)) {
1426			if (!strcmp(dent->d_name, ".") ||
1427			    !strcmp(dent->d_name, ".."))
1428				continue;
1429
1430			/* Do not follow top-level source and build symlinks */
1431			if (depth == 0) {
1432				if (!strcmp(dent->d_name, "source") ||
1433				    !strcmp(dent->d_name, "build"))
1434					continue;
1435			}
1436
1437			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438			if (ret < 0)
1439				goto out;
1440		} else {
1441			struct kmod_path m;
1442
1443			ret = kmod_path__parse_name(&m, dent->d_name);
1444			if (ret)
1445				goto out;
1446
1447			if (m.kmod)
1448				ret = maps__set_module_path(maps, path, &m);
1449
1450			zfree(&m.name);
1451
1452			if (ret)
1453				goto out;
1454		}
1455	}
1456
1457out:
1458	closedir(dir);
1459	return ret;
1460}
1461
1462static int machine__set_modules_path(struct machine *machine)
1463{
1464	char *version;
1465	char modules_path[PATH_MAX];
1466
1467	version = get_kernel_version(machine->root_dir);
1468	if (!version)
1469		return -1;
1470
1471	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472		 machine->root_dir, version);
1473	free(version);
1474
1475	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476}
1477int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478				u64 *size __maybe_unused,
1479				const char *name __maybe_unused)
1480{
1481	return 0;
1482}
1483
1484static int machine__create_module(void *arg, const char *name, u64 start,
1485				  u64 size)
1486{
1487	struct machine *machine = arg;
1488	struct map *map;
1489
1490	if (arch__fix_module_text_start(&start, &size, name) < 0)
1491		return -1;
1492
1493	map = machine__addnew_module_map(machine, start, name);
1494	if (map == NULL)
1495		return -1;
1496	map__set_end(map, start + size);
1497
1498	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499	map__put(map);
1500	return 0;
1501}
1502
1503static int machine__create_modules(struct machine *machine)
1504{
1505	const char *modules;
1506	char path[PATH_MAX];
1507
1508	if (machine__is_default_guest(machine)) {
1509		modules = symbol_conf.default_guest_modules;
1510	} else {
1511		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512		modules = path;
1513	}
1514
1515	if (symbol__restricted_filename(modules, "/proc/modules"))
1516		return -1;
1517
1518	if (modules__parse(modules, machine, machine__create_module))
1519		return -1;
1520
1521	if (!machine__set_modules_path(machine))
1522		return 0;
1523
1524	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525
1526	return 0;
1527}
1528
1529static void machine__set_kernel_mmap(struct machine *machine,
1530				     u64 start, u64 end)
1531{
1532	map__set_start(machine->vmlinux_map, start);
1533	map__set_end(machine->vmlinux_map, end);
1534	/*
1535	 * Be a bit paranoid here, some perf.data file came with
1536	 * a zero sized synthesized MMAP event for the kernel.
1537	 */
1538	if (start == 0 && end == 0)
1539		map__set_end(machine->vmlinux_map, ~0ULL);
1540}
1541
1542static int machine__update_kernel_mmap(struct machine *machine,
1543				     u64 start, u64 end)
1544{
1545	struct map *orig, *updated;
1546	int err;
1547
1548	orig = machine->vmlinux_map;
1549	updated = map__get(orig);
1550
1551	machine->vmlinux_map = updated;
1552	machine__set_kernel_mmap(machine, start, end);
1553	maps__remove(machine__kernel_maps(machine), orig);
1554	err = maps__insert(machine__kernel_maps(machine), updated);
1555	map__put(orig);
1556
1557	return err;
1558}
1559
1560int machine__create_kernel_maps(struct machine *machine)
1561{
1562	struct dso *kernel = machine__get_kernel(machine);
1563	const char *name = NULL;
1564	u64 start = 0, end = ~0ULL;
1565	int ret;
1566
1567	if (kernel == NULL)
1568		return -1;
1569
1570	ret = __machine__create_kernel_maps(machine, kernel);
1571	if (ret < 0)
1572		goto out_put;
1573
1574	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575		if (machine__is_host(machine))
1576			pr_debug("Problems creating module maps, "
1577				 "continuing anyway...\n");
1578		else
1579			pr_debug("Problems creating module maps for guest %d, "
1580				 "continuing anyway...\n", machine->pid);
1581	}
1582
1583	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584		if (name &&
1585		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586			machine__destroy_kernel_maps(machine);
1587			ret = -1;
1588			goto out_put;
1589		}
1590
1591		/*
1592		 * we have a real start address now, so re-order the kmaps
1593		 * assume it's the last in the kmaps
1594		 */
1595		ret = machine__update_kernel_mmap(machine, start, end);
1596		if (ret < 0)
1597			goto out_put;
1598	}
1599
1600	if (machine__create_extra_kernel_maps(machine, kernel))
1601		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602
1603	if (end == ~0ULL) {
1604		/* update end address of the kernel map using adjacent module address */
1605		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606							 machine__kernel_map(machine));
1607
1608		if (next) {
1609			machine__set_kernel_mmap(machine, start, map__start(next));
1610			map__put(next);
1611		}
1612	}
1613
1614out_put:
1615	dso__put(kernel);
1616	return ret;
1617}
1618
1619static bool machine__uses_kcore(struct machine *machine)
1620{
1621	struct dso *dso;
1622
1623	list_for_each_entry(dso, &machine->dsos.head, node) {
1624		if (dso__is_kcore(dso))
1625			return true;
1626	}
1627
1628	return false;
1629}
1630
1631static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632					     struct extra_kernel_map *xm)
1633{
1634	return machine__is(machine, "x86_64") &&
1635	       is_entry_trampoline(xm->name);
1636}
1637
1638static int machine__process_extra_kernel_map(struct machine *machine,
1639					     struct extra_kernel_map *xm)
1640{
1641	struct dso *kernel = machine__kernel_dso(machine);
1642
1643	if (kernel == NULL)
1644		return -1;
1645
1646	return machine__create_extra_kernel_map(machine, kernel, xm);
1647}
1648
1649static int machine__process_kernel_mmap_event(struct machine *machine,
1650					      struct extra_kernel_map *xm,
1651					      struct build_id *bid)
1652{
1653	enum dso_space_type dso_space;
1654	bool is_kernel_mmap;
1655	const char *mmap_name = machine->mmap_name;
1656
1657	/* If we have maps from kcore then we do not need or want any others */
1658	if (machine__uses_kcore(machine))
1659		return 0;
1660
1661	if (machine__is_host(machine))
1662		dso_space = DSO_SPACE__KERNEL;
1663	else
1664		dso_space = DSO_SPACE__KERNEL_GUEST;
1665
1666	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667	if (!is_kernel_mmap && !machine__is_host(machine)) {
1668		/*
1669		 * If the event was recorded inside the guest and injected into
1670		 * the host perf.data file, then it will match a host mmap_name,
1671		 * so try that - see machine__set_mmap_name().
1672		 */
1673		mmap_name = "[kernel.kallsyms]";
1674		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675	}
1676	if (xm->name[0] == '/' ||
1677	    (!is_kernel_mmap && xm->name[0] == '[')) {
1678		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679
1680		if (map == NULL)
1681			goto out_problem;
1682
1683		map__set_end(map, map__start(map) + xm->end - xm->start);
1684
1685		if (build_id__is_defined(bid))
1686			dso__set_build_id(map__dso(map), bid);
1687
1688		map__put(map);
1689	} else if (is_kernel_mmap) {
1690		const char *symbol_name = xm->name + strlen(mmap_name);
1691		/*
1692		 * Should be there already, from the build-id table in
1693		 * the header.
1694		 */
1695		struct dso *kernel = NULL;
1696		struct dso *dso;
1697
1698		down_read(&machine->dsos.lock);
1699
1700		list_for_each_entry(dso, &machine->dsos.head, node) {
1701
1702			/*
1703			 * The cpumode passed to is_kernel_module is not the
1704			 * cpumode of *this* event. If we insist on passing
1705			 * correct cpumode to is_kernel_module, we should
1706			 * record the cpumode when we adding this dso to the
1707			 * linked list.
1708			 *
1709			 * However we don't really need passing correct
1710			 * cpumode.  We know the correct cpumode must be kernel
1711			 * mode (if not, we should not link it onto kernel_dsos
1712			 * list).
1713			 *
1714			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715			 * is_kernel_module() treats it as a kernel cpumode.
1716			 */
1717
1718			if (!dso->kernel ||
1719			    is_kernel_module(dso->long_name,
1720					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721				continue;
1722
1723
1724			kernel = dso__get(dso);
1725			break;
1726		}
1727
1728		up_read(&machine->dsos.lock);
1729
1730		if (kernel == NULL)
1731			kernel = machine__findnew_dso(machine, machine->mmap_name);
1732		if (kernel == NULL)
1733			goto out_problem;
1734
1735		kernel->kernel = dso_space;
1736		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737			dso__put(kernel);
1738			goto out_problem;
1739		}
1740
1741		if (strstr(kernel->long_name, "vmlinux"))
1742			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743
1744		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745			dso__put(kernel);
1746			goto out_problem;
1747		}
1748
1749		if (build_id__is_defined(bid))
1750			dso__set_build_id(kernel, bid);
1751
1752		/*
1753		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1754		 * symbol. Effectively having zero here means that at record
1755		 * time /proc/sys/kernel/kptr_restrict was non zero.
1756		 */
1757		if (xm->pgoff != 0) {
1758			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759							symbol_name,
1760							xm->pgoff);
1761		}
1762
1763		if (machine__is_default_guest(machine)) {
1764			/*
1765			 * preload dso of guest kernel and modules
1766			 */
1767			dso__load(kernel, machine__kernel_map(machine));
1768		}
1769		dso__put(kernel);
1770	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771		return machine__process_extra_kernel_map(machine, xm);
1772	}
1773	return 0;
1774out_problem:
1775	return -1;
1776}
1777
1778int machine__process_mmap2_event(struct machine *machine,
1779				 union perf_event *event,
1780				 struct perf_sample *sample)
1781{
1782	struct thread *thread;
1783	struct map *map;
1784	struct dso_id dso_id = {
1785		.maj = event->mmap2.maj,
1786		.min = event->mmap2.min,
1787		.ino = event->mmap2.ino,
1788		.ino_generation = event->mmap2.ino_generation,
1789	};
1790	struct build_id __bid, *bid = NULL;
1791	int ret = 0;
1792
1793	if (dump_trace)
1794		perf_event__fprintf_mmap2(event, stdout);
1795
1796	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797		bid = &__bid;
1798		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799	}
1800
1801	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803		struct extra_kernel_map xm = {
1804			.start = event->mmap2.start,
1805			.end   = event->mmap2.start + event->mmap2.len,
1806			.pgoff = event->mmap2.pgoff,
1807		};
1808
1809		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811		if (ret < 0)
1812			goto out_problem;
1813		return 0;
1814	}
1815
1816	thread = machine__findnew_thread(machine, event->mmap2.pid,
1817					event->mmap2.tid);
1818	if (thread == NULL)
1819		goto out_problem;
1820
1821	map = map__new(machine, event->mmap2.start,
1822			event->mmap2.len, event->mmap2.pgoff,
1823			&dso_id, event->mmap2.prot,
1824			event->mmap2.flags, bid,
1825			event->mmap2.filename, thread);
1826
1827	if (map == NULL)
1828		goto out_problem_map;
1829
1830	ret = thread__insert_map(thread, map);
1831	if (ret)
1832		goto out_problem_insert;
1833
1834	thread__put(thread);
1835	map__put(map);
1836	return 0;
1837
1838out_problem_insert:
1839	map__put(map);
1840out_problem_map:
1841	thread__put(thread);
1842out_problem:
1843	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844	return 0;
1845}
1846
1847int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848				struct perf_sample *sample)
1849{
1850	struct thread *thread;
1851	struct map *map;
1852	u32 prot = 0;
1853	int ret = 0;
1854
1855	if (dump_trace)
1856		perf_event__fprintf_mmap(event, stdout);
1857
1858	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860		struct extra_kernel_map xm = {
1861			.start = event->mmap.start,
1862			.end   = event->mmap.start + event->mmap.len,
1863			.pgoff = event->mmap.pgoff,
1864		};
1865
1866		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868		if (ret < 0)
1869			goto out_problem;
1870		return 0;
1871	}
1872
1873	thread = machine__findnew_thread(machine, event->mmap.pid,
1874					 event->mmap.tid);
1875	if (thread == NULL)
1876		goto out_problem;
1877
1878	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879		prot = PROT_EXEC;
1880
1881	map = map__new(machine, event->mmap.start,
1882			event->mmap.len, event->mmap.pgoff,
1883			NULL, prot, 0, NULL, event->mmap.filename, thread);
1884
1885	if (map == NULL)
1886		goto out_problem_map;
1887
1888	ret = thread__insert_map(thread, map);
1889	if (ret)
1890		goto out_problem_insert;
1891
1892	thread__put(thread);
1893	map__put(map);
1894	return 0;
1895
1896out_problem_insert:
1897	map__put(map);
1898out_problem_map:
1899	thread__put(thread);
1900out_problem:
1901	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902	return 0;
1903}
1904
1905void machine__remove_thread(struct machine *machine, struct thread *th)
1906{
1907	return threads__remove(&machine->threads, th);
1908}
1909
1910int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911				struct perf_sample *sample)
1912{
1913	struct thread *thread = machine__find_thread(machine,
1914						     event->fork.pid,
1915						     event->fork.tid);
1916	struct thread *parent = machine__findnew_thread(machine,
1917							event->fork.ppid,
1918							event->fork.ptid);
1919	bool do_maps_clone = true;
1920	int err = 0;
1921
1922	if (dump_trace)
1923		perf_event__fprintf_task(event, stdout);
1924
1925	/*
1926	 * There may be an existing thread that is not actually the parent,
1927	 * either because we are processing events out of order, or because the
1928	 * (fork) event that would have removed the thread was lost. Assume the
1929	 * latter case and continue on as best we can.
1930	 */
1931	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932		dump_printf("removing erroneous parent thread %d/%d\n",
1933			    thread__pid(parent), thread__tid(parent));
1934		machine__remove_thread(machine, parent);
1935		thread__put(parent);
1936		parent = machine__findnew_thread(machine, event->fork.ppid,
1937						 event->fork.ptid);
1938	}
1939
1940	/* if a thread currently exists for the thread id remove it */
1941	if (thread != NULL) {
1942		machine__remove_thread(machine, thread);
1943		thread__put(thread);
1944	}
1945
1946	thread = machine__findnew_thread(machine, event->fork.pid,
1947					 event->fork.tid);
1948	/*
1949	 * When synthesizing FORK events, we are trying to create thread
1950	 * objects for the already running tasks on the machine.
1951	 *
1952	 * Normally, for a kernel FORK event, we want to clone the parent's
1953	 * maps because that is what the kernel just did.
1954	 *
1955	 * But when synthesizing, this should not be done.  If we do, we end up
1956	 * with overlapping maps as we process the synthesized MMAP2 events that
1957	 * get delivered shortly thereafter.
1958	 *
1959	 * Use the FORK event misc flags in an internal way to signal this
1960	 * situation, so we can elide the map clone when appropriate.
1961	 */
1962	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963		do_maps_clone = false;
1964
1965	if (thread == NULL || parent == NULL ||
1966	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968		err = -1;
1969	}
1970	thread__put(thread);
1971	thread__put(parent);
1972
1973	return err;
1974}
1975
1976int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977				struct perf_sample *sample __maybe_unused)
1978{
1979	struct thread *thread = machine__find_thread(machine,
1980						     event->fork.pid,
1981						     event->fork.tid);
1982
1983	if (dump_trace)
1984		perf_event__fprintf_task(event, stdout);
1985
1986	if (thread != NULL) {
1987		if (symbol_conf.keep_exited_threads)
1988			thread__set_exited(thread, /*exited=*/true);
1989		else
1990			machine__remove_thread(machine, thread);
1991	}
1992	thread__put(thread);
1993	return 0;
1994}
1995
1996int machine__process_event(struct machine *machine, union perf_event *event,
1997			   struct perf_sample *sample)
1998{
1999	int ret;
2000
2001	switch (event->header.type) {
2002	case PERF_RECORD_COMM:
2003		ret = machine__process_comm_event(machine, event, sample); break;
2004	case PERF_RECORD_MMAP:
2005		ret = machine__process_mmap_event(machine, event, sample); break;
2006	case PERF_RECORD_NAMESPACES:
2007		ret = machine__process_namespaces_event(machine, event, sample); break;
2008	case PERF_RECORD_CGROUP:
2009		ret = machine__process_cgroup_event(machine, event, sample); break;
2010	case PERF_RECORD_MMAP2:
2011		ret = machine__process_mmap2_event(machine, event, sample); break;
2012	case PERF_RECORD_FORK:
2013		ret = machine__process_fork_event(machine, event, sample); break;
2014	case PERF_RECORD_EXIT:
2015		ret = machine__process_exit_event(machine, event, sample); break;
2016	case PERF_RECORD_LOST:
2017		ret = machine__process_lost_event(machine, event, sample); break;
2018	case PERF_RECORD_AUX:
2019		ret = machine__process_aux_event(machine, event); break;
2020	case PERF_RECORD_ITRACE_START:
2021		ret = machine__process_itrace_start_event(machine, event); break;
2022	case PERF_RECORD_LOST_SAMPLES:
2023		ret = machine__process_lost_samples_event(machine, event, sample); break;
2024	case PERF_RECORD_SWITCH:
2025	case PERF_RECORD_SWITCH_CPU_WIDE:
2026		ret = machine__process_switch_event(machine, event); break;
2027	case PERF_RECORD_KSYMBOL:
2028		ret = machine__process_ksymbol(machine, event, sample); break;
2029	case PERF_RECORD_BPF_EVENT:
2030		ret = machine__process_bpf(machine, event, sample); break;
2031	case PERF_RECORD_TEXT_POKE:
2032		ret = machine__process_text_poke(machine, event, sample); break;
2033	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035	default:
2036		ret = -1;
2037		break;
2038	}
2039
2040	return ret;
2041}
2042
2043static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044{
2045	return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046}
2047
2048static void ip__resolve_ams(struct thread *thread,
2049			    struct addr_map_symbol *ams,
2050			    u64 ip)
2051{
2052	struct addr_location al;
2053
2054	addr_location__init(&al);
2055	/*
2056	 * We cannot use the header.misc hint to determine whether a
2057	 * branch stack address is user, kernel, guest, hypervisor.
2058	 * Branches may straddle the kernel/user/hypervisor boundaries.
2059	 * Thus, we have to try consecutively until we find a match
2060	 * or else, the symbol is unknown
2061	 */
2062	thread__find_cpumode_addr_location(thread, ip, &al);
2063
2064	ams->addr = ip;
2065	ams->al_addr = al.addr;
2066	ams->al_level = al.level;
2067	ams->ms.maps = maps__get(al.maps);
2068	ams->ms.sym = al.sym;
2069	ams->ms.map = map__get(al.map);
2070	ams->phys_addr = 0;
2071	ams->data_page_size = 0;
2072	addr_location__exit(&al);
2073}
2074
2075static void ip__resolve_data(struct thread *thread,
2076			     u8 m, struct addr_map_symbol *ams,
2077			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2078{
2079	struct addr_location al;
2080
2081	addr_location__init(&al);
2082
2083	thread__find_symbol(thread, m, addr, &al);
2084
2085	ams->addr = addr;
2086	ams->al_addr = al.addr;
2087	ams->al_level = al.level;
2088	ams->ms.maps = maps__get(al.maps);
2089	ams->ms.sym = al.sym;
2090	ams->ms.map = map__get(al.map);
2091	ams->phys_addr = phys_addr;
2092	ams->data_page_size = daddr_page_size;
2093	addr_location__exit(&al);
2094}
2095
2096struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097				     struct addr_location *al)
2098{
2099	struct mem_info *mi = mem_info__new();
2100
2101	if (!mi)
2102		return NULL;
2103
2104	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106			 sample->addr, sample->phys_addr,
2107			 sample->data_page_size);
2108	mi->data_src.val = sample->data_src;
2109
2110	return mi;
2111}
2112
2113static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114{
2115	struct map *map = ms->map;
2116	char *srcline = NULL;
2117	struct dso *dso;
2118
2119	if (!map || callchain_param.key == CCKEY_FUNCTION)
2120		return srcline;
2121
2122	dso = map__dso(map);
2123	srcline = srcline__tree_find(&dso->srclines, ip);
2124	if (!srcline) {
2125		bool show_sym = false;
2126		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127
2128		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129				      ms->sym, show_sym, show_addr, ip);
2130		srcline__tree_insert(&dso->srclines, ip, srcline);
2131	}
2132
2133	return srcline;
2134}
2135
2136struct iterations {
2137	int nr_loop_iter;
2138	u64 cycles;
2139};
2140
2141static int add_callchain_ip(struct thread *thread,
2142			    struct callchain_cursor *cursor,
2143			    struct symbol **parent,
2144			    struct addr_location *root_al,
2145			    u8 *cpumode,
2146			    u64 ip,
2147			    bool branch,
2148			    struct branch_flags *flags,
2149			    struct iterations *iter,
2150			    u64 branch_from)
2151{
2152	struct map_symbol ms = {};
2153	struct addr_location al;
2154	int nr_loop_iter = 0, err = 0;
2155	u64 iter_cycles = 0;
2156	const char *srcline = NULL;
2157
2158	addr_location__init(&al);
2159	al.filtered = 0;
2160	al.sym = NULL;
2161	al.srcline = NULL;
2162	if (!cpumode) {
2163		thread__find_cpumode_addr_location(thread, ip, &al);
2164	} else {
2165		if (ip >= PERF_CONTEXT_MAX) {
2166			switch (ip) {
2167			case PERF_CONTEXT_HV:
2168				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169				break;
2170			case PERF_CONTEXT_KERNEL:
2171				*cpumode = PERF_RECORD_MISC_KERNEL;
2172				break;
2173			case PERF_CONTEXT_USER:
2174				*cpumode = PERF_RECORD_MISC_USER;
2175				break;
2176			default:
2177				pr_debug("invalid callchain context: "
2178					 "%"PRId64"\n", (s64) ip);
2179				/*
2180				 * It seems the callchain is corrupted.
2181				 * Discard all.
2182				 */
2183				callchain_cursor_reset(cursor);
2184				err = 1;
2185				goto out;
2186			}
2187			goto out;
2188		}
2189		thread__find_symbol(thread, *cpumode, ip, &al);
2190	}
2191
2192	if (al.sym != NULL) {
2193		if (perf_hpp_list.parent && !*parent &&
2194		    symbol__match_regex(al.sym, &parent_regex))
2195			*parent = al.sym;
2196		else if (have_ignore_callees && root_al &&
2197		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198			/* Treat this symbol as the root,
2199			   forgetting its callees. */
2200			addr_location__copy(root_al, &al);
2201			callchain_cursor_reset(cursor);
2202		}
2203	}
2204
2205	if (symbol_conf.hide_unresolved && al.sym == NULL)
2206		goto out;
2207
2208	if (iter) {
2209		nr_loop_iter = iter->nr_loop_iter;
2210		iter_cycles = iter->cycles;
2211	}
2212
2213	ms.maps = maps__get(al.maps);
2214	ms.map = map__get(al.map);
2215	ms.sym = al.sym;
2216	srcline = callchain_srcline(&ms, al.addr);
2217	err = callchain_cursor_append(cursor, ip, &ms,
2218				      branch, flags, nr_loop_iter,
2219				      iter_cycles, branch_from, srcline);
2220out:
2221	addr_location__exit(&al);
2222	map_symbol__exit(&ms);
2223	return err;
2224}
2225
2226struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227					   struct addr_location *al)
2228{
2229	unsigned int i;
2230	const struct branch_stack *bs = sample->branch_stack;
2231	struct branch_entry *entries = perf_sample__branch_entries(sample);
2232	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234	if (!bi)
2235		return NULL;
2236
2237	for (i = 0; i < bs->nr; i++) {
2238		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240		bi[i].flags = entries[i].flags;
2241	}
2242	return bi;
2243}
2244
2245static void save_iterations(struct iterations *iter,
2246			    struct branch_entry *be, int nr)
2247{
2248	int i;
2249
2250	iter->nr_loop_iter++;
2251	iter->cycles = 0;
2252
2253	for (i = 0; i < nr; i++)
2254		iter->cycles += be[i].flags.cycles;
2255}
2256
2257#define CHASHSZ 127
2258#define CHASHBITS 7
2259#define NO_ENTRY 0xff
2260
2261#define PERF_MAX_BRANCH_DEPTH 127
2262
2263/* Remove loops. */
2264static int remove_loops(struct branch_entry *l, int nr,
2265			struct iterations *iter)
2266{
2267	int i, j, off;
2268	unsigned char chash[CHASHSZ];
2269
2270	memset(chash, NO_ENTRY, sizeof(chash));
2271
2272	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274	for (i = 0; i < nr; i++) {
2275		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277		/* no collision handling for now */
2278		if (chash[h] == NO_ENTRY) {
2279			chash[h] = i;
2280		} else if (l[chash[h]].from == l[i].from) {
2281			bool is_loop = true;
2282			/* check if it is a real loop */
2283			off = 0;
2284			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285				if (l[j].from != l[i + off].from) {
2286					is_loop = false;
2287					break;
2288				}
2289			if (is_loop) {
2290				j = nr - (i + off);
2291				if (j > 0) {
2292					save_iterations(iter + i + off,
2293						l + i, off);
2294
2295					memmove(iter + i, iter + i + off,
2296						j * sizeof(*iter));
2297
2298					memmove(l + i, l + i + off,
2299						j * sizeof(*l));
2300				}
2301
2302				nr -= off;
2303			}
2304		}
2305	}
2306	return nr;
2307}
2308
2309static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310				       struct callchain_cursor *cursor,
2311				       struct perf_sample *sample,
2312				       struct symbol **parent,
2313				       struct addr_location *root_al,
2314				       u64 branch_from,
2315				       bool callee, int end)
2316{
2317	struct ip_callchain *chain = sample->callchain;
2318	u8 cpumode = PERF_RECORD_MISC_USER;
2319	int err, i;
2320
2321	if (callee) {
2322		for (i = 0; i < end + 1; i++) {
2323			err = add_callchain_ip(thread, cursor, parent,
2324					       root_al, &cpumode, chain->ips[i],
2325					       false, NULL, NULL, branch_from);
2326			if (err)
2327				return err;
2328		}
2329		return 0;
2330	}
2331
2332	for (i = end; i >= 0; i--) {
2333		err = add_callchain_ip(thread, cursor, parent,
2334				       root_al, &cpumode, chain->ips[i],
2335				       false, NULL, NULL, branch_from);
2336		if (err)
2337			return err;
2338	}
2339
2340	return 0;
2341}
2342
2343static void save_lbr_cursor_node(struct thread *thread,
2344				 struct callchain_cursor *cursor,
2345				 int idx)
2346{
2347	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348
2349	if (!lbr_stitch)
2350		return;
2351
2352	if (cursor->pos == cursor->nr) {
2353		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354		return;
2355	}
2356
2357	if (!cursor->curr)
2358		cursor->curr = cursor->first;
2359	else
2360		cursor->curr = cursor->curr->next;
2361	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362	       sizeof(struct callchain_cursor_node));
2363
2364	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365	cursor->pos++;
2366}
2367
2368static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369				    struct callchain_cursor *cursor,
2370				    struct perf_sample *sample,
2371				    struct symbol **parent,
2372				    struct addr_location *root_al,
2373				    u64 *branch_from,
2374				    bool callee)
2375{
2376	struct branch_stack *lbr_stack = sample->branch_stack;
2377	struct branch_entry *entries = perf_sample__branch_entries(sample);
2378	u8 cpumode = PERF_RECORD_MISC_USER;
2379	int lbr_nr = lbr_stack->nr;
2380	struct branch_flags *flags;
2381	int err, i;
2382	u64 ip;
2383
2384	/*
2385	 * The curr and pos are not used in writing session. They are cleared
2386	 * in callchain_cursor_commit() when the writing session is closed.
2387	 * Using curr and pos to track the current cursor node.
2388	 */
2389	if (thread__lbr_stitch(thread)) {
2390		cursor->curr = NULL;
2391		cursor->pos = cursor->nr;
2392		if (cursor->nr) {
2393			cursor->curr = cursor->first;
2394			for (i = 0; i < (int)(cursor->nr - 1); i++)
2395				cursor->curr = cursor->curr->next;
2396		}
2397	}
2398
2399	if (callee) {
2400		/* Add LBR ip from first entries.to */
2401		ip = entries[0].to;
2402		flags = &entries[0].flags;
2403		*branch_from = entries[0].from;
2404		err = add_callchain_ip(thread, cursor, parent,
2405				       root_al, &cpumode, ip,
2406				       true, flags, NULL,
2407				       *branch_from);
2408		if (err)
2409			return err;
2410
2411		/*
2412		 * The number of cursor node increases.
2413		 * Move the current cursor node.
2414		 * But does not need to save current cursor node for entry 0.
2415		 * It's impossible to stitch the whole LBRs of previous sample.
2416		 */
2417		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418			if (!cursor->curr)
2419				cursor->curr = cursor->first;
2420			else
2421				cursor->curr = cursor->curr->next;
2422			cursor->pos++;
2423		}
2424
2425		/* Add LBR ip from entries.from one by one. */
2426		for (i = 0; i < lbr_nr; i++) {
2427			ip = entries[i].from;
2428			flags = &entries[i].flags;
2429			err = add_callchain_ip(thread, cursor, parent,
2430					       root_al, &cpumode, ip,
2431					       true, flags, NULL,
2432					       *branch_from);
2433			if (err)
2434				return err;
2435			save_lbr_cursor_node(thread, cursor, i);
2436		}
2437		return 0;
2438	}
2439
2440	/* Add LBR ip from entries.from one by one. */
2441	for (i = lbr_nr - 1; i >= 0; i--) {
2442		ip = entries[i].from;
2443		flags = &entries[i].flags;
2444		err = add_callchain_ip(thread, cursor, parent,
2445				       root_al, &cpumode, ip,
2446				       true, flags, NULL,
2447				       *branch_from);
2448		if (err)
2449			return err;
2450		save_lbr_cursor_node(thread, cursor, i);
2451	}
2452
2453	if (lbr_nr > 0) {
2454		/* Add LBR ip from first entries.to */
2455		ip = entries[0].to;
2456		flags = &entries[0].flags;
2457		*branch_from = entries[0].from;
2458		err = add_callchain_ip(thread, cursor, parent,
2459				root_al, &cpumode, ip,
2460				true, flags, NULL,
2461				*branch_from);
2462		if (err)
2463			return err;
2464	}
2465
2466	return 0;
2467}
2468
2469static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470					     struct callchain_cursor *cursor)
2471{
2472	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473	struct callchain_cursor_node *cnode;
2474	struct stitch_list *stitch_node;
2475	int err;
2476
2477	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478		cnode = &stitch_node->cursor;
2479
2480		err = callchain_cursor_append(cursor, cnode->ip,
2481					      &cnode->ms,
2482					      cnode->branch,
2483					      &cnode->branch_flags,
2484					      cnode->nr_loop_iter,
2485					      cnode->iter_cycles,
2486					      cnode->branch_from,
2487					      cnode->srcline);
2488		if (err)
2489			return err;
2490	}
2491	return 0;
2492}
2493
2494static struct stitch_list *get_stitch_node(struct thread *thread)
2495{
2496	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497	struct stitch_list *stitch_node;
2498
2499	if (!list_empty(&lbr_stitch->free_lists)) {
2500		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501					       struct stitch_list, node);
2502		list_del(&stitch_node->node);
2503
2504		return stitch_node;
2505	}
2506
2507	return malloc(sizeof(struct stitch_list));
2508}
2509
2510static bool has_stitched_lbr(struct thread *thread,
2511			     struct perf_sample *cur,
2512			     struct perf_sample *prev,
2513			     unsigned int max_lbr,
2514			     bool callee)
2515{
2516	struct branch_stack *cur_stack = cur->branch_stack;
2517	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518	struct branch_stack *prev_stack = prev->branch_stack;
2519	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521	int i, j, nr_identical_branches = 0;
2522	struct stitch_list *stitch_node;
2523	u64 cur_base, distance;
2524
2525	if (!cur_stack || !prev_stack)
2526		return false;
2527
2528	/* Find the physical index of the base-of-stack for current sample. */
2529	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530
2531	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532						     (max_lbr + prev_stack->hw_idx - cur_base);
2533	/* Previous sample has shorter stack. Nothing can be stitched. */
2534	if (distance + 1 > prev_stack->nr)
2535		return false;
2536
2537	/*
2538	 * Check if there are identical LBRs between two samples.
2539	 * Identical LBRs must have same from, to and flags values. Also,
2540	 * they have to be saved in the same LBR registers (same physical
2541	 * index).
2542	 *
2543	 * Starts from the base-of-stack of current sample.
2544	 */
2545	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546		if ((prev_entries[i].from != cur_entries[j].from) ||
2547		    (prev_entries[i].to != cur_entries[j].to) ||
2548		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549			break;
2550		nr_identical_branches++;
2551	}
2552
2553	if (!nr_identical_branches)
2554		return false;
2555
2556	/*
2557	 * Save the LBRs between the base-of-stack of previous sample
2558	 * and the base-of-stack of current sample into lbr_stitch->lists.
2559	 * These LBRs will be stitched later.
2560	 */
2561	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562
2563		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564			continue;
2565
2566		stitch_node = get_stitch_node(thread);
2567		if (!stitch_node)
2568			return false;
2569
2570		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571		       sizeof(struct callchain_cursor_node));
2572
2573		if (callee)
2574			list_add(&stitch_node->node, &lbr_stitch->lists);
2575		else
2576			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577	}
2578
2579	return true;
2580}
2581
2582static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583{
2584	if (thread__lbr_stitch(thread))
2585		return true;
2586
2587	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588	if (!thread__lbr_stitch(thread))
2589		goto err;
2590
2591	thread__lbr_stitch(thread)->prev_lbr_cursor =
2592		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594		goto free_lbr_stitch;
2595
2596	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598
2599	return true;
2600
2601free_lbr_stitch:
2602	free(thread__lbr_stitch(thread));
2603	thread__set_lbr_stitch(thread, NULL);
2604err:
2605	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606	thread__set_lbr_stitch_enable(thread, false);
2607	return false;
2608}
2609
2610/*
2611 * Resolve LBR callstack chain sample
2612 * Return:
2613 * 1 on success get LBR callchain information
2614 * 0 no available LBR callchain information, should try fp
2615 * negative error code on other errors.
2616 */
2617static int resolve_lbr_callchain_sample(struct thread *thread,
2618					struct callchain_cursor *cursor,
2619					struct perf_sample *sample,
2620					struct symbol **parent,
2621					struct addr_location *root_al,
2622					int max_stack,
2623					unsigned int max_lbr)
2624{
2625	bool callee = (callchain_param.order == ORDER_CALLEE);
2626	struct ip_callchain *chain = sample->callchain;
2627	int chain_nr = min(max_stack, (int)chain->nr), i;
2628	struct lbr_stitch *lbr_stitch;
2629	bool stitched_lbr = false;
2630	u64 branch_from = 0;
2631	int err;
2632
2633	for (i = 0; i < chain_nr; i++) {
2634		if (chain->ips[i] == PERF_CONTEXT_USER)
2635			break;
2636	}
2637
2638	/* LBR only affects the user callchain */
2639	if (i == chain_nr)
2640		return 0;
2641
2642	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644		lbr_stitch = thread__lbr_stitch(thread);
2645
2646		stitched_lbr = has_stitched_lbr(thread, sample,
2647						&lbr_stitch->prev_sample,
2648						max_lbr, callee);
2649
2650		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651			list_replace_init(&lbr_stitch->lists,
2652					  &lbr_stitch->free_lists);
2653		}
2654		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655	}
2656
2657	if (callee) {
2658		/* Add kernel ip */
2659		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660						  parent, root_al, branch_from,
2661						  true, i);
2662		if (err)
2663			goto error;
2664
2665		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666					       root_al, &branch_from, true);
2667		if (err)
2668			goto error;
2669
2670		if (stitched_lbr) {
2671			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672			if (err)
2673				goto error;
2674		}
2675
2676	} else {
2677		if (stitched_lbr) {
2678			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679			if (err)
2680				goto error;
2681		}
2682		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683					       root_al, &branch_from, false);
2684		if (err)
2685			goto error;
2686
2687		/* Add kernel ip */
2688		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689						  parent, root_al, branch_from,
2690						  false, i);
2691		if (err)
2692			goto error;
2693	}
2694	return 1;
2695
2696error:
2697	return (err < 0) ? err : 0;
2698}
2699
2700static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701			     struct callchain_cursor *cursor,
2702			     struct symbol **parent,
2703			     struct addr_location *root_al,
2704			     u8 *cpumode, int ent)
2705{
2706	int err = 0;
2707
2708	while (--ent >= 0) {
2709		u64 ip = chain->ips[ent];
2710
2711		if (ip >= PERF_CONTEXT_MAX) {
2712			err = add_callchain_ip(thread, cursor, parent,
2713					       root_al, cpumode, ip,
2714					       false, NULL, NULL, 0);
2715			break;
2716		}
2717	}
2718	return err;
2719}
2720
2721static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722		struct thread *thread, int usr_idx)
2723{
2724	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726	else
2727		return 0;
2728}
2729
2730static int thread__resolve_callchain_sample(struct thread *thread,
2731					    struct callchain_cursor *cursor,
2732					    struct evsel *evsel,
2733					    struct perf_sample *sample,
2734					    struct symbol **parent,
2735					    struct addr_location *root_al,
2736					    int max_stack)
2737{
2738	struct branch_stack *branch = sample->branch_stack;
2739	struct branch_entry *entries = perf_sample__branch_entries(sample);
2740	struct ip_callchain *chain = sample->callchain;
2741	int chain_nr = 0;
2742	u8 cpumode = PERF_RECORD_MISC_USER;
2743	int i, j, err, nr_entries, usr_idx;
2744	int skip_idx = -1;
2745	int first_call = 0;
2746	u64 leaf_frame_caller;
2747
2748	if (chain)
2749		chain_nr = chain->nr;
2750
2751	if (evsel__has_branch_callstack(evsel)) {
2752		struct perf_env *env = evsel__env(evsel);
2753
2754		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755						   root_al, max_stack,
2756						   !env ? 0 : env->max_branches);
2757		if (err)
2758			return (err < 0) ? err : 0;
2759	}
2760
2761	/*
2762	 * Based on DWARF debug information, some architectures skip
2763	 * a callchain entry saved by the kernel.
2764	 */
2765	skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767	/*
2768	 * Add branches to call stack for easier browsing. This gives
2769	 * more context for a sample than just the callers.
2770	 *
2771	 * This uses individual histograms of paths compared to the
2772	 * aggregated histograms the normal LBR mode uses.
2773	 *
2774	 * Limitations for now:
2775	 * - No extra filters
2776	 * - No annotations (should annotate somehow)
2777	 */
2778
2779	if (branch && callchain_param.branch_callstack) {
2780		int nr = min(max_stack, (int)branch->nr);
2781		struct branch_entry be[nr];
2782		struct iterations iter[nr];
2783
2784		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785			pr_warning("corrupted branch chain. skipping...\n");
2786			goto check_calls;
2787		}
2788
2789		for (i = 0; i < nr; i++) {
2790			if (callchain_param.order == ORDER_CALLEE) {
2791				be[i] = entries[i];
2792
2793				if (chain == NULL)
2794					continue;
2795
2796				/*
2797				 * Check for overlap into the callchain.
2798				 * The return address is one off compared to
2799				 * the branch entry. To adjust for this
2800				 * assume the calling instruction is not longer
2801				 * than 8 bytes.
2802				 */
2803				if (i == skip_idx ||
2804				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805					first_call++;
2806				else if (be[i].from < chain->ips[first_call] &&
2807				    be[i].from >= chain->ips[first_call] - 8)
2808					first_call++;
2809			} else
2810				be[i] = entries[branch->nr - i - 1];
2811		}
2812
2813		memset(iter, 0, sizeof(struct iterations) * nr);
2814		nr = remove_loops(be, nr, iter);
2815
2816		for (i = 0; i < nr; i++) {
2817			err = add_callchain_ip(thread, cursor, parent,
2818					       root_al,
2819					       NULL, be[i].to,
2820					       true, &be[i].flags,
2821					       NULL, be[i].from);
2822
2823			if (!err)
2824				err = add_callchain_ip(thread, cursor, parent, root_al,
2825						       NULL, be[i].from,
2826						       true, &be[i].flags,
2827						       &iter[i], 0);
2828			if (err == -EINVAL)
2829				break;
2830			if (err)
2831				return err;
2832		}
2833
2834		if (chain_nr == 0)
2835			return 0;
2836
2837		chain_nr -= nr;
2838	}
2839
2840check_calls:
2841	if (chain && callchain_param.order != ORDER_CALLEE) {
2842		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843					&cpumode, chain->nr - first_call);
2844		if (err)
2845			return (err < 0) ? err : 0;
2846	}
2847	for (i = first_call, nr_entries = 0;
2848	     i < chain_nr && nr_entries < max_stack; i++) {
2849		u64 ip;
2850
2851		if (callchain_param.order == ORDER_CALLEE)
2852			j = i;
2853		else
2854			j = chain->nr - i - 1;
2855
2856#ifdef HAVE_SKIP_CALLCHAIN_IDX
2857		if (j == skip_idx)
2858			continue;
2859#endif
2860		ip = chain->ips[j];
2861		if (ip < PERF_CONTEXT_MAX)
2862                       ++nr_entries;
2863		else if (callchain_param.order != ORDER_CALLEE) {
2864			err = find_prev_cpumode(chain, thread, cursor, parent,
2865						root_al, &cpumode, j);
2866			if (err)
2867				return (err < 0) ? err : 0;
2868			continue;
2869		}
2870
2871		/*
2872		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874		 * the index will be different in order to add the missing frame
2875		 * at the right place.
2876		 */
2877
2878		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884			/*
2885			 * check if leaf_frame_Caller != ip to not add the same
2886			 * value twice.
2887			 */
2888
2889			if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891				err = add_callchain_ip(thread, cursor, parent,
2892					       root_al, &cpumode, leaf_frame_caller,
2893					       false, NULL, NULL, 0);
2894				if (err)
2895					return (err < 0) ? err : 0;
2896			}
2897		}
2898
2899		err = add_callchain_ip(thread, cursor, parent,
2900				       root_al, &cpumode, ip,
2901				       false, NULL, NULL, 0);
2902
2903		if (err)
2904			return (err < 0) ? err : 0;
2905	}
2906
2907	return 0;
2908}
2909
2910static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911{
2912	struct symbol *sym = ms->sym;
2913	struct map *map = ms->map;
2914	struct inline_node *inline_node;
2915	struct inline_list *ilist;
2916	struct dso *dso;
2917	u64 addr;
2918	int ret = 1;
2919	struct map_symbol ilist_ms;
2920
2921	if (!symbol_conf.inline_name || !map || !sym)
2922		return ret;
2923
2924	addr = map__dso_map_ip(map, ip);
2925	addr = map__rip_2objdump(map, addr);
2926	dso = map__dso(map);
2927
2928	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929	if (!inline_node) {
2930		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931		if (!inline_node)
2932			return ret;
2933		inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934	}
2935
2936	ilist_ms = (struct map_symbol) {
2937		.maps = maps__get(ms->maps),
2938		.map = map__get(map),
2939	};
2940	list_for_each_entry(ilist, &inline_node->val, list) {
2941		ilist_ms.sym = ilist->symbol;
2942		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943					      NULL, 0, 0, 0, ilist->srcline);
2944
2945		if (ret != 0)
2946			return ret;
2947	}
2948	map_symbol__exit(&ilist_ms);
2949
2950	return ret;
2951}
2952
2953static int unwind_entry(struct unwind_entry *entry, void *arg)
2954{
2955	struct callchain_cursor *cursor = arg;
2956	const char *srcline = NULL;
2957	u64 addr = entry->ip;
2958
2959	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960		return 0;
2961
2962	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963		return 0;
2964
2965	/*
2966	 * Convert entry->ip from a virtual address to an offset in
2967	 * its corresponding binary.
2968	 */
2969	if (entry->ms.map)
2970		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971
2972	srcline = callchain_srcline(&entry->ms, addr);
2973	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974				       false, NULL, 0, 0, 0, srcline);
2975}
2976
2977static int thread__resolve_callchain_unwind(struct thread *thread,
2978					    struct callchain_cursor *cursor,
2979					    struct evsel *evsel,
2980					    struct perf_sample *sample,
2981					    int max_stack)
2982{
2983	/* Can we do dwarf post unwind? */
2984	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986		return 0;
2987
2988	/* Bail out if nothing was captured. */
2989	if ((!sample->user_regs.regs) ||
2990	    (!sample->user_stack.size))
2991		return 0;
2992
2993	return unwind__get_entries(unwind_entry, cursor,
2994				   thread, sample, max_stack, false);
2995}
2996
2997int thread__resolve_callchain(struct thread *thread,
2998			      struct callchain_cursor *cursor,
2999			      struct evsel *evsel,
3000			      struct perf_sample *sample,
3001			      struct symbol **parent,
3002			      struct addr_location *root_al,
3003			      int max_stack)
3004{
3005	int ret = 0;
3006
3007	if (cursor == NULL)
3008		return -ENOMEM;
3009
3010	callchain_cursor_reset(cursor);
3011
3012	if (callchain_param.order == ORDER_CALLEE) {
3013		ret = thread__resolve_callchain_sample(thread, cursor,
3014						       evsel, sample,
3015						       parent, root_al,
3016						       max_stack);
3017		if (ret)
3018			return ret;
3019		ret = thread__resolve_callchain_unwind(thread, cursor,
3020						       evsel, sample,
3021						       max_stack);
3022	} else {
3023		ret = thread__resolve_callchain_unwind(thread, cursor,
3024						       evsel, sample,
3025						       max_stack);
3026		if (ret)
3027			return ret;
3028		ret = thread__resolve_callchain_sample(thread, cursor,
3029						       evsel, sample,
3030						       parent, root_al,
3031						       max_stack);
3032	}
3033
3034	return ret;
3035}
3036
3037int machine__for_each_thread(struct machine *machine,
3038			     int (*fn)(struct thread *thread, void *p),
3039			     void *priv)
3040{
3041	return threads__for_each_thread(&machine->threads, fn, priv);
3042}
3043
3044int machines__for_each_thread(struct machines *machines,
3045			      int (*fn)(struct thread *thread, void *p),
3046			      void *priv)
3047{
3048	struct rb_node *nd;
3049	int rc = 0;
3050
3051	rc = machine__for_each_thread(&machines->host, fn, priv);
3052	if (rc != 0)
3053		return rc;
3054
3055	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057
3058		rc = machine__for_each_thread(machine, fn, priv);
3059		if (rc != 0)
3060			return rc;
3061	}
3062	return rc;
3063}
3064
3065
3066static int thread_list_cb(struct thread *thread, void *data)
3067{
3068	struct list_head *list = data;
3069	struct thread_list *entry = malloc(sizeof(*entry));
3070
3071	if (!entry)
3072		return -ENOMEM;
3073
3074	entry->thread = thread__get(thread);
3075	list_add_tail(&entry->list, list);
3076	return 0;
3077}
3078
3079int machine__thread_list(struct machine *machine, struct list_head *list)
3080{
3081	return machine__for_each_thread(machine, thread_list_cb, list);
3082}
3083
3084void thread_list__delete(struct list_head *list)
3085{
3086	struct thread_list *pos, *next;
3087
3088	list_for_each_entry_safe(pos, next, list, list) {
3089		thread__zput(pos->thread);
3090		list_del(&pos->list);
3091		free(pos);
3092	}
3093}
3094
3095pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096{
3097	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098		return -1;
3099
3100	return machine->current_tid[cpu];
3101}
3102
3103int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104			     pid_t tid)
3105{
3106	struct thread *thread;
3107	const pid_t init_val = -1;
3108
3109	if (cpu < 0)
3110		return -EINVAL;
3111
3112	if (realloc_array_as_needed(machine->current_tid,
3113				    machine->current_tid_sz,
3114				    (unsigned int)cpu,
3115				    &init_val))
3116		return -ENOMEM;
3117
3118	machine->current_tid[cpu] = tid;
3119
3120	thread = machine__findnew_thread(machine, pid, tid);
3121	if (!thread)
3122		return -ENOMEM;
3123
3124	thread__set_cpu(thread, cpu);
3125	thread__put(thread);
3126
3127	return 0;
3128}
3129
3130/*
3131 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132 * machine__normalized_is() if a normalized arch is needed.
3133 */
3134bool machine__is(struct machine *machine, const char *arch)
3135{
3136	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137}
3138
3139bool machine__normalized_is(struct machine *machine, const char *arch)
3140{
3141	return machine && !strcmp(perf_env__arch(machine->env), arch);
3142}
3143
3144int machine__nr_cpus_avail(struct machine *machine)
3145{
3146	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147}
3148
3149int machine__get_kernel_start(struct machine *machine)
3150{
3151	struct map *map = machine__kernel_map(machine);
3152	int err = 0;
3153
3154	/*
3155	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3156	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3157	 * all addresses including kernel addresses are less than 2^32.  In
3158	 * that case (32-bit system), if the kernel mapping is unknown, all
3159	 * addresses will be assumed to be in user space - see
3160	 * machine__kernel_ip().
3161	 */
3162	machine->kernel_start = 1ULL << 63;
3163	if (map) {
3164		err = map__load(map);
3165		/*
3166		 * On x86_64, PTI entry trampolines are less than the
3167		 * start of kernel text, but still above 2^63. So leave
3168		 * kernel_start = 1ULL << 63 for x86_64.
3169		 */
3170		if (!err && !machine__is(machine, "x86_64"))
3171			machine->kernel_start = map__start(map);
3172	}
3173	return err;
3174}
3175
3176u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177{
3178	u8 addr_cpumode = cpumode;
3179	bool kernel_ip;
3180
3181	if (!machine->single_address_space)
3182		goto out;
3183
3184	kernel_ip = machine__kernel_ip(machine, addr);
3185	switch (cpumode) {
3186	case PERF_RECORD_MISC_KERNEL:
3187	case PERF_RECORD_MISC_USER:
3188		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189					   PERF_RECORD_MISC_USER;
3190		break;
3191	case PERF_RECORD_MISC_GUEST_KERNEL:
3192	case PERF_RECORD_MISC_GUEST_USER:
3193		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194					   PERF_RECORD_MISC_GUEST_USER;
3195		break;
3196	default:
3197		break;
3198	}
3199out:
3200	return addr_cpumode;
3201}
3202
3203struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204{
3205	return dsos__findnew_id(&machine->dsos, filename, id);
3206}
3207
3208struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209{
3210	return machine__findnew_dso_id(machine, filename, NULL);
3211}
3212
3213char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214{
3215	struct machine *machine = vmachine;
3216	struct map *map;
3217	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218
3219	if (sym == NULL)
3220		return NULL;
3221
3222	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223	*addrp = map__unmap_ip(map, sym->start);
3224	return sym->name;
3225}
3226
3227int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228{
3229	struct dso *pos;
3230	int err = 0;
3231
3232	list_for_each_entry(pos, &machine->dsos.head, node) {
3233		if (fn(pos, machine, priv))
3234			err = -1;
3235	}
3236	return err;
3237}
3238
3239int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240{
3241	struct maps *maps = machine__kernel_maps(machine);
3242
3243	return maps__for_each_map(maps, fn, priv);
3244}
3245
3246bool machine__is_lock_function(struct machine *machine, u64 addr)
3247{
3248	if (!machine->sched.text_start) {
3249		struct map *kmap;
3250		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251
3252		if (!sym) {
3253			/* to avoid retry */
3254			machine->sched.text_start = 1;
3255			return false;
3256		}
3257
3258		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259
3260		/* should not fail from here */
3261		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263
3264		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266
3267		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269	}
3270
3271	/* failed to get kernel symbols */
3272	if (machine->sched.text_start == 1)
3273		return false;
3274
3275	/* mutex and rwsem functions are in sched text section */
3276	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277		return true;
3278
3279	/* spinlock functions are in lock text section */
3280	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281		return true;
3282
3283	return false;
3284}
3285