1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3  Red Black Trees
4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
5  (C) 2002  David Woodhouse <dwmw2@infradead.org>
6  (C) 2012  Michel Lespinasse <walken@google.com>
7
8
9  linux/lib/rbtree.c
10*/
11
12#include <linux/rbtree_augmented.h>
13#include <linux/export.h>
14
15/*
16 * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
17 *
18 *  1) A node is either red or black
19 *  2) The root is black
20 *  3) All leaves (NULL) are black
21 *  4) Both children of every red node are black
22 *  5) Every simple path from root to leaves contains the same number
23 *     of black nodes.
24 *
25 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
26 *  consecutive red nodes in a path and every red node is therefore followed by
27 *  a black. So if B is the number of black nodes on every simple path (as per
28 *  5), then the longest possible path due to 4 is 2B.
29 *
30 *  We shall indicate color with case, where black nodes are uppercase and red
31 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
32 *  parentheses and have some accompanying text comment.
33 */
34
35/*
36 * Notes on lockless lookups:
37 *
38 * All stores to the tree structure (rb_left and rb_right) must be done using
39 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
40 * tree structure as seen in program order.
41 *
42 * These two requirements will allow lockless iteration of the tree -- not
43 * correct iteration mind you, tree rotations are not atomic so a lookup might
44 * miss entire subtrees.
45 *
46 * But they do guarantee that any such traversal will only see valid elements
47 * and that it will indeed complete -- does not get stuck in a loop.
48 *
49 * It also guarantees that if the lookup returns an element it is the 'correct'
50 * one. But not returning an element does _NOT_ mean it's not present.
51 *
52 * NOTE:
53 *
54 * Stores to __rb_parent_color are not important for simple lookups so those
55 * are left undone as of now. Nor did I check for loops involving parent
56 * pointers.
57 */
58
59static inline void rb_set_black(struct rb_node *rb)
60{
61	rb->__rb_parent_color |= RB_BLACK;
62}
63
64static inline struct rb_node *rb_red_parent(struct rb_node *red)
65{
66	return (struct rb_node *)red->__rb_parent_color;
67}
68
69/*
70 * Helper function for rotations:
71 * - old's parent and color get assigned to new
72 * - old gets assigned new as a parent and 'color' as a color.
73 */
74static inline void
75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76			struct rb_root *root, int color)
77{
78	struct rb_node *parent = rb_parent(old);
79	new->__rb_parent_color = old->__rb_parent_color;
80	rb_set_parent_color(old, new, color);
81	__rb_change_child(old, new, parent, root);
82}
83
84static __always_inline void
85__rb_insert(struct rb_node *node, struct rb_root *root,
86	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
87{
88	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
89
90	while (true) {
91		/*
92		 * Loop invariant: node is red.
93		 */
94		if (unlikely(!parent)) {
95			/*
96			 * The inserted node is root. Either this is the
97			 * first node, or we recursed at Case 1 below and
98			 * are no longer violating 4).
99			 */
100			rb_set_parent_color(node, NULL, RB_BLACK);
101			break;
102		}
103
104		/*
105		 * If there is a black parent, we are done.
106		 * Otherwise, take some corrective action as,
107		 * per 4), we don't want a red root or two
108		 * consecutive red nodes.
109		 */
110		if(rb_is_black(parent))
111			break;
112
113		gparent = rb_red_parent(parent);
114
115		tmp = gparent->rb_right;
116		if (parent != tmp) {	/* parent == gparent->rb_left */
117			if (tmp && rb_is_red(tmp)) {
118				/*
119				 * Case 1 - node's uncle is red (color flips).
120				 *
121				 *       G            g
122				 *      / \          / \
123				 *     p   u  -->   P   U
124				 *    /            /
125				 *   n            n
126				 *
127				 * However, since g's parent might be red, and
128				 * 4) does not allow this, we need to recurse
129				 * at g.
130				 */
131				rb_set_parent_color(tmp, gparent, RB_BLACK);
132				rb_set_parent_color(parent, gparent, RB_BLACK);
133				node = gparent;
134				parent = rb_parent(node);
135				rb_set_parent_color(node, parent, RB_RED);
136				continue;
137			}
138
139			tmp = parent->rb_right;
140			if (node == tmp) {
141				/*
142				 * Case 2 - node's uncle is black and node is
143				 * the parent's right child (left rotate at parent).
144				 *
145				 *      G             G
146				 *     / \           / \
147				 *    p   U  -->    n   U
148				 *     \           /
149				 *      n         p
150				 *
151				 * This still leaves us in violation of 4), the
152				 * continuation into Case 3 will fix that.
153				 */
154				tmp = node->rb_left;
155				WRITE_ONCE(parent->rb_right, tmp);
156				WRITE_ONCE(node->rb_left, parent);
157				if (tmp)
158					rb_set_parent_color(tmp, parent,
159							    RB_BLACK);
160				rb_set_parent_color(parent, node, RB_RED);
161				augment_rotate(parent, node);
162				parent = node;
163				tmp = node->rb_right;
164			}
165
166			/*
167			 * Case 3 - node's uncle is black and node is
168			 * the parent's left child (right rotate at gparent).
169			 *
170			 *        G           P
171			 *       / \         / \
172			 *      p   U  -->  n   g
173			 *     /                 \
174			 *    n                   U
175			 */
176			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
177			WRITE_ONCE(parent->rb_right, gparent);
178			if (tmp)
179				rb_set_parent_color(tmp, gparent, RB_BLACK);
180			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
181			augment_rotate(gparent, parent);
182			break;
183		} else {
184			tmp = gparent->rb_left;
185			if (tmp && rb_is_red(tmp)) {
186				/* Case 1 - color flips */
187				rb_set_parent_color(tmp, gparent, RB_BLACK);
188				rb_set_parent_color(parent, gparent, RB_BLACK);
189				node = gparent;
190				parent = rb_parent(node);
191				rb_set_parent_color(node, parent, RB_RED);
192				continue;
193			}
194
195			tmp = parent->rb_left;
196			if (node == tmp) {
197				/* Case 2 - right rotate at parent */
198				tmp = node->rb_right;
199				WRITE_ONCE(parent->rb_left, tmp);
200				WRITE_ONCE(node->rb_right, parent);
201				if (tmp)
202					rb_set_parent_color(tmp, parent,
203							    RB_BLACK);
204				rb_set_parent_color(parent, node, RB_RED);
205				augment_rotate(parent, node);
206				parent = node;
207				tmp = node->rb_left;
208			}
209
210			/* Case 3 - left rotate at gparent */
211			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
212			WRITE_ONCE(parent->rb_left, gparent);
213			if (tmp)
214				rb_set_parent_color(tmp, gparent, RB_BLACK);
215			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
216			augment_rotate(gparent, parent);
217			break;
218		}
219	}
220}
221
222/*
223 * Inline version for rb_erase() use - we want to be able to inline
224 * and eliminate the dummy_rotate callback there
225 */
226static __always_inline void
227____rb_erase_color(struct rb_node *parent, struct rb_root *root,
228	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
229{
230	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
231
232	while (true) {
233		/*
234		 * Loop invariants:
235		 * - node is black (or NULL on first iteration)
236		 * - node is not the root (parent is not NULL)
237		 * - All leaf paths going through parent and node have a
238		 *   black node count that is 1 lower than other leaf paths.
239		 */
240		sibling = parent->rb_right;
241		if (node != sibling) {	/* node == parent->rb_left */
242			if (rb_is_red(sibling)) {
243				/*
244				 * Case 1 - left rotate at parent
245				 *
246				 *     P               S
247				 *    / \             / \
248				 *   N   s    -->    p   Sr
249				 *      / \         / \
250				 *     Sl  Sr      N   Sl
251				 */
252				tmp1 = sibling->rb_left;
253				WRITE_ONCE(parent->rb_right, tmp1);
254				WRITE_ONCE(sibling->rb_left, parent);
255				rb_set_parent_color(tmp1, parent, RB_BLACK);
256				__rb_rotate_set_parents(parent, sibling, root,
257							RB_RED);
258				augment_rotate(parent, sibling);
259				sibling = tmp1;
260			}
261			tmp1 = sibling->rb_right;
262			if (!tmp1 || rb_is_black(tmp1)) {
263				tmp2 = sibling->rb_left;
264				if (!tmp2 || rb_is_black(tmp2)) {
265					/*
266					 * Case 2 - sibling color flip
267					 * (p could be either color here)
268					 *
269					 *    (p)           (p)
270					 *    / \           / \
271					 *   N   S    -->  N   s
272					 *      / \           / \
273					 *     Sl  Sr        Sl  Sr
274					 *
275					 * This leaves us violating 5) which
276					 * can be fixed by flipping p to black
277					 * if it was red, or by recursing at p.
278					 * p is red when coming from Case 1.
279					 */
280					rb_set_parent_color(sibling, parent,
281							    RB_RED);
282					if (rb_is_red(parent))
283						rb_set_black(parent);
284					else {
285						node = parent;
286						parent = rb_parent(node);
287						if (parent)
288							continue;
289					}
290					break;
291				}
292				/*
293				 * Case 3 - right rotate at sibling
294				 * (p could be either color here)
295				 *
296				 *   (p)           (p)
297				 *   / \           / \
298				 *  N   S    -->  N   sl
299				 *     / \             \
300				 *    sl  Sr            S
301				 *                       \
302				 *                        Sr
303				 *
304				 * Note: p might be red, and then both
305				 * p and sl are red after rotation(which
306				 * breaks property 4). This is fixed in
307				 * Case 4 (in __rb_rotate_set_parents()
308				 *         which set sl the color of p
309				 *         and set p RB_BLACK)
310				 *
311				 *   (p)            (sl)
312				 *   / \            /  \
313				 *  N   sl   -->   P    S
314				 *       \        /      \
315				 *        S      N        Sr
316				 *         \
317				 *          Sr
318				 */
319				tmp1 = tmp2->rb_right;
320				WRITE_ONCE(sibling->rb_left, tmp1);
321				WRITE_ONCE(tmp2->rb_right, sibling);
322				WRITE_ONCE(parent->rb_right, tmp2);
323				if (tmp1)
324					rb_set_parent_color(tmp1, sibling,
325							    RB_BLACK);
326				augment_rotate(sibling, tmp2);
327				tmp1 = sibling;
328				sibling = tmp2;
329			}
330			/*
331			 * Case 4 - left rotate at parent + color flips
332			 * (p and sl could be either color here.
333			 *  After rotation, p becomes black, s acquires
334			 *  p's color, and sl keeps its color)
335			 *
336			 *      (p)             (s)
337			 *      / \             / \
338			 *     N   S     -->   P   Sr
339			 *        / \         / \
340			 *      (sl) sr      N  (sl)
341			 */
342			tmp2 = sibling->rb_left;
343			WRITE_ONCE(parent->rb_right, tmp2);
344			WRITE_ONCE(sibling->rb_left, parent);
345			rb_set_parent_color(tmp1, sibling, RB_BLACK);
346			if (tmp2)
347				rb_set_parent(tmp2, parent);
348			__rb_rotate_set_parents(parent, sibling, root,
349						RB_BLACK);
350			augment_rotate(parent, sibling);
351			break;
352		} else {
353			sibling = parent->rb_left;
354			if (rb_is_red(sibling)) {
355				/* Case 1 - right rotate at parent */
356				tmp1 = sibling->rb_right;
357				WRITE_ONCE(parent->rb_left, tmp1);
358				WRITE_ONCE(sibling->rb_right, parent);
359				rb_set_parent_color(tmp1, parent, RB_BLACK);
360				__rb_rotate_set_parents(parent, sibling, root,
361							RB_RED);
362				augment_rotate(parent, sibling);
363				sibling = tmp1;
364			}
365			tmp1 = sibling->rb_left;
366			if (!tmp1 || rb_is_black(tmp1)) {
367				tmp2 = sibling->rb_right;
368				if (!tmp2 || rb_is_black(tmp2)) {
369					/* Case 2 - sibling color flip */
370					rb_set_parent_color(sibling, parent,
371							    RB_RED);
372					if (rb_is_red(parent))
373						rb_set_black(parent);
374					else {
375						node = parent;
376						parent = rb_parent(node);
377						if (parent)
378							continue;
379					}
380					break;
381				}
382				/* Case 3 - left rotate at sibling */
383				tmp1 = tmp2->rb_left;
384				WRITE_ONCE(sibling->rb_right, tmp1);
385				WRITE_ONCE(tmp2->rb_left, sibling);
386				WRITE_ONCE(parent->rb_left, tmp2);
387				if (tmp1)
388					rb_set_parent_color(tmp1, sibling,
389							    RB_BLACK);
390				augment_rotate(sibling, tmp2);
391				tmp1 = sibling;
392				sibling = tmp2;
393			}
394			/* Case 4 - right rotate at parent + color flips */
395			tmp2 = sibling->rb_right;
396			WRITE_ONCE(parent->rb_left, tmp2);
397			WRITE_ONCE(sibling->rb_right, parent);
398			rb_set_parent_color(tmp1, sibling, RB_BLACK);
399			if (tmp2)
400				rb_set_parent(tmp2, parent);
401			__rb_rotate_set_parents(parent, sibling, root,
402						RB_BLACK);
403			augment_rotate(parent, sibling);
404			break;
405		}
406	}
407}
408
409/* Non-inline version for rb_erase_augmented() use */
410void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
411	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
412{
413	____rb_erase_color(parent, root, augment_rotate);
414}
415
416/*
417 * Non-augmented rbtree manipulation functions.
418 *
419 * We use dummy augmented callbacks here, and have the compiler optimize them
420 * out of the rb_insert_color() and rb_erase() function definitions.
421 */
422
423static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
424static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
425static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
426
427static const struct rb_augment_callbacks dummy_callbacks = {
428	.propagate = dummy_propagate,
429	.copy = dummy_copy,
430	.rotate = dummy_rotate
431};
432
433void rb_insert_color(struct rb_node *node, struct rb_root *root)
434{
435	__rb_insert(node, root, dummy_rotate);
436}
437
438void rb_erase(struct rb_node *node, struct rb_root *root)
439{
440	struct rb_node *rebalance;
441	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
442	if (rebalance)
443		____rb_erase_color(rebalance, root, dummy_rotate);
444}
445
446/*
447 * Augmented rbtree manipulation functions.
448 *
449 * This instantiates the same __always_inline functions as in the non-augmented
450 * case, but this time with user-defined callbacks.
451 */
452
453void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
454	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
455{
456	__rb_insert(node, root, augment_rotate);
457}
458
459/*
460 * This function returns the first node (in sort order) of the tree.
461 */
462struct rb_node *rb_first(const struct rb_root *root)
463{
464	struct rb_node	*n;
465
466	n = root->rb_node;
467	if (!n)
468		return NULL;
469	while (n->rb_left)
470		n = n->rb_left;
471	return n;
472}
473
474struct rb_node *rb_last(const struct rb_root *root)
475{
476	struct rb_node	*n;
477
478	n = root->rb_node;
479	if (!n)
480		return NULL;
481	while (n->rb_right)
482		n = n->rb_right;
483	return n;
484}
485
486struct rb_node *rb_next(const struct rb_node *node)
487{
488	struct rb_node *parent;
489
490	if (RB_EMPTY_NODE(node))
491		return NULL;
492
493	/*
494	 * If we have a right-hand child, go down and then left as far
495	 * as we can.
496	 */
497	if (node->rb_right) {
498		node = node->rb_right;
499		while (node->rb_left)
500			node = node->rb_left;
501		return (struct rb_node *)node;
502	}
503
504	/*
505	 * No right-hand children. Everything down and left is smaller than us,
506	 * so any 'next' node must be in the general direction of our parent.
507	 * Go up the tree; any time the ancestor is a right-hand child of its
508	 * parent, keep going up. First time it's a left-hand child of its
509	 * parent, said parent is our 'next' node.
510	 */
511	while ((parent = rb_parent(node)) && node == parent->rb_right)
512		node = parent;
513
514	return parent;
515}
516
517struct rb_node *rb_prev(const struct rb_node *node)
518{
519	struct rb_node *parent;
520
521	if (RB_EMPTY_NODE(node))
522		return NULL;
523
524	/*
525	 * If we have a left-hand child, go down and then right as far
526	 * as we can.
527	 */
528	if (node->rb_left) {
529		node = node->rb_left;
530		while (node->rb_right)
531			node = node->rb_right;
532		return (struct rb_node *)node;
533	}
534
535	/*
536	 * No left-hand children. Go up till we find an ancestor which
537	 * is a right-hand child of its parent.
538	 */
539	while ((parent = rb_parent(node)) && node == parent->rb_left)
540		node = parent;
541
542	return parent;
543}
544
545void rb_replace_node(struct rb_node *victim, struct rb_node *new,
546		     struct rb_root *root)
547{
548	struct rb_node *parent = rb_parent(victim);
549
550	/* Copy the pointers/colour from the victim to the replacement */
551	*new = *victim;
552
553	/* Set the surrounding nodes to point to the replacement */
554	if (victim->rb_left)
555		rb_set_parent(victim->rb_left, new);
556	if (victim->rb_right)
557		rb_set_parent(victim->rb_right, new);
558	__rb_change_child(victim, new, parent, root);
559}
560
561static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
562{
563	for (;;) {
564		if (node->rb_left)
565			node = node->rb_left;
566		else if (node->rb_right)
567			node = node->rb_right;
568		else
569			return (struct rb_node *)node;
570	}
571}
572
573struct rb_node *rb_next_postorder(const struct rb_node *node)
574{
575	const struct rb_node *parent;
576	if (!node)
577		return NULL;
578	parent = rb_parent(node);
579
580	/* If we're sitting on node, we've already seen our children */
581	if (parent && node == parent->rb_left && parent->rb_right) {
582		/* If we are the parent's left node, go to the parent's right
583		 * node then all the way down to the left */
584		return rb_left_deepest_node(parent->rb_right);
585	} else
586		/* Otherwise we are the parent's right node, and the parent
587		 * should be next */
588		return (struct rb_node *)parent;
589}
590
591struct rb_node *rb_first_postorder(const struct rb_root *root)
592{
593	if (!root->rb_node)
594		return NULL;
595
596	return rb_left_deepest_node(root->rb_node);
597}
598