1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *   intel_hdmi_audio.c - Intel HDMI audio driver
4 *
5 *  Copyright (C) 2016 Intel Corp
6 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 *		Ramesh Babu K V	<ramesh.babu@intel.com>
8 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 *		Jerome Anand <jerome.anand@intel.com>
10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
14 */
15
16#include <linux/types.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/pm_runtime.h>
23#include <linux/dma-mapping.h>
24#include <linux/delay.h>
25#include <sound/core.h>
26#include <sound/asoundef.h>
27#include <sound/pcm.h>
28#include <sound/pcm_params.h>
29#include <sound/initval.h>
30#include <sound/control.h>
31#include <sound/jack.h>
32#include <drm/drm_edid.h>
33#include <drm/drm_eld.h>
34#include <drm/intel_lpe_audio.h>
35#include "intel_hdmi_audio.h"
36
37#define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
38
39#define for_each_pipe(card_ctx, pipe) \
40	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
41#define for_each_port(card_ctx, port) \
42	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
43
44/*standard module options for ALSA. This module supports only one card*/
45static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
46static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
47static bool single_port;
48
49module_param_named(index, hdmi_card_index, int, 0444);
50MODULE_PARM_DESC(index,
51		"Index value for INTEL Intel HDMI Audio controller.");
52module_param_named(id, hdmi_card_id, charp, 0444);
53MODULE_PARM_DESC(id,
54		"ID string for INTEL Intel HDMI Audio controller.");
55module_param(single_port, bool, 0444);
56MODULE_PARM_DESC(single_port,
57		"Single-port mode (for compatibility)");
58
59/*
60 * ELD SA bits in the CEA Speaker Allocation data block
61 */
62static const int eld_speaker_allocation_bits[] = {
63	[0] = FL | FR,
64	[1] = LFE,
65	[2] = FC,
66	[3] = RL | RR,
67	[4] = RC,
68	[5] = FLC | FRC,
69	[6] = RLC | RRC,
70	/* the following are not defined in ELD yet */
71	[7] = 0,
72};
73
74/*
75 * This is an ordered list!
76 *
77 * The preceding ones have better chances to be selected by
78 * hdmi_channel_allocation().
79 */
80static struct cea_channel_speaker_allocation channel_allocations[] = {
81/*                        channel:   7     6    5    4    3     2    1    0  */
82{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
83				/* 2.1 */
84{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
85				/* Dolby Surround */
86{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
87				/* surround40 */
88{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
89				/* surround41 */
90{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
91				/* surround50 */
92{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
93				/* surround51 */
94{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
95				/* 6.1 */
96{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
97				/* surround71 */
98{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
99
100{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
101{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
102{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
103{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
104{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
105{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
106{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
107{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
108{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
109{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
110{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
111{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
112{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
113{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
114{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
115{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
116{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
117{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
118{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
119{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
120{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
121{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
122{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
123};
124
125static const struct channel_map_table map_tables[] = {
126	{ SNDRV_CHMAP_FL,       0x00,   FL },
127	{ SNDRV_CHMAP_FR,       0x01,   FR },
128	{ SNDRV_CHMAP_RL,       0x04,   RL },
129	{ SNDRV_CHMAP_RR,       0x05,   RR },
130	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
131	{ SNDRV_CHMAP_FC,       0x03,   FC },
132	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
133	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
134	{} /* terminator */
135};
136
137/* hardware capability structure */
138static const struct snd_pcm_hardware had_pcm_hardware = {
139	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
140		SNDRV_PCM_INFO_MMAP |
141		SNDRV_PCM_INFO_MMAP_VALID |
142		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
143	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
144		    SNDRV_PCM_FMTBIT_S24_LE |
145		    SNDRV_PCM_FMTBIT_S32_LE),
146	.rates = SNDRV_PCM_RATE_32000 |
147		SNDRV_PCM_RATE_44100 |
148		SNDRV_PCM_RATE_48000 |
149		SNDRV_PCM_RATE_88200 |
150		SNDRV_PCM_RATE_96000 |
151		SNDRV_PCM_RATE_176400 |
152		SNDRV_PCM_RATE_192000,
153	.rate_min = HAD_MIN_RATE,
154	.rate_max = HAD_MAX_RATE,
155	.channels_min = HAD_MIN_CHANNEL,
156	.channels_max = HAD_MAX_CHANNEL,
157	.buffer_bytes_max = HAD_MAX_BUFFER,
158	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
159	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
160	.periods_min = HAD_MIN_PERIODS,
161	.periods_max = HAD_MAX_PERIODS,
162	.fifo_size = HAD_FIFO_SIZE,
163};
164
165/* Get the active PCM substream;
166 * Call had_substream_put() for unreferecing.
167 * Don't call this inside had_spinlock, as it takes by itself
168 */
169static struct snd_pcm_substream *
170had_substream_get(struct snd_intelhad *intelhaddata)
171{
172	struct snd_pcm_substream *substream;
173	unsigned long flags;
174
175	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
176	substream = intelhaddata->stream_info.substream;
177	if (substream)
178		intelhaddata->stream_info.substream_refcount++;
179	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
180	return substream;
181}
182
183/* Unref the active PCM substream;
184 * Don't call this inside had_spinlock, as it takes by itself
185 */
186static void had_substream_put(struct snd_intelhad *intelhaddata)
187{
188	unsigned long flags;
189
190	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
191	intelhaddata->stream_info.substream_refcount--;
192	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
193}
194
195static u32 had_config_offset(int pipe)
196{
197	switch (pipe) {
198	default:
199	case 0:
200		return AUDIO_HDMI_CONFIG_A;
201	case 1:
202		return AUDIO_HDMI_CONFIG_B;
203	case 2:
204		return AUDIO_HDMI_CONFIG_C;
205	}
206}
207
208/* Register access functions */
209static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
210				 int pipe, u32 reg)
211{
212	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
213}
214
215static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
216				   int pipe, u32 reg, u32 val)
217{
218	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
219}
220
221static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
222{
223	if (!ctx->connected)
224		*val = 0;
225	else
226		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
227}
228
229static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
230{
231	if (ctx->connected)
232		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
233}
234
235/*
236 * enable / disable audio configuration
237 *
238 * The normal read/modify should not directly be used on VLV2 for
239 * updating AUD_CONFIG register.
240 * This is because:
241 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
242 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
243 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
244 * register. This field should be 1xy binary for configuration with 6 or
245 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
246 * causes the "channels" field to be updated as 0xy binary resulting in
247 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
248 * appropriate value when doing read-modify of AUD_CONFIG register.
249 */
250static void had_enable_audio(struct snd_intelhad *intelhaddata,
251			     bool enable)
252{
253	/* update the cached value */
254	intelhaddata->aud_config.regx.aud_en = enable;
255	had_write_register(intelhaddata, AUD_CONFIG,
256			   intelhaddata->aud_config.regval);
257}
258
259/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
260static void had_ack_irqs(struct snd_intelhad *ctx)
261{
262	u32 status_reg;
263
264	if (!ctx->connected)
265		return;
266	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
268	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
269	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
270}
271
272/* Reset buffer pointers */
273static void had_reset_audio(struct snd_intelhad *intelhaddata)
274{
275	had_write_register(intelhaddata, AUD_HDMI_STATUS,
276			   AUD_HDMI_STATUSG_MASK_FUNCRST);
277	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
278}
279
280/*
281 * initialize audio channel status registers
282 * This function is called in the prepare callback
283 */
284static int had_prog_status_reg(struct snd_pcm_substream *substream,
285			struct snd_intelhad *intelhaddata)
286{
287	union aud_ch_status_0 ch_stat0 = {.regval = 0};
288	union aud_ch_status_1 ch_stat1 = {.regval = 0};
289
290	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
291					  IEC958_AES0_NONAUDIO) >> 1;
292	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
293					  IEC958_AES3_CON_CLOCK) >> 4;
294
295	switch (substream->runtime->rate) {
296	case AUD_SAMPLE_RATE_32:
297		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
298		break;
299
300	case AUD_SAMPLE_RATE_44_1:
301		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
302		break;
303	case AUD_SAMPLE_RATE_48:
304		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
305		break;
306	case AUD_SAMPLE_RATE_88_2:
307		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
308		break;
309	case AUD_SAMPLE_RATE_96:
310		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
311		break;
312	case AUD_SAMPLE_RATE_176_4:
313		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
314		break;
315	case AUD_SAMPLE_RATE_192:
316		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
317		break;
318
319	default:
320		/* control should never come here */
321		return -EINVAL;
322	}
323
324	had_write_register(intelhaddata,
325			   AUD_CH_STATUS_0, ch_stat0.regval);
326
327	switch (substream->runtime->format) {
328	case SNDRV_PCM_FORMAT_S16_LE:
329		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
330		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
331		break;
332	case SNDRV_PCM_FORMAT_S24_LE:
333	case SNDRV_PCM_FORMAT_S32_LE:
334		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
335		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
336		break;
337	default:
338		return -EINVAL;
339	}
340
341	had_write_register(intelhaddata,
342			   AUD_CH_STATUS_1, ch_stat1.regval);
343	return 0;
344}
345
346/*
347 * function to initialize audio
348 * registers and buffer configuration registers
349 * This function is called in the prepare callback
350 */
351static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
352			       struct snd_intelhad *intelhaddata)
353{
354	union aud_cfg cfg_val = {.regval = 0};
355	union aud_buf_config buf_cfg = {.regval = 0};
356	u8 channels;
357
358	had_prog_status_reg(substream, intelhaddata);
359
360	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
361	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
362	buf_cfg.regx.aud_delay = 0;
363	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
364
365	channels = substream->runtime->channels;
366	cfg_val.regx.num_ch = channels - 2;
367	if (channels <= 2)
368		cfg_val.regx.layout = LAYOUT0;
369	else
370		cfg_val.regx.layout = LAYOUT1;
371
372	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
373		cfg_val.regx.packet_mode = 1;
374
375	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
376		cfg_val.regx.left_align = 1;
377
378	cfg_val.regx.val_bit = 1;
379
380	/* fix up the DP bits */
381	if (intelhaddata->dp_output) {
382		cfg_val.regx.dp_modei = 1;
383		cfg_val.regx.set = 1;
384	}
385
386	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
387	intelhaddata->aud_config = cfg_val;
388	return 0;
389}
390
391/*
392 * Compute derived values in channel_allocations[].
393 */
394static void init_channel_allocations(void)
395{
396	int i, j;
397	struct cea_channel_speaker_allocation *p;
398
399	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
400		p = channel_allocations + i;
401		p->channels = 0;
402		p->spk_mask = 0;
403		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
404			if (p->speakers[j]) {
405				p->channels++;
406				p->spk_mask |= p->speakers[j];
407			}
408	}
409}
410
411/*
412 * The transformation takes two steps:
413 *
414 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
415 *            spk_mask => (channel_allocations[])         => ai->CA
416 *
417 * TODO: it could select the wrong CA from multiple candidates.
418 */
419static int had_channel_allocation(struct snd_intelhad *intelhaddata,
420				  int channels)
421{
422	int i;
423	int ca = 0;
424	int spk_mask = 0;
425
426	/*
427	 * CA defaults to 0 for basic stereo audio
428	 */
429	if (channels <= 2)
430		return 0;
431
432	/*
433	 * expand ELD's speaker allocation mask
434	 *
435	 * ELD tells the speaker mask in a compact(paired) form,
436	 * expand ELD's notions to match the ones used by Audio InfoFrame.
437	 */
438
439	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
440		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
441			spk_mask |= eld_speaker_allocation_bits[i];
442	}
443
444	/* search for the first working match in the CA table */
445	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
446		if (channels == channel_allocations[i].channels &&
447		(spk_mask & channel_allocations[i].spk_mask) ==
448				channel_allocations[i].spk_mask) {
449			ca = channel_allocations[i].ca_index;
450			break;
451		}
452	}
453
454	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
455
456	return ca;
457}
458
459/* from speaker bit mask to ALSA API channel position */
460static int spk_to_chmap(int spk)
461{
462	const struct channel_map_table *t = map_tables;
463
464	for (; t->map; t++) {
465		if (t->spk_mask == spk)
466			return t->map;
467	}
468	return 0;
469}
470
471static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
472{
473	int i, c;
474	int spk_mask = 0;
475	struct snd_pcm_chmap_elem *chmap;
476	u8 eld_high, eld_high_mask = 0xF0;
477	u8 high_msb;
478
479	kfree(intelhaddata->chmap->chmap);
480	intelhaddata->chmap->chmap = NULL;
481
482	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
483	if (!chmap)
484		return;
485
486	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
487		intelhaddata->eld[DRM_ELD_SPEAKER]);
488
489	/* WA: Fix the max channel supported to 8 */
490
491	/*
492	 * Sink may support more than 8 channels, if eld_high has more than
493	 * one bit set. SOC supports max 8 channels.
494	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
495	 */
496
497	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
498	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
499	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
500		/* eld_high & (eld_high-1): if more than 1 bit set */
501		/* 0x1F: 7 channels */
502		for (i = 1; i < 4; i++) {
503			high_msb = eld_high & (0x80 >> i);
504			if (high_msb) {
505				intelhaddata->eld[DRM_ELD_SPEAKER] &=
506					high_msb | 0xF;
507				break;
508			}
509		}
510	}
511
512	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
513		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
514			spk_mask |= eld_speaker_allocation_bits[i];
515	}
516
517	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
518		if (spk_mask == channel_allocations[i].spk_mask) {
519			for (c = 0; c < channel_allocations[i].channels; c++) {
520				chmap->map[c] = spk_to_chmap(
521					channel_allocations[i].speakers[
522						(MAX_SPEAKERS - 1) - c]);
523			}
524			chmap->channels = channel_allocations[i].channels;
525			intelhaddata->chmap->chmap = chmap;
526			break;
527		}
528	}
529	if (i >= ARRAY_SIZE(channel_allocations))
530		kfree(chmap);
531}
532
533/*
534 * ALSA API channel-map control callbacks
535 */
536static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
537				struct snd_ctl_elem_info *uinfo)
538{
539	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
540	uinfo->count = HAD_MAX_CHANNEL;
541	uinfo->value.integer.min = 0;
542	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
543	return 0;
544}
545
546static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
547				struct snd_ctl_elem_value *ucontrol)
548{
549	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
550	struct snd_intelhad *intelhaddata = info->private_data;
551	int i;
552	const struct snd_pcm_chmap_elem *chmap;
553
554	memset(ucontrol->value.integer.value, 0,
555	       sizeof(long) * HAD_MAX_CHANNEL);
556	mutex_lock(&intelhaddata->mutex);
557	if (!intelhaddata->chmap->chmap) {
558		mutex_unlock(&intelhaddata->mutex);
559		return 0;
560	}
561
562	chmap = intelhaddata->chmap->chmap;
563	for (i = 0; i < chmap->channels; i++)
564		ucontrol->value.integer.value[i] = chmap->map[i];
565	mutex_unlock(&intelhaddata->mutex);
566
567	return 0;
568}
569
570static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
571						struct snd_pcm *pcm)
572{
573	int err;
574
575	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
576			NULL, 0, (unsigned long)intelhaddata,
577			&intelhaddata->chmap);
578	if (err < 0)
579		return err;
580
581	intelhaddata->chmap->private_data = intelhaddata;
582	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
583	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
584	intelhaddata->chmap->chmap = NULL;
585	return 0;
586}
587
588/*
589 * Initialize Data Island Packets registers
590 * This function is called in the prepare callback
591 */
592static void had_prog_dip(struct snd_pcm_substream *substream,
593			 struct snd_intelhad *intelhaddata)
594{
595	int i;
596	union aud_ctrl_st ctrl_state = {.regval = 0};
597	union aud_info_frame2 frame2 = {.regval = 0};
598	union aud_info_frame3 frame3 = {.regval = 0};
599	u8 checksum = 0;
600	u32 info_frame;
601	int channels;
602	int ca;
603
604	channels = substream->runtime->channels;
605
606	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
607
608	ca = had_channel_allocation(intelhaddata, channels);
609	if (intelhaddata->dp_output) {
610		info_frame = DP_INFO_FRAME_WORD1;
611		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
612	} else {
613		info_frame = HDMI_INFO_FRAME_WORD1;
614		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
615		frame3.regx.chnl_alloc = ca;
616
617		/* Calculte the byte wide checksum for all valid DIP words */
618		for (i = 0; i < BYTES_PER_WORD; i++)
619			checksum += (info_frame >> (i * 8)) & 0xff;
620		for (i = 0; i < BYTES_PER_WORD; i++)
621			checksum += (frame2.regval >> (i * 8)) & 0xff;
622		for (i = 0; i < BYTES_PER_WORD; i++)
623			checksum += (frame3.regval >> (i * 8)) & 0xff;
624
625		frame2.regx.chksum = -(checksum);
626	}
627
628	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
629	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
630	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
631
632	/* program remaining DIP words with zero */
633	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
634		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
635
636	ctrl_state.regx.dip_freq = 1;
637	ctrl_state.regx.dip_en_sta = 1;
638	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
639}
640
641static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
642{
643	u32 maud_val;
644
645	/* Select maud according to DP 1.2 spec */
646	if (link_rate == DP_2_7_GHZ) {
647		switch (aud_samp_freq) {
648		case AUD_SAMPLE_RATE_32:
649			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
650			break;
651
652		case AUD_SAMPLE_RATE_44_1:
653			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
654			break;
655
656		case AUD_SAMPLE_RATE_48:
657			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
658			break;
659
660		case AUD_SAMPLE_RATE_88_2:
661			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
662			break;
663
664		case AUD_SAMPLE_RATE_96:
665			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
666			break;
667
668		case AUD_SAMPLE_RATE_176_4:
669			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
670			break;
671
672		case HAD_MAX_RATE:
673			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
674			break;
675
676		default:
677			maud_val = -EINVAL;
678			break;
679		}
680	} else if (link_rate == DP_1_62_GHZ) {
681		switch (aud_samp_freq) {
682		case AUD_SAMPLE_RATE_32:
683			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
684			break;
685
686		case AUD_SAMPLE_RATE_44_1:
687			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
688			break;
689
690		case AUD_SAMPLE_RATE_48:
691			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
692			break;
693
694		case AUD_SAMPLE_RATE_88_2:
695			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
696			break;
697
698		case AUD_SAMPLE_RATE_96:
699			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
700			break;
701
702		case AUD_SAMPLE_RATE_176_4:
703			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
704			break;
705
706		case HAD_MAX_RATE:
707			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
708			break;
709
710		default:
711			maud_val = -EINVAL;
712			break;
713		}
714	} else
715		maud_val = -EINVAL;
716
717	return maud_val;
718}
719
720/*
721 * Program HDMI audio CTS value
722 *
723 * @aud_samp_freq: sampling frequency of audio data
724 * @tmds: sampling frequency of the display data
725 * @link_rate: DP link rate
726 * @n_param: N value, depends on aud_samp_freq
727 * @intelhaddata: substream private data
728 *
729 * Program CTS register based on the audio and display sampling frequency
730 */
731static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
732			 u32 n_param, struct snd_intelhad *intelhaddata)
733{
734	u32 cts_val;
735	u64 dividend, divisor;
736
737	if (intelhaddata->dp_output) {
738		/* Substitute cts_val with Maud according to DP 1.2 spec*/
739		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
740	} else {
741		/* Calculate CTS according to HDMI 1.3a spec*/
742		dividend = (u64)tmds * n_param*1000;
743		divisor = 128 * aud_samp_freq;
744		cts_val = div64_u64(dividend, divisor);
745	}
746	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
747		 tmds, n_param, cts_val);
748	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
749}
750
751static int had_calculate_n_value(u32 aud_samp_freq)
752{
753	int n_val;
754
755	/* Select N according to HDMI 1.3a spec*/
756	switch (aud_samp_freq) {
757	case AUD_SAMPLE_RATE_32:
758		n_val = 4096;
759		break;
760
761	case AUD_SAMPLE_RATE_44_1:
762		n_val = 6272;
763		break;
764
765	case AUD_SAMPLE_RATE_48:
766		n_val = 6144;
767		break;
768
769	case AUD_SAMPLE_RATE_88_2:
770		n_val = 12544;
771		break;
772
773	case AUD_SAMPLE_RATE_96:
774		n_val = 12288;
775		break;
776
777	case AUD_SAMPLE_RATE_176_4:
778		n_val = 25088;
779		break;
780
781	case HAD_MAX_RATE:
782		n_val = 24576;
783		break;
784
785	default:
786		n_val = -EINVAL;
787		break;
788	}
789	return n_val;
790}
791
792/*
793 * Program HDMI audio N value
794 *
795 * @aud_samp_freq: sampling frequency of audio data
796 * @n_param: N value, depends on aud_samp_freq
797 * @intelhaddata: substream private data
798 *
799 * This function is called in the prepare callback.
800 * It programs based on the audio and display sampling frequency
801 */
802static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
803		      struct snd_intelhad *intelhaddata)
804{
805	int n_val;
806
807	if (intelhaddata->dp_output) {
808		/*
809		 * According to DP specs, Maud and Naud values hold
810		 * a relationship, which is stated as:
811		 * Maud/Naud = 512 * fs / f_LS_Clk
812		 * where, fs is the sampling frequency of the audio stream
813		 * and Naud is 32768 for Async clock.
814		 */
815
816		n_val = DP_NAUD_VAL;
817	} else
818		n_val =	had_calculate_n_value(aud_samp_freq);
819
820	if (n_val < 0)
821		return n_val;
822
823	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
824	*n_param = n_val;
825	return 0;
826}
827
828/*
829 * PCM ring buffer handling
830 *
831 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
832 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
833 * moves at each period elapsed.  The below illustrates how it works:
834 *
835 * At time=0
836 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
837 *  BD  | 0 | 1 | 2 | 3 |
838 *
839 * At time=1 (period elapsed)
840 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841 *  BD      | 1 | 2 | 3 | 0 |
842 *
843 * At time=2 (second period elapsed)
844 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845 *  BD          | 2 | 3 | 0 | 1 |
846 *
847 * The bd_head field points to the index of the BD to be read.  It's also the
848 * position to be filled at next.  The pcm_head and the pcm_filled fields
849 * point to the indices of the current position and of the next position to
850 * be filled, respectively.  For PCM buffer there are both _head and _filled
851 * because they may be difference when nperiods > 4.  For example, in the
852 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
853 *
854 * pcm_head (=1) --v               v-- pcm_filled (=5)
855 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
856 *       BD      | 1 | 2 | 3 | 0 |
857 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
858 *
859 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
860 * the hardware skips those BDs in the loop.
861 *
862 * An exceptional setup is the case with nperiods=1.  Since we have to update
863 * BDs after finishing one BD processing, we'd need at least two BDs, where
864 * both BDs point to the same content, the same address, the same size of the
865 * whole PCM buffer.
866 */
867
868#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
869#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
870
871/* Set up a buffer descriptor at the "filled" position */
872static void had_prog_bd(struct snd_pcm_substream *substream,
873			struct snd_intelhad *intelhaddata)
874{
875	int idx = intelhaddata->bd_head;
876	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
877	u32 addr = substream->runtime->dma_addr + ofs;
878
879	addr |= AUD_BUF_VALID;
880	if (!substream->runtime->no_period_wakeup)
881		addr |= AUD_BUF_INTR_EN;
882	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
883	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
884			   intelhaddata->period_bytes);
885
886	/* advance the indices to the next */
887	intelhaddata->bd_head++;
888	intelhaddata->bd_head %= intelhaddata->num_bds;
889	intelhaddata->pcmbuf_filled++;
890	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
891}
892
893/* invalidate a buffer descriptor with the given index */
894static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
895			      int idx)
896{
897	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
898	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
899}
900
901/* Initial programming of ring buffer */
902static void had_init_ringbuf(struct snd_pcm_substream *substream,
903			     struct snd_intelhad *intelhaddata)
904{
905	struct snd_pcm_runtime *runtime = substream->runtime;
906	int i, num_periods;
907
908	num_periods = runtime->periods;
909	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
910	/* set the minimum 2 BDs for num_periods=1 */
911	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
912	intelhaddata->period_bytes =
913		frames_to_bytes(runtime, runtime->period_size);
914	WARN_ON(intelhaddata->period_bytes & 0x3f);
915
916	intelhaddata->bd_head = 0;
917	intelhaddata->pcmbuf_head = 0;
918	intelhaddata->pcmbuf_filled = 0;
919
920	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
921		if (i < intelhaddata->num_bds)
922			had_prog_bd(substream, intelhaddata);
923		else /* invalidate the rest */
924			had_invalidate_bd(intelhaddata, i);
925	}
926
927	intelhaddata->bd_head = 0; /* reset at head again before starting */
928}
929
930/* process a bd, advance to the next */
931static void had_advance_ringbuf(struct snd_pcm_substream *substream,
932				struct snd_intelhad *intelhaddata)
933{
934	int num_periods = substream->runtime->periods;
935
936	/* reprogram the next buffer */
937	had_prog_bd(substream, intelhaddata);
938
939	/* proceed to next */
940	intelhaddata->pcmbuf_head++;
941	intelhaddata->pcmbuf_head %= num_periods;
942}
943
944/* process the current BD(s);
945 * returns the current PCM buffer byte position, or -EPIPE for underrun.
946 */
947static int had_process_ringbuf(struct snd_pcm_substream *substream,
948			       struct snd_intelhad *intelhaddata)
949{
950	int len, processed;
951	unsigned long flags;
952
953	processed = 0;
954	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
955	for (;;) {
956		/* get the remaining bytes on the buffer */
957		had_read_register(intelhaddata,
958				  AUD_BUF_LEN(intelhaddata->bd_head),
959				  &len);
960		if (len < 0 || len > intelhaddata->period_bytes) {
961			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
962				len);
963			len = -EPIPE;
964			goto out;
965		}
966
967		if (len > 0) /* OK, this is the current buffer */
968			break;
969
970		/* len=0 => already empty, check the next buffer */
971		if (++processed >= intelhaddata->num_bds) {
972			len = -EPIPE; /* all empty? - report underrun */
973			goto out;
974		}
975		had_advance_ringbuf(substream, intelhaddata);
976	}
977
978	len = intelhaddata->period_bytes - len;
979	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
980 out:
981	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
982	return len;
983}
984
985/* called from irq handler */
986static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
987{
988	struct snd_pcm_substream *substream;
989
990	substream = had_substream_get(intelhaddata);
991	if (!substream)
992		return; /* no stream? - bail out */
993
994	if (!intelhaddata->connected) {
995		snd_pcm_stop_xrun(substream);
996		goto out; /* disconnected? - bail out */
997	}
998
999	/* process or stop the stream */
1000	if (had_process_ringbuf(substream, intelhaddata) < 0)
1001		snd_pcm_stop_xrun(substream);
1002	else
1003		snd_pcm_period_elapsed(substream);
1004
1005 out:
1006	had_substream_put(intelhaddata);
1007}
1008
1009/*
1010 * The interrupt status 'sticky' bits might not be cleared by
1011 * setting '1' to that bit once...
1012 */
1013static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1014{
1015	int i;
1016	u32 val;
1017
1018	for (i = 0; i < 100; i++) {
1019		/* clear bit30, 31 AUD_HDMI_STATUS */
1020		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1021		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1022			return;
1023		udelay(100);
1024		cond_resched();
1025		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1026	}
1027	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1028}
1029
1030/* Perform some reset procedure after stopping the stream;
1031 * this is called from prepare or hw_free callbacks once after trigger STOP
1032 * or underrun has been processed in order to settle down the h/w state.
1033 */
1034static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1035{
1036	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1037
1038	if (!intelhaddata->connected)
1039		return 0;
1040
1041	/* Reset buffer pointers */
1042	had_reset_audio(intelhaddata);
1043	wait_clear_underrun_bit(intelhaddata);
1044	return 0;
1045}
1046
1047/* called from irq handler */
1048static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1049{
1050	struct snd_pcm_substream *substream;
1051
1052	/* Report UNDERRUN error to above layers */
1053	substream = had_substream_get(intelhaddata);
1054	if (substream) {
1055		snd_pcm_stop_xrun(substream);
1056		had_substream_put(intelhaddata);
1057	}
1058}
1059
1060/*
1061 * ALSA PCM open callback
1062 */
1063static int had_pcm_open(struct snd_pcm_substream *substream)
1064{
1065	struct snd_intelhad *intelhaddata;
1066	struct snd_pcm_runtime *runtime;
1067	int retval;
1068
1069	intelhaddata = snd_pcm_substream_chip(substream);
1070	runtime = substream->runtime;
1071
1072	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1073	if (retval < 0)
1074		return retval;
1075
1076	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1077	runtime->hw = had_pcm_hardware;
1078
1079	retval = snd_pcm_hw_constraint_integer(runtime,
1080			 SNDRV_PCM_HW_PARAM_PERIODS);
1081	if (retval < 0)
1082		goto error;
1083
1084	/* Make sure, that the period size is always aligned
1085	 * 64byte boundary
1086	 */
1087	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1088			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1089	if (retval < 0)
1090		goto error;
1091
1092	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1093	if (retval < 0)
1094		goto error;
1095
1096	/* expose PCM substream */
1097	spin_lock_irq(&intelhaddata->had_spinlock);
1098	intelhaddata->stream_info.substream = substream;
1099	intelhaddata->stream_info.substream_refcount++;
1100	spin_unlock_irq(&intelhaddata->had_spinlock);
1101
1102	return retval;
1103 error:
1104	pm_runtime_mark_last_busy(intelhaddata->dev);
1105	pm_runtime_put_autosuspend(intelhaddata->dev);
1106	return retval;
1107}
1108
1109/*
1110 * ALSA PCM close callback
1111 */
1112static int had_pcm_close(struct snd_pcm_substream *substream)
1113{
1114	struct snd_intelhad *intelhaddata;
1115
1116	intelhaddata = snd_pcm_substream_chip(substream);
1117
1118	/* unreference and sync with the pending PCM accesses */
1119	spin_lock_irq(&intelhaddata->had_spinlock);
1120	intelhaddata->stream_info.substream = NULL;
1121	intelhaddata->stream_info.substream_refcount--;
1122	while (intelhaddata->stream_info.substream_refcount > 0) {
1123		spin_unlock_irq(&intelhaddata->had_spinlock);
1124		cpu_relax();
1125		spin_lock_irq(&intelhaddata->had_spinlock);
1126	}
1127	spin_unlock_irq(&intelhaddata->had_spinlock);
1128
1129	pm_runtime_mark_last_busy(intelhaddata->dev);
1130	pm_runtime_put_autosuspend(intelhaddata->dev);
1131	return 0;
1132}
1133
1134/*
1135 * ALSA PCM hw_params callback
1136 */
1137static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1138			     struct snd_pcm_hw_params *hw_params)
1139{
1140	struct snd_intelhad *intelhaddata;
1141	int buf_size;
1142
1143	intelhaddata = snd_pcm_substream_chip(substream);
1144	buf_size = params_buffer_bytes(hw_params);
1145	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1146		__func__, buf_size);
1147	return 0;
1148}
1149
1150/*
1151 * ALSA PCM trigger callback
1152 */
1153static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1154{
1155	int retval = 0;
1156	struct snd_intelhad *intelhaddata;
1157
1158	intelhaddata = snd_pcm_substream_chip(substream);
1159
1160	spin_lock(&intelhaddata->had_spinlock);
1161	switch (cmd) {
1162	case SNDRV_PCM_TRIGGER_START:
1163	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1164	case SNDRV_PCM_TRIGGER_RESUME:
1165		/* Enable Audio */
1166		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1167		had_enable_audio(intelhaddata, true);
1168		break;
1169
1170	case SNDRV_PCM_TRIGGER_STOP:
1171	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1172		/* Disable Audio */
1173		had_enable_audio(intelhaddata, false);
1174		break;
1175
1176	default:
1177		retval = -EINVAL;
1178	}
1179	spin_unlock(&intelhaddata->had_spinlock);
1180	return retval;
1181}
1182
1183/*
1184 * ALSA PCM prepare callback
1185 */
1186static int had_pcm_prepare(struct snd_pcm_substream *substream)
1187{
1188	int retval;
1189	u32 disp_samp_freq, n_param;
1190	u32 link_rate = 0;
1191	struct snd_intelhad *intelhaddata;
1192	struct snd_pcm_runtime *runtime;
1193
1194	intelhaddata = snd_pcm_substream_chip(substream);
1195	runtime = substream->runtime;
1196
1197	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1198		(int)frames_to_bytes(runtime, runtime->period_size));
1199	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1200	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1201		(int)snd_pcm_lib_buffer_bytes(substream));
1202	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1203	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1204
1205	/* Get N value in KHz */
1206	disp_samp_freq = intelhaddata->tmds_clock_speed;
1207
1208	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1209	if (retval) {
1210		dev_err(intelhaddata->dev,
1211			"programming N value failed %#x\n", retval);
1212		goto prep_end;
1213	}
1214
1215	if (intelhaddata->dp_output)
1216		link_rate = intelhaddata->link_rate;
1217
1218	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1219		     n_param, intelhaddata);
1220
1221	had_prog_dip(substream, intelhaddata);
1222
1223	retval = had_init_audio_ctrl(substream, intelhaddata);
1224
1225	/* Prog buffer address */
1226	had_init_ringbuf(substream, intelhaddata);
1227
1228	/*
1229	 * Program channel mapping in following order:
1230	 * FL, FR, C, LFE, RL, RR
1231	 */
1232
1233	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1234
1235prep_end:
1236	return retval;
1237}
1238
1239/*
1240 * ALSA PCM pointer callback
1241 */
1242static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1243{
1244	struct snd_intelhad *intelhaddata;
1245	int len;
1246
1247	intelhaddata = snd_pcm_substream_chip(substream);
1248
1249	if (!intelhaddata->connected)
1250		return SNDRV_PCM_POS_XRUN;
1251
1252	len = had_process_ringbuf(substream, intelhaddata);
1253	if (len < 0)
1254		return SNDRV_PCM_POS_XRUN;
1255	len = bytes_to_frames(substream->runtime, len);
1256	/* wrapping may happen when periods=1 */
1257	len %= substream->runtime->buffer_size;
1258	return len;
1259}
1260
1261/*
1262 * ALSA PCM ops
1263 */
1264static const struct snd_pcm_ops had_pcm_ops = {
1265	.open =		had_pcm_open,
1266	.close =	had_pcm_close,
1267	.hw_params =	had_pcm_hw_params,
1268	.prepare =	had_pcm_prepare,
1269	.trigger =	had_pcm_trigger,
1270	.sync_stop =	had_pcm_sync_stop,
1271	.pointer =	had_pcm_pointer,
1272};
1273
1274/* process mode change of the running stream; called in mutex */
1275static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1276{
1277	struct snd_pcm_substream *substream;
1278	int retval = 0;
1279	u32 disp_samp_freq, n_param;
1280	u32 link_rate = 0;
1281
1282	substream = had_substream_get(intelhaddata);
1283	if (!substream)
1284		return 0;
1285
1286	/* Disable Audio */
1287	had_enable_audio(intelhaddata, false);
1288
1289	/* Update CTS value */
1290	disp_samp_freq = intelhaddata->tmds_clock_speed;
1291
1292	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1293	if (retval) {
1294		dev_err(intelhaddata->dev,
1295			"programming N value failed %#x\n", retval);
1296		goto out;
1297	}
1298
1299	if (intelhaddata->dp_output)
1300		link_rate = intelhaddata->link_rate;
1301
1302	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1303		     n_param, intelhaddata);
1304
1305	/* Enable Audio */
1306	had_enable_audio(intelhaddata, true);
1307
1308out:
1309	had_substream_put(intelhaddata);
1310	return retval;
1311}
1312
1313/* process hot plug, called from wq with mutex locked */
1314static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1315{
1316	struct snd_pcm_substream *substream;
1317
1318	spin_lock_irq(&intelhaddata->had_spinlock);
1319	if (intelhaddata->connected) {
1320		dev_dbg(intelhaddata->dev, "Device already connected\n");
1321		spin_unlock_irq(&intelhaddata->had_spinlock);
1322		return;
1323	}
1324
1325	/* Disable Audio */
1326	had_enable_audio(intelhaddata, false);
1327
1328	intelhaddata->connected = true;
1329	dev_dbg(intelhaddata->dev,
1330		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1331			__func__, __LINE__);
1332	spin_unlock_irq(&intelhaddata->had_spinlock);
1333
1334	had_build_channel_allocation_map(intelhaddata);
1335
1336	/* Report to above ALSA layer */
1337	substream = had_substream_get(intelhaddata);
1338	if (substream) {
1339		snd_pcm_stop_xrun(substream);
1340		had_substream_put(intelhaddata);
1341	}
1342
1343	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1344}
1345
1346/* process hot unplug, called from wq with mutex locked */
1347static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1348{
1349	struct snd_pcm_substream *substream;
1350
1351	spin_lock_irq(&intelhaddata->had_spinlock);
1352	if (!intelhaddata->connected) {
1353		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1354		spin_unlock_irq(&intelhaddata->had_spinlock);
1355		return;
1356
1357	}
1358
1359	/* Disable Audio */
1360	had_enable_audio(intelhaddata, false);
1361
1362	intelhaddata->connected = false;
1363	dev_dbg(intelhaddata->dev,
1364		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1365			__func__, __LINE__);
1366	spin_unlock_irq(&intelhaddata->had_spinlock);
1367
1368	kfree(intelhaddata->chmap->chmap);
1369	intelhaddata->chmap->chmap = NULL;
1370
1371	/* Report to above ALSA layer */
1372	substream = had_substream_get(intelhaddata);
1373	if (substream) {
1374		snd_pcm_stop_xrun(substream);
1375		had_substream_put(intelhaddata);
1376	}
1377
1378	snd_jack_report(intelhaddata->jack, 0);
1379}
1380
1381/*
1382 * ALSA iec958 and ELD controls
1383 */
1384
1385static int had_iec958_info(struct snd_kcontrol *kcontrol,
1386				struct snd_ctl_elem_info *uinfo)
1387{
1388	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1389	uinfo->count = 1;
1390	return 0;
1391}
1392
1393static int had_iec958_get(struct snd_kcontrol *kcontrol,
1394				struct snd_ctl_elem_value *ucontrol)
1395{
1396	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1397
1398	mutex_lock(&intelhaddata->mutex);
1399	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1400	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1401	ucontrol->value.iec958.status[2] =
1402					(intelhaddata->aes_bits >> 16) & 0xff;
1403	ucontrol->value.iec958.status[3] =
1404					(intelhaddata->aes_bits >> 24) & 0xff;
1405	mutex_unlock(&intelhaddata->mutex);
1406	return 0;
1407}
1408
1409static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1410				struct snd_ctl_elem_value *ucontrol)
1411{
1412	ucontrol->value.iec958.status[0] = 0xff;
1413	ucontrol->value.iec958.status[1] = 0xff;
1414	ucontrol->value.iec958.status[2] = 0xff;
1415	ucontrol->value.iec958.status[3] = 0xff;
1416	return 0;
1417}
1418
1419static int had_iec958_put(struct snd_kcontrol *kcontrol,
1420				struct snd_ctl_elem_value *ucontrol)
1421{
1422	unsigned int val;
1423	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424	int changed = 0;
1425
1426	val = (ucontrol->value.iec958.status[0] << 0) |
1427		(ucontrol->value.iec958.status[1] << 8) |
1428		(ucontrol->value.iec958.status[2] << 16) |
1429		(ucontrol->value.iec958.status[3] << 24);
1430	mutex_lock(&intelhaddata->mutex);
1431	if (intelhaddata->aes_bits != val) {
1432		intelhaddata->aes_bits = val;
1433		changed = 1;
1434	}
1435	mutex_unlock(&intelhaddata->mutex);
1436	return changed;
1437}
1438
1439static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1440			    struct snd_ctl_elem_info *uinfo)
1441{
1442	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1443	uinfo->count = HDMI_MAX_ELD_BYTES;
1444	return 0;
1445}
1446
1447static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1448			   struct snd_ctl_elem_value *ucontrol)
1449{
1450	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451
1452	mutex_lock(&intelhaddata->mutex);
1453	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1454	       HDMI_MAX_ELD_BYTES);
1455	mutex_unlock(&intelhaddata->mutex);
1456	return 0;
1457}
1458
1459static const struct snd_kcontrol_new had_controls[] = {
1460	{
1461		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1462		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1463		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1464		.info = had_iec958_info, /* shared */
1465		.get = had_iec958_mask_get,
1466	},
1467	{
1468		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1469		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1470		.info = had_iec958_info,
1471		.get = had_iec958_get,
1472		.put = had_iec958_put,
1473	},
1474	{
1475		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1476			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1477		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1478		.name = "ELD",
1479		.info = had_ctl_eld_info,
1480		.get = had_ctl_eld_get,
1481	},
1482};
1483
1484/*
1485 * audio interrupt handler
1486 */
1487static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1488{
1489	struct snd_intelhad_card *card_ctx = dev_id;
1490	u32 audio_stat[3] = {};
1491	int pipe, port;
1492
1493	for_each_pipe(card_ctx, pipe) {
1494		/* use raw register access to ack IRQs even while disconnected */
1495		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1496							 AUD_HDMI_STATUS) &
1497			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1498
1499		if (audio_stat[pipe])
1500			had_write_register_raw(card_ctx, pipe,
1501					       AUD_HDMI_STATUS, audio_stat[pipe]);
1502	}
1503
1504	for_each_port(card_ctx, port) {
1505		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1506		int pipe = ctx->pipe;
1507
1508		if (pipe < 0)
1509			continue;
1510
1511		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1512			had_process_buffer_done(ctx);
1513		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1514			had_process_buffer_underrun(ctx);
1515	}
1516
1517	return IRQ_HANDLED;
1518}
1519
1520/*
1521 * monitor plug/unplug notification from i915; just kick off the work
1522 */
1523static void notify_audio_lpe(struct platform_device *pdev, int port)
1524{
1525	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1526	struct snd_intelhad *ctx;
1527
1528	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1529	if (single_port)
1530		ctx->port = port;
1531
1532	schedule_work(&ctx->hdmi_audio_wq);
1533}
1534
1535/* the work to handle monitor hot plug/unplug */
1536static void had_audio_wq(struct work_struct *work)
1537{
1538	struct snd_intelhad *ctx =
1539		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1540	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1541	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1542	int ret;
1543
1544	ret = pm_runtime_resume_and_get(ctx->dev);
1545	if (ret < 0)
1546		return;
1547
1548	mutex_lock(&ctx->mutex);
1549	if (ppdata->pipe < 0) {
1550		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1551			__func__, ctx->port);
1552
1553		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1554
1555		ctx->dp_output = false;
1556		ctx->tmds_clock_speed = 0;
1557		ctx->link_rate = 0;
1558
1559		/* Shut down the stream */
1560		had_process_hot_unplug(ctx);
1561
1562		ctx->pipe = -1;
1563	} else {
1564		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1565			__func__, ctx->port, ppdata->ls_clock);
1566
1567		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1568
1569		ctx->dp_output = ppdata->dp_output;
1570		if (ctx->dp_output) {
1571			ctx->tmds_clock_speed = 0;
1572			ctx->link_rate = ppdata->ls_clock;
1573		} else {
1574			ctx->tmds_clock_speed = ppdata->ls_clock;
1575			ctx->link_rate = 0;
1576		}
1577
1578		/*
1579		 * Shut down the stream before we change
1580		 * the pipe assignment for this pcm device
1581		 */
1582		had_process_hot_plug(ctx);
1583
1584		ctx->pipe = ppdata->pipe;
1585
1586		/* Restart the stream if necessary */
1587		had_process_mode_change(ctx);
1588	}
1589
1590	mutex_unlock(&ctx->mutex);
1591	pm_runtime_mark_last_busy(ctx->dev);
1592	pm_runtime_put_autosuspend(ctx->dev);
1593}
1594
1595/*
1596 * Jack interface
1597 */
1598static int had_create_jack(struct snd_intelhad *ctx,
1599			   struct snd_pcm *pcm)
1600{
1601	char hdmi_str[32];
1602	int err;
1603
1604	snprintf(hdmi_str, sizeof(hdmi_str),
1605		 "HDMI/DP,pcm=%d", pcm->device);
1606
1607	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1608			   SND_JACK_AVOUT, &ctx->jack,
1609			   true, false);
1610	if (err < 0)
1611		return err;
1612	ctx->jack->private_data = ctx;
1613	return 0;
1614}
1615
1616/*
1617 * PM callbacks
1618 */
1619
1620static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1621{
1622	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1623
1624	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1625
1626	return 0;
1627}
1628
1629static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1630{
1631	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1632
1633	pm_runtime_mark_last_busy(dev);
1634
1635	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1636
1637	return 0;
1638}
1639
1640/* release resources */
1641static void hdmi_lpe_audio_free(struct snd_card *card)
1642{
1643	struct snd_intelhad_card *card_ctx = card->private_data;
1644	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1645	int port;
1646
1647	spin_lock_irq(&pdata->lpe_audio_slock);
1648	pdata->notify_audio_lpe = NULL;
1649	spin_unlock_irq(&pdata->lpe_audio_slock);
1650
1651	for_each_port(card_ctx, port) {
1652		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1653
1654		cancel_work_sync(&ctx->hdmi_audio_wq);
1655	}
1656}
1657
1658/*
1659 * hdmi_lpe_audio_probe - start bridge with i915
1660 *
1661 * This function is called when the i915 driver creates the
1662 * hdmi-lpe-audio platform device.
1663 */
1664static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1665{
1666	struct snd_card *card;
1667	struct snd_intelhad_card *card_ctx;
1668	struct snd_intelhad *ctx;
1669	struct snd_pcm *pcm;
1670	struct intel_hdmi_lpe_audio_pdata *pdata;
1671	int irq;
1672	struct resource *res_mmio;
1673	int port, ret;
1674
1675	pdata = pdev->dev.platform_data;
1676	if (!pdata) {
1677		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1678		return -EINVAL;
1679	}
1680
1681	/* get resources */
1682	irq = platform_get_irq(pdev, 0);
1683	if (irq < 0)
1684		return irq;
1685
1686	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1687	if (!res_mmio) {
1688		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1689		return -ENXIO;
1690	}
1691
1692	/* create a card instance with ALSA framework */
1693	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1694				THIS_MODULE, sizeof(*card_ctx), &card);
1695	if (ret)
1696		return ret;
1697
1698	card_ctx = card->private_data;
1699	card_ctx->dev = &pdev->dev;
1700	card_ctx->card = card;
1701	strcpy(card->driver, INTEL_HAD);
1702	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1703	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1704
1705	card_ctx->irq = -1;
1706
1707	card->private_free = hdmi_lpe_audio_free;
1708
1709	platform_set_drvdata(pdev, card_ctx);
1710
1711	card_ctx->num_pipes = pdata->num_pipes;
1712	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1713
1714	for_each_port(card_ctx, port) {
1715		ctx = &card_ctx->pcm_ctx[port];
1716		ctx->card_ctx = card_ctx;
1717		ctx->dev = card_ctx->dev;
1718		ctx->port = single_port ? -1 : port;
1719		ctx->pipe = -1;
1720
1721		spin_lock_init(&ctx->had_spinlock);
1722		mutex_init(&ctx->mutex);
1723		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1724	}
1725
1726	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1727		__func__, (unsigned int)res_mmio->start,
1728		(unsigned int)res_mmio->end);
1729
1730	card_ctx->mmio_start =
1731		devm_ioremap(&pdev->dev, res_mmio->start,
1732			     (size_t)(resource_size(res_mmio)));
1733	if (!card_ctx->mmio_start) {
1734		dev_err(&pdev->dev, "Could not get ioremap\n");
1735		return -EACCES;
1736	}
1737
1738	/* setup interrupt handler */
1739	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1740			       0, pdev->name, card_ctx);
1741	if (ret < 0) {
1742		dev_err(&pdev->dev, "request_irq failed\n");
1743		return ret;
1744	}
1745
1746	card_ctx->irq = irq;
1747
1748	/* only 32bit addressable */
1749	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1750	if (ret)
1751		return ret;
1752
1753	init_channel_allocations();
1754
1755	card_ctx->num_pipes = pdata->num_pipes;
1756	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1757
1758	for_each_port(card_ctx, port) {
1759		int i;
1760
1761		ctx = &card_ctx->pcm_ctx[port];
1762		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1763				  MAX_CAP_STREAMS, &pcm);
1764		if (ret)
1765			return ret;
1766
1767		/* setup private data which can be retrieved when required */
1768		pcm->private_data = ctx;
1769		pcm->info_flags = 0;
1770		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1771		/* setup the ops for playback */
1772		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773
1774		/* allocate dma pages;
1775		 * try to allocate 600k buffer as default which is large enough
1776		 */
1777		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1778					       card->dev, HAD_DEFAULT_BUFFER,
1779					       HAD_MAX_BUFFER);
1780
1781		/* create controls */
1782		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1783			struct snd_kcontrol *kctl;
1784
1785			kctl = snd_ctl_new1(&had_controls[i], ctx);
1786			if (!kctl)
1787				return -ENOMEM;
1788
1789			kctl->id.device = pcm->device;
1790
1791			ret = snd_ctl_add(card, kctl);
1792			if (ret < 0)
1793				return ret;
1794		}
1795
1796		/* Register channel map controls */
1797		ret = had_register_chmap_ctls(ctx, pcm);
1798		if (ret < 0)
1799			return ret;
1800
1801		ret = had_create_jack(ctx, pcm);
1802		if (ret < 0)
1803			return ret;
1804	}
1805
1806	ret = snd_card_register(card);
1807	if (ret)
1808		return ret;
1809
1810	spin_lock_irq(&pdata->lpe_audio_slock);
1811	pdata->notify_audio_lpe = notify_audio_lpe;
1812	spin_unlock_irq(&pdata->lpe_audio_slock);
1813
1814	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1815	pm_runtime_use_autosuspend(&pdev->dev);
1816	pm_runtime_enable(&pdev->dev);
1817	pm_runtime_mark_last_busy(&pdev->dev);
1818	pm_runtime_idle(&pdev->dev);
1819
1820	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821	for_each_port(card_ctx, port) {
1822		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823
1824		schedule_work(&ctx->hdmi_audio_wq);
1825	}
1826
1827	return 0;
1828}
1829
1830static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1831{
1832	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1833}
1834
1835static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1836	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1837};
1838
1839static struct platform_driver hdmi_lpe_audio_driver = {
1840	.driver		= {
1841		.name  = "hdmi-lpe-audio",
1842		.pm = &hdmi_lpe_audio_pm,
1843	},
1844	.probe          = hdmi_lpe_audio_probe,
1845};
1846
1847module_platform_driver(hdmi_lpe_audio_driver);
1848MODULE_ALIAS("platform:hdmi_lpe_audio");
1849
1850MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1851MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1852MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1853MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1854MODULE_DESCRIPTION("Intel HDMI Audio driver");
1855MODULE_LICENSE("GPL v2");
1856