1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/pm_runtime.h>
15#include <linux/of.h>
16#include <sound/core.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/initval.h>
20#include <sound/soc.h>
21#include <sound/dmaengine_pcm.h>
22
23#include "omap-mcbsp-priv.h"
24#include "omap-mcbsp.h"
25#include "sdma-pcm.h"
26
27#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
28
29enum {
30	OMAP_MCBSP_WORD_8 = 0,
31	OMAP_MCBSP_WORD_12,
32	OMAP_MCBSP_WORD_16,
33	OMAP_MCBSP_WORD_20,
34	OMAP_MCBSP_WORD_24,
35	OMAP_MCBSP_WORD_32,
36};
37
38static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
39{
40	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
41	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
42	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
43	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
44	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
45	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
46	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
47	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
48	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
49	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
50	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
51	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
52	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
53	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
54	dev_dbg(mcbsp->dev, "***********************\n");
55}
56
57static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
58{
59	struct clk *fck_src;
60	const char *src;
61	int r;
62
63	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
64		src = "pad_fck";
65	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
66		src = "prcm_fck";
67	else
68		return -EINVAL;
69
70	fck_src = clk_get(mcbsp->dev, src);
71	if (IS_ERR(fck_src)) {
72		dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
73		return 0;
74	}
75
76	if (mcbsp->active)
77		pm_runtime_put_sync(mcbsp->dev);
78
79	r = clk_set_parent(mcbsp->fclk, fck_src);
80	if (r)
81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82			src);
83
84	if (mcbsp->active)
85		pm_runtime_get_sync(mcbsp->dev);
86
87	clk_put(fck_src);
88
89	return r;
90}
91
92static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
93{
94	struct omap_mcbsp *mcbsp = data;
95	u16 irqst;
96
97	irqst = MCBSP_READ(mcbsp, IRQST);
98	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
99
100	if (irqst & RSYNCERREN)
101		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
102	if (irqst & RFSREN)
103		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
104	if (irqst & REOFEN)
105		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
106	if (irqst & RRDYEN)
107		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
108	if (irqst & RUNDFLEN)
109		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
110	if (irqst & ROVFLEN)
111		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
112
113	if (irqst & XSYNCERREN)
114		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
115	if (irqst & XFSXEN)
116		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
117	if (irqst & XEOFEN)
118		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
119	if (irqst & XRDYEN)
120		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
121	if (irqst & XUNDFLEN)
122		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
123	if (irqst & XOVFLEN)
124		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
125	if (irqst & XEMPTYEOFEN)
126		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
127
128	MCBSP_WRITE(mcbsp, IRQST, irqst);
129
130	return IRQ_HANDLED;
131}
132
133static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
134{
135	struct omap_mcbsp *mcbsp = data;
136	u16 irqst_spcr2;
137
138	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
139	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
140
141	if (irqst_spcr2 & XSYNC_ERR) {
142		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
143			irqst_spcr2);
144		/* Writing zero to XSYNC_ERR clears the IRQ */
145		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
146	}
147
148	return IRQ_HANDLED;
149}
150
151static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
152{
153	struct omap_mcbsp *mcbsp = data;
154	u16 irqst_spcr1;
155
156	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
157	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
158
159	if (irqst_spcr1 & RSYNC_ERR) {
160		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
161			irqst_spcr1);
162		/* Writing zero to RSYNC_ERR clears the IRQ */
163		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
164	}
165
166	return IRQ_HANDLED;
167}
168
169/*
170 * omap_mcbsp_config simply write a config to the
171 * appropriate McBSP.
172 * You either call this function or set the McBSP registers
173 * by yourself before calling omap_mcbsp_start().
174 */
175static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
176			      const struct omap_mcbsp_reg_cfg *config)
177{
178	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
179		mcbsp->id, mcbsp->phys_base);
180
181	/* We write the given config */
182	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
183	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
184	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
185	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
186	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
187	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
188	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
189	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
190	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
191	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
192	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
193	if (mcbsp->pdata->has_ccr) {
194		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
195		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
196	}
197	/* Enable wakeup behavior */
198	if (mcbsp->pdata->has_wakeup)
199		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
200
201	/* Enable TX/RX sync error interrupts by default */
202	if (mcbsp->irq)
203		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
204			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
205}
206
207/**
208 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
209 * @mcbsp: omap_mcbsp struct for the McBSP instance
210 * @stream: Stream direction (playback/capture)
211 *
212 * Returns the address of mcbsp data transmit register or data receive register
213 * to be used by DMA for transferring/receiving data
214 */
215static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
216				     unsigned int stream)
217{
218	int data_reg;
219
220	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
221		if (mcbsp->pdata->reg_size == 2)
222			data_reg = OMAP_MCBSP_REG_DXR1;
223		else
224			data_reg = OMAP_MCBSP_REG_DXR;
225	} else {
226		if (mcbsp->pdata->reg_size == 2)
227			data_reg = OMAP_MCBSP_REG_DRR1;
228		else
229			data_reg = OMAP_MCBSP_REG_DRR;
230	}
231
232	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
233}
234
235/*
236 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
237 * The threshold parameter is 1 based, and it is converted (threshold - 1)
238 * for the THRSH2 register.
239 */
240static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
241{
242	if (threshold && threshold <= mcbsp->max_tx_thres)
243		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
244}
245
246/*
247 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
248 * The threshold parameter is 1 based, and it is converted (threshold - 1)
249 * for the THRSH1 register.
250 */
251static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
252{
253	if (threshold && threshold <= mcbsp->max_rx_thres)
254		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
255}
256
257/*
258 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
259 */
260static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
261{
262	u16 buffstat;
263
264	/* Returns the number of free locations in the buffer */
265	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
266
267	/* Number of slots are different in McBSP ports */
268	return mcbsp->pdata->buffer_size - buffstat;
269}
270
271/*
272 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
273 * to reach the threshold value (when the DMA will be triggered to read it)
274 */
275static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
276{
277	u16 buffstat, threshold;
278
279	/* Returns the number of used locations in the buffer */
280	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
281	/* RX threshold */
282	threshold = MCBSP_READ(mcbsp, THRSH1);
283
284	/* Return the number of location till we reach the threshold limit */
285	if (threshold <= buffstat)
286		return 0;
287	else
288		return threshold - buffstat;
289}
290
291static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
292{
293	void *reg_cache;
294	int err;
295
296	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
297	if (!reg_cache)
298		return -ENOMEM;
299
300	spin_lock(&mcbsp->lock);
301	if (!mcbsp->free) {
302		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
303		err = -EBUSY;
304		goto err_kfree;
305	}
306
307	mcbsp->free = false;
308	mcbsp->reg_cache = reg_cache;
309	spin_unlock(&mcbsp->lock);
310
311	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
312		mcbsp->pdata->ops->request(mcbsp->id - 1);
313
314	/*
315	 * Make sure that transmitter, receiver and sample-rate generator are
316	 * not running before activating IRQs.
317	 */
318	MCBSP_WRITE(mcbsp, SPCR1, 0);
319	MCBSP_WRITE(mcbsp, SPCR2, 0);
320
321	if (mcbsp->irq) {
322		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
323				  "McBSP", (void *)mcbsp);
324		if (err != 0) {
325			dev_err(mcbsp->dev, "Unable to request IRQ\n");
326			goto err_clk_disable;
327		}
328	} else {
329		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
330				  "McBSP TX", (void *)mcbsp);
331		if (err != 0) {
332			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
333			goto err_clk_disable;
334		}
335
336		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
337				  "McBSP RX", (void *)mcbsp);
338		if (err != 0) {
339			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
340			goto err_free_irq;
341		}
342	}
343
344	return 0;
345err_free_irq:
346	free_irq(mcbsp->tx_irq, (void *)mcbsp);
347err_clk_disable:
348	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
349		mcbsp->pdata->ops->free(mcbsp->id - 1);
350
351	/* Disable wakeup behavior */
352	if (mcbsp->pdata->has_wakeup)
353		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
354
355	spin_lock(&mcbsp->lock);
356	mcbsp->free = true;
357	mcbsp->reg_cache = NULL;
358err_kfree:
359	spin_unlock(&mcbsp->lock);
360	kfree(reg_cache);
361
362	return err;
363}
364
365static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
366{
367	void *reg_cache;
368
369	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
370		mcbsp->pdata->ops->free(mcbsp->id - 1);
371
372	/* Disable wakeup behavior */
373	if (mcbsp->pdata->has_wakeup)
374		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
375
376	/* Disable interrupt requests */
377	if (mcbsp->irq) {
378		MCBSP_WRITE(mcbsp, IRQEN, 0);
379
380		free_irq(mcbsp->irq, (void *)mcbsp);
381	} else {
382		free_irq(mcbsp->rx_irq, (void *)mcbsp);
383		free_irq(mcbsp->tx_irq, (void *)mcbsp);
384	}
385
386	reg_cache = mcbsp->reg_cache;
387
388	/*
389	 * Select CLKS source from internal source unconditionally before
390	 * marking the McBSP port as free.
391	 * If the external clock source via MCBSP_CLKS pin has been selected the
392	 * system will refuse to enter idle if the CLKS pin source is not reset
393	 * back to internal source.
394	 */
395	if (!mcbsp_omap1())
396		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
397
398	spin_lock(&mcbsp->lock);
399	if (mcbsp->free)
400		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
401	else
402		mcbsp->free = true;
403	mcbsp->reg_cache = NULL;
404	spin_unlock(&mcbsp->lock);
405
406	kfree(reg_cache);
407}
408
409/*
410 * Here we start the McBSP, by enabling transmitter, receiver or both.
411 * If no transmitter or receiver is active prior calling, then sample-rate
412 * generator and frame sync are started.
413 */
414static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
415{
416	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
417	int rx = !tx;
418	int enable_srg = 0;
419	u16 w;
420
421	if (mcbsp->st_data)
422		omap_mcbsp_st_start(mcbsp);
423
424	/* Only enable SRG, if McBSP is master */
425	w = MCBSP_READ_CACHE(mcbsp, PCR0);
426	if (w & (FSXM | FSRM | CLKXM | CLKRM))
427		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
428				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
429
430	if (enable_srg) {
431		/* Start the sample generator */
432		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
433		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
434	}
435
436	/* Enable transmitter and receiver */
437	tx &= 1;
438	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
439	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
440
441	rx &= 1;
442	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
443	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
444
445	/*
446	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
447	 * REVISIT: 100us may give enough time for two CLKSRG, however
448	 * due to some unknown PM related, clock gating etc. reason it
449	 * is now at 500us.
450	 */
451	udelay(500);
452
453	if (enable_srg) {
454		/* Start frame sync */
455		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
457	}
458
459	if (mcbsp->pdata->has_ccr) {
460		/* Release the transmitter and receiver */
461		w = MCBSP_READ_CACHE(mcbsp, XCCR);
462		w &= ~(tx ? XDISABLE : 0);
463		MCBSP_WRITE(mcbsp, XCCR, w);
464		w = MCBSP_READ_CACHE(mcbsp, RCCR);
465		w &= ~(rx ? RDISABLE : 0);
466		MCBSP_WRITE(mcbsp, RCCR, w);
467	}
468
469	/* Dump McBSP Regs */
470	omap_mcbsp_dump_reg(mcbsp);
471}
472
473static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
474{
475	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
476	int rx = !tx;
477	int idle;
478	u16 w;
479
480	/* Reset transmitter */
481	tx &= 1;
482	if (mcbsp->pdata->has_ccr) {
483		w = MCBSP_READ_CACHE(mcbsp, XCCR);
484		w |= (tx ? XDISABLE : 0);
485		MCBSP_WRITE(mcbsp, XCCR, w);
486	}
487	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
488	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
489
490	/* Reset receiver */
491	rx &= 1;
492	if (mcbsp->pdata->has_ccr) {
493		w = MCBSP_READ_CACHE(mcbsp, RCCR);
494		w |= (rx ? RDISABLE : 0);
495		MCBSP_WRITE(mcbsp, RCCR, w);
496	}
497	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
498	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
499
500	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
501			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
502
503	if (idle) {
504		/* Reset the sample rate generator */
505		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
506		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
507	}
508
509	if (mcbsp->st_data)
510		omap_mcbsp_st_stop(mcbsp);
511}
512
513#define max_thres(m)			(mcbsp->pdata->buffer_size)
514#define valid_threshold(m, val)		((val) <= max_thres(m))
515#define THRESHOLD_PROP_BUILDER(prop)					\
516static ssize_t prop##_show(struct device *dev,				\
517			struct device_attribute *attr, char *buf)	\
518{									\
519	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
520									\
521	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
522}									\
523									\
524static ssize_t prop##_store(struct device *dev,				\
525				struct device_attribute *attr,		\
526				const char *buf, size_t size)		\
527{									\
528	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
529	unsigned long val;						\
530	int status;							\
531									\
532	status = kstrtoul(buf, 0, &val);				\
533	if (status)							\
534		return status;						\
535									\
536	if (!valid_threshold(mcbsp, val))				\
537		return -EDOM;						\
538									\
539	mcbsp->prop = val;						\
540	return size;							\
541}									\
542									\
543static DEVICE_ATTR_RW(prop)
544
545THRESHOLD_PROP_BUILDER(max_tx_thres);
546THRESHOLD_PROP_BUILDER(max_rx_thres);
547
548static const char * const dma_op_modes[] = {
549	"element", "threshold",
550};
551
552static ssize_t dma_op_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
556	int dma_op_mode, i = 0;
557	ssize_t len = 0;
558	const char * const *s;
559
560	dma_op_mode = mcbsp->dma_op_mode;
561
562	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
563		if (dma_op_mode == i)
564			len += sysfs_emit_at(buf, len, "[%s] ", *s);
565		else
566			len += sysfs_emit_at(buf, len, "%s ", *s);
567	}
568	len += sysfs_emit_at(buf, len, "\n");
569
570	return len;
571}
572
573static ssize_t dma_op_mode_store(struct device *dev,
574				 struct device_attribute *attr, const char *buf,
575				 size_t size)
576{
577	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
578	int i;
579
580	i = sysfs_match_string(dma_op_modes, buf);
581	if (i < 0)
582		return i;
583
584	spin_lock_irq(&mcbsp->lock);
585	if (!mcbsp->free) {
586		size = -EBUSY;
587		goto unlock;
588	}
589	mcbsp->dma_op_mode = i;
590
591unlock:
592	spin_unlock_irq(&mcbsp->lock);
593
594	return size;
595}
596
597static DEVICE_ATTR_RW(dma_op_mode);
598
599static const struct attribute *additional_attrs[] = {
600	&dev_attr_max_tx_thres.attr,
601	&dev_attr_max_rx_thres.attr,
602	&dev_attr_dma_op_mode.attr,
603	NULL,
604};
605
606static const struct attribute_group additional_attr_group = {
607	.attrs = (struct attribute **)additional_attrs,
608};
609
610/*
611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
612 * 730 has only 2 McBSP, and both of them are MPU peripherals.
613 */
614static int omap_mcbsp_init(struct platform_device *pdev)
615{
616	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
617	struct resource *res;
618	int ret;
619
620	spin_lock_init(&mcbsp->lock);
621	mcbsp->free = true;
622
623	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
624	if (!res)
625		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626
627	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
628	if (IS_ERR(mcbsp->io_base))
629		return PTR_ERR(mcbsp->io_base);
630
631	mcbsp->phys_base = res->start;
632	mcbsp->reg_cache_size = resource_size(res);
633
634	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
635	if (!res)
636		mcbsp->phys_dma_base = mcbsp->phys_base;
637	else
638		mcbsp->phys_dma_base = res->start;
639
640	/*
641	 * OMAP1, 2 uses two interrupt lines: TX, RX
642	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
643	 * OMAP4 and newer SoC only have the combined IRQ line.
644	 * Use the combined IRQ if available since it gives better debugging
645	 * possibilities.
646	 */
647	mcbsp->irq = platform_get_irq_byname(pdev, "common");
648	if (mcbsp->irq == -ENXIO) {
649		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
650
651		if (mcbsp->tx_irq == -ENXIO) {
652			mcbsp->irq = platform_get_irq(pdev, 0);
653			mcbsp->tx_irq = 0;
654		} else {
655			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
656			mcbsp->irq = 0;
657		}
658	}
659
660	if (!pdev->dev.of_node) {
661		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
662		if (!res) {
663			dev_err(&pdev->dev, "invalid tx DMA channel\n");
664			return -ENODEV;
665		}
666		mcbsp->dma_req[0] = res->start;
667		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
668
669		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
670		if (!res) {
671			dev_err(&pdev->dev, "invalid rx DMA channel\n");
672			return -ENODEV;
673		}
674		mcbsp->dma_req[1] = res->start;
675		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
676	} else {
677		mcbsp->dma_data[0].filter_data = "tx";
678		mcbsp->dma_data[1].filter_data = "rx";
679	}
680
681	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
682						SNDRV_PCM_STREAM_PLAYBACK);
683	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
684						SNDRV_PCM_STREAM_CAPTURE);
685
686	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
687	if (IS_ERR(mcbsp->fclk)) {
688		ret = PTR_ERR(mcbsp->fclk);
689		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
690		return ret;
691	}
692
693	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
694	if (mcbsp->pdata->buffer_size) {
695		/*
696		 * Initially configure the maximum thresholds to a safe value.
697		 * The McBSP FIFO usage with these values should not go under
698		 * 16 locations.
699		 * If the whole FIFO without safety buffer is used, than there
700		 * is a possibility that the DMA will be not able to push the
701		 * new data on time, causing channel shifts in runtime.
702		 */
703		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
704		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
705
706		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
707		if (ret) {
708			dev_err(mcbsp->dev,
709				"Unable to create additional controls\n");
710			return ret;
711		}
712	}
713
714	return omap_mcbsp_st_init(pdev);
715}
716
717/*
718 * Stream DMA parameters. DMA request line and port address are set runtime
719 * since they are different between OMAP1 and later OMAPs
720 */
721static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
722		unsigned int packet_size)
723{
724	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
725	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
726	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
727	int words;
728
729	/* No need to proceed further if McBSP does not have FIFO */
730	if (mcbsp->pdata->buffer_size == 0)
731		return;
732
733	/*
734	 * Configure McBSP threshold based on either:
735	 * packet_size, when the sDMA is in packet mode, or based on the
736	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
737	 * for mono streams.
738	 */
739	if (packet_size)
740		words = packet_size;
741	else
742		words = 1;
743
744	/* Configure McBSP internal buffer usage */
745	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
746		omap_mcbsp_set_tx_threshold(mcbsp, words);
747	else
748		omap_mcbsp_set_rx_threshold(mcbsp, words);
749}
750
751static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
752				    struct snd_pcm_hw_rule *rule)
753{
754	struct snd_interval *buffer_size = hw_param_interval(params,
755					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
756	struct snd_interval *channels = hw_param_interval(params,
757					SNDRV_PCM_HW_PARAM_CHANNELS);
758	struct omap_mcbsp *mcbsp = rule->private;
759	struct snd_interval frames;
760	int size;
761
762	snd_interval_any(&frames);
763	size = mcbsp->pdata->buffer_size;
764
765	frames.min = size / channels->min;
766	frames.integer = 1;
767	return snd_interval_refine(buffer_size, &frames);
768}
769
770static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
771				  struct snd_soc_dai *cpu_dai)
772{
773	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
774	int err = 0;
775
776	if (!snd_soc_dai_active(cpu_dai))
777		err = omap_mcbsp_request(mcbsp);
778
779	/*
780	 * OMAP3 McBSP FIFO is word structured.
781	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
782	 * McBSP1,3,4,5 has 128 word long buffer
783	 * This means that the size of the FIFO depends on the sample format.
784	 * For example on McBSP3:
785	 * 16bit samples: size is 128 * 2 = 256 bytes
786	 * 32bit samples: size is 128 * 4 = 512 bytes
787	 * It is simpler to place constraint for buffer and period based on
788	 * channels.
789	 * McBSP3 as example again (16 or 32 bit samples):
790	 * 1 channel (mono): size is 128 frames (128 words)
791	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
792	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
793	 */
794	if (mcbsp->pdata->buffer_size) {
795		/*
796		* Rule for the buffer size. We should not allow
797		* smaller buffer than the FIFO size to avoid underruns.
798		* This applies only for the playback stream.
799		*/
800		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
801			snd_pcm_hw_rule_add(substream->runtime, 0,
802					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
803					    omap_mcbsp_hwrule_min_buffersize,
804					    mcbsp,
805					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
806
807		/* Make sure, that the period size is always even */
808		snd_pcm_hw_constraint_step(substream->runtime, 0,
809					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
810	}
811
812	return err;
813}
814
815static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
816				    struct snd_soc_dai *cpu_dai)
817{
818	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
819	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
820	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
821	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
822
823	if (mcbsp->latency[stream2])
824		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
825					       mcbsp->latency[stream2]);
826	else if (mcbsp->latency[stream1])
827		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
828
829	mcbsp->latency[stream1] = 0;
830
831	if (!snd_soc_dai_active(cpu_dai)) {
832		omap_mcbsp_free(mcbsp);
833		mcbsp->configured = 0;
834	}
835}
836
837static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
838				  struct snd_soc_dai *cpu_dai)
839{
840	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
841	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
842	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
843	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
844	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
845	int latency = mcbsp->latency[stream2];
846
847	/* Prevent omap hardware from hitting off between FIFO fills */
848	if (!latency || mcbsp->latency[stream1] < latency)
849		latency = mcbsp->latency[stream1];
850
851	if (cpu_latency_qos_request_active(pm_qos_req))
852		cpu_latency_qos_update_request(pm_qos_req, latency);
853	else if (latency)
854		cpu_latency_qos_add_request(pm_qos_req, latency);
855
856	return 0;
857}
858
859static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
860				  struct snd_soc_dai *cpu_dai)
861{
862	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
863
864	switch (cmd) {
865	case SNDRV_PCM_TRIGGER_START:
866	case SNDRV_PCM_TRIGGER_RESUME:
867	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
868		mcbsp->active++;
869		omap_mcbsp_start(mcbsp, substream->stream);
870		break;
871
872	case SNDRV_PCM_TRIGGER_STOP:
873	case SNDRV_PCM_TRIGGER_SUSPEND:
874	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
875		omap_mcbsp_stop(mcbsp, substream->stream);
876		mcbsp->active--;
877		break;
878	default:
879		return -EINVAL;
880	}
881
882	return 0;
883}
884
885static snd_pcm_sframes_t omap_mcbsp_dai_delay(
886			struct snd_pcm_substream *substream,
887			struct snd_soc_dai *dai)
888{
889	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
890	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
891	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
892	u16 fifo_use;
893	snd_pcm_sframes_t delay;
894
895	/* No need to proceed further if McBSP does not have FIFO */
896	if (mcbsp->pdata->buffer_size == 0)
897		return 0;
898
899	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
900		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
901	else
902		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
903
904	/*
905	 * Divide the used locations with the channel count to get the
906	 * FIFO usage in samples (don't care about partial samples in the
907	 * buffer).
908	 */
909	delay = fifo_use / substream->runtime->channels;
910
911	return delay;
912}
913
914static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
915				    struct snd_pcm_hw_params *params,
916				    struct snd_soc_dai *cpu_dai)
917{
918	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
919	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
920	struct snd_dmaengine_dai_dma_data *dma_data;
921	int wlen, channels, wpf;
922	int pkt_size = 0;
923	unsigned int format, div, framesize, master;
924	unsigned int buffer_size = mcbsp->pdata->buffer_size;
925
926	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
927	channels = params_channels(params);
928
929	switch (params_format(params)) {
930	case SNDRV_PCM_FORMAT_S16_LE:
931		wlen = 16;
932		break;
933	case SNDRV_PCM_FORMAT_S32_LE:
934		wlen = 32;
935		break;
936	default:
937		return -EINVAL;
938	}
939	if (buffer_size) {
940		int latency;
941
942		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
943			int period_words, max_thrsh;
944			int divider = 0;
945
946			period_words = params_period_bytes(params) / (wlen / 8);
947			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
948				max_thrsh = mcbsp->max_tx_thres;
949			else
950				max_thrsh = mcbsp->max_rx_thres;
951			/*
952			 * Use sDMA packet mode if McBSP is in threshold mode:
953			 * If period words less than the FIFO size the packet
954			 * size is set to the number of period words, otherwise
955			 * Look for the biggest threshold value which divides
956			 * the period size evenly.
957			 */
958			divider = period_words / max_thrsh;
959			if (period_words % max_thrsh)
960				divider++;
961			while (period_words % divider &&
962				divider < period_words)
963				divider++;
964			if (divider == period_words)
965				return -EINVAL;
966
967			pkt_size = period_words / divider;
968		} else if (channels > 1) {
969			/* Use packet mode for non mono streams */
970			pkt_size = channels;
971		}
972
973		latency = (buffer_size - pkt_size) / channels;
974		latency = latency * USEC_PER_SEC /
975			  (params->rate_num / params->rate_den);
976		mcbsp->latency[substream->stream] = latency;
977
978		omap_mcbsp_set_threshold(substream, pkt_size);
979	}
980
981	dma_data->maxburst = pkt_size;
982
983	if (mcbsp->configured) {
984		/* McBSP already configured by another stream */
985		return 0;
986	}
987
988	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
989	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
990	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
991	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
992	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
993	wpf = channels;
994	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
995			      format == SND_SOC_DAIFMT_LEFT_J)) {
996		/* Use dual-phase frames */
997		regs->rcr2	|= RPHASE;
998		regs->xcr2	|= XPHASE;
999		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1000		wpf--;
1001		regs->rcr2	|= RFRLEN2(wpf - 1);
1002		regs->xcr2	|= XFRLEN2(wpf - 1);
1003	}
1004
1005	regs->rcr1	|= RFRLEN1(wpf - 1);
1006	regs->xcr1	|= XFRLEN1(wpf - 1);
1007
1008	switch (params_format(params)) {
1009	case SNDRV_PCM_FORMAT_S16_LE:
1010		/* Set word lengths */
1011		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1012		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1013		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1014		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1015		break;
1016	case SNDRV_PCM_FORMAT_S32_LE:
1017		/* Set word lengths */
1018		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1019		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1020		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1021		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1022		break;
1023	default:
1024		/* Unsupported PCM format */
1025		return -EINVAL;
1026	}
1027
1028	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1029	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1030	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1031	if (master == SND_SOC_DAIFMT_BP_FP) {
1032		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1033		framesize = (mcbsp->in_freq / div) / params_rate(params);
1034
1035		if (framesize < wlen * channels) {
1036			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1037					"channels\n", __func__);
1038			return -EINVAL;
1039		}
1040	} else
1041		framesize = wlen * channels;
1042
1043	/* Set FS period and length in terms of bit clock periods */
1044	regs->srgr2	&= ~FPER(0xfff);
1045	regs->srgr1	&= ~FWID(0xff);
1046	switch (format) {
1047	case SND_SOC_DAIFMT_I2S:
1048	case SND_SOC_DAIFMT_LEFT_J:
1049		regs->srgr2	|= FPER(framesize - 1);
1050		regs->srgr1	|= FWID((framesize >> 1) - 1);
1051		break;
1052	case SND_SOC_DAIFMT_DSP_A:
1053	case SND_SOC_DAIFMT_DSP_B:
1054		regs->srgr2	|= FPER(framesize - 1);
1055		regs->srgr1	|= FWID(0);
1056		break;
1057	}
1058
1059	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1060	mcbsp->wlen = wlen;
1061	mcbsp->configured = 1;
1062
1063	return 0;
1064}
1065
1066/*
1067 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1068 * cache is initialized here
1069 */
1070static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1071				      unsigned int fmt)
1072{
1073	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1074	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1075	bool inv_fs = false;
1076
1077	if (mcbsp->configured)
1078		return 0;
1079
1080	mcbsp->fmt = fmt;
1081	memset(regs, 0, sizeof(*regs));
1082	/* Generic McBSP register settings */
1083	regs->spcr2	|= XINTM(3) | FREE;
1084	regs->spcr1	|= RINTM(3);
1085	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1086	if (!mcbsp->pdata->has_ccr) {
1087		regs->rcr2	|= RFIG;
1088		regs->xcr2	|= XFIG;
1089	}
1090
1091	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1092	if (mcbsp->pdata->has_ccr) {
1093		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1094		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1095	}
1096
1097	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1098	case SND_SOC_DAIFMT_I2S:
1099		/* 1-bit data delay */
1100		regs->rcr2	|= RDATDLY(1);
1101		regs->xcr2	|= XDATDLY(1);
1102		break;
1103	case SND_SOC_DAIFMT_LEFT_J:
1104		/* 0-bit data delay */
1105		regs->rcr2	|= RDATDLY(0);
1106		regs->xcr2	|= XDATDLY(0);
1107		regs->spcr1	|= RJUST(2);
1108		/* Invert FS polarity configuration */
1109		inv_fs = true;
1110		break;
1111	case SND_SOC_DAIFMT_DSP_A:
1112		/* 1-bit data delay */
1113		regs->rcr2      |= RDATDLY(1);
1114		regs->xcr2      |= XDATDLY(1);
1115		/* Invert FS polarity configuration */
1116		inv_fs = true;
1117		break;
1118	case SND_SOC_DAIFMT_DSP_B:
1119		/* 0-bit data delay */
1120		regs->rcr2      |= RDATDLY(0);
1121		regs->xcr2      |= XDATDLY(0);
1122		/* Invert FS polarity configuration */
1123		inv_fs = true;
1124		break;
1125	default:
1126		/* Unsupported data format */
1127		return -EINVAL;
1128	}
1129
1130	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1131	case SND_SOC_DAIFMT_BP_FP:
1132		/* McBSP master. Set FS and bit clocks as outputs */
1133		regs->pcr0	|= FSXM | FSRM |
1134				   CLKXM | CLKRM;
1135		/* Sample rate generator drives the FS */
1136		regs->srgr2	|= FSGM;
1137		break;
1138	case SND_SOC_DAIFMT_BC_FP:
1139		/* McBSP slave. FS clock as output */
1140		regs->srgr2	|= FSGM;
1141		regs->pcr0	|= FSXM | FSRM;
1142		break;
1143	case SND_SOC_DAIFMT_BC_FC:
1144		/* McBSP slave */
1145		break;
1146	default:
1147		/* Unsupported master/slave configuration */
1148		return -EINVAL;
1149	}
1150
1151	/* Set bit clock (CLKX/CLKR) and FS polarities */
1152	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1153	case SND_SOC_DAIFMT_NB_NF:
1154		/*
1155		 * Normal BCLK + FS.
1156		 * FS active low. TX data driven on falling edge of bit clock
1157		 * and RX data sampled on rising edge of bit clock.
1158		 */
1159		regs->pcr0	|= FSXP | FSRP |
1160				   CLKXP | CLKRP;
1161		break;
1162	case SND_SOC_DAIFMT_NB_IF:
1163		regs->pcr0	|= CLKXP | CLKRP;
1164		break;
1165	case SND_SOC_DAIFMT_IB_NF:
1166		regs->pcr0	|= FSXP | FSRP;
1167		break;
1168	case SND_SOC_DAIFMT_IB_IF:
1169		break;
1170	default:
1171		return -EINVAL;
1172	}
1173	if (inv_fs)
1174		regs->pcr0 ^= FSXP | FSRP;
1175
1176	return 0;
1177}
1178
1179static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1180				     int div_id, int div)
1181{
1182	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1183	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1184
1185	if (div_id != OMAP_MCBSP_CLKGDV)
1186		return -ENODEV;
1187
1188	mcbsp->clk_div = div;
1189	regs->srgr1	&= ~CLKGDV(0xff);
1190	regs->srgr1	|= CLKGDV(div - 1);
1191
1192	return 0;
1193}
1194
1195static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1196					 int clk_id, unsigned int freq,
1197					 int dir)
1198{
1199	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1200	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1201	int err = 0;
1202
1203	if (mcbsp->active) {
1204		if (freq == mcbsp->in_freq)
1205			return 0;
1206		else
1207			return -EBUSY;
1208	}
1209
1210	mcbsp->in_freq = freq;
1211	regs->srgr2 &= ~CLKSM;
1212	regs->pcr0 &= ~SCLKME;
1213
1214	switch (clk_id) {
1215	case OMAP_MCBSP_SYSCLK_CLK:
1216		regs->srgr2	|= CLKSM;
1217		break;
1218	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1219		if (mcbsp_omap1()) {
1220			err = -EINVAL;
1221			break;
1222		}
1223		err = omap2_mcbsp_set_clks_src(mcbsp,
1224					       MCBSP_CLKS_PRCM_SRC);
1225		break;
1226	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1227		if (mcbsp_omap1()) {
1228			err = 0;
1229			break;
1230		}
1231		err = omap2_mcbsp_set_clks_src(mcbsp,
1232					       MCBSP_CLKS_PAD_SRC);
1233		break;
1234
1235	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1236		regs->srgr2	|= CLKSM;
1237		regs->pcr0	|= SCLKME;
1238		/*
1239		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1240		 * disable output on those pins. This enables to inject the
1241		 * reference clock through CLKX/CLKR. For this to work
1242		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1243		 */
1244		regs->pcr0	&= ~CLKXM;
1245		break;
1246	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1247		regs->pcr0	|= SCLKME;
1248		/* Disable ouput on CLKR pin in master mode */
1249		regs->pcr0	&= ~CLKRM;
1250		break;
1251	default:
1252		err = -ENODEV;
1253	}
1254
1255	return err;
1256}
1257
1258static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1259{
1260	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1261
1262	pm_runtime_enable(mcbsp->dev);
1263
1264	snd_soc_dai_init_dma_data(dai,
1265				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1266				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1267
1268	return 0;
1269}
1270
1271static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1272{
1273	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1274
1275	pm_runtime_disable(mcbsp->dev);
1276
1277	return 0;
1278}
1279
1280static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1281	.probe		= omap_mcbsp_probe,
1282	.remove		= omap_mcbsp_remove,
1283	.startup	= omap_mcbsp_dai_startup,
1284	.shutdown	= omap_mcbsp_dai_shutdown,
1285	.prepare	= omap_mcbsp_dai_prepare,
1286	.trigger	= omap_mcbsp_dai_trigger,
1287	.delay		= omap_mcbsp_dai_delay,
1288	.hw_params	= omap_mcbsp_dai_hw_params,
1289	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1290	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1291	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1292};
1293
1294static struct snd_soc_dai_driver omap_mcbsp_dai = {
1295	.playback = {
1296		.channels_min = 1,
1297		.channels_max = 16,
1298		.rates = OMAP_MCBSP_RATES,
1299		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1300	},
1301	.capture = {
1302		.channels_min = 1,
1303		.channels_max = 16,
1304		.rates = OMAP_MCBSP_RATES,
1305		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1306	},
1307	.ops = &mcbsp_dai_ops,
1308};
1309
1310static const struct snd_soc_component_driver omap_mcbsp_component = {
1311	.name			= "omap-mcbsp",
1312	.legacy_dai_naming	= 1,
1313};
1314
1315static struct omap_mcbsp_platform_data omap2420_pdata = {
1316	.reg_step = 4,
1317	.reg_size = 2,
1318};
1319
1320static struct omap_mcbsp_platform_data omap2430_pdata = {
1321	.reg_step = 4,
1322	.reg_size = 4,
1323	.has_ccr = true,
1324};
1325
1326static struct omap_mcbsp_platform_data omap3_pdata = {
1327	.reg_step = 4,
1328	.reg_size = 4,
1329	.has_ccr = true,
1330	.has_wakeup = true,
1331};
1332
1333static struct omap_mcbsp_platform_data omap4_pdata = {
1334	.reg_step = 4,
1335	.reg_size = 4,
1336	.has_ccr = true,
1337	.has_wakeup = true,
1338};
1339
1340static const struct of_device_id omap_mcbsp_of_match[] = {
1341	{
1342		.compatible = "ti,omap2420-mcbsp",
1343		.data = &omap2420_pdata,
1344	},
1345	{
1346		.compatible = "ti,omap2430-mcbsp",
1347		.data = &omap2430_pdata,
1348	},
1349	{
1350		.compatible = "ti,omap3-mcbsp",
1351		.data = &omap3_pdata,
1352	},
1353	{
1354		.compatible = "ti,omap4-mcbsp",
1355		.data = &omap4_pdata,
1356	},
1357	{ },
1358};
1359MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1360
1361static int asoc_mcbsp_probe(struct platform_device *pdev)
1362{
1363	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1364	const struct omap_mcbsp_platform_data *match_pdata =
1365		device_get_match_data(&pdev->dev);
1366	struct omap_mcbsp *mcbsp;
1367	int ret;
1368
1369	if (match_pdata) {
1370		struct device_node *node = pdev->dev.of_node;
1371		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1372		int buffer_size;
1373
1374		pdata = devm_kmemdup(&pdev->dev, match_pdata,
1375				     sizeof(struct omap_mcbsp_platform_data),
1376				     GFP_KERNEL);
1377		if (!pdata)
1378			return -ENOMEM;
1379
1380		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381			pdata->buffer_size = buffer_size;
1382		if (pdata_quirk)
1383			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384	} else if (!pdata) {
1385		dev_err(&pdev->dev, "missing platform data.\n");
1386		return -EINVAL;
1387	}
1388	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389	if (!mcbsp)
1390		return -ENOMEM;
1391
1392	mcbsp->id = pdev->id;
1393	mcbsp->pdata = pdata;
1394	mcbsp->dev = &pdev->dev;
1395	platform_set_drvdata(pdev, mcbsp);
1396
1397	ret = omap_mcbsp_init(pdev);
1398	if (ret)
1399		return ret;
1400
1401	if (mcbsp->pdata->reg_size == 2) {
1402		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404	}
1405
1406	ret = devm_snd_soc_register_component(&pdev->dev,
1407					      &omap_mcbsp_component,
1408					      &omap_mcbsp_dai, 1);
1409	if (ret)
1410		return ret;
1411
1412	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413}
1414
1415static void asoc_mcbsp_remove(struct platform_device *pdev)
1416{
1417	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420		mcbsp->pdata->ops->free(mcbsp->id);
1421
1422	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1424}
1425
1426static struct platform_driver asoc_mcbsp_driver = {
1427	.driver = {
1428			.name = "omap-mcbsp",
1429			.of_match_table = omap_mcbsp_of_match,
1430	},
1431
1432	.probe = asoc_mcbsp_probe,
1433	.remove_new = asoc_mcbsp_remove,
1434};
1435
1436module_platform_driver(asoc_mcbsp_driver);
1437
1438MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1439MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1440MODULE_LICENSE("GPL");
1441MODULE_ALIAS("platform:omap-mcbsp");
1442