1// SPDX-License-Identifier: GPL-2.0+
2//
3// soc-ops.c  --  Generic ASoC operations
4//
5// Copyright 2005 Wolfson Microelectronics PLC.
6// Copyright 2005 Openedhand Ltd.
7// Copyright (C) 2010 Slimlogic Ltd.
8// Copyright (C) 2010 Texas Instruments Inc.
9//
10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
11//         with code, comments and ideas from :-
12//         Richard Purdie <richard@openedhand.com>
13
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/init.h>
17#include <linux/pm.h>
18#include <linux/bitops.h>
19#include <linux/ctype.h>
20#include <linux/slab.h>
21#include <sound/core.h>
22#include <sound/jack.h>
23#include <sound/pcm.h>
24#include <sound/pcm_params.h>
25#include <sound/soc.h>
26#include <sound/soc-dpcm.h>
27#include <sound/initval.h>
28
29/**
30 * snd_soc_info_enum_double - enumerated double mixer info callback
31 * @kcontrol: mixer control
32 * @uinfo: control element information
33 *
34 * Callback to provide information about a double enumerated
35 * mixer control.
36 *
37 * Returns 0 for success.
38 */
39int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
40	struct snd_ctl_elem_info *uinfo)
41{
42	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
43
44	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
45				 e->items, e->texts);
46}
47EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
48
49/**
50 * snd_soc_get_enum_double - enumerated double mixer get callback
51 * @kcontrol: mixer control
52 * @ucontrol: control element information
53 *
54 * Callback to get the value of a double enumerated mixer.
55 *
56 * Returns 0 for success.
57 */
58int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
59	struct snd_ctl_elem_value *ucontrol)
60{
61	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
62	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
63	unsigned int val, item;
64	unsigned int reg_val;
65
66	reg_val = snd_soc_component_read(component, e->reg);
67	val = (reg_val >> e->shift_l) & e->mask;
68	item = snd_soc_enum_val_to_item(e, val);
69	ucontrol->value.enumerated.item[0] = item;
70	if (e->shift_l != e->shift_r) {
71		val = (reg_val >> e->shift_r) & e->mask;
72		item = snd_soc_enum_val_to_item(e, val);
73		ucontrol->value.enumerated.item[1] = item;
74	}
75
76	return 0;
77}
78EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
79
80/**
81 * snd_soc_put_enum_double - enumerated double mixer put callback
82 * @kcontrol: mixer control
83 * @ucontrol: control element information
84 *
85 * Callback to set the value of a double enumerated mixer.
86 *
87 * Returns 0 for success.
88 */
89int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
90	struct snd_ctl_elem_value *ucontrol)
91{
92	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
93	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
94	unsigned int *item = ucontrol->value.enumerated.item;
95	unsigned int val;
96	unsigned int mask;
97
98	if (item[0] >= e->items)
99		return -EINVAL;
100	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
101	mask = e->mask << e->shift_l;
102	if (e->shift_l != e->shift_r) {
103		if (item[1] >= e->items)
104			return -EINVAL;
105		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
106		mask |= e->mask << e->shift_r;
107	}
108
109	return snd_soc_component_update_bits(component, e->reg, mask, val);
110}
111EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
112
113/**
114 * snd_soc_read_signed - Read a codec register and interpret as signed value
115 * @component: component
116 * @reg: Register to read
117 * @mask: Mask to use after shifting the register value
118 * @shift: Right shift of register value
119 * @sign_bit: Bit that describes if a number is negative or not.
120 * @signed_val: Pointer to where the read value should be stored
121 *
122 * This functions reads a codec register. The register value is shifted right
123 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
124 * the given registervalue into a signed integer if sign_bit is non-zero.
125 *
126 * Returns 0 on sucess, otherwise an error value
127 */
128static int snd_soc_read_signed(struct snd_soc_component *component,
129	unsigned int reg, unsigned int mask, unsigned int shift,
130	unsigned int sign_bit, int *signed_val)
131{
132	int ret;
133	unsigned int val;
134
135	val = snd_soc_component_read(component, reg);
136	val = (val >> shift) & mask;
137
138	if (!sign_bit) {
139		*signed_val = val;
140		return 0;
141	}
142
143	/* non-negative number */
144	if (!(val & BIT(sign_bit))) {
145		*signed_val = val;
146		return 0;
147	}
148
149	ret = val;
150
151	/*
152	 * The register most probably does not contain a full-sized int.
153	 * Instead we have an arbitrary number of bits in a signed
154	 * representation which has to be translated into a full-sized int.
155	 * This is done by filling up all bits above the sign-bit.
156	 */
157	ret |= ~((int)(BIT(sign_bit) - 1));
158
159	*signed_val = ret;
160
161	return 0;
162}
163
164/**
165 * snd_soc_info_volsw - single mixer info callback
166 * @kcontrol: mixer control
167 * @uinfo: control element information
168 *
169 * Callback to provide information about a single mixer control, or a double
170 * mixer control that spans 2 registers.
171 *
172 * Returns 0 for success.
173 */
174int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
175	struct snd_ctl_elem_info *uinfo)
176{
177	struct soc_mixer_control *mc =
178		(struct soc_mixer_control *)kcontrol->private_value;
179	const char *vol_string = NULL;
180	int max;
181
182	max = uinfo->value.integer.max = mc->max - mc->min;
183	if (mc->platform_max && mc->platform_max < max)
184		max = mc->platform_max;
185
186	if (max == 1) {
187		/* Even two value controls ending in Volume should always be integer */
188		vol_string = strstr(kcontrol->id.name, " Volume");
189		if (vol_string && !strcmp(vol_string, " Volume"))
190			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191		else
192			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
193	} else {
194		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
195	}
196
197	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198	uinfo->value.integer.min = 0;
199	uinfo->value.integer.max = max;
200
201	return 0;
202}
203EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
204
205/**
206 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
207 * @kcontrol: mixer control
208 * @uinfo: control element information
209 *
210 * Callback to provide information about a single mixer control, or a double
211 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
212 * have a range that represents both positive and negative values either side
213 * of zero but without a sign bit. min is the minimum register value, max is
214 * the number of steps.
215 *
216 * Returns 0 for success.
217 */
218int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
219			  struct snd_ctl_elem_info *uinfo)
220{
221	struct soc_mixer_control *mc =
222		(struct soc_mixer_control *)kcontrol->private_value;
223	int max;
224
225	if (mc->platform_max)
226		max = mc->platform_max;
227	else
228		max = mc->max;
229
230	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
231		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
232	else
233		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
234
235	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
236	uinfo->value.integer.min = 0;
237	uinfo->value.integer.max = max;
238
239	return 0;
240}
241EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
242
243/**
244 * snd_soc_get_volsw - single mixer get callback
245 * @kcontrol: mixer control
246 * @ucontrol: control element information
247 *
248 * Callback to get the value of a single mixer control, or a double mixer
249 * control that spans 2 registers.
250 *
251 * Returns 0 for success.
252 */
253int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
254	struct snd_ctl_elem_value *ucontrol)
255{
256	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
257	struct soc_mixer_control *mc =
258		(struct soc_mixer_control *)kcontrol->private_value;
259	unsigned int reg = mc->reg;
260	unsigned int reg2 = mc->rreg;
261	unsigned int shift = mc->shift;
262	unsigned int rshift = mc->rshift;
263	int max = mc->max;
264	int min = mc->min;
265	int sign_bit = mc->sign_bit;
266	unsigned int mask = (1ULL << fls(max)) - 1;
267	unsigned int invert = mc->invert;
268	int val;
269	int ret;
270
271	if (sign_bit)
272		mask = BIT(sign_bit + 1) - 1;
273
274	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
275	if (ret)
276		return ret;
277
278	ucontrol->value.integer.value[0] = val - min;
279	if (invert)
280		ucontrol->value.integer.value[0] =
281			max - ucontrol->value.integer.value[0];
282
283	if (snd_soc_volsw_is_stereo(mc)) {
284		if (reg == reg2)
285			ret = snd_soc_read_signed(component, reg, mask, rshift,
286				sign_bit, &val);
287		else
288			ret = snd_soc_read_signed(component, reg2, mask, shift,
289				sign_bit, &val);
290		if (ret)
291			return ret;
292
293		ucontrol->value.integer.value[1] = val - min;
294		if (invert)
295			ucontrol->value.integer.value[1] =
296				max - ucontrol->value.integer.value[1];
297	}
298
299	return 0;
300}
301EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
302
303/**
304 * snd_soc_put_volsw - single mixer put callback
305 * @kcontrol: mixer control
306 * @ucontrol: control element information
307 *
308 * Callback to set the value of a single mixer control, or a double mixer
309 * control that spans 2 registers.
310 *
311 * Returns 0 for success.
312 */
313int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
314	struct snd_ctl_elem_value *ucontrol)
315{
316	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
317	struct soc_mixer_control *mc =
318		(struct soc_mixer_control *)kcontrol->private_value;
319	unsigned int reg = mc->reg;
320	unsigned int reg2 = mc->rreg;
321	unsigned int shift = mc->shift;
322	unsigned int rshift = mc->rshift;
323	int max = mc->max;
324	int min = mc->min;
325	unsigned int sign_bit = mc->sign_bit;
326	unsigned int mask = (1 << fls(max)) - 1;
327	unsigned int invert = mc->invert;
328	int err, ret;
329	bool type_2r = false;
330	unsigned int val2 = 0;
331	unsigned int val, val_mask;
332
333	if (sign_bit)
334		mask = BIT(sign_bit + 1) - 1;
335
336	if (ucontrol->value.integer.value[0] < 0)
337		return -EINVAL;
338	val = ucontrol->value.integer.value[0];
339	if (mc->platform_max && ((int)val + min) > mc->platform_max)
340		return -EINVAL;
341	if (val > max - min)
342		return -EINVAL;
343	val = (val + min) & mask;
344	if (invert)
345		val = max - val;
346	val_mask = mask << shift;
347	val = val << shift;
348	if (snd_soc_volsw_is_stereo(mc)) {
349		if (ucontrol->value.integer.value[1] < 0)
350			return -EINVAL;
351		val2 = ucontrol->value.integer.value[1];
352		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
353			return -EINVAL;
354		if (val2 > max - min)
355			return -EINVAL;
356		val2 = (val2 + min) & mask;
357		if (invert)
358			val2 = max - val2;
359		if (reg == reg2) {
360			val_mask |= mask << rshift;
361			val |= val2 << rshift;
362		} else {
363			val2 = val2 << shift;
364			type_2r = true;
365		}
366	}
367	err = snd_soc_component_update_bits(component, reg, val_mask, val);
368	if (err < 0)
369		return err;
370	ret = err;
371
372	if (type_2r) {
373		err = snd_soc_component_update_bits(component, reg2, val_mask,
374						    val2);
375		/* Don't discard any error code or drop change flag */
376		if (ret == 0 || err < 0) {
377			ret = err;
378		}
379	}
380
381	return ret;
382}
383EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
384
385/**
386 * snd_soc_get_volsw_sx - single mixer get callback
387 * @kcontrol: mixer control
388 * @ucontrol: control element information
389 *
390 * Callback to get the value of a single mixer control, or a double mixer
391 * control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
395int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
396		      struct snd_ctl_elem_value *ucontrol)
397{
398	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399	struct soc_mixer_control *mc =
400	    (struct soc_mixer_control *)kcontrol->private_value;
401	unsigned int reg = mc->reg;
402	unsigned int reg2 = mc->rreg;
403	unsigned int shift = mc->shift;
404	unsigned int rshift = mc->rshift;
405	int max = mc->max;
406	int min = mc->min;
407	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
408	unsigned int val;
409
410	val = snd_soc_component_read(component, reg);
411	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
412
413	if (snd_soc_volsw_is_stereo(mc)) {
414		val = snd_soc_component_read(component, reg2);
415		val = ((val >> rshift) - min) & mask;
416		ucontrol->value.integer.value[1] = val;
417	}
418
419	return 0;
420}
421EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
422
423/**
424 * snd_soc_put_volsw_sx - double mixer set callback
425 * @kcontrol: mixer control
426 * @ucontrol: control element information
427 *
428 * Callback to set the value of a double mixer control that spans 2 registers.
429 *
430 * Returns 0 for success.
431 */
432int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
433			 struct snd_ctl_elem_value *ucontrol)
434{
435	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
436	struct soc_mixer_control *mc =
437	    (struct soc_mixer_control *)kcontrol->private_value;
438
439	unsigned int reg = mc->reg;
440	unsigned int reg2 = mc->rreg;
441	unsigned int shift = mc->shift;
442	unsigned int rshift = mc->rshift;
443	int max = mc->max;
444	int min = mc->min;
445	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
446	int err = 0;
447	int ret;
448	unsigned int val, val_mask;
449
450	if (ucontrol->value.integer.value[0] < 0)
451		return -EINVAL;
452	val = ucontrol->value.integer.value[0];
453	if (mc->platform_max && val > mc->platform_max)
454		return -EINVAL;
455	if (val > max)
456		return -EINVAL;
457	val_mask = mask << shift;
458	val = (val + min) & mask;
459	val = val << shift;
460
461	err = snd_soc_component_update_bits(component, reg, val_mask, val);
462	if (err < 0)
463		return err;
464	ret = err;
465
466	if (snd_soc_volsw_is_stereo(mc)) {
467		unsigned int val2 = ucontrol->value.integer.value[1];
468
469		if (mc->platform_max && val2 > mc->platform_max)
470			return -EINVAL;
471		if (val2 > max)
472			return -EINVAL;
473
474		val_mask = mask << rshift;
475		val2 = (val2 + min) & mask;
476		val2 = val2 << rshift;
477
478		err = snd_soc_component_update_bits(component, reg2, val_mask,
479			val2);
480
481		/* Don't discard any error code or drop change flag */
482		if (ret == 0 || err < 0) {
483			ret = err;
484		}
485	}
486	return ret;
487}
488EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
489
490/**
491 * snd_soc_info_volsw_range - single mixer info callback with range.
492 * @kcontrol: mixer control
493 * @uinfo: control element information
494 *
495 * Callback to provide information, within a range, about a single
496 * mixer control.
497 *
498 * returns 0 for success.
499 */
500int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
501	struct snd_ctl_elem_info *uinfo)
502{
503	struct soc_mixer_control *mc =
504		(struct soc_mixer_control *)kcontrol->private_value;
505	int platform_max;
506	int min = mc->min;
507
508	if (!mc->platform_max)
509		mc->platform_max = mc->max;
510	platform_max = mc->platform_max;
511
512	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
513	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
514	uinfo->value.integer.min = 0;
515	uinfo->value.integer.max = platform_max - min;
516
517	return 0;
518}
519EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
520
521/**
522 * snd_soc_put_volsw_range - single mixer put value callback with range.
523 * @kcontrol: mixer control
524 * @ucontrol: control element information
525 *
526 * Callback to set the value, within a range, for a single mixer control.
527 *
528 * Returns 0 for success.
529 */
530int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
531	struct snd_ctl_elem_value *ucontrol)
532{
533	struct soc_mixer_control *mc =
534		(struct soc_mixer_control *)kcontrol->private_value;
535	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
536	unsigned int reg = mc->reg;
537	unsigned int rreg = mc->rreg;
538	unsigned int shift = mc->shift;
539	int min = mc->min;
540	int max = mc->max;
541	unsigned int mask = (1 << fls(max)) - 1;
542	unsigned int invert = mc->invert;
543	unsigned int val, val_mask;
544	int err, ret, tmp;
545
546	tmp = ucontrol->value.integer.value[0];
547	if (tmp < 0)
548		return -EINVAL;
549	if (mc->platform_max && tmp > mc->platform_max)
550		return -EINVAL;
551	if (tmp > mc->max - mc->min)
552		return -EINVAL;
553
554	if (invert)
555		val = (max - ucontrol->value.integer.value[0]) & mask;
556	else
557		val = ((ucontrol->value.integer.value[0] + min) & mask);
558	val_mask = mask << shift;
559	val = val << shift;
560
561	err = snd_soc_component_update_bits(component, reg, val_mask, val);
562	if (err < 0)
563		return err;
564	ret = err;
565
566	if (snd_soc_volsw_is_stereo(mc)) {
567		tmp = ucontrol->value.integer.value[1];
568		if (tmp < 0)
569			return -EINVAL;
570		if (mc->platform_max && tmp > mc->platform_max)
571			return -EINVAL;
572		if (tmp > mc->max - mc->min)
573			return -EINVAL;
574
575		if (invert)
576			val = (max - ucontrol->value.integer.value[1]) & mask;
577		else
578			val = ((ucontrol->value.integer.value[1] + min) & mask);
579		val_mask = mask << shift;
580		val = val << shift;
581
582		err = snd_soc_component_update_bits(component, rreg, val_mask,
583			val);
584		/* Don't discard any error code or drop change flag */
585		if (ret == 0 || err < 0) {
586			ret = err;
587		}
588	}
589
590	return ret;
591}
592EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
593
594/**
595 * snd_soc_get_volsw_range - single mixer get callback with range
596 * @kcontrol: mixer control
597 * @ucontrol: control element information
598 *
599 * Callback to get the value, within a range, of a single mixer control.
600 *
601 * Returns 0 for success.
602 */
603int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
604	struct snd_ctl_elem_value *ucontrol)
605{
606	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
607	struct soc_mixer_control *mc =
608		(struct soc_mixer_control *)kcontrol->private_value;
609	unsigned int reg = mc->reg;
610	unsigned int rreg = mc->rreg;
611	unsigned int shift = mc->shift;
612	int min = mc->min;
613	int max = mc->max;
614	unsigned int mask = (1 << fls(max)) - 1;
615	unsigned int invert = mc->invert;
616	unsigned int val;
617
618	val = snd_soc_component_read(component, reg);
619	ucontrol->value.integer.value[0] = (val >> shift) & mask;
620	if (invert)
621		ucontrol->value.integer.value[0] =
622			max - ucontrol->value.integer.value[0];
623	else
624		ucontrol->value.integer.value[0] =
625			ucontrol->value.integer.value[0] - min;
626
627	if (snd_soc_volsw_is_stereo(mc)) {
628		val = snd_soc_component_read(component, rreg);
629		ucontrol->value.integer.value[1] = (val >> shift) & mask;
630		if (invert)
631			ucontrol->value.integer.value[1] =
632				max - ucontrol->value.integer.value[1];
633		else
634			ucontrol->value.integer.value[1] =
635				ucontrol->value.integer.value[1] - min;
636	}
637
638	return 0;
639}
640EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
641
642/**
643 * snd_soc_limit_volume - Set new limit to an existing volume control.
644 *
645 * @card: where to look for the control
646 * @name: Name of the control
647 * @max: new maximum limit
648 *
649 * Return 0 for success, else error.
650 */
651int snd_soc_limit_volume(struct snd_soc_card *card,
652	const char *name, int max)
653{
654	struct snd_kcontrol *kctl;
655	int ret = -EINVAL;
656
657	/* Sanity check for name and max */
658	if (unlikely(!name || max <= 0))
659		return -EINVAL;
660
661	kctl = snd_soc_card_get_kcontrol(card, name);
662	if (kctl) {
663		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
664		if (max <= mc->max - mc->min) {
665			mc->platform_max = max;
666			ret = 0;
667		}
668	}
669	return ret;
670}
671EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
672
673int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
674		       struct snd_ctl_elem_info *uinfo)
675{
676	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
677	struct soc_bytes *params = (void *)kcontrol->private_value;
678
679	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
680	uinfo->count = params->num_regs * component->val_bytes;
681
682	return 0;
683}
684EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
685
686int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
687		      struct snd_ctl_elem_value *ucontrol)
688{
689	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
690	struct soc_bytes *params = (void *)kcontrol->private_value;
691	int ret;
692
693	if (component->regmap)
694		ret = regmap_raw_read(component->regmap, params->base,
695				      ucontrol->value.bytes.data,
696				      params->num_regs * component->val_bytes);
697	else
698		ret = -EINVAL;
699
700	/* Hide any masked bytes to ensure consistent data reporting */
701	if (ret == 0 && params->mask) {
702		switch (component->val_bytes) {
703		case 1:
704			ucontrol->value.bytes.data[0] &= ~params->mask;
705			break;
706		case 2:
707			((u16 *)(&ucontrol->value.bytes.data))[0]
708				&= cpu_to_be16(~params->mask);
709			break;
710		case 4:
711			((u32 *)(&ucontrol->value.bytes.data))[0]
712				&= cpu_to_be32(~params->mask);
713			break;
714		default:
715			return -EINVAL;
716		}
717	}
718
719	return ret;
720}
721EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
722
723int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
724		      struct snd_ctl_elem_value *ucontrol)
725{
726	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
727	struct soc_bytes *params = (void *)kcontrol->private_value;
728	int ret, len;
729	unsigned int val, mask;
730	void *data;
731
732	if (!component->regmap || !params->num_regs)
733		return -EINVAL;
734
735	len = params->num_regs * component->val_bytes;
736
737	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
738	if (!data)
739		return -ENOMEM;
740
741	/*
742	 * If we've got a mask then we need to preserve the register
743	 * bits.  We shouldn't modify the incoming data so take a
744	 * copy.
745	 */
746	if (params->mask) {
747		ret = regmap_read(component->regmap, params->base, &val);
748		if (ret != 0)
749			goto out;
750
751		val &= params->mask;
752
753		switch (component->val_bytes) {
754		case 1:
755			((u8 *)data)[0] &= ~params->mask;
756			((u8 *)data)[0] |= val;
757			break;
758		case 2:
759			mask = ~params->mask;
760			ret = regmap_parse_val(component->regmap,
761							&mask, &mask);
762			if (ret != 0)
763				goto out;
764
765			((u16 *)data)[0] &= mask;
766
767			ret = regmap_parse_val(component->regmap,
768							&val, &val);
769			if (ret != 0)
770				goto out;
771
772			((u16 *)data)[0] |= val;
773			break;
774		case 4:
775			mask = ~params->mask;
776			ret = regmap_parse_val(component->regmap,
777							&mask, &mask);
778			if (ret != 0)
779				goto out;
780
781			((u32 *)data)[0] &= mask;
782
783			ret = regmap_parse_val(component->regmap,
784							&val, &val);
785			if (ret != 0)
786				goto out;
787
788			((u32 *)data)[0] |= val;
789			break;
790		default:
791			ret = -EINVAL;
792			goto out;
793		}
794	}
795
796	ret = regmap_raw_write(component->regmap, params->base,
797			       data, len);
798
799out:
800	kfree(data);
801
802	return ret;
803}
804EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
805
806int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
807			struct snd_ctl_elem_info *ucontrol)
808{
809	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
810
811	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
812	ucontrol->count = params->max;
813
814	return 0;
815}
816EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
817
818int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
819				unsigned int size, unsigned int __user *tlv)
820{
821	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
822	unsigned int count = size < params->max ? size : params->max;
823	int ret = -ENXIO;
824
825	switch (op_flag) {
826	case SNDRV_CTL_TLV_OP_READ:
827		if (params->get)
828			ret = params->get(kcontrol, tlv, count);
829		break;
830	case SNDRV_CTL_TLV_OP_WRITE:
831		if (params->put)
832			ret = params->put(kcontrol, tlv, count);
833		break;
834	}
835	return ret;
836}
837EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
838
839/**
840 * snd_soc_info_xr_sx - signed multi register info callback
841 * @kcontrol: mreg control
842 * @uinfo: control element information
843 *
844 * Callback to provide information of a control that can
845 * span multiple codec registers which together
846 * forms a single signed value in a MSB/LSB manner.
847 *
848 * Returns 0 for success.
849 */
850int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
851	struct snd_ctl_elem_info *uinfo)
852{
853	struct soc_mreg_control *mc =
854		(struct soc_mreg_control *)kcontrol->private_value;
855	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
856	uinfo->count = 1;
857	uinfo->value.integer.min = mc->min;
858	uinfo->value.integer.max = mc->max;
859
860	return 0;
861}
862EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
863
864/**
865 * snd_soc_get_xr_sx - signed multi register get callback
866 * @kcontrol: mreg control
867 * @ucontrol: control element information
868 *
869 * Callback to get the value of a control that can span
870 * multiple codec registers which together forms a single
871 * signed value in a MSB/LSB manner. The control supports
872 * specifying total no of bits used to allow for bitfields
873 * across the multiple codec registers.
874 *
875 * Returns 0 for success.
876 */
877int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
878	struct snd_ctl_elem_value *ucontrol)
879{
880	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
881	struct soc_mreg_control *mc =
882		(struct soc_mreg_control *)kcontrol->private_value;
883	unsigned int regbase = mc->regbase;
884	unsigned int regcount = mc->regcount;
885	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
886	unsigned int regwmask = (1UL<<regwshift)-1;
887	unsigned int invert = mc->invert;
888	unsigned long mask = (1UL<<mc->nbits)-1;
889	long min = mc->min;
890	long max = mc->max;
891	long val = 0;
892	unsigned int i;
893
894	for (i = 0; i < regcount; i++) {
895		unsigned int regval = snd_soc_component_read(component, regbase+i);
896		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
897	}
898	val &= mask;
899	if (min < 0 && val > max)
900		val |= ~mask;
901	if (invert)
902		val = max - val;
903	ucontrol->value.integer.value[0] = val;
904
905	return 0;
906}
907EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
908
909/**
910 * snd_soc_put_xr_sx - signed multi register get callback
911 * @kcontrol: mreg control
912 * @ucontrol: control element information
913 *
914 * Callback to set the value of a control that can span
915 * multiple codec registers which together forms a single
916 * signed value in a MSB/LSB manner. The control supports
917 * specifying total no of bits used to allow for bitfields
918 * across the multiple codec registers.
919 *
920 * Returns 0 for success.
921 */
922int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
923	struct snd_ctl_elem_value *ucontrol)
924{
925	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
926	struct soc_mreg_control *mc =
927		(struct soc_mreg_control *)kcontrol->private_value;
928	unsigned int regbase = mc->regbase;
929	unsigned int regcount = mc->regcount;
930	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
931	unsigned int regwmask = (1UL<<regwshift)-1;
932	unsigned int invert = mc->invert;
933	unsigned long mask = (1UL<<mc->nbits)-1;
934	long max = mc->max;
935	long val = ucontrol->value.integer.value[0];
936	int ret = 0;
937	unsigned int i;
938
939	if (val < mc->min || val > mc->max)
940		return -EINVAL;
941	if (invert)
942		val = max - val;
943	val &= mask;
944	for (i = 0; i < regcount; i++) {
945		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
946		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
947		int err = snd_soc_component_update_bits(component, regbase+i,
948							regmask, regval);
949		if (err < 0)
950			return err;
951		if (err > 0)
952			ret = err;
953	}
954
955	return ret;
956}
957EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
958
959/**
960 * snd_soc_get_strobe - strobe get callback
961 * @kcontrol: mixer control
962 * @ucontrol: control element information
963 *
964 * Callback get the value of a strobe mixer control.
965 *
966 * Returns 0 for success.
967 */
968int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
969	struct snd_ctl_elem_value *ucontrol)
970{
971	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
972	struct soc_mixer_control *mc =
973		(struct soc_mixer_control *)kcontrol->private_value;
974	unsigned int reg = mc->reg;
975	unsigned int shift = mc->shift;
976	unsigned int mask = 1 << shift;
977	unsigned int invert = mc->invert != 0;
978	unsigned int val;
979
980	val = snd_soc_component_read(component, reg);
981	val &= mask;
982
983	if (shift != 0 && val != 0)
984		val = val >> shift;
985	ucontrol->value.enumerated.item[0] = val ^ invert;
986
987	return 0;
988}
989EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
990
991/**
992 * snd_soc_put_strobe - strobe put callback
993 * @kcontrol: mixer control
994 * @ucontrol: control element information
995 *
996 * Callback strobe a register bit to high then low (or the inverse)
997 * in one pass of a single mixer enum control.
998 *
999 * Returns 1 for success.
1000 */
1001int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1002	struct snd_ctl_elem_value *ucontrol)
1003{
1004	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1005	struct soc_mixer_control *mc =
1006		(struct soc_mixer_control *)kcontrol->private_value;
1007	unsigned int reg = mc->reg;
1008	unsigned int shift = mc->shift;
1009	unsigned int mask = 1 << shift;
1010	unsigned int invert = mc->invert != 0;
1011	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1012	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1013	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1014	int err;
1015
1016	err = snd_soc_component_update_bits(component, reg, mask, val1);
1017	if (err < 0)
1018		return err;
1019
1020	return snd_soc_component_update_bits(component, reg, mask, val2);
1021}
1022EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1023