1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * skl-sst-cldma.c - Code Loader DMA handler
4 *
5 * Copyright (C) 2015, Intel Corporation.
6 * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 */
9
10#include <linux/device.h>
11#include <linux/io.h>
12#include <linux/mm.h>
13#include <linux/delay.h>
14#include <sound/hda_register.h>
15#include "../common/sst-dsp.h"
16#include "../common/sst-dsp-priv.h"
17
18static void skl_cldma_int_enable(struct sst_dsp *ctx)
19{
20	sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
21				SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
22}
23
24void skl_cldma_int_disable(struct sst_dsp *ctx)
25{
26	sst_dsp_shim_update_bits_unlocked(ctx,
27			SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
28}
29
30static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
31{
32	unsigned char val;
33	int timeout;
34
35	sst_dsp_shim_update_bits_unlocked(ctx,
36			SKL_ADSP_REG_CL_SD_CTL,
37			CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
38
39	udelay(3);
40	timeout = 300;
41	do {
42		/* waiting for hardware to report that the stream Run bit set */
43		val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
44			CL_SD_CTL_RUN_MASK;
45		if (enable && val)
46			break;
47		else if (!enable && !val)
48			break;
49		udelay(3);
50	} while (--timeout);
51
52	if (timeout == 0)
53		dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
54}
55
56static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
57{
58	/* make sure Run bit is cleared before setting stream register */
59	skl_cldma_stream_run(ctx, 0);
60
61	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
62				CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
63	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
64				CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
65	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
66				CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
67	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
68				CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
69
70	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
71	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
72
73	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
74	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
75}
76
77/* Code loader helper APIs */
78static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
79		struct snd_dma_buffer *dmab_data,
80		__le32 **bdlp, int size, int with_ioc)
81{
82	__le32 *bdl = *bdlp;
83	int remaining = ctx->cl_dev.bufsize;
84	int offset = 0;
85
86	ctx->cl_dev.frags = 0;
87	while (remaining > 0) {
88		phys_addr_t addr;
89		int chunk;
90
91		addr = snd_sgbuf_get_addr(dmab_data, offset);
92		bdl[0] = cpu_to_le32(lower_32_bits(addr));
93		bdl[1] = cpu_to_le32(upper_32_bits(addr));
94		chunk = snd_sgbuf_get_chunk_size(dmab_data, offset, size);
95		bdl[2] = cpu_to_le32(chunk);
96
97		remaining -= chunk;
98		bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01);
99
100		bdl += 4;
101		offset += chunk;
102		ctx->cl_dev.frags++;
103	}
104}
105
106/*
107 * Setup controller
108 * Configure the registers to update the dma buffer address and
109 * enable interrupts.
110 * Note: Using the channel 1 for transfer
111 */
112static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
113		struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
114		u32 count)
115{
116	skl_cldma_stream_clear(ctx);
117	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
118			CL_SD_BDLPLBA(dmab_bdl->addr));
119	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
120			CL_SD_BDLPUBA(dmab_bdl->addr));
121
122	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
123	sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
124	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
125			CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
126	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
127			CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
128	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
129			CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
130	sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
131			CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
132}
133
134static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
135		unsigned int size, bool enable)
136{
137	if (enable)
138		sst_dsp_shim_update_bits_unlocked(ctx,
139				SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
140				CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
141				CL_SPBFIFO_SPBFCCTL_SPIBE(1));
142
143	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
144}
145
146static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
147{
148	sst_dsp_shim_update_bits_unlocked(ctx,
149			SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
150			CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
151			CL_SPBFIFO_SPBFCCTL_SPIBE(0));
152
153	sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
154}
155
156static void skl_cldma_cleanup(struct sst_dsp  *ctx)
157{
158	skl_cldma_cleanup_spb(ctx);
159	skl_cldma_stream_clear(ctx);
160
161	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
162	ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
163}
164
165int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
166{
167	int ret = 0;
168
169	if (!wait_event_timeout(ctx->cl_dev.wait_queue,
170				ctx->cl_dev.wait_condition,
171				msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
172		dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
173		ret = -EIO;
174		goto cleanup;
175	}
176
177	dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
178	if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
179		dev_err(ctx->dev, "%s: DMA Error\n", __func__);
180		ret = -EIO;
181	}
182
183cleanup:
184	ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
185	return ret;
186}
187
188static void skl_cldma_stop(struct sst_dsp *ctx)
189{
190	skl_cldma_stream_run(ctx, false);
191}
192
193static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
194		const void *curr_pos, bool intr_enable, bool trigger)
195{
196	dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
197	dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
198			ctx->cl_dev.dma_buffer_offset, trigger);
199	dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
200
201	/*
202	 * Check if the size exceeds buffer boundary. If it exceeds
203	 * max_buffer size, then copy till buffer size and then copy
204	 * remaining buffer from the start of ring buffer.
205	 */
206	if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
207		unsigned int size_b = ctx->cl_dev.bufsize -
208					ctx->cl_dev.dma_buffer_offset;
209		memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
210			curr_pos, size_b);
211		size -= size_b;
212		curr_pos += size_b;
213		ctx->cl_dev.dma_buffer_offset = 0;
214	}
215
216	memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
217			curr_pos, size);
218
219	if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
220		ctx->cl_dev.dma_buffer_offset = 0;
221	else
222		ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
223
224	ctx->cl_dev.wait_condition = false;
225
226	if (intr_enable)
227		skl_cldma_int_enable(ctx);
228
229	ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
230	if (trigger)
231		ctx->cl_dev.ops.cl_trigger(ctx, true);
232}
233
234/*
235 * The CL dma doesn't have any way to update the transfer status until a BDL
236 * buffer is fully transferred
237 *
238 * So Copying is divided in two parts.
239 * 1. Interrupt on buffer done where the size to be transferred is more than
240 *    ring buffer size.
241 * 2. Polling on fw register to identify if data left to transferred doesn't
242 *    fill the ring buffer. Caller takes care of polling the required status
243 *    register to identify the transfer status.
244 * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
245 *    bytes_left is 0.
246 *    if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
247 *    the first chunk return the no of bytes_left to be copied.
248 */
249static int
250skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
251			u32 total_size, bool wait)
252{
253	int ret;
254	bool start = true;
255	unsigned int excess_bytes;
256	u32 size;
257	unsigned int bytes_left = total_size;
258	const void *curr_pos = bin;
259
260	if (total_size <= 0)
261		return -EINVAL;
262
263	dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
264
265	while (bytes_left) {
266		if (bytes_left > ctx->cl_dev.bufsize) {
267
268			/*
269			 * dma transfers only till the write pointer as
270			 * updated in spib
271			 */
272			if (ctx->cl_dev.curr_spib_pos == 0)
273				ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
274
275			size = ctx->cl_dev.bufsize;
276			skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
277
278			if (wait) {
279				start = false;
280				ret = skl_cldma_wait_interruptible(ctx);
281				if (ret < 0) {
282					skl_cldma_stop(ctx);
283					return ret;
284				}
285			}
286		} else {
287			skl_cldma_int_disable(ctx);
288
289			if ((ctx->cl_dev.curr_spib_pos + bytes_left)
290							<= ctx->cl_dev.bufsize) {
291				ctx->cl_dev.curr_spib_pos += bytes_left;
292			} else {
293				excess_bytes = bytes_left -
294					(ctx->cl_dev.bufsize -
295					ctx->cl_dev.curr_spib_pos);
296				ctx->cl_dev.curr_spib_pos = excess_bytes;
297			}
298
299			size = bytes_left;
300			skl_cldma_fill_buffer(ctx, size,
301					curr_pos, false, start);
302		}
303		bytes_left -= size;
304		curr_pos = curr_pos + size;
305		if (!wait)
306			return bytes_left;
307	}
308
309	return bytes_left;
310}
311
312void skl_cldma_process_intr(struct sst_dsp *ctx)
313{
314	u8 cl_dma_intr_status;
315
316	cl_dma_intr_status =
317		sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
318
319	if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
320		ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
321	else
322		ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
323
324	ctx->cl_dev.wait_condition = true;
325	wake_up(&ctx->cl_dev.wait_queue);
326}
327
328int skl_cldma_prepare(struct sst_dsp *ctx)
329{
330	int ret;
331	__le32 *bdl;
332
333	ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
334
335	/* Allocate cl ops */
336	ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
337	ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
338	ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
339	ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
340	ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
341	ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
342	ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
343	ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
344
345	/* Allocate buffer*/
346	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, ctx->dev, ctx->cl_dev.bufsize,
347				  &ctx->cl_dev.dmab_data);
348	if (ret < 0) {
349		dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
350		return ret;
351	}
352
353	/* Setup Code loader BDL */
354	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, ctx->dev, BDL_SIZE, &ctx->cl_dev.dmab_bdl);
355	if (ret < 0) {
356		dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
357		ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
358		return ret;
359	}
360	bdl = (__le32 *)ctx->cl_dev.dmab_bdl.area;
361
362	/* Allocate BDLs */
363	ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
364			&bdl, ctx->cl_dev.bufsize, 1);
365	ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
366			ctx->cl_dev.bufsize, ctx->cl_dev.frags);
367
368	ctx->cl_dev.curr_spib_pos = 0;
369	ctx->cl_dev.dma_buffer_offset = 0;
370	init_waitqueue_head(&ctx->cl_dev.wait_queue);
371
372	return ret;
373}
374