1// SPDX-License-Identifier: GPL-2.0
2//
3// Freescale DMA ALSA SoC PCM driver
4//
5// Author: Timur Tabi <timur@freescale.com>
6//
7// Copyright 2007-2010 Freescale Semiconductor, Inc.
8//
9// This driver implements ASoC support for the Elo DMA controller, which is
10// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11// the PCM driver is what handles the DMA buffer.
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/platform_device.h>
16#include <linux/dma-mapping.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <linux/gfp.h>
20#include <linux/of_address.h>
21#include <linux/of_irq.h>
22#include <linux/of_platform.h>
23#include <linux/list.h>
24#include <linux/slab.h>
25
26#include <sound/core.h>
27#include <sound/pcm.h>
28#include <sound/pcm_params.h>
29#include <sound/soc.h>
30
31#include <asm/io.h>
32
33#include "fsl_dma.h"
34#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
35
36#define DRV_NAME "fsl_dma"
37
38/*
39 * The formats that the DMA controller supports, which is anything
40 * that is 8, 16, or 32 bits.
41 */
42#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
43			    SNDRV_PCM_FMTBIT_U8 	| \
44			    SNDRV_PCM_FMTBIT_S16_LE     | \
45			    SNDRV_PCM_FMTBIT_S16_BE     | \
46			    SNDRV_PCM_FMTBIT_U16_LE     | \
47			    SNDRV_PCM_FMTBIT_U16_BE     | \
48			    SNDRV_PCM_FMTBIT_S24_LE     | \
49			    SNDRV_PCM_FMTBIT_S24_BE     | \
50			    SNDRV_PCM_FMTBIT_U24_LE     | \
51			    SNDRV_PCM_FMTBIT_U24_BE     | \
52			    SNDRV_PCM_FMTBIT_S32_LE     | \
53			    SNDRV_PCM_FMTBIT_S32_BE     | \
54			    SNDRV_PCM_FMTBIT_U32_LE     | \
55			    SNDRV_PCM_FMTBIT_U32_BE)
56struct dma_object {
57	struct snd_soc_component_driver dai;
58	dma_addr_t ssi_stx_phys;
59	dma_addr_t ssi_srx_phys;
60	unsigned int ssi_fifo_depth;
61	struct ccsr_dma_channel __iomem *channel;
62	unsigned int irq;
63	bool assigned;
64};
65
66/*
67 * The number of DMA links to use.  Two is the bare minimum, but if you
68 * have really small links you might need more.
69 */
70#define NUM_DMA_LINKS   2
71
72/** fsl_dma_private: p-substream DMA data
73 *
74 * Each substream has a 1-to-1 association with a DMA channel.
75 *
76 * The link[] array is first because it needs to be aligned on a 32-byte
77 * boundary, so putting it first will ensure alignment without padding the
78 * structure.
79 *
80 * @link[]: array of link descriptors
81 * @dma_channel: pointer to the DMA channel's registers
82 * @irq: IRQ for this DMA channel
83 * @substream: pointer to the substream object, needed by the ISR
84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
85 * @ld_buf_phys: physical address of the LD buffer
86 * @current_link: index into link[] of the link currently being processed
87 * @dma_buf_phys: physical address of the DMA buffer
88 * @dma_buf_next: physical address of the next period to process
89 * @dma_buf_end: physical address of the byte after the end of the DMA
90 * @buffer period_size: the size of a single period
91 * @num_periods: the number of periods in the DMA buffer
92 */
93struct fsl_dma_private {
94	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
95	struct ccsr_dma_channel __iomem *dma_channel;
96	unsigned int irq;
97	struct snd_pcm_substream *substream;
98	dma_addr_t ssi_sxx_phys;
99	unsigned int ssi_fifo_depth;
100	dma_addr_t ld_buf_phys;
101	unsigned int current_link;
102	dma_addr_t dma_buf_phys;
103	dma_addr_t dma_buf_next;
104	dma_addr_t dma_buf_end;
105	size_t period_size;
106	unsigned int num_periods;
107};
108
109/**
110 * fsl_dma_hardare: define characteristics of the PCM hardware.
111 *
112 * The PCM hardware is the Freescale DMA controller.  This structure defines
113 * the capabilities of that hardware.
114 *
115 * Since the sampling rate and data format are not controlled by the DMA
116 * controller, we specify no limits for those values.  The only exception is
117 * period_bytes_min, which is set to a reasonably low value to prevent the
118 * DMA controller from generating too many interrupts per second.
119 *
120 * Since each link descriptor has a 32-bit byte count field, we set
121 * period_bytes_max to the largest 32-bit number.  We also have no maximum
122 * number of periods.
123 *
124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125 * limitation in the SSI driver requires the sample rates for playback and
126 * capture to be the same.
127 */
128static const struct snd_pcm_hardware fsl_dma_hardware = {
129
130	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
131				  SNDRV_PCM_INFO_MMAP |
132				  SNDRV_PCM_INFO_MMAP_VALID |
133				  SNDRV_PCM_INFO_JOINT_DUPLEX |
134				  SNDRV_PCM_INFO_PAUSE,
135	.formats		= FSLDMA_PCM_FORMATS,
136	.period_bytes_min       = 512,  	/* A reasonable limit */
137	.period_bytes_max       = (u32) -1,
138	.periods_min    	= NUM_DMA_LINKS,
139	.periods_max    	= (unsigned int) -1,
140	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
141};
142
143/**
144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145 *
146 * This function should be called by the ISR whenever the DMA controller
147 * halts data transfer.
148 */
149static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150{
151	snd_pcm_stop_xrun(substream);
152}
153
154/**
155 * fsl_dma_update_pointers - update LD pointers to point to the next period
156 *
157 * As each period is completed, this function changes the link
158 * descriptor pointers for that period to point to the next period.
159 */
160static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161{
162	struct fsl_dma_link_descriptor *link =
163		&dma_private->link[dma_private->current_link];
164
165	/* Update our link descriptors to point to the next period. On a 36-bit
166	 * system, we also need to update the ESAD bits.  We also set (keep) the
167	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
168	 */
169	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171#ifdef CONFIG_PHYS_64BIT
172		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173			upper_32_bits(dma_private->dma_buf_next));
174#endif
175	} else {
176		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177#ifdef CONFIG_PHYS_64BIT
178		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179			upper_32_bits(dma_private->dma_buf_next));
180#endif
181	}
182
183	/* Update our variables for next time */
184	dma_private->dma_buf_next += dma_private->period_size;
185
186	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187		dma_private->dma_buf_next = dma_private->dma_buf_phys;
188
189	if (++dma_private->current_link >= NUM_DMA_LINKS)
190		dma_private->current_link = 0;
191}
192
193/**
194 * fsl_dma_isr: interrupt handler for the DMA controller
195 *
196 * @irq: IRQ of the DMA channel
197 * @dev_id: pointer to the dma_private structure for this DMA channel
198 */
199static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200{
201	struct fsl_dma_private *dma_private = dev_id;
202	struct snd_pcm_substream *substream = dma_private->substream;
203	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
204	struct device *dev = rtd->dev;
205	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
206	irqreturn_t ret = IRQ_NONE;
207	u32 sr, sr2 = 0;
208
209	/* We got an interrupt, so read the status register to see what we
210	   were interrupted for.
211	 */
212	sr = in_be32(&dma_channel->sr);
213
214	if (sr & CCSR_DMA_SR_TE) {
215		dev_err(dev, "dma transmit error\n");
216		fsl_dma_abort_stream(substream);
217		sr2 |= CCSR_DMA_SR_TE;
218		ret = IRQ_HANDLED;
219	}
220
221	if (sr & CCSR_DMA_SR_CH)
222		ret = IRQ_HANDLED;
223
224	if (sr & CCSR_DMA_SR_PE) {
225		dev_err(dev, "dma programming error\n");
226		fsl_dma_abort_stream(substream);
227		sr2 |= CCSR_DMA_SR_PE;
228		ret = IRQ_HANDLED;
229	}
230
231	if (sr & CCSR_DMA_SR_EOLNI) {
232		sr2 |= CCSR_DMA_SR_EOLNI;
233		ret = IRQ_HANDLED;
234	}
235
236	if (sr & CCSR_DMA_SR_CB)
237		ret = IRQ_HANDLED;
238
239	if (sr & CCSR_DMA_SR_EOSI) {
240		/* Tell ALSA we completed a period. */
241		snd_pcm_period_elapsed(substream);
242
243		/*
244		 * Update our link descriptors to point to the next period. We
245		 * only need to do this if the number of periods is not equal to
246		 * the number of links.
247		 */
248		if (dma_private->num_periods != NUM_DMA_LINKS)
249			fsl_dma_update_pointers(dma_private);
250
251		sr2 |= CCSR_DMA_SR_EOSI;
252		ret = IRQ_HANDLED;
253	}
254
255	if (sr & CCSR_DMA_SR_EOLSI) {
256		sr2 |= CCSR_DMA_SR_EOLSI;
257		ret = IRQ_HANDLED;
258	}
259
260	/* Clear the bits that we set */
261	if (sr2)
262		out_be32(&dma_channel->sr, sr2);
263
264	return ret;
265}
266
267/**
268 * fsl_dma_new: initialize this PCM driver.
269 *
270 * This function is called when the codec driver calls snd_soc_new_pcms(),
271 * once for each .dai_link in the machine driver's snd_soc_card
272 * structure.
273 *
274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
276 * is specified. Therefore, any DMA buffers we allocate will always be in low
277 * memory, but we support for 36-bit physical addresses anyway.
278 *
279 * Regardless of where the memory is actually allocated, since the device can
280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
281 */
282static int fsl_dma_new(struct snd_soc_component *component,
283		       struct snd_soc_pcm_runtime *rtd)
284{
285	struct snd_card *card = rtd->card->snd_card;
286	struct snd_pcm *pcm = rtd->pcm;
287	int ret;
288
289	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290	if (ret)
291		return ret;
292
293	return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
294					    card->dev,
295					    fsl_dma_hardware.buffer_bytes_max);
296}
297
298/**
299 * fsl_dma_open: open a new substream.
300 *
301 * Each substream has its own DMA buffer.
302 *
303 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
304 * descriptors that ping-pong from one period to the next.  For example, if
305 * there are six periods and two link descriptors, this is how they look
306 * before playback starts:
307 *
308 *      	   The last link descriptor
309 *   ____________  points back to the first
310 *  |   	 |
311 *  V   	 |
312 *  ___    ___   |
313 * |   |->|   |->|
314 * |___|  |___|
315 *   |      |
316 *   |      |
317 *   V      V
318 *  _________________________________________
319 * |      |      |      |      |      |      |  The DMA buffer is
320 * |      |      |      |      |      |      |    divided into 6 parts
321 * |______|______|______|______|______|______|
322 *
323 * and here's how they look after the first period is finished playing:
324 *
325 *   ____________
326 *  |   	 |
327 *  V   	 |
328 *  ___    ___   |
329 * |   |->|   |->|
330 * |___|  |___|
331 *   |      |
332 *   |______________
333 *          |       |
334 *          V       V
335 *  _________________________________________
336 * |      |      |      |      |      |      |
337 * |      |      |      |      |      |      |
338 * |______|______|______|______|______|______|
339 *
340 * The first link descriptor now points to the third period.  The DMA
341 * controller is currently playing the second period.  When it finishes, it
342 * will jump back to the first descriptor and play the third period.
343 *
344 * There are four reasons we do this:
345 *
346 * 1. The only way to get the DMA controller to automatically restart the
347 *    transfer when it gets to the end of the buffer is to use chaining
348 *    mode.  Basic direct mode doesn't offer that feature.
349 * 2. We need to receive an interrupt at the end of every period.  The DMA
350 *    controller can generate an interrupt at the end of every link transfer
351 *    (aka segment).  Making each period into a DMA segment will give us the
352 *    interrupts we need.
353 * 3. By creating only two link descriptors, regardless of the number of
354 *    periods, we do not need to reallocate the link descriptors if the
355 *    number of periods changes.
356 * 4. All of the audio data is still stored in a single, contiguous DMA
357 *    buffer, which is what ALSA expects.  We're just dividing it into
358 *    contiguous parts, and creating a link descriptor for each one.
359 */
360static int fsl_dma_open(struct snd_soc_component *component,
361			struct snd_pcm_substream *substream)
362{
363	struct snd_pcm_runtime *runtime = substream->runtime;
364	struct device *dev = component->dev;
365	struct dma_object *dma =
366		container_of(component->driver, struct dma_object, dai);
367	struct fsl_dma_private *dma_private;
368	struct ccsr_dma_channel __iomem *dma_channel;
369	dma_addr_t ld_buf_phys;
370	u64 temp_link;  	/* Pointer to next link descriptor */
371	u32 mr;
372	int ret = 0;
373	unsigned int i;
374
375	/*
376	 * Reject any DMA buffer whose size is not a multiple of the period
377	 * size.  We need to make sure that the DMA buffer can be evenly divided
378	 * into periods.
379	 */
380	ret = snd_pcm_hw_constraint_integer(runtime,
381		SNDRV_PCM_HW_PARAM_PERIODS);
382	if (ret < 0) {
383		dev_err(dev, "invalid buffer size\n");
384		return ret;
385	}
386
387	if (dma->assigned) {
388		dev_err(dev, "dma channel already assigned\n");
389		return -EBUSY;
390	}
391
392	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
393					 &ld_buf_phys, GFP_KERNEL);
394	if (!dma_private) {
395		dev_err(dev, "can't allocate dma private data\n");
396		return -ENOMEM;
397	}
398	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
399		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
400	else
401		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
402
403	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
404	dma_private->dma_channel = dma->channel;
405	dma_private->irq = dma->irq;
406	dma_private->substream = substream;
407	dma_private->ld_buf_phys = ld_buf_phys;
408	dma_private->dma_buf_phys = substream->dma_buffer.addr;
409
410	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
411			  dma_private);
412	if (ret) {
413		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
414			dma_private->irq, ret);
415		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
416			dma_private, dma_private->ld_buf_phys);
417		return ret;
418	}
419
420	dma->assigned = true;
421
422	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
423	runtime->private_data = dma_private;
424
425	/* Program the fixed DMA controller parameters */
426
427	dma_channel = dma_private->dma_channel;
428
429	temp_link = dma_private->ld_buf_phys +
430		sizeof(struct fsl_dma_link_descriptor);
431
432	for (i = 0; i < NUM_DMA_LINKS; i++) {
433		dma_private->link[i].next = cpu_to_be64(temp_link);
434
435		temp_link += sizeof(struct fsl_dma_link_descriptor);
436	}
437	/* The last link descriptor points to the first */
438	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
439
440	/* Tell the DMA controller where the first link descriptor is */
441	out_be32(&dma_channel->clndar,
442		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
443	out_be32(&dma_channel->eclndar,
444		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
445
446	/* The manual says the BCR must be clear before enabling EMP */
447	out_be32(&dma_channel->bcr, 0);
448
449	/*
450	 * Program the mode register for interrupts, external master control,
451	 * and source/destination hold.  Also clear the Channel Abort bit.
452	 */
453	mr = in_be32(&dma_channel->mr) &
454		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
455
456	/*
457	 * We want External Master Start and External Master Pause enabled,
458	 * because the SSI is controlling the DMA controller.  We want the DMA
459	 * controller to be set up in advance, and then we signal only the SSI
460	 * to start transferring.
461	 *
462	 * We want End-Of-Segment Interrupts enabled, because this will generate
463	 * an interrupt at the end of each segment (each link descriptor
464	 * represents one segment).  Each DMA segment is the same thing as an
465	 * ALSA period, so this is how we get an interrupt at the end of every
466	 * period.
467	 *
468	 * We want Error Interrupt enabled, so that we can get an error if
469	 * the DMA controller is mis-programmed somehow.
470	 */
471	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
472		CCSR_DMA_MR_EMS_EN;
473
474	/* For playback, we want the destination address to be held.  For
475	   capture, set the source address to be held. */
476	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
477		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
478
479	out_be32(&dma_channel->mr, mr);
480
481	return 0;
482}
483
484/**
485 * fsl_dma_hw_params: continue initializing the DMA links
486 *
487 * This function obtains hardware parameters about the opened stream and
488 * programs the DMA controller accordingly.
489 *
490 * One drawback of big-endian is that when copying integers of different
491 * sizes to a fixed-sized register, the address to which the integer must be
492 * copied is dependent on the size of the integer.
493 *
494 * For example, if P is the address of a 32-bit register, and X is a 32-bit
495 * integer, then X should be copied to address P.  However, if X is a 16-bit
496 * integer, then it should be copied to P+2.  If X is an 8-bit register,
497 * then it should be copied to P+3.
498 *
499 * So for playback of 8-bit samples, the DMA controller must transfer single
500 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
501 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
502 *
503 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
504 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
505 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
506 * 24-bit data must be padded to 32 bits.
507 */
508static int fsl_dma_hw_params(struct snd_soc_component *component,
509			     struct snd_pcm_substream *substream,
510			     struct snd_pcm_hw_params *hw_params)
511{
512	struct snd_pcm_runtime *runtime = substream->runtime;
513	struct fsl_dma_private *dma_private = runtime->private_data;
514	struct device *dev = component->dev;
515
516	/* Number of bits per sample */
517	unsigned int sample_bits =
518		snd_pcm_format_physical_width(params_format(hw_params));
519
520	/* Number of bytes per frame */
521	unsigned int sample_bytes = sample_bits / 8;
522
523	/* Bus address of SSI STX register */
524	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
525
526	/* Size of the DMA buffer, in bytes */
527	size_t buffer_size = params_buffer_bytes(hw_params);
528
529	/* Number of bytes per period */
530	size_t period_size = params_period_bytes(hw_params);
531
532	/* Pointer to next period */
533	dma_addr_t temp_addr = substream->dma_buffer.addr;
534
535	/* Pointer to DMA controller */
536	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
537
538	u32 mr; /* DMA Mode Register */
539
540	unsigned int i;
541
542	/* Initialize our DMA tracking variables */
543	dma_private->period_size = period_size;
544	dma_private->num_periods = params_periods(hw_params);
545	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
546	dma_private->dma_buf_next = dma_private->dma_buf_phys +
547		(NUM_DMA_LINKS * period_size);
548
549	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
550		/* This happens if the number of periods == NUM_DMA_LINKS */
551		dma_private->dma_buf_next = dma_private->dma_buf_phys;
552
553	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
554		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
555
556	/* Due to a quirk of the SSI's STX register, the target address
557	 * for the DMA operations depends on the sample size.  So we calculate
558	 * that offset here.  While we're at it, also tell the DMA controller
559	 * how much data to transfer per sample.
560	 */
561	switch (sample_bits) {
562	case 8:
563		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
564		ssi_sxx_phys += 3;
565		break;
566	case 16:
567		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
568		ssi_sxx_phys += 2;
569		break;
570	case 32:
571		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
572		break;
573	default:
574		/* We should never get here */
575		dev_err(dev, "unsupported sample size %u\n", sample_bits);
576		return -EINVAL;
577	}
578
579	/*
580	 * BWC determines how many bytes are sent/received before the DMA
581	 * controller checks the SSI to see if it needs to stop. BWC should
582	 * always be a multiple of the frame size, so that we always transmit
583	 * whole frames.  Each frame occupies two slots in the FIFO.  The
584	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
585	 * (MR[BWC] can only represent even powers of two).
586	 *
587	 * To simplify the process, we set BWC to the largest value that is
588	 * less than or equal to the FIFO watermark.  For playback, this ensures
589	 * that we transfer the maximum amount without overrunning the FIFO.
590	 * For capture, this ensures that we transfer the maximum amount without
591	 * underrunning the FIFO.
592	 *
593	 * f = SSI FIFO depth
594	 * w = SSI watermark value (which equals f - 2)
595	 * b = DMA bandwidth count (in bytes)
596	 * s = sample size (in bytes, which equals frame_size * 2)
597	 *
598	 * For playback, we never transmit more than the transmit FIFO
599	 * watermark, otherwise we might write more data than the FIFO can hold.
600	 * The watermark is equal to the FIFO depth minus two.
601	 *
602	 * For capture, two equations must hold:
603	 *	w > f - (b / s)
604	 *	w >= b / s
605	 *
606	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
607	 * b = s * w, which is equal to
608	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
609	 */
610	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
611
612	out_be32(&dma_channel->mr, mr);
613
614	for (i = 0; i < NUM_DMA_LINKS; i++) {
615		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
616
617		link->count = cpu_to_be32(period_size);
618
619		/* The snoop bit tells the DMA controller whether it should tell
620		 * the ECM to snoop during a read or write to an address. For
621		 * audio, we use DMA to transfer data between memory and an I/O
622		 * device (the SSI's STX0 or SRX0 register). Snooping is only
623		 * needed if there is a cache, so we need to snoop memory
624		 * addresses only.  For playback, that means we snoop the source
625		 * but not the destination.  For capture, we snoop the
626		 * destination but not the source.
627		 *
628		 * Note that failing to snoop properly is unlikely to cause
629		 * cache incoherency if the period size is larger than the
630		 * size of L1 cache.  This is because filling in one period will
631		 * flush out the data for the previous period.  So if you
632		 * increased period_bytes_min to a large enough size, you might
633		 * get more performance by not snooping, and you'll still be
634		 * okay.  You'll need to update fsl_dma_update_pointers() also.
635		 */
636		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
637			link->source_addr = cpu_to_be32(temp_addr);
638			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
639				upper_32_bits(temp_addr));
640
641			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
642			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
643				upper_32_bits(ssi_sxx_phys));
644		} else {
645			link->source_addr = cpu_to_be32(ssi_sxx_phys);
646			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
647				upper_32_bits(ssi_sxx_phys));
648
649			link->dest_addr = cpu_to_be32(temp_addr);
650			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
651				upper_32_bits(temp_addr));
652		}
653
654		temp_addr += period_size;
655	}
656
657	return 0;
658}
659
660/**
661 * fsl_dma_pointer: determine the current position of the DMA transfer
662 *
663 * This function is called by ALSA when ALSA wants to know where in the
664 * stream buffer the hardware currently is.
665 *
666 * For playback, the SAR register contains the physical address of the most
667 * recent DMA transfer.  For capture, the value is in the DAR register.
668 *
669 * The base address of the buffer is stored in the source_addr field of the
670 * first link descriptor.
671 */
672static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
673					 struct snd_pcm_substream *substream)
674{
675	struct snd_pcm_runtime *runtime = substream->runtime;
676	struct fsl_dma_private *dma_private = runtime->private_data;
677	struct device *dev = component->dev;
678	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
679	dma_addr_t position;
680	snd_pcm_uframes_t frames;
681
682	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
683	 * only have 32-bit DMA addresses.  This function is typically called
684	 * in interrupt context, so we need to optimize it.
685	 */
686	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687		position = in_be32(&dma_channel->sar);
688#ifdef CONFIG_PHYS_64BIT
689		position |= (u64)(in_be32(&dma_channel->satr) &
690				  CCSR_DMA_ATR_ESAD_MASK) << 32;
691#endif
692	} else {
693		position = in_be32(&dma_channel->dar);
694#ifdef CONFIG_PHYS_64BIT
695		position |= (u64)(in_be32(&dma_channel->datr) &
696				  CCSR_DMA_ATR_ESAD_MASK) << 32;
697#endif
698	}
699
700	/*
701	 * When capture is started, the SSI immediately starts to fill its FIFO.
702	 * This means that the DMA controller is not started until the FIFO is
703	 * full.  However, ALSA calls this function before that happens, when
704	 * MR.DAR is still zero.  In this case, just return zero to indicate
705	 * that nothing has been received yet.
706	 */
707	if (!position)
708		return 0;
709
710	if ((position < dma_private->dma_buf_phys) ||
711	    (position > dma_private->dma_buf_end)) {
712		dev_err(dev, "dma pointer is out of range, halting stream\n");
713		return SNDRV_PCM_POS_XRUN;
714	}
715
716	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
717
718	/*
719	 * If the current address is just past the end of the buffer, wrap it
720	 * around.
721	 */
722	if (frames == runtime->buffer_size)
723		frames = 0;
724
725	return frames;
726}
727
728/**
729 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
730 *
731 * Release the resources allocated in fsl_dma_hw_params() and de-program the
732 * registers.
733 *
734 * This function can be called multiple times.
735 */
736static int fsl_dma_hw_free(struct snd_soc_component *component,
737			   struct snd_pcm_substream *substream)
738{
739	struct snd_pcm_runtime *runtime = substream->runtime;
740	struct fsl_dma_private *dma_private = runtime->private_data;
741
742	if (dma_private) {
743		struct ccsr_dma_channel __iomem *dma_channel;
744
745		dma_channel = dma_private->dma_channel;
746
747		/* Stop the DMA */
748		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
749		out_be32(&dma_channel->mr, 0);
750
751		/* Reset all the other registers */
752		out_be32(&dma_channel->sr, -1);
753		out_be32(&dma_channel->clndar, 0);
754		out_be32(&dma_channel->eclndar, 0);
755		out_be32(&dma_channel->satr, 0);
756		out_be32(&dma_channel->sar, 0);
757		out_be32(&dma_channel->datr, 0);
758		out_be32(&dma_channel->dar, 0);
759		out_be32(&dma_channel->bcr, 0);
760		out_be32(&dma_channel->nlndar, 0);
761		out_be32(&dma_channel->enlndar, 0);
762	}
763
764	return 0;
765}
766
767/**
768 * fsl_dma_close: close the stream.
769 */
770static int fsl_dma_close(struct snd_soc_component *component,
771			 struct snd_pcm_substream *substream)
772{
773	struct snd_pcm_runtime *runtime = substream->runtime;
774	struct fsl_dma_private *dma_private = runtime->private_data;
775	struct device *dev = component->dev;
776	struct dma_object *dma =
777		container_of(component->driver, struct dma_object, dai);
778
779	if (dma_private) {
780		if (dma_private->irq)
781			free_irq(dma_private->irq, dma_private);
782
783		/* Deallocate the fsl_dma_private structure */
784		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
785				  dma_private, dma_private->ld_buf_phys);
786		substream->runtime->private_data = NULL;
787	}
788
789	dma->assigned = false;
790
791	return 0;
792}
793
794/**
795 * find_ssi_node -- returns the SSI node that points to its DMA channel node
796 *
797 * Although this DMA driver attempts to operate independently of the other
798 * devices, it still needs to determine some information about the SSI device
799 * that it's working with.  Unfortunately, the device tree does not contain
800 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
801 * other way.  So we need to scan the device tree for SSI nodes until we find
802 * the one that points to the given DMA channel node.  It's ugly, but at least
803 * it's contained in this one function.
804 */
805static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
806{
807	struct device_node *ssi_np, *np;
808
809	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
810		/* Check each DMA phandle to see if it points to us.  We
811		 * assume that device_node pointers are a valid comparison.
812		 */
813		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
814		of_node_put(np);
815		if (np == dma_channel_np)
816			return ssi_np;
817
818		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
819		of_node_put(np);
820		if (np == dma_channel_np)
821			return ssi_np;
822	}
823
824	return NULL;
825}
826
827static int fsl_soc_dma_probe(struct platform_device *pdev)
828{
829	struct dma_object *dma;
830	struct device_node *np = pdev->dev.of_node;
831	struct device_node *ssi_np;
832	struct resource res;
833	const uint32_t *iprop;
834	int ret;
835
836	/* Find the SSI node that points to us. */
837	ssi_np = find_ssi_node(np);
838	if (!ssi_np) {
839		dev_err(&pdev->dev, "cannot find parent SSI node\n");
840		return -ENODEV;
841	}
842
843	ret = of_address_to_resource(ssi_np, 0, &res);
844	if (ret) {
845		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
846			ssi_np);
847		of_node_put(ssi_np);
848		return ret;
849	}
850
851	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
852	if (!dma) {
853		of_node_put(ssi_np);
854		return -ENOMEM;
855	}
856
857	dma->dai.name = DRV_NAME;
858	dma->dai.open = fsl_dma_open;
859	dma->dai.close = fsl_dma_close;
860	dma->dai.hw_params = fsl_dma_hw_params;
861	dma->dai.hw_free = fsl_dma_hw_free;
862	dma->dai.pointer = fsl_dma_pointer;
863	dma->dai.pcm_construct = fsl_dma_new;
864
865	/* Store the SSI-specific information that we need */
866	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
867	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
868
869	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
870	if (iprop)
871		dma->ssi_fifo_depth = be32_to_cpup(iprop);
872	else
873                /* Older 8610 DTs didn't have the fifo-depth property */
874		dma->ssi_fifo_depth = 8;
875
876	of_node_put(ssi_np);
877
878	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
879	if (ret) {
880		dev_err(&pdev->dev, "could not register platform\n");
881		kfree(dma);
882		return ret;
883	}
884
885	dma->channel = of_iomap(np, 0);
886	dma->irq = irq_of_parse_and_map(np, 0);
887
888	dev_set_drvdata(&pdev->dev, dma);
889
890	return 0;
891}
892
893static void fsl_soc_dma_remove(struct platform_device *pdev)
894{
895	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
896
897	iounmap(dma->channel);
898	irq_dispose_mapping(dma->irq);
899	kfree(dma);
900}
901
902static const struct of_device_id fsl_soc_dma_ids[] = {
903	{ .compatible = "fsl,ssi-dma-channel", },
904	{}
905};
906MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
907
908static struct platform_driver fsl_soc_dma_driver = {
909	.driver = {
910		.name = "fsl-pcm-audio",
911		.of_match_table = fsl_soc_dma_ids,
912	},
913	.probe = fsl_soc_dma_probe,
914	.remove_new = fsl_soc_dma_remove,
915};
916
917module_platform_driver(fsl_soc_dma_driver);
918
919MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
920MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
921MODULE_LICENSE("GPL v2");
922