1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * tas5720.c - ALSA SoC Texas Instruments TAS5720 Mono Audio Amplifier
4 *
5 * Copyright (C)2015-2016 Texas Instruments Incorporated -  https://www.ti.com
6 *
7 * Author: Andreas Dannenberg <dannenberg@ti.com>
8 */
9
10#include <linux/module.h>
11#include <linux/errno.h>
12#include <linux/device.h>
13#include <linux/i2c.h>
14#include <linux/regmap.h>
15#include <linux/slab.h>
16#include <linux/regulator/consumer.h>
17#include <linux/delay.h>
18
19#include <sound/pcm.h>
20#include <sound/pcm_params.h>
21#include <sound/soc.h>
22#include <sound/soc-dapm.h>
23#include <sound/tlv.h>
24
25#include "tas5720.h"
26
27/* Define how often to check (and clear) the fault status register (in ms) */
28#define TAS5720_FAULT_CHECK_INTERVAL		200
29
30enum tas572x_type {
31	TAS5720,
32	TAS5720A_Q1,
33	TAS5722,
34};
35
36static const char * const tas5720_supply_names[] = {
37	"dvdd",		/* Digital power supply. Connect to 3.3-V supply. */
38	"pvdd",		/* Class-D amp and analog power supply (connected). */
39};
40
41#define TAS5720_NUM_SUPPLIES	ARRAY_SIZE(tas5720_supply_names)
42
43struct tas5720_data {
44	struct snd_soc_component *component;
45	struct regmap *regmap;
46	struct i2c_client *tas5720_client;
47	enum tas572x_type devtype;
48	struct regulator_bulk_data supplies[TAS5720_NUM_SUPPLIES];
49	struct delayed_work fault_check_work;
50	unsigned int last_fault;
51};
52
53static int tas5720_hw_params(struct snd_pcm_substream *substream,
54			     struct snd_pcm_hw_params *params,
55			     struct snd_soc_dai *dai)
56{
57	struct snd_soc_component *component = dai->component;
58	unsigned int rate = params_rate(params);
59	bool ssz_ds;
60	int ret;
61
62	switch (rate) {
63	case 44100:
64	case 48000:
65		ssz_ds = false;
66		break;
67	case 88200:
68	case 96000:
69		ssz_ds = true;
70		break;
71	default:
72		dev_err(component->dev, "unsupported sample rate: %u\n", rate);
73		return -EINVAL;
74	}
75
76	ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
77				  TAS5720_SSZ_DS, ssz_ds);
78	if (ret < 0) {
79		dev_err(component->dev, "error setting sample rate: %d\n", ret);
80		return ret;
81	}
82
83	return 0;
84}
85
86static int tas5720_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
87{
88	struct snd_soc_component *component = dai->component;
89	u8 serial_format;
90	int ret;
91
92	if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_CBC_CFC) {
93		dev_vdbg(component->dev, "DAI clocking invalid\n");
94		return -EINVAL;
95	}
96
97	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
98		       SND_SOC_DAIFMT_INV_MASK)) {
99	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
100		/* 1st data bit occur one BCLK cycle after the frame sync */
101		serial_format = TAS5720_SAIF_I2S;
102		break;
103	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF):
104		/*
105		 * Note that although the TAS5720 does not have a dedicated DSP
106		 * mode it doesn't care about the LRCLK duty cycle during TDM
107		 * operation. Therefore we can use the device's I2S mode with
108		 * its delaying of the 1st data bit to receive DSP_A formatted
109		 * data. See device datasheet for additional details.
110		 */
111		serial_format = TAS5720_SAIF_I2S;
112		break;
113	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF):
114		/*
115		 * Similar to DSP_A, we can use the fact that the TAS5720 does
116		 * not care about the LRCLK duty cycle during TDM to receive
117		 * DSP_B formatted data in LEFTJ mode (no delaying of the 1st
118		 * data bit).
119		 */
120		serial_format = TAS5720_SAIF_LEFTJ;
121		break;
122	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
123		/* No delay after the frame sync */
124		serial_format = TAS5720_SAIF_LEFTJ;
125		break;
126	default:
127		dev_vdbg(component->dev, "DAI Format is not found\n");
128		return -EINVAL;
129	}
130
131	ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
132				  TAS5720_SAIF_FORMAT_MASK,
133				  serial_format);
134	if (ret < 0) {
135		dev_err(component->dev, "error setting SAIF format: %d\n", ret);
136		return ret;
137	}
138
139	return 0;
140}
141
142static int tas5720_set_dai_tdm_slot(struct snd_soc_dai *dai,
143				    unsigned int tx_mask, unsigned int rx_mask,
144				    int slots, int slot_width)
145{
146	struct snd_soc_component *component = dai->component;
147	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
148	unsigned int first_slot;
149	int ret;
150
151	if (!tx_mask) {
152		dev_err(component->dev, "tx masks must not be 0\n");
153		return -EINVAL;
154	}
155
156	/*
157	 * Determine the first slot that is being requested. We will only
158	 * use the first slot that is found since the TAS5720 is a mono
159	 * amplifier.
160	 */
161	first_slot = __ffs(tx_mask);
162
163	if (first_slot > 7) {
164		dev_err(component->dev, "slot selection out of bounds (%u)\n",
165			first_slot);
166		return -EINVAL;
167	}
168
169	/*
170	 * Enable manual TDM slot selection (instead of I2C ID based).
171	 * This is not applicable to TAS5720A-Q1.
172	 */
173	switch (tas5720->devtype) {
174	case TAS5720A_Q1:
175		break;
176	default:
177		ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
178					  TAS5720_TDM_CFG_SRC, TAS5720_TDM_CFG_SRC);
179		if (ret < 0)
180			goto error_snd_soc_component_update_bits;
181
182		/* Configure the TDM slot to process audio from */
183		ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
184					  TAS5720_TDM_SLOT_SEL_MASK, first_slot);
185		if (ret < 0)
186			goto error_snd_soc_component_update_bits;
187		break;
188	}
189
190	/* Configure TDM slot width. This is only applicable to TAS5722. */
191	switch (tas5720->devtype) {
192	case TAS5722:
193		ret = snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
194						    TAS5722_TDM_SLOT_16B,
195						    slot_width == 16 ?
196						    TAS5722_TDM_SLOT_16B : 0);
197		if (ret < 0)
198			goto error_snd_soc_component_update_bits;
199		break;
200	default:
201		break;
202	}
203
204	return 0;
205
206error_snd_soc_component_update_bits:
207	dev_err(component->dev, "error configuring TDM mode: %d\n", ret);
208	return ret;
209}
210
211static int tas5720_mute_soc_component(struct snd_soc_component *component, int mute)
212{
213	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
214	unsigned int reg, mask;
215	int ret;
216
217	switch (tas5720->devtype) {
218	case TAS5720A_Q1:
219		reg = TAS5720_Q1_VOLUME_CTRL_CFG_REG;
220		mask = TAS5720_Q1_MUTE;
221		break;
222	default:
223		reg = TAS5720_DIGITAL_CTRL2_REG;
224		mask = TAS5720_MUTE;
225		break;
226	}
227
228	ret = snd_soc_component_update_bits(component, reg, mask, mute ? mask : 0);
229	if (ret < 0) {
230		dev_err(component->dev, "error (un-)muting device: %d\n", ret);
231		return ret;
232	}
233
234	return 0;
235}
236
237static int tas5720_mute(struct snd_soc_dai *dai, int mute, int direction)
238{
239	return tas5720_mute_soc_component(dai->component, mute);
240}
241
242static void tas5720_fault_check_work(struct work_struct *work)
243{
244	struct tas5720_data *tas5720 = container_of(work, struct tas5720_data,
245			fault_check_work.work);
246	struct device *dev = tas5720->component->dev;
247	unsigned int curr_fault;
248	int ret;
249
250	ret = regmap_read(tas5720->regmap, TAS5720_FAULT_REG, &curr_fault);
251	if (ret < 0) {
252		dev_err(dev, "failed to read FAULT register: %d\n", ret);
253		goto out;
254	}
255
256	/* Check/handle all errors except SAIF clock errors */
257	curr_fault &= TAS5720_OCE | TAS5720_DCE | TAS5720_OTE;
258
259	/*
260	 * Only flag errors once for a given occurrence. This is needed as
261	 * the TAS5720 will take time clearing the fault condition internally
262	 * during which we don't want to bombard the system with the same
263	 * error message over and over.
264	 */
265	if ((curr_fault & TAS5720_OCE) && !(tas5720->last_fault & TAS5720_OCE))
266		dev_crit(dev, "experienced an over current hardware fault\n");
267
268	if ((curr_fault & TAS5720_DCE) && !(tas5720->last_fault & TAS5720_DCE))
269		dev_crit(dev, "experienced a DC detection fault\n");
270
271	if ((curr_fault & TAS5720_OTE) && !(tas5720->last_fault & TAS5720_OTE))
272		dev_crit(dev, "experienced an over temperature fault\n");
273
274	/* Store current fault value so we can detect any changes next time */
275	tas5720->last_fault = curr_fault;
276
277	if (!curr_fault)
278		goto out;
279
280	/*
281	 * Periodically toggle SDZ (shutdown bit) H->L->H to clear any latching
282	 * faults as long as a fault condition persists. Always going through
283	 * the full sequence no matter the first return value to minimizes
284	 * chances for the device to end up in shutdown mode.
285	 */
286	ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
287				TAS5720_SDZ, 0);
288	if (ret < 0)
289		dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
290
291	ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
292				TAS5720_SDZ, TAS5720_SDZ);
293	if (ret < 0)
294		dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
295
296out:
297	/* Schedule the next fault check at the specified interval */
298	schedule_delayed_work(&tas5720->fault_check_work,
299			      msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
300}
301
302static int tas5720_codec_probe(struct snd_soc_component *component)
303{
304	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
305	unsigned int device_id, expected_device_id;
306	int ret;
307
308	tas5720->component = component;
309
310	ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
311				    tas5720->supplies);
312	if (ret != 0) {
313		dev_err(component->dev, "failed to enable supplies: %d\n", ret);
314		return ret;
315	}
316
317	/*
318	 * Take a liberal approach to checking the device ID to allow the
319	 * driver to be used even if the device ID does not match, however
320	 * issue a warning if there is a mismatch.
321	 */
322	ret = regmap_read(tas5720->regmap, TAS5720_DEVICE_ID_REG, &device_id);
323	if (ret < 0) {
324		dev_err(component->dev, "failed to read device ID register: %d\n",
325			ret);
326		goto probe_fail;
327	}
328
329	switch (tas5720->devtype) {
330	case TAS5720:
331		expected_device_id = TAS5720_DEVICE_ID;
332		break;
333	case TAS5720A_Q1:
334		expected_device_id = TAS5720A_Q1_DEVICE_ID;
335		break;
336	case TAS5722:
337		expected_device_id = TAS5722_DEVICE_ID;
338		break;
339	default:
340		dev_err(component->dev, "unexpected private driver data\n");
341		ret = -EINVAL;
342		goto probe_fail;
343	}
344
345	if (device_id != expected_device_id)
346		dev_warn(component->dev, "wrong device ID. expected: %u read: %u\n",
347			 expected_device_id, device_id);
348
349	/* Set device to mute */
350	ret = tas5720_mute_soc_component(component, 1);
351	if (ret < 0)
352		goto error_snd_soc_component_update_bits;
353
354	/* Set Bit 7 in TAS5720_ANALOG_CTRL_REG to 1 for TAS5720A_Q1 */
355	switch (tas5720->devtype) {
356	case TAS5720A_Q1:
357		ret = snd_soc_component_update_bits(component, TAS5720_ANALOG_CTRL_REG,
358						    TAS5720_Q1_RESERVED7_BIT,
359						    TAS5720_Q1_RESERVED7_BIT);
360		break;
361	default:
362		break;
363	}
364	if (ret < 0)
365		goto error_snd_soc_component_update_bits;
366
367	/*
368	 * Enter shutdown mode - our default when not playing audio - to
369	 * minimize current consumption. On the TAS5720 there is no real down
370	 * side doing so as all device registers are preserved and the wakeup
371	 * of the codec is rather quick which we do using a dapm widget.
372	 */
373	ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
374				  TAS5720_SDZ, 0);
375	if (ret < 0)
376		goto error_snd_soc_component_update_bits;
377
378	INIT_DELAYED_WORK(&tas5720->fault_check_work, tas5720_fault_check_work);
379
380	return 0;
381
382error_snd_soc_component_update_bits:
383	dev_err(component->dev, "error configuring device registers: %d\n", ret);
384
385probe_fail:
386	regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
387			       tas5720->supplies);
388	return ret;
389}
390
391static void tas5720_codec_remove(struct snd_soc_component *component)
392{
393	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
394	int ret;
395
396	cancel_delayed_work_sync(&tas5720->fault_check_work);
397
398	ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
399				     tas5720->supplies);
400	if (ret < 0)
401		dev_err(component->dev, "failed to disable supplies: %d\n", ret);
402};
403
404static int tas5720_dac_event(struct snd_soc_dapm_widget *w,
405			     struct snd_kcontrol *kcontrol, int event)
406{
407	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
408	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
409	int ret;
410
411	if (event & SND_SOC_DAPM_POST_PMU) {
412		/* Take TAS5720 out of shutdown mode */
413		ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
414					  TAS5720_SDZ, TAS5720_SDZ);
415		if (ret < 0) {
416			dev_err(component->dev, "error waking component: %d\n", ret);
417			return ret;
418		}
419
420		/*
421		 * Observe codec shutdown-to-active time. The datasheet only
422		 * lists a nominal value however just use-it as-is without
423		 * additional padding to minimize the delay introduced in
424		 * starting to play audio (actually there is other setup done
425		 * by the ASoC framework that will provide additional delays,
426		 * so we should always be safe).
427		 */
428		msleep(25);
429
430		/* Turn on TAS5720 periodic fault checking/handling */
431		tas5720->last_fault = 0;
432		schedule_delayed_work(&tas5720->fault_check_work,
433				msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
434	} else if (event & SND_SOC_DAPM_PRE_PMD) {
435		/* Disable TAS5720 periodic fault checking/handling */
436		cancel_delayed_work_sync(&tas5720->fault_check_work);
437
438		/* Place TAS5720 in shutdown mode to minimize current draw */
439		ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
440					  TAS5720_SDZ, 0);
441		if (ret < 0) {
442			dev_err(component->dev, "error shutting down component: %d\n",
443				ret);
444			return ret;
445		}
446	}
447
448	return 0;
449}
450
451#ifdef CONFIG_PM
452static int tas5720_suspend(struct snd_soc_component *component)
453{
454	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
455	int ret;
456
457	regcache_cache_only(tas5720->regmap, true);
458	regcache_mark_dirty(tas5720->regmap);
459
460	ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
461				     tas5720->supplies);
462	if (ret < 0)
463		dev_err(component->dev, "failed to disable supplies: %d\n", ret);
464
465	return ret;
466}
467
468static int tas5720_resume(struct snd_soc_component *component)
469{
470	struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
471	int ret;
472
473	ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
474				    tas5720->supplies);
475	if (ret < 0) {
476		dev_err(component->dev, "failed to enable supplies: %d\n", ret);
477		return ret;
478	}
479
480	regcache_cache_only(tas5720->regmap, false);
481
482	ret = regcache_sync(tas5720->regmap);
483	if (ret < 0) {
484		dev_err(component->dev, "failed to sync regcache: %d\n", ret);
485		return ret;
486	}
487
488	return 0;
489}
490#else
491#define tas5720_suspend NULL
492#define tas5720_resume NULL
493#endif
494
495static bool tas5720_is_volatile_reg(struct device *dev, unsigned int reg)
496{
497	switch (reg) {
498	case TAS5720_DEVICE_ID_REG:
499	case TAS5720_FAULT_REG:
500		return true;
501	default:
502		return false;
503	}
504}
505
506static const struct regmap_config tas5720_regmap_config = {
507	.reg_bits = 8,
508	.val_bits = 8,
509
510	.max_register = TAS5720_MAX_REG,
511	.cache_type = REGCACHE_RBTREE,
512	.volatile_reg = tas5720_is_volatile_reg,
513};
514
515static const struct regmap_config tas5720a_q1_regmap_config = {
516	.reg_bits = 8,
517	.val_bits = 8,
518
519	.max_register = TAS5720_MAX_REG,
520	.cache_type = REGCACHE_RBTREE,
521	.volatile_reg = tas5720_is_volatile_reg,
522};
523
524static const struct regmap_config tas5722_regmap_config = {
525	.reg_bits = 8,
526	.val_bits = 8,
527
528	.max_register = TAS5722_MAX_REG,
529	.cache_type = REGCACHE_RBTREE,
530	.volatile_reg = tas5720_is_volatile_reg,
531};
532
533/*
534 * DAC analog gain. There are four discrete values to select from, ranging
535 * from 19.2 dB to 26.3dB.
536 */
537static const DECLARE_TLV_DB_RANGE(dac_analog_tlv,
538	0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0),
539	0x1, 0x1, TLV_DB_SCALE_ITEM(2070, 0, 0),
540	0x2, 0x2, TLV_DB_SCALE_ITEM(2350, 0, 0),
541	0x3, 0x3, TLV_DB_SCALE_ITEM(2630, 0, 0),
542);
543
544/*
545 * DAC analog gain for TAS5720A-Q1. There are three discrete values to select from, ranging
546 * from 19.2 dB to 25.0dB.
547 */
548static const DECLARE_TLV_DB_RANGE(dac_analog_tlv_a_q1,
549	0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0),
550	0x1, 0x1, TLV_DB_SCALE_ITEM(2260, 0, 0),
551	0x2, 0x2, TLV_DB_SCALE_ITEM(2500, 0, 0),
552);
553
554/*
555 * DAC digital volumes. From -103.5 to 24 dB in 0.5 dB or 0.25 dB steps
556 * depending on the device. Note that setting the gain below -100 dB
557 * (register value <0x7) is effectively a MUTE as per device datasheet.
558 *
559 * Note that for the TAS5722 the digital volume controls are actually split
560 * over two registers, so we need custom getters/setters for access.
561 */
562static DECLARE_TLV_DB_SCALE(tas5720_dac_tlv, -10350, 50, 0);
563static DECLARE_TLV_DB_SCALE(tas5722_dac_tlv, -10350, 25, 0);
564
565static int tas5722_volume_get(struct snd_kcontrol *kcontrol,
566			      struct snd_ctl_elem_value *ucontrol)
567{
568	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
569	unsigned int val;
570
571	val = snd_soc_component_read(component, TAS5720_VOLUME_CTRL_REG);
572	ucontrol->value.integer.value[0] = val << 1;
573
574	val = snd_soc_component_read(component, TAS5722_DIGITAL_CTRL2_REG);
575	ucontrol->value.integer.value[0] |= val & TAS5722_VOL_CONTROL_LSB;
576
577	return 0;
578}
579
580static int tas5722_volume_set(struct snd_kcontrol *kcontrol,
581			      struct snd_ctl_elem_value *ucontrol)
582{
583	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
584	unsigned int sel = ucontrol->value.integer.value[0];
585
586	snd_soc_component_write(component, TAS5720_VOLUME_CTRL_REG, sel >> 1);
587	snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
588				      TAS5722_VOL_CONTROL_LSB, sel);
589
590	return 0;
591}
592
593static const struct snd_kcontrol_new tas5720_snd_controls[] = {
594	SOC_SINGLE_TLV("Speaker Driver Playback Volume",
595		       TAS5720_VOLUME_CTRL_REG, 0, 0xff, 0, tas5720_dac_tlv),
596	SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
597		       TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
598};
599
600static const struct snd_kcontrol_new tas5720a_q1_snd_controls[] = {
601	SOC_DOUBLE_R_TLV("Speaker Driver Playback Volume",
602				TAS5720_Q1_VOLUME_CTRL_LEFT_REG,
603				TAS5720_Q1_VOLUME_CTRL_RIGHT_REG,
604				0, 0xff, 0, tas5720_dac_tlv),
605	SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
606				TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv_a_q1),
607};
608
609static const struct snd_kcontrol_new tas5722_snd_controls[] = {
610	SOC_SINGLE_EXT_TLV("Speaker Driver Playback Volume",
611			   0, 0, 511, 0,
612			   tas5722_volume_get, tas5722_volume_set,
613			   tas5722_dac_tlv),
614	SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
615		       TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
616};
617
618static const struct snd_soc_dapm_widget tas5720_dapm_widgets[] = {
619	SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0),
620	SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas5720_dac_event,
621			   SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
622	SND_SOC_DAPM_OUTPUT("OUT")
623};
624
625static const struct snd_soc_dapm_route tas5720_audio_map[] = {
626	{ "DAC", NULL, "DAC IN" },
627	{ "OUT", NULL, "DAC" },
628};
629
630static const struct snd_soc_component_driver soc_component_dev_tas5720 = {
631	.probe			= tas5720_codec_probe,
632	.remove			= tas5720_codec_remove,
633	.suspend		= tas5720_suspend,
634	.resume			= tas5720_resume,
635	.controls		= tas5720_snd_controls,
636	.num_controls		= ARRAY_SIZE(tas5720_snd_controls),
637	.dapm_widgets		= tas5720_dapm_widgets,
638	.num_dapm_widgets	= ARRAY_SIZE(tas5720_dapm_widgets),
639	.dapm_routes		= tas5720_audio_map,
640	.num_dapm_routes	= ARRAY_SIZE(tas5720_audio_map),
641	.idle_bias_on		= 1,
642	.use_pmdown_time	= 1,
643	.endianness		= 1,
644};
645
646static const struct snd_soc_component_driver soc_component_dev_tas5720_a_q1 = {
647	.probe			= tas5720_codec_probe,
648	.remove			= tas5720_codec_remove,
649	.suspend		= tas5720_suspend,
650	.resume			= tas5720_resume,
651	.controls		= tas5720a_q1_snd_controls,
652	.num_controls		= ARRAY_SIZE(tas5720a_q1_snd_controls),
653	.dapm_widgets		= tas5720_dapm_widgets,
654	.num_dapm_widgets	= ARRAY_SIZE(tas5720_dapm_widgets),
655	.dapm_routes		= tas5720_audio_map,
656	.num_dapm_routes	= ARRAY_SIZE(tas5720_audio_map),
657	.idle_bias_on		= 1,
658	.use_pmdown_time	= 1,
659	.endianness		= 1,
660};
661
662static const struct snd_soc_component_driver soc_component_dev_tas5722 = {
663	.probe = tas5720_codec_probe,
664	.remove = tas5720_codec_remove,
665	.suspend = tas5720_suspend,
666	.resume = tas5720_resume,
667	.controls = tas5722_snd_controls,
668	.num_controls = ARRAY_SIZE(tas5722_snd_controls),
669	.dapm_widgets = tas5720_dapm_widgets,
670	.num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
671	.dapm_routes = tas5720_audio_map,
672	.num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
673	.idle_bias_on		= 1,
674	.use_pmdown_time	= 1,
675	.endianness		= 1,
676};
677
678/* PCM rates supported by the TAS5720 driver */
679#define TAS5720_RATES	(SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\
680			 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
681
682/* Formats supported by TAS5720 driver */
683#define TAS5720_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE |\
684			 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE)
685
686static const struct snd_soc_dai_ops tas5720_speaker_dai_ops = {
687	.hw_params	= tas5720_hw_params,
688	.set_fmt	= tas5720_set_dai_fmt,
689	.set_tdm_slot	= tas5720_set_dai_tdm_slot,
690	.mute_stream	= tas5720_mute,
691	.no_capture_mute = 1,
692};
693
694/*
695 * TAS5720 DAI structure
696 *
697 * Note that were are advertising .playback.channels_max = 2 despite this being
698 * a mono amplifier. The reason for that is that some serial ports such as TI's
699 * McASP module have a minimum number of channels (2) that they can output.
700 * Advertising more channels than we have will allow us to interface with such
701 * a serial port without really any negative side effects as the TAS5720 will
702 * simply ignore any extra channel(s) asides from the one channel that is
703 * configured to be played back.
704 */
705static struct snd_soc_dai_driver tas5720_dai[] = {
706	{
707		.name = "tas5720-amplifier",
708		.playback = {
709			.stream_name = "Playback",
710			.channels_min = 1,
711			.channels_max = 2,
712			.rates = TAS5720_RATES,
713			.formats = TAS5720_FORMATS,
714		},
715		.ops = &tas5720_speaker_dai_ops,
716	},
717};
718
719static const struct i2c_device_id tas5720_id[] = {
720	{ "tas5720", TAS5720 },
721	{ "tas5720a-q1", TAS5720A_Q1 },
722	{ "tas5722", TAS5722 },
723	{ }
724};
725MODULE_DEVICE_TABLE(i2c, tas5720_id);
726
727static int tas5720_probe(struct i2c_client *client)
728{
729	struct device *dev = &client->dev;
730	struct tas5720_data *data;
731	const struct regmap_config *regmap_config;
732	const struct i2c_device_id *id;
733	int ret;
734	int i;
735
736	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
737	if (!data)
738		return -ENOMEM;
739
740	id = i2c_match_id(tas5720_id, client);
741	data->tas5720_client = client;
742	data->devtype = id->driver_data;
743
744	switch (id->driver_data) {
745	case TAS5720:
746		regmap_config = &tas5720_regmap_config;
747		break;
748	case TAS5720A_Q1:
749		regmap_config = &tas5720a_q1_regmap_config;
750		break;
751	case TAS5722:
752		regmap_config = &tas5722_regmap_config;
753		break;
754	default:
755		dev_err(dev, "unexpected private driver data\n");
756		return -EINVAL;
757	}
758	data->regmap = devm_regmap_init_i2c(client, regmap_config);
759	if (IS_ERR(data->regmap)) {
760		ret = PTR_ERR(data->regmap);
761		dev_err(dev, "failed to allocate register map: %d\n", ret);
762		return ret;
763	}
764
765	for (i = 0; i < ARRAY_SIZE(data->supplies); i++)
766		data->supplies[i].supply = tas5720_supply_names[i];
767
768	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies),
769				      data->supplies);
770	if (ret != 0) {
771		dev_err(dev, "failed to request supplies: %d\n", ret);
772		return ret;
773	}
774
775	dev_set_drvdata(dev, data);
776
777	switch (id->driver_data) {
778	case TAS5720:
779		ret = devm_snd_soc_register_component(&client->dev,
780					&soc_component_dev_tas5720,
781					tas5720_dai,
782					ARRAY_SIZE(tas5720_dai));
783		break;
784	case TAS5720A_Q1:
785		ret = devm_snd_soc_register_component(&client->dev,
786					&soc_component_dev_tas5720_a_q1,
787					tas5720_dai,
788					ARRAY_SIZE(tas5720_dai));
789		break;
790	case TAS5722:
791		ret = devm_snd_soc_register_component(&client->dev,
792					&soc_component_dev_tas5722,
793					tas5720_dai,
794					ARRAY_SIZE(tas5720_dai));
795		break;
796	default:
797		dev_err(dev, "unexpected private driver data\n");
798		return -EINVAL;
799	}
800	if (ret < 0) {
801		dev_err(dev, "failed to register component: %d\n", ret);
802		return ret;
803	}
804
805	return 0;
806}
807
808#if IS_ENABLED(CONFIG_OF)
809static const struct of_device_id tas5720_of_match[] = {
810	{ .compatible = "ti,tas5720", },
811	{ .compatible = "ti,tas5720a-q1", },
812	{ .compatible = "ti,tas5722", },
813	{ },
814};
815MODULE_DEVICE_TABLE(of, tas5720_of_match);
816#endif
817
818static struct i2c_driver tas5720_i2c_driver = {
819	.driver = {
820		.name = "tas5720",
821		.of_match_table = of_match_ptr(tas5720_of_match),
822	},
823	.probe = tas5720_probe,
824	.id_table = tas5720_id,
825};
826
827module_i2c_driver(tas5720_i2c_driver);
828
829MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
830MODULE_DESCRIPTION("TAS5720 Audio amplifier driver");
831MODULE_LICENSE("GPL");
832