1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Driver for SiS7019 Audio Accelerator
4 *
5 *  Copyright (C) 2004-2007, David Dillow
6 *  Written by David Dillow <dave@thedillows.org>
7 *  Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 *  All rights reserved.
10 */
11
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/time.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <sound/core.h>
20#include <sound/ac97_codec.h>
21#include <sound/initval.h>
22#include "sis7019.h"
23
24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25MODULE_DESCRIPTION("SiS7019");
26MODULE_LICENSE("GPL");
27
28static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
29static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
30static bool enable = 1;
31static int codecs = 1;
32
33module_param(index, int, 0444);
34MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35module_param(id, charp, 0444);
36MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37module_param(enable, bool, 0444);
38MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39module_param(codecs, int, 0444);
40MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42static const struct pci_device_id snd_sis7019_ids[] = {
43	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44	{ 0, }
45};
46
47MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49/* There are three timing modes for the voices.
50 *
51 * For both playback and capture, when the buffer is one or two periods long,
52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53 * to let us know when the periods have ended.
54 *
55 * When performing playback with more than two periods per buffer, we set
56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57 * reach it. We then update the offset and continue on until we are
58 * interrupted for the next period.
59 *
60 * Capture channels do not have a SSO, so we allocate a playback channel to
61 * use as a timer for the capture periods. We use the SSO on the playback
62 * channel to clock out virtual periods, and adjust the virtual period length
63 * to maintain synchronization. This algorithm came from the Trident driver.
64 *
65 * FIXME: It'd be nice to make use of some of the synth features in the
66 * hardware, but a woeful lack of documentation is a significant roadblock.
67 */
68struct voice {
69	u16 flags;
70#define 	VOICE_IN_USE		1
71#define 	VOICE_CAPTURE		2
72#define 	VOICE_SSO_TIMING	4
73#define 	VOICE_SYNC_TIMING	8
74	u16 sync_cso;
75	u16 period_size;
76	u16 buffer_size;
77	u16 sync_period_size;
78	u16 sync_buffer_size;
79	u32 sso;
80	u32 vperiod;
81	struct snd_pcm_substream *substream;
82	struct voice *timing;
83	void __iomem *ctrl_base;
84	void __iomem *wave_base;
85	void __iomem *sync_base;
86	int num;
87};
88
89/* We need four pages to store our wave parameters during a suspend. If
90 * we're not doing power management, we still need to allocate a page
91 * for the silence buffer.
92 */
93#define SIS_SUSPEND_PAGES	4
94
95struct sis7019 {
96	unsigned long ioport;
97	void __iomem *ioaddr;
98	int irq;
99	int codecs_present;
100
101	struct pci_dev *pci;
102	struct snd_pcm *pcm;
103	struct snd_card *card;
104	struct snd_ac97 *ac97[3];
105
106	/* Protect against more than one thread hitting the AC97
107	 * registers (in a more polite manner than pounding the hardware
108	 * semaphore)
109	 */
110	struct mutex ac97_mutex;
111
112	/* voice_lock protects allocation/freeing of the voice descriptions
113	 */
114	spinlock_t voice_lock;
115
116	struct voice voices[64];
117	struct voice capture_voice;
118
119	/* Allocate pages to store the internal wave state during
120	 * suspends. When we're operating, this can be used as a silence
121	 * buffer for a timing channel.
122	 */
123	void *suspend_state[SIS_SUSPEND_PAGES];
124
125	int silence_users;
126	dma_addr_t silence_dma_addr;
127};
128
129/* These values are also used by the module param 'codecs' to indicate
130 * which codecs should be present.
131 */
132#define SIS_PRIMARY_CODEC_PRESENT	0x0001
133#define SIS_SECONDARY_CODEC_PRESENT	0x0002
134#define SIS_TERTIARY_CODEC_PRESENT	0x0004
135
136/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137 * documented range of 8-0xfff8 samples. Given that they are 0-based,
138 * that places our period/buffer range at 9-0xfff9 samples. That makes the
139 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140 * max samples / min samples gives us the max periods in a buffer.
141 *
142 * We'll add a constraint upon open that limits the period and buffer sample
143 * size to values that are legal for the hardware.
144 */
145static const struct snd_pcm_hardware sis_playback_hw_info = {
146	.info = (SNDRV_PCM_INFO_MMAP |
147		 SNDRV_PCM_INFO_MMAP_VALID |
148		 SNDRV_PCM_INFO_INTERLEAVED |
149		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
150		 SNDRV_PCM_INFO_SYNC_START |
151		 SNDRV_PCM_INFO_RESUME),
152	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
153		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
154	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
155	.rate_min = 4000,
156	.rate_max = 48000,
157	.channels_min = 1,
158	.channels_max = 2,
159	.buffer_bytes_max = (0xfff9 * 4),
160	.period_bytes_min = 9,
161	.period_bytes_max = (0xfff9 * 4),
162	.periods_min = 1,
163	.periods_max = (0xfff9 / 9),
164};
165
166static const struct snd_pcm_hardware sis_capture_hw_info = {
167	.info = (SNDRV_PCM_INFO_MMAP |
168		 SNDRV_PCM_INFO_MMAP_VALID |
169		 SNDRV_PCM_INFO_INTERLEAVED |
170		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
171		 SNDRV_PCM_INFO_SYNC_START |
172		 SNDRV_PCM_INFO_RESUME),
173	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
174		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
175	.rates = SNDRV_PCM_RATE_48000,
176	.rate_min = 4000,
177	.rate_max = 48000,
178	.channels_min = 1,
179	.channels_max = 2,
180	.buffer_bytes_max = (0xfff9 * 4),
181	.period_bytes_min = 9,
182	.period_bytes_max = (0xfff9 * 4),
183	.periods_min = 1,
184	.periods_max = (0xfff9 / 9),
185};
186
187static void sis_update_sso(struct voice *voice, u16 period)
188{
189	void __iomem *base = voice->ctrl_base;
190
191	voice->sso += period;
192	if (voice->sso >= voice->buffer_size)
193		voice->sso -= voice->buffer_size;
194
195	/* Enforce the documented hardware minimum offset */
196	if (voice->sso < 8)
197		voice->sso = 8;
198
199	/* The SSO is in the upper 16 bits of the register. */
200	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
201}
202
203static void sis_update_voice(struct voice *voice)
204{
205	if (voice->flags & VOICE_SSO_TIMING) {
206		sis_update_sso(voice, voice->period_size);
207	} else if (voice->flags & VOICE_SYNC_TIMING) {
208		int sync;
209
210		/* If we've not hit the end of the virtual period, update
211		 * our records and keep going.
212		 */
213		if (voice->vperiod > voice->period_size) {
214			voice->vperiod -= voice->period_size;
215			if (voice->vperiod < voice->period_size)
216				sis_update_sso(voice, voice->vperiod);
217			else
218				sis_update_sso(voice, voice->period_size);
219			return;
220		}
221
222		/* Calculate our relative offset between the target and
223		 * the actual CSO value. Since we're operating in a loop,
224		 * if the value is more than half way around, we can
225		 * consider ourselves wrapped.
226		 */
227		sync = voice->sync_cso;
228		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
229		if (sync > (voice->sync_buffer_size / 2))
230			sync -= voice->sync_buffer_size;
231
232		/* If sync is positive, then we interrupted too early, and
233		 * we'll need to come back in a few samples and try again.
234		 * There's a minimum wait, as it takes some time for the DMA
235		 * engine to startup, etc...
236		 */
237		if (sync > 0) {
238			if (sync < 16)
239				sync = 16;
240			sis_update_sso(voice, sync);
241			return;
242		}
243
244		/* Ok, we interrupted right on time, or (hopefully) just
245		 * a bit late. We'll adjst our next waiting period based
246		 * on how close we got.
247		 *
248		 * We need to stay just behind the actual channel to ensure
249		 * it really is past a period when we get our interrupt --
250		 * otherwise we'll fall into the early code above and have
251		 * a minimum wait time, which makes us quite late here,
252		 * eating into the user's time to refresh the buffer, esp.
253		 * if using small periods.
254		 *
255		 * If we're less than 9 samples behind, we're on target.
256		 * Otherwise, shorten the next vperiod by the amount we've
257		 * been delayed.
258		 */
259		if (sync > -9)
260			voice->vperiod = voice->sync_period_size + 1;
261		else
262			voice->vperiod = voice->sync_period_size + sync + 10;
263
264		if (voice->vperiod < voice->buffer_size) {
265			sis_update_sso(voice, voice->vperiod);
266			voice->vperiod = 0;
267		} else
268			sis_update_sso(voice, voice->period_size);
269
270		sync = voice->sync_cso + voice->sync_period_size;
271		if (sync >= voice->sync_buffer_size)
272			sync -= voice->sync_buffer_size;
273		voice->sync_cso = sync;
274	}
275
276	snd_pcm_period_elapsed(voice->substream);
277}
278
279static void sis_voice_irq(u32 status, struct voice *voice)
280{
281	int bit;
282
283	while (status) {
284		bit = __ffs(status);
285		status >>= bit + 1;
286		voice += bit;
287		sis_update_voice(voice);
288		voice++;
289	}
290}
291
292static irqreturn_t sis_interrupt(int irq, void *dev)
293{
294	struct sis7019 *sis = dev;
295	unsigned long io = sis->ioport;
296	struct voice *voice;
297	u32 intr, status;
298
299	/* We only use the DMA interrupts, and we don't enable any other
300	 * source of interrupts. But, it is possible to see an interrupt
301	 * status that didn't actually interrupt us, so eliminate anything
302	 * we're not expecting to avoid falsely claiming an IRQ, and an
303	 * ensuing endless loop.
304	 */
305	intr = inl(io + SIS_GISR);
306	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
307		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
308	if (!intr)
309		return IRQ_NONE;
310
311	do {
312		status = inl(io + SIS_PISR_A);
313		if (status) {
314			sis_voice_irq(status, sis->voices);
315			outl(status, io + SIS_PISR_A);
316		}
317
318		status = inl(io + SIS_PISR_B);
319		if (status) {
320			sis_voice_irq(status, &sis->voices[32]);
321			outl(status, io + SIS_PISR_B);
322		}
323
324		status = inl(io + SIS_RISR);
325		if (status) {
326			voice = &sis->capture_voice;
327			if (!voice->timing)
328				snd_pcm_period_elapsed(voice->substream);
329
330			outl(status, io + SIS_RISR);
331		}
332
333		outl(intr, io + SIS_GISR);
334		intr = inl(io + SIS_GISR);
335		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
336			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
337	} while (intr);
338
339	return IRQ_HANDLED;
340}
341
342static u32 sis_rate_to_delta(unsigned int rate)
343{
344	u32 delta;
345
346	/* This was copied from the trident driver, but it seems its gotten
347	 * around a bit... nevertheless, it works well.
348	 *
349	 * We special case 44100 and 8000 since rounding with the equation
350	 * does not give us an accurate enough value. For 11025 and 22050
351	 * the equation gives us the best answer. All other frequencies will
352	 * also use the equation. JDW
353	 */
354	if (rate == 44100)
355		delta = 0xeb3;
356	else if (rate == 8000)
357		delta = 0x2ab;
358	else if (rate == 48000)
359		delta = 0x1000;
360	else
361		delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
362	return delta;
363}
364
365static void __sis_map_silence(struct sis7019 *sis)
366{
367	/* Helper function: must hold sis->voice_lock on entry */
368	if (!sis->silence_users)
369		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
370						sis->suspend_state[0],
371						4096, DMA_TO_DEVICE);
372	sis->silence_users++;
373}
374
375static void __sis_unmap_silence(struct sis7019 *sis)
376{
377	/* Helper function: must hold sis->voice_lock on entry */
378	sis->silence_users--;
379	if (!sis->silence_users)
380		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
381					DMA_TO_DEVICE);
382}
383
384static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
385{
386	unsigned long flags;
387
388	spin_lock_irqsave(&sis->voice_lock, flags);
389	if (voice->timing) {
390		__sis_unmap_silence(sis);
391		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
392						VOICE_SYNC_TIMING);
393		voice->timing = NULL;
394	}
395	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
396	spin_unlock_irqrestore(&sis->voice_lock, flags);
397}
398
399static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
400{
401	/* Must hold the voice_lock on entry */
402	struct voice *voice;
403	int i;
404
405	for (i = 0; i < 64; i++) {
406		voice = &sis->voices[i];
407		if (voice->flags & VOICE_IN_USE)
408			continue;
409		voice->flags |= VOICE_IN_USE;
410		goto found_one;
411	}
412	voice = NULL;
413
414found_one:
415	return voice;
416}
417
418static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
419{
420	struct voice *voice;
421	unsigned long flags;
422
423	spin_lock_irqsave(&sis->voice_lock, flags);
424	voice = __sis_alloc_playback_voice(sis);
425	spin_unlock_irqrestore(&sis->voice_lock, flags);
426
427	return voice;
428}
429
430static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
431					struct snd_pcm_hw_params *hw_params)
432{
433	struct sis7019 *sis = snd_pcm_substream_chip(substream);
434	struct snd_pcm_runtime *runtime = substream->runtime;
435	struct voice *voice = runtime->private_data;
436	unsigned int period_size, buffer_size;
437	unsigned long flags;
438	int needed;
439
440	/* If there are one or two periods per buffer, we don't need a
441	 * timing voice, as we can use the capture channel's interrupts
442	 * to clock out the periods.
443	 */
444	period_size = params_period_size(hw_params);
445	buffer_size = params_buffer_size(hw_params);
446	needed = (period_size != buffer_size &&
447			period_size != (buffer_size / 2));
448
449	if (needed && !voice->timing) {
450		spin_lock_irqsave(&sis->voice_lock, flags);
451		voice->timing = __sis_alloc_playback_voice(sis);
452		if (voice->timing)
453			__sis_map_silence(sis);
454		spin_unlock_irqrestore(&sis->voice_lock, flags);
455		if (!voice->timing)
456			return -ENOMEM;
457		voice->timing->substream = substream;
458	} else if (!needed && voice->timing) {
459		sis_free_voice(sis, voice);
460		voice->timing = NULL;
461	}
462
463	return 0;
464}
465
466static int sis_playback_open(struct snd_pcm_substream *substream)
467{
468	struct sis7019 *sis = snd_pcm_substream_chip(substream);
469	struct snd_pcm_runtime *runtime = substream->runtime;
470	struct voice *voice;
471
472	voice = sis_alloc_playback_voice(sis);
473	if (!voice)
474		return -EAGAIN;
475
476	voice->substream = substream;
477	runtime->private_data = voice;
478	runtime->hw = sis_playback_hw_info;
479	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
480						9, 0xfff9);
481	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
482						9, 0xfff9);
483	snd_pcm_set_sync(substream);
484	return 0;
485}
486
487static int sis_substream_close(struct snd_pcm_substream *substream)
488{
489	struct sis7019 *sis = snd_pcm_substream_chip(substream);
490	struct snd_pcm_runtime *runtime = substream->runtime;
491	struct voice *voice = runtime->private_data;
492
493	sis_free_voice(sis, voice);
494	return 0;
495}
496
497static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
498{
499	struct snd_pcm_runtime *runtime = substream->runtime;
500	struct voice *voice = runtime->private_data;
501	void __iomem *ctrl_base = voice->ctrl_base;
502	void __iomem *wave_base = voice->wave_base;
503	u32 format, dma_addr, control, sso_eso, delta, reg;
504	u16 leo;
505
506	/* We rely on the PCM core to ensure that the parameters for this
507	 * substream do not change on us while we're programming the HW.
508	 */
509	format = 0;
510	if (snd_pcm_format_width(runtime->format) == 8)
511		format |= SIS_PLAY_DMA_FORMAT_8BIT;
512	if (!snd_pcm_format_signed(runtime->format))
513		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
514	if (runtime->channels == 1)
515		format |= SIS_PLAY_DMA_FORMAT_MONO;
516
517	/* The baseline setup is for a single period per buffer, and
518	 * we add bells and whistles as needed from there.
519	 */
520	dma_addr = runtime->dma_addr;
521	leo = runtime->buffer_size - 1;
522	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
523	sso_eso = leo;
524
525	if (runtime->period_size == (runtime->buffer_size / 2)) {
526		control |= SIS_PLAY_DMA_INTR_AT_MLP;
527	} else if (runtime->period_size != runtime->buffer_size) {
528		voice->flags |= VOICE_SSO_TIMING;
529		voice->sso = runtime->period_size - 1;
530		voice->period_size = runtime->period_size;
531		voice->buffer_size = runtime->buffer_size;
532
533		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
534		control |= SIS_PLAY_DMA_INTR_AT_SSO;
535		sso_eso |= (runtime->period_size - 1) << 16;
536	}
537
538	delta = sis_rate_to_delta(runtime->rate);
539
540	/* Ok, we're ready to go, set up the channel.
541	 */
542	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
543	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
544	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
545	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
546
547	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
548		writel(0, wave_base + reg);
549
550	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
551	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
552	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
553			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
554			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
555			wave_base + SIS_WAVE_CHANNEL_CONTROL);
556
557	/* Force PCI writes to post. */
558	readl(ctrl_base);
559
560	return 0;
561}
562
563static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
564{
565	struct sis7019 *sis = snd_pcm_substream_chip(substream);
566	unsigned long io = sis->ioport;
567	struct snd_pcm_substream *s;
568	struct voice *voice;
569	void *chip;
570	int starting;
571	u32 record = 0;
572	u32 play[2] = { 0, 0 };
573
574	/* No locks needed, as the PCM core will hold the locks on the
575	 * substreams, and the HW will only start/stop the indicated voices
576	 * without changing the state of the others.
577	 */
578	switch (cmd) {
579	case SNDRV_PCM_TRIGGER_START:
580	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
581	case SNDRV_PCM_TRIGGER_RESUME:
582		starting = 1;
583		break;
584	case SNDRV_PCM_TRIGGER_STOP:
585	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
586	case SNDRV_PCM_TRIGGER_SUSPEND:
587		starting = 0;
588		break;
589	default:
590		return -EINVAL;
591	}
592
593	snd_pcm_group_for_each_entry(s, substream) {
594		/* Make sure it is for us... */
595		chip = snd_pcm_substream_chip(s);
596		if (chip != sis)
597			continue;
598
599		voice = s->runtime->private_data;
600		if (voice->flags & VOICE_CAPTURE) {
601			record |= 1 << voice->num;
602			voice = voice->timing;
603		}
604
605		/* voice could be NULL if this a recording stream, and it
606		 * doesn't have an external timing channel.
607		 */
608		if (voice)
609			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
610
611		snd_pcm_trigger_done(s, substream);
612	}
613
614	if (starting) {
615		if (record)
616			outl(record, io + SIS_RECORD_START_REG);
617		if (play[0])
618			outl(play[0], io + SIS_PLAY_START_A_REG);
619		if (play[1])
620			outl(play[1], io + SIS_PLAY_START_B_REG);
621	} else {
622		if (record)
623			outl(record, io + SIS_RECORD_STOP_REG);
624		if (play[0])
625			outl(play[0], io + SIS_PLAY_STOP_A_REG);
626		if (play[1])
627			outl(play[1], io + SIS_PLAY_STOP_B_REG);
628	}
629	return 0;
630}
631
632static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
633{
634	struct snd_pcm_runtime *runtime = substream->runtime;
635	struct voice *voice = runtime->private_data;
636	u32 cso;
637
638	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
639	cso &= 0xffff;
640	return cso;
641}
642
643static int sis_capture_open(struct snd_pcm_substream *substream)
644{
645	struct sis7019 *sis = snd_pcm_substream_chip(substream);
646	struct snd_pcm_runtime *runtime = substream->runtime;
647	struct voice *voice = &sis->capture_voice;
648	unsigned long flags;
649
650	/* FIXME: The driver only supports recording from one channel
651	 * at the moment, but it could support more.
652	 */
653	spin_lock_irqsave(&sis->voice_lock, flags);
654	if (voice->flags & VOICE_IN_USE)
655		voice = NULL;
656	else
657		voice->flags |= VOICE_IN_USE;
658	spin_unlock_irqrestore(&sis->voice_lock, flags);
659
660	if (!voice)
661		return -EAGAIN;
662
663	voice->substream = substream;
664	runtime->private_data = voice;
665	runtime->hw = sis_capture_hw_info;
666	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
667	snd_pcm_limit_hw_rates(runtime);
668	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
669						9, 0xfff9);
670	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
671						9, 0xfff9);
672	snd_pcm_set_sync(substream);
673	return 0;
674}
675
676static int sis_capture_hw_params(struct snd_pcm_substream *substream,
677					struct snd_pcm_hw_params *hw_params)
678{
679	struct sis7019 *sis = snd_pcm_substream_chip(substream);
680	int rc;
681
682	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
683						params_rate(hw_params));
684	if (rc)
685		goto out;
686
687	rc = sis_alloc_timing_voice(substream, hw_params);
688
689out:
690	return rc;
691}
692
693static void sis_prepare_timing_voice(struct voice *voice,
694					struct snd_pcm_substream *substream)
695{
696	struct sis7019 *sis = snd_pcm_substream_chip(substream);
697	struct snd_pcm_runtime *runtime = substream->runtime;
698	struct voice *timing = voice->timing;
699	void __iomem *play_base = timing->ctrl_base;
700	void __iomem *wave_base = timing->wave_base;
701	u16 buffer_size, period_size;
702	u32 format, control, sso_eso, delta;
703	u32 vperiod, sso, reg;
704
705	/* Set our initial buffer and period as large as we can given a
706	 * single page of silence.
707	 */
708	buffer_size = 4096 / runtime->channels;
709	buffer_size /= snd_pcm_format_size(runtime->format, 1);
710	period_size = buffer_size;
711
712	/* Initially, we want to interrupt just a bit behind the end of
713	 * the period we're clocking out. 12 samples seems to give a good
714	 * delay.
715	 *
716	 * We want to spread our interrupts throughout the virtual period,
717	 * so that we don't end up with two interrupts back to back at the
718	 * end -- this helps minimize the effects of any jitter. Adjust our
719	 * clocking period size so that the last period is at least a fourth
720	 * of a full period.
721	 *
722	 * This is all moot if we don't need to use virtual periods.
723	 */
724	vperiod = runtime->period_size + 12;
725	if (vperiod > period_size) {
726		u16 tail = vperiod % period_size;
727		u16 quarter_period = period_size / 4;
728
729		if (tail && tail < quarter_period) {
730			u16 loops = vperiod / period_size;
731
732			tail = quarter_period - tail;
733			tail += loops - 1;
734			tail /= loops;
735			period_size -= tail;
736		}
737
738		sso = period_size - 1;
739	} else {
740		/* The initial period will fit inside the buffer, so we
741		 * don't need to use virtual periods -- disable them.
742		 */
743		period_size = runtime->period_size;
744		sso = vperiod - 1;
745		vperiod = 0;
746	}
747
748	/* The interrupt handler implements the timing synchronization, so
749	 * setup its state.
750	 */
751	timing->flags |= VOICE_SYNC_TIMING;
752	timing->sync_base = voice->ctrl_base;
753	timing->sync_cso = runtime->period_size;
754	timing->sync_period_size = runtime->period_size;
755	timing->sync_buffer_size = runtime->buffer_size;
756	timing->period_size = period_size;
757	timing->buffer_size = buffer_size;
758	timing->sso = sso;
759	timing->vperiod = vperiod;
760
761	/* Using unsigned samples with the all-zero silence buffer
762	 * forces the output to the lower rail, killing playback.
763	 * So ignore unsigned vs signed -- it doesn't change the timing.
764	 */
765	format = 0;
766	if (snd_pcm_format_width(runtime->format) == 8)
767		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
768	if (runtime->channels == 1)
769		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
770
771	control = timing->buffer_size - 1;
772	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
773	sso_eso = timing->buffer_size - 1;
774	sso_eso |= timing->sso << 16;
775
776	delta = sis_rate_to_delta(runtime->rate);
777
778	/* We've done the math, now configure the channel.
779	 */
780	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
781	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
782	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
783	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
784
785	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
786		writel(0, wave_base + reg);
787
788	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
789	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
790	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
791			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
792			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
793			wave_base + SIS_WAVE_CHANNEL_CONTROL);
794}
795
796static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
797{
798	struct snd_pcm_runtime *runtime = substream->runtime;
799	struct voice *voice = runtime->private_data;
800	void __iomem *rec_base = voice->ctrl_base;
801	u32 format, dma_addr, control;
802	u16 leo;
803
804	/* We rely on the PCM core to ensure that the parameters for this
805	 * substream do not change on us while we're programming the HW.
806	 */
807	format = 0;
808	if (snd_pcm_format_width(runtime->format) == 8)
809		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
810	if (!snd_pcm_format_signed(runtime->format))
811		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
812	if (runtime->channels == 1)
813		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
814
815	dma_addr = runtime->dma_addr;
816	leo = runtime->buffer_size - 1;
817	control = leo | SIS_CAPTURE_DMA_LOOP;
818
819	/* If we've got more than two periods per buffer, then we have
820	 * use a timing voice to clock out the periods. Otherwise, we can
821	 * use the capture channel's interrupts.
822	 */
823	if (voice->timing) {
824		sis_prepare_timing_voice(voice, substream);
825	} else {
826		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
827		if (runtime->period_size != runtime->buffer_size)
828			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
829	}
830
831	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
832	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
833	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
834
835	/* Force the writes to post. */
836	readl(rec_base);
837
838	return 0;
839}
840
841static const struct snd_pcm_ops sis_playback_ops = {
842	.open = sis_playback_open,
843	.close = sis_substream_close,
844	.prepare = sis_pcm_playback_prepare,
845	.trigger = sis_pcm_trigger,
846	.pointer = sis_pcm_pointer,
847};
848
849static const struct snd_pcm_ops sis_capture_ops = {
850	.open = sis_capture_open,
851	.close = sis_substream_close,
852	.hw_params = sis_capture_hw_params,
853	.prepare = sis_pcm_capture_prepare,
854	.trigger = sis_pcm_trigger,
855	.pointer = sis_pcm_pointer,
856};
857
858static int sis_pcm_create(struct sis7019 *sis)
859{
860	struct snd_pcm *pcm;
861	int rc;
862
863	/* We have 64 voices, and the driver currently records from
864	 * only one channel, though that could change in the future.
865	 */
866	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
867	if (rc)
868		return rc;
869
870	pcm->private_data = sis;
871	strcpy(pcm->name, "SiS7019");
872	sis->pcm = pcm;
873
874	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
875	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
876
877	/* Try to preallocate some memory, but it's not the end of the
878	 * world if this fails.
879	 */
880	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
881				       &sis->pci->dev, 64*1024, 128*1024);
882
883	return 0;
884}
885
886static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
887{
888	unsigned long io = sis->ioport;
889	unsigned short val = 0xffff;
890	u16 status;
891	u16 rdy;
892	int count;
893	static const u16 codec_ready[3] = {
894		SIS_AC97_STATUS_CODEC_READY,
895		SIS_AC97_STATUS_CODEC2_READY,
896		SIS_AC97_STATUS_CODEC3_READY,
897	};
898
899	rdy = codec_ready[codec];
900
901
902	/* Get the AC97 semaphore -- software first, so we don't spin
903	 * pounding out IO reads on the hardware semaphore...
904	 */
905	mutex_lock(&sis->ac97_mutex);
906
907	count = 0xffff;
908	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
909		udelay(1);
910
911	if (!count)
912		goto timeout;
913
914	/* ... and wait for any outstanding commands to complete ...
915	 */
916	count = 0xffff;
917	do {
918		status = inw(io + SIS_AC97_STATUS);
919		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
920			break;
921
922		udelay(1);
923	} while (--count);
924
925	if (!count)
926		goto timeout_sema;
927
928	/* ... before sending our command and waiting for it to finish ...
929	 */
930	outl(cmd, io + SIS_AC97_CMD);
931	udelay(10);
932
933	count = 0xffff;
934	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
935		udelay(1);
936
937	/* ... and reading the results (if any).
938	 */
939	val = inl(io + SIS_AC97_CMD) >> 16;
940
941timeout_sema:
942	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
943timeout:
944	mutex_unlock(&sis->ac97_mutex);
945
946	if (!count) {
947		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
948					codec, cmd);
949	}
950
951	return val;
952}
953
954static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
955				unsigned short val)
956{
957	static const u32 cmd[3] = {
958		SIS_AC97_CMD_CODEC_WRITE,
959		SIS_AC97_CMD_CODEC2_WRITE,
960		SIS_AC97_CMD_CODEC3_WRITE,
961	};
962	sis_ac97_rw(ac97->private_data, ac97->num,
963			(val << 16) | (reg << 8) | cmd[ac97->num]);
964}
965
966static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
967{
968	static const u32 cmd[3] = {
969		SIS_AC97_CMD_CODEC_READ,
970		SIS_AC97_CMD_CODEC2_READ,
971		SIS_AC97_CMD_CODEC3_READ,
972	};
973	return sis_ac97_rw(ac97->private_data, ac97->num,
974					(reg << 8) | cmd[ac97->num]);
975}
976
977static int sis_mixer_create(struct sis7019 *sis)
978{
979	struct snd_ac97_bus *bus;
980	struct snd_ac97_template ac97;
981	static const struct snd_ac97_bus_ops ops = {
982		.write = sis_ac97_write,
983		.read = sis_ac97_read,
984	};
985	int rc;
986
987	memset(&ac97, 0, sizeof(ac97));
988	ac97.private_data = sis;
989
990	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
991	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
992		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
993	ac97.num = 1;
994	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
995		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
996	ac97.num = 2;
997	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
998		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
999
1000	/* If we return an error here, then snd_card_free() should
1001	 * free up any ac97 codecs that got created, as well as the bus.
1002	 */
1003	return rc;
1004}
1005
1006static void sis_chip_free(struct snd_card *card)
1007{
1008	struct sis7019 *sis = card->private_data;
1009
1010	/* Reset the chip, and disable all interrputs.
1011	 */
1012	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1013	udelay(25);
1014	outl(0, sis->ioport + SIS_GCR);
1015	outl(0, sis->ioport + SIS_GIER);
1016
1017	/* Now, free everything we allocated.
1018	 */
1019	if (sis->irq >= 0)
1020		free_irq(sis->irq, sis);
1021}
1022
1023static int sis_chip_init(struct sis7019 *sis)
1024{
1025	unsigned long io = sis->ioport;
1026	void __iomem *ioaddr = sis->ioaddr;
1027	unsigned long timeout;
1028	u16 status;
1029	int count;
1030	int i;
1031
1032	/* Reset the audio controller
1033	 */
1034	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1035	udelay(25);
1036	outl(0, io + SIS_GCR);
1037
1038	/* Get the AC-link semaphore, and reset the codecs
1039	 */
1040	count = 0xffff;
1041	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1042		udelay(1);
1043
1044	if (!count)
1045		return -EIO;
1046
1047	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1048	udelay(250);
1049
1050	count = 0xffff;
1051	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1052		udelay(1);
1053
1054	/* Command complete, we can let go of the semaphore now.
1055	 */
1056	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1057	if (!count)
1058		return -EIO;
1059
1060	/* Now that we've finished the reset, find out what's attached.
1061	 * There are some codec/board combinations that take an extremely
1062	 * long time to come up. 350+ ms has been observed in the field,
1063	 * so we'll give them up to 500ms.
1064	 */
1065	sis->codecs_present = 0;
1066	timeout = msecs_to_jiffies(500) + jiffies;
1067	while (time_before_eq(jiffies, timeout)) {
1068		status = inl(io + SIS_AC97_STATUS);
1069		if (status & SIS_AC97_STATUS_CODEC_READY)
1070			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1071		if (status & SIS_AC97_STATUS_CODEC2_READY)
1072			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1073		if (status & SIS_AC97_STATUS_CODEC3_READY)
1074			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1075
1076		if (sis->codecs_present == codecs)
1077			break;
1078
1079		msleep(1);
1080	}
1081
1082	/* All done, check for errors.
1083	 */
1084	if (!sis->codecs_present) {
1085		dev_err(&sis->pci->dev, "could not find any codecs\n");
1086		return -EIO;
1087	}
1088
1089	if (sis->codecs_present != codecs) {
1090		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1091					 sis->codecs_present, codecs);
1092	}
1093
1094	/* Let the hardware know that the audio driver is alive,
1095	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1096	 * record channels. We're going to want to use Variable Rate Audio
1097	 * for recording, to avoid needlessly resampling from 48kHZ.
1098	 */
1099	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1100	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1101		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1102		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1103		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1104
1105	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1106	 */
1107	outl(0, io + SIS_AC97_PSR);
1108
1109	/* There is only one valid DMA setup for a PCI environment.
1110	 */
1111	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1112
1113	/* Reset the synchronization groups for all of the channels
1114	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1115	 * we'll need to change how we handle these. Until then, we just
1116	 * assign sub-mixer 0 to all playback channels, and avoid any
1117	 * attenuation on the audio.
1118	 */
1119	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1120	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1121	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1122	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1123	outl(0, io + SIS_MIXER_SYNC_GROUP);
1124
1125	for (i = 0; i < 64; i++) {
1126		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1127		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1128				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1129	}
1130
1131	/* Don't attenuate any audio set for the wave amplifier.
1132	 *
1133	 * FIXME: Maximum attenuation is set for the music amp, which will
1134	 * need to change if we start using the synth engine.
1135	 */
1136	outl(0xffff0000, io + SIS_WEVCR);
1137
1138	/* Ensure that the wave engine is in normal operating mode.
1139	 */
1140	outl(0, io + SIS_WECCR);
1141
1142	/* Go ahead and enable the DMA interrupts. They won't go live
1143	 * until we start a channel.
1144	 */
1145	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1146		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1147
1148	return 0;
1149}
1150
1151static int sis_suspend(struct device *dev)
1152{
1153	struct snd_card *card = dev_get_drvdata(dev);
1154	struct sis7019 *sis = card->private_data;
1155	void __iomem *ioaddr = sis->ioaddr;
1156	int i;
1157
1158	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1159	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1160		snd_ac97_suspend(sis->ac97[0]);
1161	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1162		snd_ac97_suspend(sis->ac97[1]);
1163	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1164		snd_ac97_suspend(sis->ac97[2]);
1165
1166	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1167	 */
1168	if (sis->irq >= 0) {
1169		free_irq(sis->irq, sis);
1170		sis->irq = -1;
1171	}
1172
1173	/* Save the internal state away
1174	 */
1175	for (i = 0; i < 4; i++) {
1176		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1177		ioaddr += 4096;
1178	}
1179
1180	return 0;
1181}
1182
1183static int sis_resume(struct device *dev)
1184{
1185	struct pci_dev *pci = to_pci_dev(dev);
1186	struct snd_card *card = dev_get_drvdata(dev);
1187	struct sis7019 *sis = card->private_data;
1188	void __iomem *ioaddr = sis->ioaddr;
1189	int i;
1190
1191	if (sis_chip_init(sis)) {
1192		dev_err(&pci->dev, "unable to re-init controller\n");
1193		goto error;
1194	}
1195
1196	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1197			KBUILD_MODNAME, sis)) {
1198		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1199		goto error;
1200	}
1201
1202	/* Restore saved state, then clear out the page we use for the
1203	 * silence buffer.
1204	 */
1205	for (i = 0; i < 4; i++) {
1206		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1207		ioaddr += 4096;
1208	}
1209
1210	memset(sis->suspend_state[0], 0, 4096);
1211
1212	sis->irq = pci->irq;
1213
1214	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1215		snd_ac97_resume(sis->ac97[0]);
1216	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1217		snd_ac97_resume(sis->ac97[1]);
1218	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1219		snd_ac97_resume(sis->ac97[2]);
1220
1221	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1222	return 0;
1223
1224error:
1225	snd_card_disconnect(card);
1226	return -EIO;
1227}
1228
1229static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1230
1231static int sis_alloc_suspend(struct sis7019 *sis)
1232{
1233	int i;
1234
1235	/* We need 16K to store the internal wave engine state during a
1236	 * suspend, but we don't need it to be contiguous, so play nice
1237	 * with the memory system. We'll also use this area for a silence
1238	 * buffer.
1239	 */
1240	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1241		sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1242						     GFP_KERNEL);
1243		if (!sis->suspend_state[i])
1244			return -ENOMEM;
1245	}
1246	memset(sis->suspend_state[0], 0, 4096);
1247
1248	return 0;
1249}
1250
1251static int sis_chip_create(struct snd_card *card,
1252			   struct pci_dev *pci)
1253{
1254	struct sis7019 *sis = card->private_data;
1255	struct voice *voice;
1256	int rc;
1257	int i;
1258
1259	rc = pcim_enable_device(pci);
1260	if (rc)
1261		return rc;
1262
1263	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1264	if (rc < 0) {
1265		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1266		return -ENXIO;
1267	}
1268
1269	mutex_init(&sis->ac97_mutex);
1270	spin_lock_init(&sis->voice_lock);
1271	sis->card = card;
1272	sis->pci = pci;
1273	sis->irq = -1;
1274	sis->ioport = pci_resource_start(pci, 0);
1275
1276	rc = pci_request_regions(pci, "SiS7019");
1277	if (rc) {
1278		dev_err(&pci->dev, "unable request regions\n");
1279		return rc;
1280	}
1281
1282	sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1283	if (!sis->ioaddr) {
1284		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1285		return -EIO;
1286	}
1287
1288	rc = sis_alloc_suspend(sis);
1289	if (rc < 0) {
1290		dev_err(&pci->dev, "unable to allocate state storage\n");
1291		return rc;
1292	}
1293
1294	rc = sis_chip_init(sis);
1295	if (rc)
1296		return rc;
1297	card->private_free = sis_chip_free;
1298
1299	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1300			 sis);
1301	if (rc) {
1302		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1303		return rc;
1304	}
1305
1306	sis->irq = pci->irq;
1307	card->sync_irq = sis->irq;
1308	pci_set_master(pci);
1309
1310	for (i = 0; i < 64; i++) {
1311		voice = &sis->voices[i];
1312		voice->num = i;
1313		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1314		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1315	}
1316
1317	voice = &sis->capture_voice;
1318	voice->flags = VOICE_CAPTURE;
1319	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1320	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1321
1322	return 0;
1323}
1324
1325static int __snd_sis7019_probe(struct pci_dev *pci,
1326			       const struct pci_device_id *pci_id)
1327{
1328	struct snd_card *card;
1329	struct sis7019 *sis;
1330	int rc;
1331
1332	if (!enable)
1333		return -ENOENT;
1334
1335	/* The user can specify which codecs should be present so that we
1336	 * can wait for them to show up if they are slow to recover from
1337	 * the AC97 cold reset. We default to a single codec, the primary.
1338	 *
1339	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1340	 */
1341	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1342		  SIS_TERTIARY_CODEC_PRESENT;
1343	if (!codecs)
1344		codecs = SIS_PRIMARY_CODEC_PRESENT;
1345
1346	rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1347			       sizeof(*sis), &card);
1348	if (rc < 0)
1349		return rc;
1350
1351	strcpy(card->driver, "SiS7019");
1352	strcpy(card->shortname, "SiS7019");
1353	rc = sis_chip_create(card, pci);
1354	if (rc)
1355		return rc;
1356
1357	sis = card->private_data;
1358
1359	rc = sis_mixer_create(sis);
1360	if (rc)
1361		return rc;
1362
1363	rc = sis_pcm_create(sis);
1364	if (rc)
1365		return rc;
1366
1367	snprintf(card->longname, sizeof(card->longname),
1368			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1369			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1370			sis->ioport, sis->irq);
1371
1372	rc = snd_card_register(card);
1373	if (rc)
1374		return rc;
1375
1376	pci_set_drvdata(pci, card);
1377	return 0;
1378}
1379
1380static int snd_sis7019_probe(struct pci_dev *pci,
1381			     const struct pci_device_id *pci_id)
1382{
1383	return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1384}
1385
1386static struct pci_driver sis7019_driver = {
1387	.name = KBUILD_MODNAME,
1388	.id_table = snd_sis7019_ids,
1389	.probe = snd_sis7019_probe,
1390	.driver = {
1391		.pm = &sis_pm,
1392	},
1393};
1394
1395module_pci_driver(sis7019_driver);
1396