1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Digital Audio (PCM) abstract layer
4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 *                   Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38				       snd_pcm_uframes_t ptr,
39				       snd_pcm_uframes_t new_ptr)
40{
41	snd_pcm_sframes_t delta;
42
43	delta = new_ptr - ptr;
44	if (delta == 0)
45		return;
46	if (delta < 0)
47		delta += runtime->boundary;
48	if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49		runtime->silence_filled -= delta;
50	else
51		runtime->silence_filled = 0;
52	runtime->silence_start = new_ptr;
53}
54
55/*
56 * fill ring buffer with silence
57 * runtime->silence_start: starting pointer to silence area
58 * runtime->silence_filled: size filled with silence
59 * runtime->silence_threshold: threshold from application
60 * runtime->silence_size: maximal size from application
61 *
62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63 */
64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65{
66	struct snd_pcm_runtime *runtime = substream->runtime;
67	snd_pcm_uframes_t frames, ofs, transfer;
68	int err;
69
70	if (runtime->silence_size < runtime->boundary) {
71		snd_pcm_sframes_t noise_dist;
72		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73		update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74		/* initialization outside pointer updates */
75		if (new_hw_ptr == ULONG_MAX)
76			new_hw_ptr = runtime->status->hw_ptr;
77		/* get hw_avail with the boundary crossing */
78		noise_dist = appl_ptr - new_hw_ptr;
79		if (noise_dist < 0)
80			noise_dist += runtime->boundary;
81		/* total noise distance */
82		noise_dist += runtime->silence_filled;
83		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84			return;
85		frames = runtime->silence_threshold - noise_dist;
86		if (frames > runtime->silence_size)
87			frames = runtime->silence_size;
88	} else {
89		/*
90		 * This filling mode aims at free-running mode (used for example by dmix),
91		 * which doesn't update the application pointer.
92		 */
93		snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94		if (new_hw_ptr == ULONG_MAX) {
95			/*
96			 * Initialization, fill the whole unused buffer with silence.
97			 *
98			 * Usually, this is entered while stopped, before data is queued,
99			 * so both pointers are expected to be zero.
100			 */
101			snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102			if (avail < 0)
103				avail += runtime->boundary;
104			/*
105			 * In free-running mode, appl_ptr will be zero even while running,
106			 * so we end up with a huge number. There is no useful way to
107			 * handle this, so we just clear the whole buffer.
108			 */
109			runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110			runtime->silence_start = hw_ptr;
111		} else {
112			/* Silence the just played area immediately */
113			update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114		}
115		/*
116		 * In this mode, silence_filled actually includes the valid
117		 * sample data from the user.
118		 */
119		frames = runtime->buffer_size - runtime->silence_filled;
120	}
121	if (snd_BUG_ON(frames > runtime->buffer_size))
122		return;
123	if (frames == 0)
124		return;
125	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126	do {
127		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128		err = fill_silence_frames(substream, ofs, transfer);
129		snd_BUG_ON(err < 0);
130		runtime->silence_filled += transfer;
131		frames -= transfer;
132		ofs = 0;
133	} while (frames > 0);
134	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135}
136
137#ifdef CONFIG_SND_DEBUG
138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139			   char *name, size_t len)
140{
141	snprintf(name, len, "pcmC%dD%d%c:%d",
142		 substream->pcm->card->number,
143		 substream->pcm->device,
144		 substream->stream ? 'c' : 'p',
145		 substream->number);
146}
147EXPORT_SYMBOL(snd_pcm_debug_name);
148#endif
149
150#define XRUN_DEBUG_BASIC	(1<<0)
151#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
152#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
153
154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156#define xrun_debug(substream, mask) \
157			((substream)->pstr->xrun_debug & (mask))
158#else
159#define xrun_debug(substream, mask)	0
160#endif
161
162#define dump_stack_on_xrun(substream) do {			\
163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
164			dump_stack();				\
165	} while (0)
166
167/* call with stream lock held */
168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169{
170	struct snd_pcm_runtime *runtime = substream->runtime;
171
172	trace_xrun(substream);
173	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174		struct timespec64 tstamp;
175
176		snd_pcm_gettime(runtime, &tstamp);
177		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179	}
180	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182		char name[16];
183		snd_pcm_debug_name(substream, name, sizeof(name));
184		pcm_warn(substream->pcm, "XRUN: %s\n", name);
185		dump_stack_on_xrun(substream);
186	}
187}
188
189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
191	do {								\
192		trace_hw_ptr_error(substream, reason);	\
193		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
194			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195					   (in_interrupt) ? 'Q' : 'P', ##args);	\
196			dump_stack_on_xrun(substream);			\
197		}							\
198	} while (0)
199
200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204#endif
205
206int snd_pcm_update_state(struct snd_pcm_substream *substream,
207			 struct snd_pcm_runtime *runtime)
208{
209	snd_pcm_uframes_t avail;
210
211	avail = snd_pcm_avail(substream);
212	if (avail > runtime->avail_max)
213		runtime->avail_max = avail;
214	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215		if (avail >= runtime->buffer_size) {
216			snd_pcm_drain_done(substream);
217			return -EPIPE;
218		}
219	} else {
220		if (avail >= runtime->stop_threshold) {
221			__snd_pcm_xrun(substream);
222			return -EPIPE;
223		}
224	}
225	if (runtime->twake) {
226		if (avail >= runtime->twake)
227			wake_up(&runtime->tsleep);
228	} else if (avail >= runtime->control->avail_min)
229		wake_up(&runtime->sleep);
230	return 0;
231}
232
233static void update_audio_tstamp(struct snd_pcm_substream *substream,
234				struct timespec64 *curr_tstamp,
235				struct timespec64 *audio_tstamp)
236{
237	struct snd_pcm_runtime *runtime = substream->runtime;
238	u64 audio_frames, audio_nsecs;
239	struct timespec64 driver_tstamp;
240
241	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242		return;
243
244	if (!(substream->ops->get_time_info) ||
245		(runtime->audio_tstamp_report.actual_type ==
246			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248		/*
249		 * provide audio timestamp derived from pointer position
250		 * add delay only if requested
251		 */
252
253		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255		if (runtime->audio_tstamp_config.report_delay) {
256			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257				audio_frames -=  runtime->delay;
258			else
259				audio_frames +=  runtime->delay;
260		}
261		audio_nsecs = div_u64(audio_frames * 1000000000LL,
262				runtime->rate);
263		*audio_tstamp = ns_to_timespec64(audio_nsecs);
264	}
265
266	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272	}
273
274
275	/*
276	 * re-take a driver timestamp to let apps detect if the reference tstamp
277	 * read by low-level hardware was provided with a delay
278	 */
279	snd_pcm_gettime(substream->runtime, &driver_tstamp);
280	runtime->driver_tstamp = driver_tstamp;
281}
282
283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284				  unsigned int in_interrupt)
285{
286	struct snd_pcm_runtime *runtime = substream->runtime;
287	snd_pcm_uframes_t pos;
288	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289	snd_pcm_sframes_t hdelta, delta;
290	unsigned long jdelta;
291	unsigned long curr_jiffies;
292	struct timespec64 curr_tstamp;
293	struct timespec64 audio_tstamp;
294	int crossed_boundary = 0;
295
296	old_hw_ptr = runtime->status->hw_ptr;
297
298	/*
299	 * group pointer, time and jiffies reads to allow for more
300	 * accurate correlations/corrections.
301	 * The values are stored at the end of this routine after
302	 * corrections for hw_ptr position
303	 */
304	pos = substream->ops->pointer(substream);
305	curr_jiffies = jiffies;
306	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307		if ((substream->ops->get_time_info) &&
308			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309			substream->ops->get_time_info(substream, &curr_tstamp,
310						&audio_tstamp,
311						&runtime->audio_tstamp_config,
312						&runtime->audio_tstamp_report);
313
314			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316				snd_pcm_gettime(runtime, &curr_tstamp);
317		} else
318			snd_pcm_gettime(runtime, &curr_tstamp);
319	}
320
321	if (pos == SNDRV_PCM_POS_XRUN) {
322		__snd_pcm_xrun(substream);
323		return -EPIPE;
324	}
325	if (pos >= runtime->buffer_size) {
326		if (printk_ratelimit()) {
327			char name[16];
328			snd_pcm_debug_name(substream, name, sizeof(name));
329			pcm_err(substream->pcm,
330				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331				name, pos, runtime->buffer_size,
332				runtime->period_size);
333		}
334		pos = 0;
335	}
336	pos -= pos % runtime->min_align;
337	trace_hwptr(substream, pos, in_interrupt);
338	hw_base = runtime->hw_ptr_base;
339	new_hw_ptr = hw_base + pos;
340	if (in_interrupt) {
341		/* we know that one period was processed */
342		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
343		delta = runtime->hw_ptr_interrupt + runtime->period_size;
344		if (delta > new_hw_ptr) {
345			/* check for double acknowledged interrupts */
346			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348				hw_base += runtime->buffer_size;
349				if (hw_base >= runtime->boundary) {
350					hw_base = 0;
351					crossed_boundary++;
352				}
353				new_hw_ptr = hw_base + pos;
354				goto __delta;
355			}
356		}
357	}
358	/* new_hw_ptr might be lower than old_hw_ptr in case when */
359	/* pointer crosses the end of the ring buffer */
360	if (new_hw_ptr < old_hw_ptr) {
361		hw_base += runtime->buffer_size;
362		if (hw_base >= runtime->boundary) {
363			hw_base = 0;
364			crossed_boundary++;
365		}
366		new_hw_ptr = hw_base + pos;
367	}
368      __delta:
369	delta = new_hw_ptr - old_hw_ptr;
370	if (delta < 0)
371		delta += runtime->boundary;
372
373	if (runtime->no_period_wakeup) {
374		snd_pcm_sframes_t xrun_threshold;
375		/*
376		 * Without regular period interrupts, we have to check
377		 * the elapsed time to detect xruns.
378		 */
379		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381			goto no_delta_check;
382		hdelta = jdelta - delta * HZ / runtime->rate;
383		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384		while (hdelta > xrun_threshold) {
385			delta += runtime->buffer_size;
386			hw_base += runtime->buffer_size;
387			if (hw_base >= runtime->boundary) {
388				hw_base = 0;
389				crossed_boundary++;
390			}
391			new_hw_ptr = hw_base + pos;
392			hdelta -= runtime->hw_ptr_buffer_jiffies;
393		}
394		goto no_delta_check;
395	}
396
397	/* something must be really wrong */
398	if (delta >= runtime->buffer_size + runtime->period_size) {
399		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401			     substream->stream, (long)pos,
402			     (long)new_hw_ptr, (long)old_hw_ptr);
403		return 0;
404	}
405
406	/* Do jiffies check only in xrun_debug mode */
407	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408		goto no_jiffies_check;
409
410	/* Skip the jiffies check for hardwares with BATCH flag.
411	 * Such hardware usually just increases the position at each IRQ,
412	 * thus it can't give any strange position.
413	 */
414	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415		goto no_jiffies_check;
416	hdelta = delta;
417	if (hdelta < runtime->delay)
418		goto no_jiffies_check;
419	hdelta -= runtime->delay;
420	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422		delta = jdelta /
423			(((runtime->period_size * HZ) / runtime->rate)
424								+ HZ/100);
425		/* move new_hw_ptr according jiffies not pos variable */
426		new_hw_ptr = old_hw_ptr;
427		hw_base = delta;
428		/* use loop to avoid checks for delta overflows */
429		/* the delta value is small or zero in most cases */
430		while (delta > 0) {
431			new_hw_ptr += runtime->period_size;
432			if (new_hw_ptr >= runtime->boundary) {
433				new_hw_ptr -= runtime->boundary;
434				crossed_boundary--;
435			}
436			delta--;
437		}
438		/* align hw_base to buffer_size */
439		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441			     (long)pos, (long)hdelta,
442			     (long)runtime->period_size, jdelta,
443			     ((hdelta * HZ) / runtime->rate), hw_base,
444			     (unsigned long)old_hw_ptr,
445			     (unsigned long)new_hw_ptr);
446		/* reset values to proper state */
447		delta = 0;
448		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449	}
450 no_jiffies_check:
451	if (delta > runtime->period_size + runtime->period_size / 2) {
452		hw_ptr_error(substream, in_interrupt,
453			     "Lost interrupts?",
454			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455			     substream->stream, (long)delta,
456			     (long)new_hw_ptr,
457			     (long)old_hw_ptr);
458	}
459
460 no_delta_check:
461	if (runtime->status->hw_ptr == new_hw_ptr) {
462		runtime->hw_ptr_jiffies = curr_jiffies;
463		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464		return 0;
465	}
466
467	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468	    runtime->silence_size > 0)
469		snd_pcm_playback_silence(substream, new_hw_ptr);
470
471	if (in_interrupt) {
472		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473		if (delta < 0)
474			delta += runtime->boundary;
475		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476		runtime->hw_ptr_interrupt += delta;
477		if (runtime->hw_ptr_interrupt >= runtime->boundary)
478			runtime->hw_ptr_interrupt -= runtime->boundary;
479	}
480	runtime->hw_ptr_base = hw_base;
481	runtime->status->hw_ptr = new_hw_ptr;
482	runtime->hw_ptr_jiffies = curr_jiffies;
483	if (crossed_boundary) {
484		snd_BUG_ON(crossed_boundary != 1);
485		runtime->hw_ptr_wrap += runtime->boundary;
486	}
487
488	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489
490	return snd_pcm_update_state(substream, runtime);
491}
492
493/* CAUTION: call it with irq disabled */
494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495{
496	return snd_pcm_update_hw_ptr0(substream, 0);
497}
498
499/**
500 * snd_pcm_set_ops - set the PCM operators
501 * @pcm: the pcm instance
502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503 * @ops: the operator table
504 *
505 * Sets the given PCM operators to the pcm instance.
506 */
507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508		     const struct snd_pcm_ops *ops)
509{
510	struct snd_pcm_str *stream = &pcm->streams[direction];
511	struct snd_pcm_substream *substream;
512
513	for (substream = stream->substream; substream != NULL; substream = substream->next)
514		substream->ops = ops;
515}
516EXPORT_SYMBOL(snd_pcm_set_ops);
517
518/**
519 * snd_pcm_set_sync - set the PCM sync id
520 * @substream: the pcm substream
521 *
522 * Sets the PCM sync identifier for the card.
523 */
524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525{
526	struct snd_pcm_runtime *runtime = substream->runtime;
527
528	runtime->sync.id32[0] = substream->pcm->card->number;
529	runtime->sync.id32[1] = -1;
530	runtime->sync.id32[2] = -1;
531	runtime->sync.id32[3] = -1;
532}
533EXPORT_SYMBOL(snd_pcm_set_sync);
534
535/*
536 *  Standard ioctl routine
537 */
538
539static inline unsigned int div32(unsigned int a, unsigned int b,
540				 unsigned int *r)
541{
542	if (b == 0) {
543		*r = 0;
544		return UINT_MAX;
545	}
546	*r = a % b;
547	return a / b;
548}
549
550static inline unsigned int div_down(unsigned int a, unsigned int b)
551{
552	if (b == 0)
553		return UINT_MAX;
554	return a / b;
555}
556
557static inline unsigned int div_up(unsigned int a, unsigned int b)
558{
559	unsigned int r;
560	unsigned int q;
561	if (b == 0)
562		return UINT_MAX;
563	q = div32(a, b, &r);
564	if (r)
565		++q;
566	return q;
567}
568
569static inline unsigned int mul(unsigned int a, unsigned int b)
570{
571	if (a == 0)
572		return 0;
573	if (div_down(UINT_MAX, a) < b)
574		return UINT_MAX;
575	return a * b;
576}
577
578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579				    unsigned int c, unsigned int *r)
580{
581	u_int64_t n = (u_int64_t) a * b;
582	if (c == 0) {
583		*r = 0;
584		return UINT_MAX;
585	}
586	n = div_u64_rem(n, c, r);
587	if (n >= UINT_MAX) {
588		*r = 0;
589		return UINT_MAX;
590	}
591	return n;
592}
593
594/**
595 * snd_interval_refine - refine the interval value of configurator
596 * @i: the interval value to refine
597 * @v: the interval value to refer to
598 *
599 * Refines the interval value with the reference value.
600 * The interval is changed to the range satisfying both intervals.
601 * The interval status (min, max, integer, etc.) are evaluated.
602 *
603 * Return: Positive if the value is changed, zero if it's not changed, or a
604 * negative error code.
605 */
606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607{
608	int changed = 0;
609	if (snd_BUG_ON(snd_interval_empty(i)))
610		return -EINVAL;
611	if (i->min < v->min) {
612		i->min = v->min;
613		i->openmin = v->openmin;
614		changed = 1;
615	} else if (i->min == v->min && !i->openmin && v->openmin) {
616		i->openmin = 1;
617		changed = 1;
618	}
619	if (i->max > v->max) {
620		i->max = v->max;
621		i->openmax = v->openmax;
622		changed = 1;
623	} else if (i->max == v->max && !i->openmax && v->openmax) {
624		i->openmax = 1;
625		changed = 1;
626	}
627	if (!i->integer && v->integer) {
628		i->integer = 1;
629		changed = 1;
630	}
631	if (i->integer) {
632		if (i->openmin) {
633			i->min++;
634			i->openmin = 0;
635		}
636		if (i->openmax) {
637			i->max--;
638			i->openmax = 0;
639		}
640	} else if (!i->openmin && !i->openmax && i->min == i->max)
641		i->integer = 1;
642	if (snd_interval_checkempty(i)) {
643		snd_interval_none(i);
644		return -EINVAL;
645	}
646	return changed;
647}
648EXPORT_SYMBOL(snd_interval_refine);
649
650static int snd_interval_refine_first(struct snd_interval *i)
651{
652	const unsigned int last_max = i->max;
653
654	if (snd_BUG_ON(snd_interval_empty(i)))
655		return -EINVAL;
656	if (snd_interval_single(i))
657		return 0;
658	i->max = i->min;
659	if (i->openmin)
660		i->max++;
661	/* only exclude max value if also excluded before refine */
662	i->openmax = (i->openmax && i->max >= last_max);
663	return 1;
664}
665
666static int snd_interval_refine_last(struct snd_interval *i)
667{
668	const unsigned int last_min = i->min;
669
670	if (snd_BUG_ON(snd_interval_empty(i)))
671		return -EINVAL;
672	if (snd_interval_single(i))
673		return 0;
674	i->min = i->max;
675	if (i->openmax)
676		i->min--;
677	/* only exclude min value if also excluded before refine */
678	i->openmin = (i->openmin && i->min <= last_min);
679	return 1;
680}
681
682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683{
684	if (a->empty || b->empty) {
685		snd_interval_none(c);
686		return;
687	}
688	c->empty = 0;
689	c->min = mul(a->min, b->min);
690	c->openmin = (a->openmin || b->openmin);
691	c->max = mul(a->max,  b->max);
692	c->openmax = (a->openmax || b->openmax);
693	c->integer = (a->integer && b->integer);
694}
695
696/**
697 * snd_interval_div - refine the interval value with division
698 * @a: dividend
699 * @b: divisor
700 * @c: quotient
701 *
702 * c = a / b
703 *
704 * Returns non-zero if the value is changed, zero if not changed.
705 */
706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707{
708	unsigned int r;
709	if (a->empty || b->empty) {
710		snd_interval_none(c);
711		return;
712	}
713	c->empty = 0;
714	c->min = div32(a->min, b->max, &r);
715	c->openmin = (r || a->openmin || b->openmax);
716	if (b->min > 0) {
717		c->max = div32(a->max, b->min, &r);
718		if (r) {
719			c->max++;
720			c->openmax = 1;
721		} else
722			c->openmax = (a->openmax || b->openmin);
723	} else {
724		c->max = UINT_MAX;
725		c->openmax = 0;
726	}
727	c->integer = 0;
728}
729
730/**
731 * snd_interval_muldivk - refine the interval value
732 * @a: dividend 1
733 * @b: dividend 2
734 * @k: divisor (as integer)
735 * @c: result
736  *
737 * c = a * b / k
738 *
739 * Returns non-zero if the value is changed, zero if not changed.
740 */
741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742		      unsigned int k, struct snd_interval *c)
743{
744	unsigned int r;
745	if (a->empty || b->empty) {
746		snd_interval_none(c);
747		return;
748	}
749	c->empty = 0;
750	c->min = muldiv32(a->min, b->min, k, &r);
751	c->openmin = (r || a->openmin || b->openmin);
752	c->max = muldiv32(a->max, b->max, k, &r);
753	if (r) {
754		c->max++;
755		c->openmax = 1;
756	} else
757		c->openmax = (a->openmax || b->openmax);
758	c->integer = 0;
759}
760
761/**
762 * snd_interval_mulkdiv - refine the interval value
763 * @a: dividend 1
764 * @k: dividend 2 (as integer)
765 * @b: divisor
766 * @c: result
767 *
768 * c = a * k / b
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773		      const struct snd_interval *b, struct snd_interval *c)
774{
775	unsigned int r;
776	if (a->empty || b->empty) {
777		snd_interval_none(c);
778		return;
779	}
780	c->empty = 0;
781	c->min = muldiv32(a->min, k, b->max, &r);
782	c->openmin = (r || a->openmin || b->openmax);
783	if (b->min > 0) {
784		c->max = muldiv32(a->max, k, b->min, &r);
785		if (r) {
786			c->max++;
787			c->openmax = 1;
788		} else
789			c->openmax = (a->openmax || b->openmin);
790	} else {
791		c->max = UINT_MAX;
792		c->openmax = 0;
793	}
794	c->integer = 0;
795}
796
797/* ---- */
798
799
800/**
801 * snd_interval_ratnum - refine the interval value
802 * @i: interval to refine
803 * @rats_count: number of ratnum_t
804 * @rats: ratnum_t array
805 * @nump: pointer to store the resultant numerator
806 * @denp: pointer to store the resultant denominator
807 *
808 * Return: Positive if the value is changed, zero if it's not changed, or a
809 * negative error code.
810 */
811int snd_interval_ratnum(struct snd_interval *i,
812			unsigned int rats_count, const struct snd_ratnum *rats,
813			unsigned int *nump, unsigned int *denp)
814{
815	unsigned int best_num, best_den;
816	int best_diff;
817	unsigned int k;
818	struct snd_interval t;
819	int err;
820	unsigned int result_num, result_den;
821	int result_diff;
822
823	best_num = best_den = best_diff = 0;
824	for (k = 0; k < rats_count; ++k) {
825		unsigned int num = rats[k].num;
826		unsigned int den;
827		unsigned int q = i->min;
828		int diff;
829		if (q == 0)
830			q = 1;
831		den = div_up(num, q);
832		if (den < rats[k].den_min)
833			continue;
834		if (den > rats[k].den_max)
835			den = rats[k].den_max;
836		else {
837			unsigned int r;
838			r = (den - rats[k].den_min) % rats[k].den_step;
839			if (r != 0)
840				den -= r;
841		}
842		diff = num - q * den;
843		if (diff < 0)
844			diff = -diff;
845		if (best_num == 0 ||
846		    diff * best_den < best_diff * den) {
847			best_diff = diff;
848			best_den = den;
849			best_num = num;
850		}
851	}
852	if (best_den == 0) {
853		i->empty = 1;
854		return -EINVAL;
855	}
856	t.min = div_down(best_num, best_den);
857	t.openmin = !!(best_num % best_den);
858
859	result_num = best_num;
860	result_diff = best_diff;
861	result_den = best_den;
862	best_num = best_den = best_diff = 0;
863	for (k = 0; k < rats_count; ++k) {
864		unsigned int num = rats[k].num;
865		unsigned int den;
866		unsigned int q = i->max;
867		int diff;
868		if (q == 0) {
869			i->empty = 1;
870			return -EINVAL;
871		}
872		den = div_down(num, q);
873		if (den > rats[k].den_max)
874			continue;
875		if (den < rats[k].den_min)
876			den = rats[k].den_min;
877		else {
878			unsigned int r;
879			r = (den - rats[k].den_min) % rats[k].den_step;
880			if (r != 0)
881				den += rats[k].den_step - r;
882		}
883		diff = q * den - num;
884		if (diff < 0)
885			diff = -diff;
886		if (best_num == 0 ||
887		    diff * best_den < best_diff * den) {
888			best_diff = diff;
889			best_den = den;
890			best_num = num;
891		}
892	}
893	if (best_den == 0) {
894		i->empty = 1;
895		return -EINVAL;
896	}
897	t.max = div_up(best_num, best_den);
898	t.openmax = !!(best_num % best_den);
899	t.integer = 0;
900	err = snd_interval_refine(i, &t);
901	if (err < 0)
902		return err;
903
904	if (snd_interval_single(i)) {
905		if (best_diff * result_den < result_diff * best_den) {
906			result_num = best_num;
907			result_den = best_den;
908		}
909		if (nump)
910			*nump = result_num;
911		if (denp)
912			*denp = result_den;
913	}
914	return err;
915}
916EXPORT_SYMBOL(snd_interval_ratnum);
917
918/**
919 * snd_interval_ratden - refine the interval value
920 * @i: interval to refine
921 * @rats_count: number of struct ratden
922 * @rats: struct ratden array
923 * @nump: pointer to store the resultant numerator
924 * @denp: pointer to store the resultant denominator
925 *
926 * Return: Positive if the value is changed, zero if it's not changed, or a
927 * negative error code.
928 */
929static int snd_interval_ratden(struct snd_interval *i,
930			       unsigned int rats_count,
931			       const struct snd_ratden *rats,
932			       unsigned int *nump, unsigned int *denp)
933{
934	unsigned int best_num, best_diff, best_den;
935	unsigned int k;
936	struct snd_interval t;
937	int err;
938
939	best_num = best_den = best_diff = 0;
940	for (k = 0; k < rats_count; ++k) {
941		unsigned int num;
942		unsigned int den = rats[k].den;
943		unsigned int q = i->min;
944		int diff;
945		num = mul(q, den);
946		if (num > rats[k].num_max)
947			continue;
948		if (num < rats[k].num_min)
949			num = rats[k].num_max;
950		else {
951			unsigned int r;
952			r = (num - rats[k].num_min) % rats[k].num_step;
953			if (r != 0)
954				num += rats[k].num_step - r;
955		}
956		diff = num - q * den;
957		if (best_num == 0 ||
958		    diff * best_den < best_diff * den) {
959			best_diff = diff;
960			best_den = den;
961			best_num = num;
962		}
963	}
964	if (best_den == 0) {
965		i->empty = 1;
966		return -EINVAL;
967	}
968	t.min = div_down(best_num, best_den);
969	t.openmin = !!(best_num % best_den);
970
971	best_num = best_den = best_diff = 0;
972	for (k = 0; k < rats_count; ++k) {
973		unsigned int num;
974		unsigned int den = rats[k].den;
975		unsigned int q = i->max;
976		int diff;
977		num = mul(q, den);
978		if (num < rats[k].num_min)
979			continue;
980		if (num > rats[k].num_max)
981			num = rats[k].num_max;
982		else {
983			unsigned int r;
984			r = (num - rats[k].num_min) % rats[k].num_step;
985			if (r != 0)
986				num -= r;
987		}
988		diff = q * den - num;
989		if (best_num == 0 ||
990		    diff * best_den < best_diff * den) {
991			best_diff = diff;
992			best_den = den;
993			best_num = num;
994		}
995	}
996	if (best_den == 0) {
997		i->empty = 1;
998		return -EINVAL;
999	}
1000	t.max = div_up(best_num, best_den);
1001	t.openmax = !!(best_num % best_den);
1002	t.integer = 0;
1003	err = snd_interval_refine(i, &t);
1004	if (err < 0)
1005		return err;
1006
1007	if (snd_interval_single(i)) {
1008		if (nump)
1009			*nump = best_num;
1010		if (denp)
1011			*denp = best_den;
1012	}
1013	return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031		      const unsigned int *list, unsigned int mask)
1032{
1033        unsigned int k;
1034	struct snd_interval list_range;
1035
1036	if (!count) {
1037		i->empty = 1;
1038		return -EINVAL;
1039	}
1040	snd_interval_any(&list_range);
1041	list_range.min = UINT_MAX;
1042	list_range.max = 0;
1043        for (k = 0; k < count; k++) {
1044		if (mask && !(mask & (1 << k)))
1045			continue;
1046		if (!snd_interval_test(i, list[k]))
1047			continue;
1048		list_range.min = min(list_range.min, list[k]);
1049		list_range.max = max(list_range.max, list[k]);
1050        }
1051	return snd_interval_refine(i, &list_range);
1052}
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070			const struct snd_interval *ranges, unsigned int mask)
1071{
1072	unsigned int k;
1073	struct snd_interval range_union;
1074	struct snd_interval range;
1075
1076	if (!count) {
1077		snd_interval_none(i);
1078		return -EINVAL;
1079	}
1080	snd_interval_any(&range_union);
1081	range_union.min = UINT_MAX;
1082	range_union.max = 0;
1083	for (k = 0; k < count; k++) {
1084		if (mask && !(mask & (1 << k)))
1085			continue;
1086		snd_interval_copy(&range, &ranges[k]);
1087		if (snd_interval_refine(&range, i) < 0)
1088			continue;
1089		if (snd_interval_empty(&range))
1090			continue;
1091
1092		if (range.min < range_union.min) {
1093			range_union.min = range.min;
1094			range_union.openmin = 1;
1095		}
1096		if (range.min == range_union.min && !range.openmin)
1097			range_union.openmin = 0;
1098		if (range.max > range_union.max) {
1099			range_union.max = range.max;
1100			range_union.openmax = 1;
1101		}
1102		if (range.max == range_union.max && !range.openmax)
1103			range_union.openmax = 0;
1104	}
1105	return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111	unsigned int n;
1112	int changed = 0;
1113	n = i->min % step;
1114	if (n != 0 || i->openmin) {
1115		i->min += step - n;
1116		i->openmin = 0;
1117		changed = 1;
1118	}
1119	n = i->max % step;
1120	if (n != 0 || i->openmax) {
1121		i->max -= n;
1122		i->openmax = 0;
1123		changed = 1;
1124	}
1125	if (snd_interval_checkempty(i)) {
1126		i->empty = 1;
1127		return -EINVAL;
1128	}
1129	return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146			int var,
1147			snd_pcm_hw_rule_func_t func, void *private,
1148			int dep, ...)
1149{
1150	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151	struct snd_pcm_hw_rule *c;
1152	unsigned int k;
1153	va_list args;
1154	va_start(args, dep);
1155	if (constrs->rules_num >= constrs->rules_all) {
1156		struct snd_pcm_hw_rule *new;
1157		unsigned int new_rules = constrs->rules_all + 16;
1158		new = krealloc_array(constrs->rules, new_rules,
1159				     sizeof(*c), GFP_KERNEL);
1160		if (!new) {
1161			va_end(args);
1162			return -ENOMEM;
1163		}
1164		constrs->rules = new;
1165		constrs->rules_all = new_rules;
1166	}
1167	c = &constrs->rules[constrs->rules_num];
1168	c->cond = cond;
1169	c->func = func;
1170	c->var = var;
1171	c->private = private;
1172	k = 0;
1173	while (1) {
1174		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175			va_end(args);
1176			return -EINVAL;
1177		}
1178		c->deps[k++] = dep;
1179		if (dep < 0)
1180			break;
1181		dep = va_arg(args, int);
1182	}
1183	constrs->rules_num++;
1184	va_end(args);
1185	return 0;
1186}
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200			       u_int32_t mask)
1201{
1202	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203	struct snd_mask *maskp = constrs_mask(constrs, var);
1204	*maskp->bits &= mask;
1205	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206	if (*maskp->bits == 0)
1207		return -EINVAL;
1208	return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222				 u_int64_t mask)
1223{
1224	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225	struct snd_mask *maskp = constrs_mask(constrs, var);
1226	maskp->bits[0] &= (u_int32_t)mask;
1227	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229	if (! maskp->bits[0] && ! maskp->bits[1])
1230		return -EINVAL;
1231	return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248	return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265				 unsigned int min, unsigned int max)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	struct snd_interval t;
1269	t.min = min;
1270	t.max = max;
1271	t.openmin = t.openmax = 0;
1272	t.integer = 0;
1273	return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278				struct snd_pcm_hw_rule *rule)
1279{
1280	struct snd_pcm_hw_constraint_list *list = rule->private;
1281	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 *
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297			       unsigned int cond,
1298			       snd_pcm_hw_param_t var,
1299			       const struct snd_pcm_hw_constraint_list *l)
1300{
1301	return snd_pcm_hw_rule_add(runtime, cond, var,
1302				   snd_pcm_hw_rule_list, (void *)l,
1303				   var, -1);
1304}
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308				  struct snd_pcm_hw_rule *rule)
1309{
1310	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311	return snd_interval_ranges(hw_param_interval(params, rule->var),
1312				   r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328				 unsigned int cond,
1329				 snd_pcm_hw_param_t var,
1330				 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332	return snd_pcm_hw_rule_add(runtime, cond, var,
1333				   snd_pcm_hw_rule_ranges, (void *)r,
1334				   var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339				   struct snd_pcm_hw_rule *rule)
1340{
1341	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342	unsigned int num = 0, den = 0;
1343	int err;
1344	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345				  r->nrats, r->rats, &num, &den);
1346	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347		params->rate_num = num;
1348		params->rate_den = den;
1349	}
1350	return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1363				  unsigned int cond,
1364				  snd_pcm_hw_param_t var,
1365				  const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367	return snd_pcm_hw_rule_add(runtime, cond, var,
1368				   snd_pcm_hw_rule_ratnums, (void *)r,
1369				   var, -1);
1370}
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374				   struct snd_pcm_hw_rule *rule)
1375{
1376	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377	unsigned int num = 0, den = 0;
1378	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379				  r->nrats, r->rats, &num, &den);
1380	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381		params->rate_num = num;
1382		params->rate_den = den;
1383	}
1384	return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1397				  unsigned int cond,
1398				  snd_pcm_hw_param_t var,
1399				  const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401	return snd_pcm_hw_rule_add(runtime, cond, var,
1402				   snd_pcm_hw_rule_ratdens, (void *)r,
1403				   var, -1);
1404}
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408				  struct snd_pcm_hw_rule *rule)
1409{
1410	unsigned int l = (unsigned long) rule->private;
1411	int width = l & 0xffff;
1412	unsigned int msbits = l >> 16;
1413	const struct snd_interval *i =
1414		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416	if (!snd_interval_single(i))
1417		return 0;
1418
1419	if ((snd_interval_value(i) == width) ||
1420	    (width == 0 && snd_interval_value(i) > msbits))
1421		params->msbits = min_not_zero(params->msbits, msbits);
1422
1423	return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1441				 unsigned int cond,
1442				 unsigned int width,
1443				 unsigned int msbits)
1444{
1445	unsigned long l = (msbits << 16) | width;
1446	return snd_pcm_hw_rule_add(runtime, cond, -1,
1447				    snd_pcm_hw_rule_msbits,
1448				    (void*) l,
1449				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454				struct snd_pcm_hw_rule *rule)
1455{
1456	unsigned long step = (unsigned long) rule->private;
1457	return snd_interval_step(hw_param_interval(params, rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470			       unsigned int cond,
1471			       snd_pcm_hw_param_t var,
1472			       unsigned long step)
1473{
1474	return snd_pcm_hw_rule_add(runtime, cond, var,
1475				   snd_pcm_hw_rule_step, (void *) step,
1476				   var, -1);
1477}
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482	static const unsigned int pow2_sizes[] = {
1483		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487	};
1488	return snd_interval_list(hw_param_interval(params, rule->var),
1489				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501			       unsigned int cond,
1502			       snd_pcm_hw_param_t var)
1503{
1504	return snd_pcm_hw_rule_add(runtime, cond, var,
1505				   snd_pcm_hw_rule_pow2, NULL,
1506				   var, -1);
1507}
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511					   struct snd_pcm_hw_rule *rule)
1512{
1513	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514	struct snd_interval *rate;
1515
1516	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517	return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528			       unsigned int base_rate)
1529{
1530	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531				   SNDRV_PCM_HW_PARAM_RATE,
1532				   snd_pcm_hw_rule_noresample_func,
1533				   (void *)(uintptr_t)base_rate,
1534				   SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539				  snd_pcm_hw_param_t var)
1540{
1541	if (hw_is_mask(var)) {
1542		snd_mask_any(hw_param_mask(params, var));
1543		params->cmask |= 1 << var;
1544		params->rmask |= 1 << var;
1545		return;
1546	}
1547	if (hw_is_interval(var)) {
1548		snd_interval_any(hw_param_interval(params, var));
1549		params->cmask |= 1 << var;
1550		params->rmask |= 1 << var;
1551		return;
1552	}
1553	snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558	unsigned int k;
1559	memset(params, 0, sizeof(*params));
1560	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561		_snd_pcm_hw_param_any(params, k);
1562	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563		_snd_pcm_hw_param_any(params, k);
1564	params->info = ~0U;
1565}
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578			   snd_pcm_hw_param_t var, int *dir)
1579{
1580	if (hw_is_mask(var)) {
1581		const struct snd_mask *mask = hw_param_mask_c(params, var);
1582		if (!snd_mask_single(mask))
1583			return -EINVAL;
1584		if (dir)
1585			*dir = 0;
1586		return snd_mask_value(mask);
1587	}
1588	if (hw_is_interval(var)) {
1589		const struct snd_interval *i = hw_param_interval_c(params, var);
1590		if (!snd_interval_single(i))
1591			return -EINVAL;
1592		if (dir)
1593			*dir = i->openmin;
1594		return snd_interval_value(i);
1595	}
1596	return -EINVAL;
1597}
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601				snd_pcm_hw_param_t var)
1602{
1603	if (hw_is_mask(var)) {
1604		snd_mask_none(hw_param_mask(params, var));
1605		params->cmask |= 1 << var;
1606		params->rmask |= 1 << var;
1607	} else if (hw_is_interval(var)) {
1608		snd_interval_none(hw_param_interval(params, var));
1609		params->cmask |= 1 << var;
1610		params->rmask |= 1 << var;
1611	} else {
1612		snd_BUG();
1613	}
1614}
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618				   snd_pcm_hw_param_t var)
1619{
1620	int changed;
1621	if (hw_is_mask(var))
1622		changed = snd_mask_refine_first(hw_param_mask(params, var));
1623	else if (hw_is_interval(var))
1624		changed = snd_interval_refine_first(hw_param_interval(params, var));
1625	else
1626		return -EINVAL;
1627	if (changed > 0) {
1628		params->cmask |= 1 << var;
1629		params->rmask |= 1 << var;
1630	}
1631	return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1648			   struct snd_pcm_hw_params *params,
1649			   snd_pcm_hw_param_t var, int *dir)
1650{
1651	int changed = _snd_pcm_hw_param_first(params, var);
1652	if (changed < 0)
1653		return changed;
1654	if (params->rmask) {
1655		int err = snd_pcm_hw_refine(pcm, params);
1656		if (err < 0)
1657			return err;
1658	}
1659	return snd_pcm_hw_param_value(params, var, dir);
1660}
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664				  snd_pcm_hw_param_t var)
1665{
1666	int changed;
1667	if (hw_is_mask(var))
1668		changed = snd_mask_refine_last(hw_param_mask(params, var));
1669	else if (hw_is_interval(var))
1670		changed = snd_interval_refine_last(hw_param_interval(params, var));
1671	else
1672		return -EINVAL;
1673	if (changed > 0) {
1674		params->cmask |= 1 << var;
1675		params->rmask |= 1 << var;
1676	}
1677	return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1694			  struct snd_pcm_hw_params *params,
1695			  snd_pcm_hw_param_t var, int *dir)
1696{
1697	int changed = _snd_pcm_hw_param_last(params, var);
1698	if (changed < 0)
1699		return changed;
1700	if (params->rmask) {
1701		int err = snd_pcm_hw_refine(pcm, params);
1702		if (err < 0)
1703			return err;
1704	}
1705	return snd_pcm_hw_param_value(params, var, dir);
1706}
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709/**
1710 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711 * @p: hardware parameters
1712 *
1713 * Return: The number of bits per sample based on the format,
1714 * subformat and msbits the specified hw params has.
1715 */
1716int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1717{
1718	snd_pcm_subformat_t subformat = params_subformat(p);
1719	snd_pcm_format_t format = params_format(p);
1720
1721	switch (format) {
1722	case SNDRV_PCM_FORMAT_S32_LE:
1723	case SNDRV_PCM_FORMAT_U32_LE:
1724	case SNDRV_PCM_FORMAT_S32_BE:
1725	case SNDRV_PCM_FORMAT_U32_BE:
1726		switch (subformat) {
1727		case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728			return 20;
1729		case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730			return 24;
1731		case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732		case SNDRV_PCM_SUBFORMAT_STD:
1733		default:
1734			break;
1735		}
1736		fallthrough;
1737	default:
1738		return snd_pcm_format_width(format);
1739	}
1740}
1741EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744				   void *arg)
1745{
1746	struct snd_pcm_runtime *runtime = substream->runtime;
1747
1748	guard(pcm_stream_lock_irqsave)(substream);
1749	if (snd_pcm_running(substream) &&
1750	    snd_pcm_update_hw_ptr(substream) >= 0)
1751		runtime->status->hw_ptr %= runtime->buffer_size;
1752	else {
1753		runtime->status->hw_ptr = 0;
1754		runtime->hw_ptr_wrap = 0;
1755	}
1756	return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1760					  void *arg)
1761{
1762	struct snd_pcm_channel_info *info = arg;
1763	struct snd_pcm_runtime *runtime = substream->runtime;
1764	int width;
1765	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1766		info->offset = -1;
1767		return 0;
1768	}
1769	width = snd_pcm_format_physical_width(runtime->format);
1770	if (width < 0)
1771		return width;
1772	info->offset = 0;
1773	switch (runtime->access) {
1774	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1775	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1776		info->first = info->channel * width;
1777		info->step = runtime->channels * width;
1778		break;
1779	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1780	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1781	{
1782		size_t size = runtime->dma_bytes / runtime->channels;
1783		info->first = info->channel * size * 8;
1784		info->step = width;
1785		break;
1786	}
1787	default:
1788		snd_BUG();
1789		break;
1790	}
1791	return 0;
1792}
1793
1794static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1795				       void *arg)
1796{
1797	struct snd_pcm_hw_params *params = arg;
1798	snd_pcm_format_t format;
1799	int channels;
1800	ssize_t frame_size;
1801
1802	params->fifo_size = substream->runtime->hw.fifo_size;
1803	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1804		format = params_format(params);
1805		channels = params_channels(params);
1806		frame_size = snd_pcm_format_size(format, channels);
1807		if (frame_size > 0)
1808			params->fifo_size /= frame_size;
1809	}
1810	return 0;
1811}
1812
1813/**
1814 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1815 * @substream: the pcm substream instance
1816 * @cmd: ioctl command
1817 * @arg: ioctl argument
1818 *
1819 * Processes the generic ioctl commands for PCM.
1820 * Can be passed as the ioctl callback for PCM ops.
1821 *
1822 * Return: Zero if successful, or a negative error code on failure.
1823 */
1824int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1825		      unsigned int cmd, void *arg)
1826{
1827	switch (cmd) {
1828	case SNDRV_PCM_IOCTL1_RESET:
1829		return snd_pcm_lib_ioctl_reset(substream, arg);
1830	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1831		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1832	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1833		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1834	}
1835	return -ENXIO;
1836}
1837EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1838
1839/**
1840 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1841 *						under acquired lock of PCM substream.
1842 * @substream: the instance of pcm substream.
1843 *
1844 * This function is called when the batch of audio data frames as the same size as the period of
1845 * buffer is already processed in audio data transmission.
1846 *
1847 * The call of function updates the status of runtime with the latest position of audio data
1848 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1849 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1850 * substream according to configured threshold.
1851 *
1852 * The function is intended to use for the case that PCM driver operates audio data frames under
1853 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1854 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1855 * since lock of PCM substream should be acquired in advance.
1856 *
1857 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1858 * function:
1859 *
1860 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1861 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1862 * - .get_time_info - to retrieve audio time stamp if needed.
1863 *
1864 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1865 */
1866void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1867{
1868	struct snd_pcm_runtime *runtime;
1869
1870	if (PCM_RUNTIME_CHECK(substream))
1871		return;
1872	runtime = substream->runtime;
1873
1874	if (!snd_pcm_running(substream) ||
1875	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1876		goto _end;
1877
1878#ifdef CONFIG_SND_PCM_TIMER
1879	if (substream->timer_running)
1880		snd_timer_interrupt(substream->timer, 1);
1881#endif
1882 _end:
1883	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1884}
1885EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1886
1887/**
1888 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1889 *			      PCM substream.
1890 * @substream: the instance of PCM substream.
1891 *
1892 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1893 * acquiring lock of PCM substream voluntarily.
1894 *
1895 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1896 * the batch of audio data frames as the same size as the period of buffer is already processed in
1897 * audio data transmission.
1898 */
1899void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1900{
1901	if (snd_BUG_ON(!substream))
1902		return;
1903
1904	guard(pcm_stream_lock_irqsave)(substream);
1905	snd_pcm_period_elapsed_under_stream_lock(substream);
1906}
1907EXPORT_SYMBOL(snd_pcm_period_elapsed);
1908
1909/*
1910 * Wait until avail_min data becomes available
1911 * Returns a negative error code if any error occurs during operation.
1912 * The available space is stored on availp.  When err = 0 and avail = 0
1913 * on the capture stream, it indicates the stream is in DRAINING state.
1914 */
1915static int wait_for_avail(struct snd_pcm_substream *substream,
1916			      snd_pcm_uframes_t *availp)
1917{
1918	struct snd_pcm_runtime *runtime = substream->runtime;
1919	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1920	wait_queue_entry_t wait;
1921	int err = 0;
1922	snd_pcm_uframes_t avail = 0;
1923	long wait_time, tout;
1924
1925	init_waitqueue_entry(&wait, current);
1926	set_current_state(TASK_INTERRUPTIBLE);
1927	add_wait_queue(&runtime->tsleep, &wait);
1928
1929	if (runtime->no_period_wakeup)
1930		wait_time = MAX_SCHEDULE_TIMEOUT;
1931	else {
1932		/* use wait time from substream if available */
1933		if (substream->wait_time) {
1934			wait_time = substream->wait_time;
1935		} else {
1936			wait_time = 100;
1937
1938			if (runtime->rate) {
1939				long t = runtime->buffer_size * 1100 / runtime->rate;
1940				wait_time = max(t, wait_time);
1941			}
1942		}
1943		wait_time = msecs_to_jiffies(wait_time);
1944	}
1945
1946	for (;;) {
1947		if (signal_pending(current)) {
1948			err = -ERESTARTSYS;
1949			break;
1950		}
1951
1952		/*
1953		 * We need to check if space became available already
1954		 * (and thus the wakeup happened already) first to close
1955		 * the race of space already having become available.
1956		 * This check must happen after been added to the waitqueue
1957		 * and having current state be INTERRUPTIBLE.
1958		 */
1959		avail = snd_pcm_avail(substream);
1960		if (avail >= runtime->twake)
1961			break;
1962		snd_pcm_stream_unlock_irq(substream);
1963
1964		tout = schedule_timeout(wait_time);
1965
1966		snd_pcm_stream_lock_irq(substream);
1967		set_current_state(TASK_INTERRUPTIBLE);
1968		switch (runtime->state) {
1969		case SNDRV_PCM_STATE_SUSPENDED:
1970			err = -ESTRPIPE;
1971			goto _endloop;
1972		case SNDRV_PCM_STATE_XRUN:
1973			err = -EPIPE;
1974			goto _endloop;
1975		case SNDRV_PCM_STATE_DRAINING:
1976			if (is_playback)
1977				err = -EPIPE;
1978			else
1979				avail = 0; /* indicate draining */
1980			goto _endloop;
1981		case SNDRV_PCM_STATE_OPEN:
1982		case SNDRV_PCM_STATE_SETUP:
1983		case SNDRV_PCM_STATE_DISCONNECTED:
1984			err = -EBADFD;
1985			goto _endloop;
1986		case SNDRV_PCM_STATE_PAUSED:
1987			continue;
1988		}
1989		if (!tout) {
1990			pcm_dbg(substream->pcm,
1991				"%s timeout (DMA or IRQ trouble?)\n",
1992				is_playback ? "playback write" : "capture read");
1993			err = -EIO;
1994			break;
1995		}
1996	}
1997 _endloop:
1998	set_current_state(TASK_RUNNING);
1999	remove_wait_queue(&runtime->tsleep, &wait);
2000	*availp = avail;
2001	return err;
2002}
2003
2004typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2005			      int channel, unsigned long hwoff,
2006			      struct iov_iter *iter, unsigned long bytes);
2007
2008typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2009			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2010			  bool);
2011
2012/* calculate the target DMA-buffer position to be written/read */
2013static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2014			   int channel, unsigned long hwoff)
2015{
2016	return runtime->dma_area + hwoff +
2017		channel * (runtime->dma_bytes / runtime->channels);
2018}
2019
2020/* default copy ops for write; used for both interleaved and non- modes */
2021static int default_write_copy(struct snd_pcm_substream *substream,
2022			      int channel, unsigned long hwoff,
2023			      struct iov_iter *iter, unsigned long bytes)
2024{
2025	if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2026			   bytes, iter) != bytes)
2027		return -EFAULT;
2028	return 0;
2029}
2030
2031/* fill silence instead of copy data; called as a transfer helper
2032 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2033 * a NULL buffer is passed
2034 */
2035static int fill_silence(struct snd_pcm_substream *substream, int channel,
2036			unsigned long hwoff, struct iov_iter *iter,
2037			unsigned long bytes)
2038{
2039	struct snd_pcm_runtime *runtime = substream->runtime;
2040
2041	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2042		return 0;
2043	if (substream->ops->fill_silence)
2044		return substream->ops->fill_silence(substream, channel,
2045						    hwoff, bytes);
2046
2047	snd_pcm_format_set_silence(runtime->format,
2048				   get_dma_ptr(runtime, channel, hwoff),
2049				   bytes_to_samples(runtime, bytes));
2050	return 0;
2051}
2052
2053/* default copy ops for read; used for both interleaved and non- modes */
2054static int default_read_copy(struct snd_pcm_substream *substream,
2055			     int channel, unsigned long hwoff,
2056			     struct iov_iter *iter, unsigned long bytes)
2057{
2058	if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2059			 bytes, iter) != bytes)
2060		return -EFAULT;
2061	return 0;
2062}
2063
2064/* call transfer with the filled iov_iter */
2065static int do_transfer(struct snd_pcm_substream *substream, int c,
2066		       unsigned long hwoff, void *data, unsigned long bytes,
2067		       pcm_transfer_f transfer, bool in_kernel)
2068{
2069	struct iov_iter iter;
2070	int err, type;
2071
2072	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2073		type = ITER_SOURCE;
2074	else
2075		type = ITER_DEST;
2076
2077	if (in_kernel) {
2078		struct kvec kvec = { data, bytes };
2079
2080		iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2081		return transfer(substream, c, hwoff, &iter, bytes);
2082	}
2083
2084	err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2085	if (err)
2086		return err;
2087	return transfer(substream, c, hwoff, &iter, bytes);
2088}
2089
2090/* call transfer function with the converted pointers and sizes;
2091 * for interleaved mode, it's one shot for all samples
2092 */
2093static int interleaved_copy(struct snd_pcm_substream *substream,
2094			    snd_pcm_uframes_t hwoff, void *data,
2095			    snd_pcm_uframes_t off,
2096			    snd_pcm_uframes_t frames,
2097			    pcm_transfer_f transfer,
2098			    bool in_kernel)
2099{
2100	struct snd_pcm_runtime *runtime = substream->runtime;
2101
2102	/* convert to bytes */
2103	hwoff = frames_to_bytes(runtime, hwoff);
2104	off = frames_to_bytes(runtime, off);
2105	frames = frames_to_bytes(runtime, frames);
2106
2107	return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2108			   in_kernel);
2109}
2110
2111/* call transfer function with the converted pointers and sizes for each
2112 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2113 */
2114static int noninterleaved_copy(struct snd_pcm_substream *substream,
2115			       snd_pcm_uframes_t hwoff, void *data,
2116			       snd_pcm_uframes_t off,
2117			       snd_pcm_uframes_t frames,
2118			       pcm_transfer_f transfer,
2119			       bool in_kernel)
2120{
2121	struct snd_pcm_runtime *runtime = substream->runtime;
2122	int channels = runtime->channels;
2123	void **bufs = data;
2124	int c, err;
2125
2126	/* convert to bytes; note that it's not frames_to_bytes() here.
2127	 * in non-interleaved mode, we copy for each channel, thus
2128	 * each copy is n_samples bytes x channels = whole frames.
2129	 */
2130	off = samples_to_bytes(runtime, off);
2131	frames = samples_to_bytes(runtime, frames);
2132	hwoff = samples_to_bytes(runtime, hwoff);
2133	for (c = 0; c < channels; ++c, ++bufs) {
2134		if (!data || !*bufs)
2135			err = fill_silence(substream, c, hwoff, NULL, frames);
2136		else
2137			err = do_transfer(substream, c, hwoff, *bufs + off,
2138					  frames, transfer, in_kernel);
2139		if (err < 0)
2140			return err;
2141	}
2142	return 0;
2143}
2144
2145/* fill silence on the given buffer position;
2146 * called from snd_pcm_playback_silence()
2147 */
2148static int fill_silence_frames(struct snd_pcm_substream *substream,
2149			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2150{
2151	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2152	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2153		return interleaved_copy(substream, off, NULL, 0, frames,
2154					fill_silence, true);
2155	else
2156		return noninterleaved_copy(substream, off, NULL, 0, frames,
2157					   fill_silence, true);
2158}
2159
2160/* sanity-check for read/write methods */
2161static int pcm_sanity_check(struct snd_pcm_substream *substream)
2162{
2163	struct snd_pcm_runtime *runtime;
2164	if (PCM_RUNTIME_CHECK(substream))
2165		return -ENXIO;
2166	runtime = substream->runtime;
2167	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2168		return -EINVAL;
2169	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2170		return -EBADFD;
2171	return 0;
2172}
2173
2174static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2175{
2176	switch (runtime->state) {
2177	case SNDRV_PCM_STATE_PREPARED:
2178	case SNDRV_PCM_STATE_RUNNING:
2179	case SNDRV_PCM_STATE_PAUSED:
2180		return 0;
2181	case SNDRV_PCM_STATE_XRUN:
2182		return -EPIPE;
2183	case SNDRV_PCM_STATE_SUSPENDED:
2184		return -ESTRPIPE;
2185	default:
2186		return -EBADFD;
2187	}
2188}
2189
2190/* update to the given appl_ptr and call ack callback if needed;
2191 * when an error is returned, take back to the original value
2192 */
2193int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2194			   snd_pcm_uframes_t appl_ptr)
2195{
2196	struct snd_pcm_runtime *runtime = substream->runtime;
2197	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2198	snd_pcm_sframes_t diff;
2199	int ret;
2200
2201	if (old_appl_ptr == appl_ptr)
2202		return 0;
2203
2204	if (appl_ptr >= runtime->boundary)
2205		return -EINVAL;
2206	/*
2207	 * check if a rewind is requested by the application
2208	 */
2209	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2210		diff = appl_ptr - old_appl_ptr;
2211		if (diff >= 0) {
2212			if (diff > runtime->buffer_size)
2213				return -EINVAL;
2214		} else {
2215			if (runtime->boundary + diff > runtime->buffer_size)
2216				return -EINVAL;
2217		}
2218	}
2219
2220	runtime->control->appl_ptr = appl_ptr;
2221	if (substream->ops->ack) {
2222		ret = substream->ops->ack(substream);
2223		if (ret < 0) {
2224			runtime->control->appl_ptr = old_appl_ptr;
2225			if (ret == -EPIPE)
2226				__snd_pcm_xrun(substream);
2227			return ret;
2228		}
2229	}
2230
2231	trace_applptr(substream, old_appl_ptr, appl_ptr);
2232
2233	return 0;
2234}
2235
2236/* the common loop for read/write data */
2237snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2238				     void *data, bool interleaved,
2239				     snd_pcm_uframes_t size, bool in_kernel)
2240{
2241	struct snd_pcm_runtime *runtime = substream->runtime;
2242	snd_pcm_uframes_t xfer = 0;
2243	snd_pcm_uframes_t offset = 0;
2244	snd_pcm_uframes_t avail;
2245	pcm_copy_f writer;
2246	pcm_transfer_f transfer;
2247	bool nonblock;
2248	bool is_playback;
2249	int err;
2250
2251	err = pcm_sanity_check(substream);
2252	if (err < 0)
2253		return err;
2254
2255	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2256	if (interleaved) {
2257		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2258		    runtime->channels > 1)
2259			return -EINVAL;
2260		writer = interleaved_copy;
2261	} else {
2262		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2263			return -EINVAL;
2264		writer = noninterleaved_copy;
2265	}
2266
2267	if (!data) {
2268		if (is_playback)
2269			transfer = fill_silence;
2270		else
2271			return -EINVAL;
2272	} else {
2273		if (substream->ops->copy)
2274			transfer = substream->ops->copy;
2275		else
2276			transfer = is_playback ?
2277				default_write_copy : default_read_copy;
2278	}
2279
2280	if (size == 0)
2281		return 0;
2282
2283	nonblock = !!(substream->f_flags & O_NONBLOCK);
2284
2285	snd_pcm_stream_lock_irq(substream);
2286	err = pcm_accessible_state(runtime);
2287	if (err < 0)
2288		goto _end_unlock;
2289
2290	runtime->twake = runtime->control->avail_min ? : 1;
2291	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2292		snd_pcm_update_hw_ptr(substream);
2293
2294	/*
2295	 * If size < start_threshold, wait indefinitely. Another
2296	 * thread may start capture
2297	 */
2298	if (!is_playback &&
2299	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2300	    size >= runtime->start_threshold) {
2301		err = snd_pcm_start(substream);
2302		if (err < 0)
2303			goto _end_unlock;
2304	}
2305
2306	avail = snd_pcm_avail(substream);
2307
2308	while (size > 0) {
2309		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2310		snd_pcm_uframes_t cont;
2311		if (!avail) {
2312			if (!is_playback &&
2313			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2314				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2315				goto _end_unlock;
2316			}
2317			if (nonblock) {
2318				err = -EAGAIN;
2319				goto _end_unlock;
2320			}
2321			runtime->twake = min_t(snd_pcm_uframes_t, size,
2322					runtime->control->avail_min ? : 1);
2323			err = wait_for_avail(substream, &avail);
2324			if (err < 0)
2325				goto _end_unlock;
2326			if (!avail)
2327				continue; /* draining */
2328		}
2329		frames = size > avail ? avail : size;
2330		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2331		appl_ofs = appl_ptr % runtime->buffer_size;
2332		cont = runtime->buffer_size - appl_ofs;
2333		if (frames > cont)
2334			frames = cont;
2335		if (snd_BUG_ON(!frames)) {
2336			err = -EINVAL;
2337			goto _end_unlock;
2338		}
2339		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2340			err = -EBUSY;
2341			goto _end_unlock;
2342		}
2343		snd_pcm_stream_unlock_irq(substream);
2344		if (!is_playback)
2345			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2346		err = writer(substream, appl_ofs, data, offset, frames,
2347			     transfer, in_kernel);
2348		if (is_playback)
2349			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2350		snd_pcm_stream_lock_irq(substream);
2351		atomic_dec(&runtime->buffer_accessing);
2352		if (err < 0)
2353			goto _end_unlock;
2354		err = pcm_accessible_state(runtime);
2355		if (err < 0)
2356			goto _end_unlock;
2357		appl_ptr += frames;
2358		if (appl_ptr >= runtime->boundary)
2359			appl_ptr -= runtime->boundary;
2360		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2361		if (err < 0)
2362			goto _end_unlock;
2363
2364		offset += frames;
2365		size -= frames;
2366		xfer += frames;
2367		avail -= frames;
2368		if (is_playback &&
2369		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2370		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2371			err = snd_pcm_start(substream);
2372			if (err < 0)
2373				goto _end_unlock;
2374		}
2375	}
2376 _end_unlock:
2377	runtime->twake = 0;
2378	if (xfer > 0 && err >= 0)
2379		snd_pcm_update_state(substream, runtime);
2380	snd_pcm_stream_unlock_irq(substream);
2381	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2382}
2383EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391	{ .channels = 1,
2392	  .map = { SNDRV_CHMAP_MONO } },
2393	{ .channels = 2,
2394	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395	{ .channels = 4,
2396	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398	{ .channels = 6,
2399	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402	{ .channels = 8,
2403	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407	{ }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413	{ .channels = 1,
2414	  .map = { SNDRV_CHMAP_MONO } },
2415	{ .channels = 2,
2416	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417	{ .channels = 4,
2418	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420	{ .channels = 6,
2421	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424	{ .channels = 8,
2425	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429	{ }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435	if (ch > info->max_channels)
2436		return false;
2437	return !info->channel_mask || (info->channel_mask & (1U << ch));
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441			      struct snd_ctl_elem_info *uinfo)
2442{
2443	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446	uinfo->count = info->max_channels;
2447	uinfo->value.integer.min = 0;
2448	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449	return 0;
2450}
2451
2452/* get callback for channel map ctl element
2453 * stores the channel position firstly matching with the current channels
2454 */
2455static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456			     struct snd_ctl_elem_value *ucontrol)
2457{
2458	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460	struct snd_pcm_substream *substream;
2461	const struct snd_pcm_chmap_elem *map;
2462
2463	if (!info->chmap)
2464		return -EINVAL;
2465	substream = snd_pcm_chmap_substream(info, idx);
2466	if (!substream)
2467		return -ENODEV;
2468	memset(ucontrol->value.integer.value, 0,
2469	       sizeof(long) * info->max_channels);
2470	if (!substream->runtime)
2471		return 0; /* no channels set */
2472	for (map = info->chmap; map->channels; map++) {
2473		int i;
2474		if (map->channels == substream->runtime->channels &&
2475		    valid_chmap_channels(info, map->channels)) {
2476			for (i = 0; i < map->channels; i++)
2477				ucontrol->value.integer.value[i] = map->map[i];
2478			return 0;
2479		}
2480	}
2481	return -EINVAL;
2482}
2483
2484/* tlv callback for channel map ctl element
2485 * expands the pre-defined channel maps in a form of TLV
2486 */
2487static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488			     unsigned int size, unsigned int __user *tlv)
2489{
2490	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491	const struct snd_pcm_chmap_elem *map;
2492	unsigned int __user *dst;
2493	int c, count = 0;
2494
2495	if (!info->chmap)
2496		return -EINVAL;
2497	if (size < 8)
2498		return -ENOMEM;
2499	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500		return -EFAULT;
2501	size -= 8;
2502	dst = tlv + 2;
2503	for (map = info->chmap; map->channels; map++) {
2504		int chs_bytes = map->channels * 4;
2505		if (!valid_chmap_channels(info, map->channels))
2506			continue;
2507		if (size < 8)
2508			return -ENOMEM;
2509		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510		    put_user(chs_bytes, dst + 1))
2511			return -EFAULT;
2512		dst += 2;
2513		size -= 8;
2514		count += 8;
2515		if (size < chs_bytes)
2516			return -ENOMEM;
2517		size -= chs_bytes;
2518		count += chs_bytes;
2519		for (c = 0; c < map->channels; c++) {
2520			if (put_user(map->map[c], dst))
2521				return -EFAULT;
2522			dst++;
2523		}
2524	}
2525	if (put_user(count, tlv + 1))
2526		return -EFAULT;
2527	return 0;
2528}
2529
2530static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2531{
2532	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533	info->pcm->streams[info->stream].chmap_kctl = NULL;
2534	kfree(info);
2535}
2536
2537/**
2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539 * @pcm: the assigned PCM instance
2540 * @stream: stream direction
2541 * @chmap: channel map elements (for query)
2542 * @max_channels: the max number of channels for the stream
2543 * @private_value: the value passed to each kcontrol's private_value field
2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 *
2546 * Create channel-mapping control elements assigned to the given PCM stream(s).
2547 * Return: Zero if successful, or a negative error value.
2548 */
2549int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550			   const struct snd_pcm_chmap_elem *chmap,
2551			   int max_channels,
2552			   unsigned long private_value,
2553			   struct snd_pcm_chmap **info_ret)
2554{
2555	struct snd_pcm_chmap *info;
2556	struct snd_kcontrol_new knew = {
2557		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2559			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561		.info = pcm_chmap_ctl_info,
2562		.get = pcm_chmap_ctl_get,
2563		.tlv.c = pcm_chmap_ctl_tlv,
2564	};
2565	int err;
2566
2567	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2568		return -EBUSY;
2569	info = kzalloc(sizeof(*info), GFP_KERNEL);
2570	if (!info)
2571		return -ENOMEM;
2572	info->pcm = pcm;
2573	info->stream = stream;
2574	info->chmap = chmap;
2575	info->max_channels = max_channels;
2576	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2577		knew.name = "Playback Channel Map";
2578	else
2579		knew.name = "Capture Channel Map";
2580	knew.device = pcm->device;
2581	knew.count = pcm->streams[stream].substream_count;
2582	knew.private_value = private_value;
2583	info->kctl = snd_ctl_new1(&knew, info);
2584	if (!info->kctl) {
2585		kfree(info);
2586		return -ENOMEM;
2587	}
2588	info->kctl->private_free = pcm_chmap_ctl_private_free;
2589	err = snd_ctl_add(pcm->card, info->kctl);
2590	if (err < 0)
2591		return err;
2592	pcm->streams[stream].chmap_kctl = info->kctl;
2593	if (info_ret)
2594		*info_ret = info;
2595	return 0;
2596}
2597EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2598