1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Keyring handling
3 *
4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/export.h>
9#include <linux/init.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/security.h>
13#include <linux/seq_file.h>
14#include <linux/err.h>
15#include <linux/user_namespace.h>
16#include <linux/nsproxy.h>
17#include <keys/keyring-type.h>
18#include <keys/user-type.h>
19#include <linux/assoc_array_priv.h>
20#include <linux/uaccess.h>
21#include <net/net_namespace.h>
22#include "internal.h"
23
24/*
25 * When plumbing the depths of the key tree, this sets a hard limit
26 * set on how deep we're willing to go.
27 */
28#define KEYRING_SEARCH_MAX_DEPTH 6
29
30/*
31 * We mark pointers we pass to the associative array with bit 1 set if
32 * they're keyrings and clear otherwise.
33 */
34#define KEYRING_PTR_SUBTYPE	0x2UL
35
36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37{
38	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39}
40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41{
42	void *object = assoc_array_ptr_to_leaf(x);
43	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44}
45static inline void *keyring_key_to_ptr(struct key *key)
46{
47	if (key->type == &key_type_keyring)
48		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49	return key;
50}
51
52static DEFINE_RWLOCK(keyring_name_lock);
53
54/*
55 * Clean up the bits of user_namespace that belong to us.
56 */
57void key_free_user_ns(struct user_namespace *ns)
58{
59	write_lock(&keyring_name_lock);
60	list_del_init(&ns->keyring_name_list);
61	write_unlock(&keyring_name_lock);
62
63	key_put(ns->user_keyring_register);
64#ifdef CONFIG_PERSISTENT_KEYRINGS
65	key_put(ns->persistent_keyring_register);
66#endif
67}
68
69/*
70 * The keyring key type definition.  Keyrings are simply keys of this type and
71 * can be treated as ordinary keys in addition to having their own special
72 * operations.
73 */
74static int keyring_preparse(struct key_preparsed_payload *prep);
75static void keyring_free_preparse(struct key_preparsed_payload *prep);
76static int keyring_instantiate(struct key *keyring,
77			       struct key_preparsed_payload *prep);
78static void keyring_revoke(struct key *keyring);
79static void keyring_destroy(struct key *keyring);
80static void keyring_describe(const struct key *keyring, struct seq_file *m);
81static long keyring_read(const struct key *keyring,
82			 char *buffer, size_t buflen);
83
84struct key_type key_type_keyring = {
85	.name		= "keyring",
86	.def_datalen	= 0,
87	.preparse	= keyring_preparse,
88	.free_preparse	= keyring_free_preparse,
89	.instantiate	= keyring_instantiate,
90	.revoke		= keyring_revoke,
91	.destroy	= keyring_destroy,
92	.describe	= keyring_describe,
93	.read		= keyring_read,
94};
95EXPORT_SYMBOL(key_type_keyring);
96
97/*
98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
99 * introducing a cycle.
100 */
101static DEFINE_MUTEX(keyring_serialise_link_lock);
102
103/*
104 * Publish the name of a keyring so that it can be found by name (if it has
105 * one and it doesn't begin with a dot).
106 */
107static void keyring_publish_name(struct key *keyring)
108{
109	struct user_namespace *ns = current_user_ns();
110
111	if (keyring->description &&
112	    keyring->description[0] &&
113	    keyring->description[0] != '.') {
114		write_lock(&keyring_name_lock);
115		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116		write_unlock(&keyring_name_lock);
117	}
118}
119
120/*
121 * Preparse a keyring payload
122 */
123static int keyring_preparse(struct key_preparsed_payload *prep)
124{
125	return prep->datalen != 0 ? -EINVAL : 0;
126}
127
128/*
129 * Free a preparse of a user defined key payload
130 */
131static void keyring_free_preparse(struct key_preparsed_payload *prep)
132{
133}
134
135/*
136 * Initialise a keyring.
137 *
138 * Returns 0 on success, -EINVAL if given any data.
139 */
140static int keyring_instantiate(struct key *keyring,
141			       struct key_preparsed_payload *prep)
142{
143	assoc_array_init(&keyring->keys);
144	/* make the keyring available by name if it has one */
145	keyring_publish_name(keyring);
146	return 0;
147}
148
149/*
150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
151 * fold the carry back too, but that requires inline asm.
152 */
153static u64 mult_64x32_and_fold(u64 x, u32 y)
154{
155	u64 hi = (u64)(u32)(x >> 32) * y;
156	u64 lo = (u64)(u32)(x) * y;
157	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158}
159
160/*
161 * Hash a key type and description.
162 */
163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164{
165	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167	const char *description = index_key->description;
168	unsigned long hash, type;
169	u32 piece;
170	u64 acc;
171	int n, desc_len = index_key->desc_len;
172
173	type = (unsigned long)index_key->type;
174	acc = mult_64x32_and_fold(type, desc_len + 13);
175	acc = mult_64x32_and_fold(acc, 9207);
176	piece = (unsigned long)index_key->domain_tag;
177	acc = mult_64x32_and_fold(acc, piece);
178	acc = mult_64x32_and_fold(acc, 9207);
179
180	for (;;) {
181		n = desc_len;
182		if (n <= 0)
183			break;
184		if (n > 4)
185			n = 4;
186		piece = 0;
187		memcpy(&piece, description, n);
188		description += n;
189		desc_len -= n;
190		acc = mult_64x32_and_fold(acc, piece);
191		acc = mult_64x32_and_fold(acc, 9207);
192	}
193
194	/* Fold the hash down to 32 bits if need be. */
195	hash = acc;
196	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197		hash ^= acc >> 32;
198
199	/* Squidge all the keyrings into a separate part of the tree to
200	 * ordinary keys by making sure the lowest level segment in the hash is
201	 * zero for keyrings and non-zero otherwise.
202	 */
203	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206		hash = (hash + (hash << level_shift)) & ~fan_mask;
207	index_key->hash = hash;
208}
209
210/*
211 * Finalise an index key to include a part of the description actually in the
212 * index key, to set the domain tag and to calculate the hash.
213 */
214void key_set_index_key(struct keyring_index_key *index_key)
215{
216	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218
219	memcpy(index_key->desc, index_key->description, n);
220
221	if (!index_key->domain_tag) {
222		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224		else
225			index_key->domain_tag = &default_domain_tag;
226	}
227
228	hash_key_type_and_desc(index_key);
229}
230
231/**
232 * key_put_tag - Release a ref on a tag.
233 * @tag: The tag to release.
234 *
235 * This releases a reference the given tag and returns true if that ref was the
236 * last one.
237 */
238bool key_put_tag(struct key_tag *tag)
239{
240	if (refcount_dec_and_test(&tag->usage)) {
241		kfree_rcu(tag, rcu);
242		return true;
243	}
244
245	return false;
246}
247
248/**
249 * key_remove_domain - Kill off a key domain and gc its keys
250 * @domain_tag: The domain tag to release.
251 *
252 * This marks a domain tag as being dead and releases a ref on it.  If that
253 * wasn't the last reference, the garbage collector is poked to try and delete
254 * all keys that were in the domain.
255 */
256void key_remove_domain(struct key_tag *domain_tag)
257{
258	domain_tag->removed = true;
259	if (!key_put_tag(domain_tag))
260		key_schedule_gc_links();
261}
262
263/*
264 * Build the next index key chunk.
265 *
266 * We return it one word-sized chunk at a time.
267 */
268static unsigned long keyring_get_key_chunk(const void *data, int level)
269{
270	const struct keyring_index_key *index_key = data;
271	unsigned long chunk = 0;
272	const u8 *d;
273	int desc_len = index_key->desc_len, n = sizeof(chunk);
274
275	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276	switch (level) {
277	case 0:
278		return index_key->hash;
279	case 1:
280		return index_key->x;
281	case 2:
282		return (unsigned long)index_key->type;
283	case 3:
284		return (unsigned long)index_key->domain_tag;
285	default:
286		level -= 4;
287		if (desc_len <= sizeof(index_key->desc))
288			return 0;
289
290		d = index_key->description + sizeof(index_key->desc);
291		d += level * sizeof(long);
292		desc_len -= sizeof(index_key->desc);
293		if (desc_len > n)
294			desc_len = n;
295		do {
296			chunk <<= 8;
297			chunk |= *d++;
298		} while (--desc_len > 0);
299		return chunk;
300	}
301}
302
303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304{
305	const struct key *key = keyring_ptr_to_key(object);
306	return keyring_get_key_chunk(&key->index_key, level);
307}
308
309static bool keyring_compare_object(const void *object, const void *data)
310{
311	const struct keyring_index_key *index_key = data;
312	const struct key *key = keyring_ptr_to_key(object);
313
314	return key->index_key.type == index_key->type &&
315		key->index_key.domain_tag == index_key->domain_tag &&
316		key->index_key.desc_len == index_key->desc_len &&
317		memcmp(key->index_key.description, index_key->description,
318		       index_key->desc_len) == 0;
319}
320
321/*
322 * Compare the index keys of a pair of objects and determine the bit position
323 * at which they differ - if they differ.
324 */
325static int keyring_diff_objects(const void *object, const void *data)
326{
327	const struct key *key_a = keyring_ptr_to_key(object);
328	const struct keyring_index_key *a = &key_a->index_key;
329	const struct keyring_index_key *b = data;
330	unsigned long seg_a, seg_b;
331	int level, i;
332
333	level = 0;
334	seg_a = a->hash;
335	seg_b = b->hash;
336	if ((seg_a ^ seg_b) != 0)
337		goto differ;
338	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339
340	/* The number of bits contributed by the hash is controlled by a
341	 * constant in the assoc_array headers.  Everything else thereafter we
342	 * can deal with as being machine word-size dependent.
343	 */
344	seg_a = a->x;
345	seg_b = b->x;
346	if ((seg_a ^ seg_b) != 0)
347		goto differ;
348	level += sizeof(unsigned long);
349
350	/* The next bit may not work on big endian */
351	seg_a = (unsigned long)a->type;
352	seg_b = (unsigned long)b->type;
353	if ((seg_a ^ seg_b) != 0)
354		goto differ;
355	level += sizeof(unsigned long);
356
357	seg_a = (unsigned long)a->domain_tag;
358	seg_b = (unsigned long)b->domain_tag;
359	if ((seg_a ^ seg_b) != 0)
360		goto differ;
361	level += sizeof(unsigned long);
362
363	i = sizeof(a->desc);
364	if (a->desc_len <= i)
365		goto same;
366
367	for (; i < a->desc_len; i++) {
368		seg_a = *(unsigned char *)(a->description + i);
369		seg_b = *(unsigned char *)(b->description + i);
370		if ((seg_a ^ seg_b) != 0)
371			goto differ_plus_i;
372	}
373
374same:
375	return -1;
376
377differ_plus_i:
378	level += i;
379differ:
380	i = level * 8 + __ffs(seg_a ^ seg_b);
381	return i;
382}
383
384/*
385 * Free an object after stripping the keyring flag off of the pointer.
386 */
387static void keyring_free_object(void *object)
388{
389	key_put(keyring_ptr_to_key(object));
390}
391
392/*
393 * Operations for keyring management by the index-tree routines.
394 */
395static const struct assoc_array_ops keyring_assoc_array_ops = {
396	.get_key_chunk		= keyring_get_key_chunk,
397	.get_object_key_chunk	= keyring_get_object_key_chunk,
398	.compare_object		= keyring_compare_object,
399	.diff_objects		= keyring_diff_objects,
400	.free_object		= keyring_free_object,
401};
402
403/*
404 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
405 * and dispose of its data.
406 *
407 * The garbage collector detects the final key_put(), removes the keyring from
408 * the serial number tree and then does RCU synchronisation before coming here,
409 * so we shouldn't need to worry about code poking around here with the RCU
410 * readlock held by this time.
411 */
412static void keyring_destroy(struct key *keyring)
413{
414	if (keyring->description) {
415		write_lock(&keyring_name_lock);
416
417		if (keyring->name_link.next != NULL &&
418		    !list_empty(&keyring->name_link))
419			list_del(&keyring->name_link);
420
421		write_unlock(&keyring_name_lock);
422	}
423
424	if (keyring->restrict_link) {
425		struct key_restriction *keyres = keyring->restrict_link;
426
427		key_put(keyres->key);
428		kfree(keyres);
429	}
430
431	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432}
433
434/*
435 * Describe a keyring for /proc.
436 */
437static void keyring_describe(const struct key *keyring, struct seq_file *m)
438{
439	if (keyring->description)
440		seq_puts(m, keyring->description);
441	else
442		seq_puts(m, "[anon]");
443
444	if (key_is_positive(keyring)) {
445		if (keyring->keys.nr_leaves_on_tree != 0)
446			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447		else
448			seq_puts(m, ": empty");
449	}
450}
451
452struct keyring_read_iterator_context {
453	size_t			buflen;
454	size_t			count;
455	key_serial_t		*buffer;
456};
457
458static int keyring_read_iterator(const void *object, void *data)
459{
460	struct keyring_read_iterator_context *ctx = data;
461	const struct key *key = keyring_ptr_to_key(object);
462
463	kenter("{%s,%d},,{%zu/%zu}",
464	       key->type->name, key->serial, ctx->count, ctx->buflen);
465
466	if (ctx->count >= ctx->buflen)
467		return 1;
468
469	*ctx->buffer++ = key->serial;
470	ctx->count += sizeof(key->serial);
471	return 0;
472}
473
474/*
475 * Read a list of key IDs from the keyring's contents in binary form
476 *
477 * The keyring's semaphore is read-locked by the caller.  This prevents someone
478 * from modifying it under us - which could cause us to read key IDs multiple
479 * times.
480 */
481static long keyring_read(const struct key *keyring,
482			 char *buffer, size_t buflen)
483{
484	struct keyring_read_iterator_context ctx;
485	long ret;
486
487	kenter("{%d},,%zu", key_serial(keyring), buflen);
488
489	if (buflen & (sizeof(key_serial_t) - 1))
490		return -EINVAL;
491
492	/* Copy as many key IDs as fit into the buffer */
493	if (buffer && buflen) {
494		ctx.buffer = (key_serial_t *)buffer;
495		ctx.buflen = buflen;
496		ctx.count = 0;
497		ret = assoc_array_iterate(&keyring->keys,
498					  keyring_read_iterator, &ctx);
499		if (ret < 0) {
500			kleave(" = %ld [iterate]", ret);
501			return ret;
502		}
503	}
504
505	/* Return the size of the buffer needed */
506	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
507	if (ret <= buflen)
508		kleave("= %ld [ok]", ret);
509	else
510		kleave("= %ld [buffer too small]", ret);
511	return ret;
512}
513
514/*
515 * Allocate a keyring and link into the destination keyring.
516 */
517struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
518			  const struct cred *cred, key_perm_t perm,
519			  unsigned long flags,
520			  struct key_restriction *restrict_link,
521			  struct key *dest)
522{
523	struct key *keyring;
524	int ret;
525
526	keyring = key_alloc(&key_type_keyring, description,
527			    uid, gid, cred, perm, flags, restrict_link);
528	if (!IS_ERR(keyring)) {
529		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
530		if (ret < 0) {
531			key_put(keyring);
532			keyring = ERR_PTR(ret);
533		}
534	}
535
536	return keyring;
537}
538EXPORT_SYMBOL(keyring_alloc);
539
540/**
541 * restrict_link_reject - Give -EPERM to restrict link
542 * @keyring: The keyring being added to.
543 * @type: The type of key being added.
544 * @payload: The payload of the key intended to be added.
545 * @restriction_key: Keys providing additional data for evaluating restriction.
546 *
547 * Reject the addition of any links to a keyring.  It can be overridden by
548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549 * adding a key to a keyring.
550 *
551 * This is meant to be stored in a key_restriction structure which is passed
552 * in the restrict_link parameter to keyring_alloc().
553 */
554int restrict_link_reject(struct key *keyring,
555			 const struct key_type *type,
556			 const union key_payload *payload,
557			 struct key *restriction_key)
558{
559	return -EPERM;
560}
561
562/*
563 * By default, we keys found by getting an exact match on their descriptions.
564 */
565bool key_default_cmp(const struct key *key,
566		     const struct key_match_data *match_data)
567{
568	return strcmp(key->description, match_data->raw_data) == 0;
569}
570
571/*
572 * Iteration function to consider each key found.
573 */
574static int keyring_search_iterator(const void *object, void *iterator_data)
575{
576	struct keyring_search_context *ctx = iterator_data;
577	const struct key *key = keyring_ptr_to_key(object);
578	unsigned long kflags = READ_ONCE(key->flags);
579	short state = READ_ONCE(key->state);
580
581	kenter("{%d}", key->serial);
582
583	/* ignore keys not of this type */
584	if (key->type != ctx->index_key.type) {
585		kleave(" = 0 [!type]");
586		return 0;
587	}
588
589	/* skip invalidated, revoked and expired keys */
590	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
591		time64_t expiry = READ_ONCE(key->expiry);
592
593		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
594			      (1 << KEY_FLAG_REVOKED))) {
595			ctx->result = ERR_PTR(-EKEYREVOKED);
596			kleave(" = %d [invrev]", ctx->skipped_ret);
597			goto skipped;
598		}
599
600		if (expiry && ctx->now >= expiry) {
601			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
602				ctx->result = ERR_PTR(-EKEYEXPIRED);
603			kleave(" = %d [expire]", ctx->skipped_ret);
604			goto skipped;
605		}
606	}
607
608	/* keys that don't match */
609	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
610		kleave(" = 0 [!match]");
611		return 0;
612	}
613
614	/* key must have search permissions */
615	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
616	    key_task_permission(make_key_ref(key, ctx->possessed),
617				ctx->cred, KEY_NEED_SEARCH) < 0) {
618		ctx->result = ERR_PTR(-EACCES);
619		kleave(" = %d [!perm]", ctx->skipped_ret);
620		goto skipped;
621	}
622
623	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
624		/* we set a different error code if we pass a negative key */
625		if (state < 0) {
626			ctx->result = ERR_PTR(state);
627			kleave(" = %d [neg]", ctx->skipped_ret);
628			goto skipped;
629		}
630	}
631
632	/* Found */
633	ctx->result = make_key_ref(key, ctx->possessed);
634	kleave(" = 1 [found]");
635	return 1;
636
637skipped:
638	return ctx->skipped_ret;
639}
640
641/*
642 * Search inside a keyring for a key.  We can search by walking to it
643 * directly based on its index-key or we can iterate over the entire
644 * tree looking for it, based on the match function.
645 */
646static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
647{
648	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
649		const void *object;
650
651		object = assoc_array_find(&keyring->keys,
652					  &keyring_assoc_array_ops,
653					  &ctx->index_key);
654		return object ? ctx->iterator(object, ctx) : 0;
655	}
656	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
657}
658
659/*
660 * Search a tree of keyrings that point to other keyrings up to the maximum
661 * depth.
662 */
663static bool search_nested_keyrings(struct key *keyring,
664				   struct keyring_search_context *ctx)
665{
666	struct {
667		struct key *keyring;
668		struct assoc_array_node *node;
669		int slot;
670	} stack[KEYRING_SEARCH_MAX_DEPTH];
671
672	struct assoc_array_shortcut *shortcut;
673	struct assoc_array_node *node;
674	struct assoc_array_ptr *ptr;
675	struct key *key;
676	int sp = 0, slot;
677
678	kenter("{%d},{%s,%s}",
679	       keyring->serial,
680	       ctx->index_key.type->name,
681	       ctx->index_key.description);
682
683#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
685	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
686
687	if (ctx->index_key.description)
688		key_set_index_key(&ctx->index_key);
689
690	/* Check to see if this top-level keyring is what we are looking for
691	 * and whether it is valid or not.
692	 */
693	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
694	    keyring_compare_object(keyring, &ctx->index_key)) {
695		ctx->skipped_ret = 2;
696		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
697		case 1:
698			goto found;
699		case 2:
700			return false;
701		default:
702			break;
703		}
704	}
705
706	ctx->skipped_ret = 0;
707
708	/* Start processing a new keyring */
709descend_to_keyring:
710	kdebug("descend to %d", keyring->serial);
711	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
712			      (1 << KEY_FLAG_REVOKED)))
713		goto not_this_keyring;
714
715	/* Search through the keys in this keyring before its searching its
716	 * subtrees.
717	 */
718	if (search_keyring(keyring, ctx))
719		goto found;
720
721	/* Then manually iterate through the keyrings nested in this one.
722	 *
723	 * Start from the root node of the index tree.  Because of the way the
724	 * hash function has been set up, keyrings cluster on the leftmost
725	 * branch of the root node (root slot 0) or in the root node itself.
726	 * Non-keyrings avoid the leftmost branch of the root entirely (root
727	 * slots 1-15).
728	 */
729	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
730		goto not_this_keyring;
731
732	ptr = READ_ONCE(keyring->keys.root);
733	if (!ptr)
734		goto not_this_keyring;
735
736	if (assoc_array_ptr_is_shortcut(ptr)) {
737		/* If the root is a shortcut, either the keyring only contains
738		 * keyring pointers (everything clusters behind root slot 0) or
739		 * doesn't contain any keyring pointers.
740		 */
741		shortcut = assoc_array_ptr_to_shortcut(ptr);
742		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
743			goto not_this_keyring;
744
745		ptr = READ_ONCE(shortcut->next_node);
746		node = assoc_array_ptr_to_node(ptr);
747		goto begin_node;
748	}
749
750	node = assoc_array_ptr_to_node(ptr);
751	ptr = node->slots[0];
752	if (!assoc_array_ptr_is_meta(ptr))
753		goto begin_node;
754
755descend_to_node:
756	/* Descend to a more distal node in this keyring's content tree and go
757	 * through that.
758	 */
759	kdebug("descend");
760	if (assoc_array_ptr_is_shortcut(ptr)) {
761		shortcut = assoc_array_ptr_to_shortcut(ptr);
762		ptr = READ_ONCE(shortcut->next_node);
763		BUG_ON(!assoc_array_ptr_is_node(ptr));
764	}
765	node = assoc_array_ptr_to_node(ptr);
766
767begin_node:
768	kdebug("begin_node");
769	slot = 0;
770ascend_to_node:
771	/* Go through the slots in a node */
772	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
773		ptr = READ_ONCE(node->slots[slot]);
774
775		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
776			goto descend_to_node;
777
778		if (!keyring_ptr_is_keyring(ptr))
779			continue;
780
781		key = keyring_ptr_to_key(ptr);
782
783		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
784			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
785				ctx->result = ERR_PTR(-ELOOP);
786				return false;
787			}
788			goto not_this_keyring;
789		}
790
791		/* Search a nested keyring */
792		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
793		    key_task_permission(make_key_ref(key, ctx->possessed),
794					ctx->cred, KEY_NEED_SEARCH) < 0)
795			continue;
796
797		/* stack the current position */
798		stack[sp].keyring = keyring;
799		stack[sp].node = node;
800		stack[sp].slot = slot;
801		sp++;
802
803		/* begin again with the new keyring */
804		keyring = key;
805		goto descend_to_keyring;
806	}
807
808	/* We've dealt with all the slots in the current node, so now we need
809	 * to ascend to the parent and continue processing there.
810	 */
811	ptr = READ_ONCE(node->back_pointer);
812	slot = node->parent_slot;
813
814	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
815		shortcut = assoc_array_ptr_to_shortcut(ptr);
816		ptr = READ_ONCE(shortcut->back_pointer);
817		slot = shortcut->parent_slot;
818	}
819	if (!ptr)
820		goto not_this_keyring;
821	node = assoc_array_ptr_to_node(ptr);
822	slot++;
823
824	/* If we've ascended to the root (zero backpointer), we must have just
825	 * finished processing the leftmost branch rather than the root slots -
826	 * so there can't be any more keyrings for us to find.
827	 */
828	if (node->back_pointer) {
829		kdebug("ascend %d", slot);
830		goto ascend_to_node;
831	}
832
833	/* The keyring we're looking at was disqualified or didn't contain a
834	 * matching key.
835	 */
836not_this_keyring:
837	kdebug("not_this_keyring %d", sp);
838	if (sp <= 0) {
839		kleave(" = false");
840		return false;
841	}
842
843	/* Resume the processing of a keyring higher up in the tree */
844	sp--;
845	keyring = stack[sp].keyring;
846	node = stack[sp].node;
847	slot = stack[sp].slot + 1;
848	kdebug("ascend to %d [%d]", keyring->serial, slot);
849	goto ascend_to_node;
850
851	/* We found a viable match */
852found:
853	key = key_ref_to_ptr(ctx->result);
854	key_check(key);
855	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
856		key->last_used_at = ctx->now;
857		keyring->last_used_at = ctx->now;
858		while (sp > 0)
859			stack[--sp].keyring->last_used_at = ctx->now;
860	}
861	kleave(" = true");
862	return true;
863}
864
865/**
866 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
867 * @keyring_ref: A pointer to the keyring with possession indicator.
868 * @ctx: The keyring search context.
869 *
870 * Search the supplied keyring tree for a key that matches the criteria given.
871 * The root keyring and any linked keyrings must grant Search permission to the
872 * caller to be searchable and keys can only be found if they too grant Search
873 * to the caller. The possession flag on the root keyring pointer controls use
874 * of the possessor bits in permissions checking of the entire tree.  In
875 * addition, the LSM gets to forbid keyring searches and key matches.
876 *
877 * The search is performed as a breadth-then-depth search up to the prescribed
878 * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
879 * prevent keyrings from being destroyed or rearranged whilst they are being
880 * searched.
881 *
882 * Keys are matched to the type provided and are then filtered by the match
883 * function, which is given the description to use in any way it sees fit.  The
884 * match function may use any attributes of a key that it wishes to
885 * determine the match.  Normally the match function from the key type would be
886 * used.
887 *
888 * RCU can be used to prevent the keyring key lists from disappearing without
889 * the need to take lots of locks.
890 *
891 * Returns a pointer to the found key and increments the key usage count if
892 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
893 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
894 * specified keyring wasn't a keyring.
895 *
896 * In the case of a successful return, the possession attribute from
897 * @keyring_ref is propagated to the returned key reference.
898 */
899key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
900			     struct keyring_search_context *ctx)
901{
902	struct key *keyring;
903	long err;
904
905	ctx->iterator = keyring_search_iterator;
906	ctx->possessed = is_key_possessed(keyring_ref);
907	ctx->result = ERR_PTR(-EAGAIN);
908
909	keyring = key_ref_to_ptr(keyring_ref);
910	key_check(keyring);
911
912	if (keyring->type != &key_type_keyring)
913		return ERR_PTR(-ENOTDIR);
914
915	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
916		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
917		if (err < 0)
918			return ERR_PTR(err);
919	}
920
921	ctx->now = ktime_get_real_seconds();
922	if (search_nested_keyrings(keyring, ctx))
923		__key_get(key_ref_to_ptr(ctx->result));
924	return ctx->result;
925}
926
927/**
928 * keyring_search - Search the supplied keyring tree for a matching key
929 * @keyring: The root of the keyring tree to be searched.
930 * @type: The type of keyring we want to find.
931 * @description: The name of the keyring we want to find.
932 * @recurse: True to search the children of @keyring also
933 *
934 * As keyring_search_rcu() above, but using the current task's credentials and
935 * type's default matching function and preferred search method.
936 */
937key_ref_t keyring_search(key_ref_t keyring,
938			 struct key_type *type,
939			 const char *description,
940			 bool recurse)
941{
942	struct keyring_search_context ctx = {
943		.index_key.type		= type,
944		.index_key.description	= description,
945		.index_key.desc_len	= strlen(description),
946		.cred			= current_cred(),
947		.match_data.cmp		= key_default_cmp,
948		.match_data.raw_data	= description,
949		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
950		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
951	};
952	key_ref_t key;
953	int ret;
954
955	if (recurse)
956		ctx.flags |= KEYRING_SEARCH_RECURSE;
957	if (type->match_preparse) {
958		ret = type->match_preparse(&ctx.match_data);
959		if (ret < 0)
960			return ERR_PTR(ret);
961	}
962
963	rcu_read_lock();
964	key = keyring_search_rcu(keyring, &ctx);
965	rcu_read_unlock();
966
967	if (type->match_free)
968		type->match_free(&ctx.match_data);
969	return key;
970}
971EXPORT_SYMBOL(keyring_search);
972
973static struct key_restriction *keyring_restriction_alloc(
974	key_restrict_link_func_t check)
975{
976	struct key_restriction *keyres =
977		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
978
979	if (!keyres)
980		return ERR_PTR(-ENOMEM);
981
982	keyres->check = check;
983
984	return keyres;
985}
986
987/*
988 * Semaphore to serialise restriction setup to prevent reference count
989 * cycles through restriction key pointers.
990 */
991static DECLARE_RWSEM(keyring_serialise_restrict_sem);
992
993/*
994 * Check for restriction cycles that would prevent keyring garbage collection.
995 * keyring_serialise_restrict_sem must be held.
996 */
997static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
998					     struct key_restriction *keyres)
999{
1000	while (keyres && keyres->key &&
1001	       keyres->key->type == &key_type_keyring) {
1002		if (keyres->key == dest_keyring)
1003			return true;
1004
1005		keyres = keyres->key->restrict_link;
1006	}
1007
1008	return false;
1009}
1010
1011/**
1012 * keyring_restrict - Look up and apply a restriction to a keyring
1013 * @keyring_ref: The keyring to be restricted
1014 * @type: The key type that will provide the restriction checker.
1015 * @restriction: The restriction options to apply to the keyring
1016 *
1017 * Look up a keyring and apply a restriction to it.  The restriction is managed
1018 * by the specific key type, but can be configured by the options specified in
1019 * the restriction string.
1020 */
1021int keyring_restrict(key_ref_t keyring_ref, const char *type,
1022		     const char *restriction)
1023{
1024	struct key *keyring;
1025	struct key_type *restrict_type = NULL;
1026	struct key_restriction *restrict_link;
1027	int ret = 0;
1028
1029	keyring = key_ref_to_ptr(keyring_ref);
1030	key_check(keyring);
1031
1032	if (keyring->type != &key_type_keyring)
1033		return -ENOTDIR;
1034
1035	if (!type) {
1036		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1037	} else {
1038		restrict_type = key_type_lookup(type);
1039
1040		if (IS_ERR(restrict_type))
1041			return PTR_ERR(restrict_type);
1042
1043		if (!restrict_type->lookup_restriction) {
1044			ret = -ENOENT;
1045			goto error;
1046		}
1047
1048		restrict_link = restrict_type->lookup_restriction(restriction);
1049	}
1050
1051	if (IS_ERR(restrict_link)) {
1052		ret = PTR_ERR(restrict_link);
1053		goto error;
1054	}
1055
1056	down_write(&keyring->sem);
1057	down_write(&keyring_serialise_restrict_sem);
1058
1059	if (keyring->restrict_link) {
1060		ret = -EEXIST;
1061	} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1062		ret = -EDEADLK;
1063	} else {
1064		keyring->restrict_link = restrict_link;
1065		notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1066	}
1067
1068	up_write(&keyring_serialise_restrict_sem);
1069	up_write(&keyring->sem);
1070
1071	if (ret < 0) {
1072		key_put(restrict_link->key);
1073		kfree(restrict_link);
1074	}
1075
1076error:
1077	if (restrict_type)
1078		key_type_put(restrict_type);
1079
1080	return ret;
1081}
1082EXPORT_SYMBOL(keyring_restrict);
1083
1084/*
1085 * Search the given keyring for a key that might be updated.
1086 *
1087 * The caller must guarantee that the keyring is a keyring and that the
1088 * permission is granted to modify the keyring as no check is made here.  The
1089 * caller must also hold a lock on the keyring semaphore.
1090 *
1091 * Returns a pointer to the found key with usage count incremented if
1092 * successful and returns NULL if not found.  Revoked and invalidated keys are
1093 * skipped over.
1094 *
1095 * If successful, the possession indicator is propagated from the keyring ref
1096 * to the returned key reference.
1097 */
1098key_ref_t find_key_to_update(key_ref_t keyring_ref,
1099			     const struct keyring_index_key *index_key)
1100{
1101	struct key *keyring, *key;
1102	const void *object;
1103
1104	keyring = key_ref_to_ptr(keyring_ref);
1105
1106	kenter("{%d},{%s,%s}",
1107	       keyring->serial, index_key->type->name, index_key->description);
1108
1109	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1110				  index_key);
1111
1112	if (object)
1113		goto found;
1114
1115	kleave(" = NULL");
1116	return NULL;
1117
1118found:
1119	key = keyring_ptr_to_key(object);
1120	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1121			  (1 << KEY_FLAG_REVOKED))) {
1122		kleave(" = NULL [x]");
1123		return NULL;
1124	}
1125	__key_get(key);
1126	kleave(" = {%d}", key->serial);
1127	return make_key_ref(key, is_key_possessed(keyring_ref));
1128}
1129
1130/*
1131 * Find a keyring with the specified name.
1132 *
1133 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1134 * user in the current user namespace are considered.  If @uid_keyring is %true,
1135 * the keyring additionally must have been allocated as a user or user session
1136 * keyring; otherwise, it must grant Search permission directly to the caller.
1137 *
1138 * Returns a pointer to the keyring with the keyring's refcount having being
1139 * incremented on success.  -ENOKEY is returned if a key could not be found.
1140 */
1141struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1142{
1143	struct user_namespace *ns = current_user_ns();
1144	struct key *keyring;
1145
1146	if (!name)
1147		return ERR_PTR(-EINVAL);
1148
1149	read_lock(&keyring_name_lock);
1150
1151	/* Search this hash bucket for a keyring with a matching name that
1152	 * grants Search permission and that hasn't been revoked
1153	 */
1154	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1155		if (!kuid_has_mapping(ns, keyring->user->uid))
1156			continue;
1157
1158		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1159			continue;
1160
1161		if (strcmp(keyring->description, name) != 0)
1162			continue;
1163
1164		if (uid_keyring) {
1165			if (!test_bit(KEY_FLAG_UID_KEYRING,
1166				      &keyring->flags))
1167				continue;
1168		} else {
1169			if (key_permission(make_key_ref(keyring, 0),
1170					   KEY_NEED_SEARCH) < 0)
1171				continue;
1172		}
1173
1174		/* we've got a match but we might end up racing with
1175		 * key_cleanup() if the keyring is currently 'dead'
1176		 * (ie. it has a zero usage count) */
1177		if (!refcount_inc_not_zero(&keyring->usage))
1178			continue;
1179		keyring->last_used_at = ktime_get_real_seconds();
1180		goto out;
1181	}
1182
1183	keyring = ERR_PTR(-ENOKEY);
1184out:
1185	read_unlock(&keyring_name_lock);
1186	return keyring;
1187}
1188
1189static int keyring_detect_cycle_iterator(const void *object,
1190					 void *iterator_data)
1191{
1192	struct keyring_search_context *ctx = iterator_data;
1193	const struct key *key = keyring_ptr_to_key(object);
1194
1195	kenter("{%d}", key->serial);
1196
1197	/* We might get a keyring with matching index-key that is nonetheless a
1198	 * different keyring. */
1199	if (key != ctx->match_data.raw_data)
1200		return 0;
1201
1202	ctx->result = ERR_PTR(-EDEADLK);
1203	return 1;
1204}
1205
1206/*
1207 * See if a cycle will be created by inserting acyclic tree B in acyclic
1208 * tree A at the topmost level (ie: as a direct child of A).
1209 *
1210 * Since we are adding B to A at the top level, checking for cycles should just
1211 * be a matter of seeing if node A is somewhere in tree B.
1212 */
1213static int keyring_detect_cycle(struct key *A, struct key *B)
1214{
1215	struct keyring_search_context ctx = {
1216		.index_key		= A->index_key,
1217		.match_data.raw_data	= A,
1218		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1219		.iterator		= keyring_detect_cycle_iterator,
1220		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1221					   KEYRING_SEARCH_NO_UPDATE_TIME |
1222					   KEYRING_SEARCH_NO_CHECK_PERM |
1223					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1224					   KEYRING_SEARCH_RECURSE),
1225	};
1226
1227	rcu_read_lock();
1228	search_nested_keyrings(B, &ctx);
1229	rcu_read_unlock();
1230	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1231}
1232
1233/*
1234 * Lock keyring for link.
1235 */
1236int __key_link_lock(struct key *keyring,
1237		    const struct keyring_index_key *index_key)
1238	__acquires(&keyring->sem)
1239	__acquires(&keyring_serialise_link_lock)
1240{
1241	if (keyring->type != &key_type_keyring)
1242		return -ENOTDIR;
1243
1244	down_write(&keyring->sem);
1245
1246	/* Serialise link/link calls to prevent parallel calls causing a cycle
1247	 * when linking two keyring in opposite orders.
1248	 */
1249	if (index_key->type == &key_type_keyring)
1250		mutex_lock(&keyring_serialise_link_lock);
1251
1252	return 0;
1253}
1254
1255/*
1256 * Lock keyrings for move (link/unlink combination).
1257 */
1258int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1259		    const struct keyring_index_key *index_key)
1260	__acquires(&l_keyring->sem)
1261	__acquires(&u_keyring->sem)
1262	__acquires(&keyring_serialise_link_lock)
1263{
1264	if (l_keyring->type != &key_type_keyring ||
1265	    u_keyring->type != &key_type_keyring)
1266		return -ENOTDIR;
1267
1268	/* We have to be very careful here to take the keyring locks in the
1269	 * right order, lest we open ourselves to deadlocking against another
1270	 * move operation.
1271	 */
1272	if (l_keyring < u_keyring) {
1273		down_write(&l_keyring->sem);
1274		down_write_nested(&u_keyring->sem, 1);
1275	} else {
1276		down_write(&u_keyring->sem);
1277		down_write_nested(&l_keyring->sem, 1);
1278	}
1279
1280	/* Serialise link/link calls to prevent parallel calls causing a cycle
1281	 * when linking two keyring in opposite orders.
1282	 */
1283	if (index_key->type == &key_type_keyring)
1284		mutex_lock(&keyring_serialise_link_lock);
1285
1286	return 0;
1287}
1288
1289/*
1290 * Preallocate memory so that a key can be linked into to a keyring.
1291 */
1292int __key_link_begin(struct key *keyring,
1293		     const struct keyring_index_key *index_key,
1294		     struct assoc_array_edit **_edit)
1295{
1296	struct assoc_array_edit *edit;
1297	int ret;
1298
1299	kenter("%d,%s,%s,",
1300	       keyring->serial, index_key->type->name, index_key->description);
1301
1302	BUG_ON(index_key->desc_len == 0);
1303	BUG_ON(*_edit != NULL);
1304
1305	*_edit = NULL;
1306
1307	ret = -EKEYREVOKED;
1308	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1309		goto error;
1310
1311	/* Create an edit script that will insert/replace the key in the
1312	 * keyring tree.
1313	 */
1314	edit = assoc_array_insert(&keyring->keys,
1315				  &keyring_assoc_array_ops,
1316				  index_key,
1317				  NULL);
1318	if (IS_ERR(edit)) {
1319		ret = PTR_ERR(edit);
1320		goto error;
1321	}
1322
1323	/* If we're not replacing a link in-place then we're going to need some
1324	 * extra quota.
1325	 */
1326	if (!edit->dead_leaf) {
1327		ret = key_payload_reserve(keyring,
1328					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1329		if (ret < 0)
1330			goto error_cancel;
1331	}
1332
1333	*_edit = edit;
1334	kleave(" = 0");
1335	return 0;
1336
1337error_cancel:
1338	assoc_array_cancel_edit(edit);
1339error:
1340	kleave(" = %d", ret);
1341	return ret;
1342}
1343
1344/*
1345 * Check already instantiated keys aren't going to be a problem.
1346 *
1347 * The caller must have called __key_link_begin(). Don't need to call this for
1348 * keys that were created since __key_link_begin() was called.
1349 */
1350int __key_link_check_live_key(struct key *keyring, struct key *key)
1351{
1352	if (key->type == &key_type_keyring)
1353		/* check that we aren't going to create a cycle by linking one
1354		 * keyring to another */
1355		return keyring_detect_cycle(keyring, key);
1356	return 0;
1357}
1358
1359/*
1360 * Link a key into to a keyring.
1361 *
1362 * Must be called with __key_link_begin() having being called.  Discards any
1363 * already extant link to matching key if there is one, so that each keyring
1364 * holds at most one link to any given key of a particular type+description
1365 * combination.
1366 */
1367void __key_link(struct key *keyring, struct key *key,
1368		struct assoc_array_edit **_edit)
1369{
1370	__key_get(key);
1371	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1372	assoc_array_apply_edit(*_edit);
1373	*_edit = NULL;
1374	notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1375}
1376
1377/*
1378 * Finish linking a key into to a keyring.
1379 *
1380 * Must be called with __key_link_begin() having being called.
1381 */
1382void __key_link_end(struct key *keyring,
1383		    const struct keyring_index_key *index_key,
1384		    struct assoc_array_edit *edit)
1385	__releases(&keyring->sem)
1386	__releases(&keyring_serialise_link_lock)
1387{
1388	BUG_ON(index_key->type == NULL);
1389	kenter("%d,%s,", keyring->serial, index_key->type->name);
1390
1391	if (edit) {
1392		if (!edit->dead_leaf) {
1393			key_payload_reserve(keyring,
1394				keyring->datalen - KEYQUOTA_LINK_BYTES);
1395		}
1396		assoc_array_cancel_edit(edit);
1397	}
1398	up_write(&keyring->sem);
1399
1400	if (index_key->type == &key_type_keyring)
1401		mutex_unlock(&keyring_serialise_link_lock);
1402}
1403
1404/*
1405 * Check addition of keys to restricted keyrings.
1406 */
1407static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408{
1409	if (!keyring->restrict_link || !keyring->restrict_link->check)
1410		return 0;
1411	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412					     keyring->restrict_link->key);
1413}
1414
1415/**
1416 * key_link - Link a key to a keyring
1417 * @keyring: The keyring to make the link in.
1418 * @key: The key to link to.
1419 *
1420 * Make a link in a keyring to a key, such that the keyring holds a reference
1421 * on that key and the key can potentially be found by searching that keyring.
1422 *
1423 * This function will write-lock the keyring's semaphore and will consume some
1424 * of the user's key data quota to hold the link.
1425 *
1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
1429 * another link or -ENOMEM if there's insufficient memory.
1430 *
1431 * It is assumed that the caller has checked that it is permitted for a link to
1432 * be made (the keyring should have Write permission and the key Link
1433 * permission).
1434 */
1435int key_link(struct key *keyring, struct key *key)
1436{
1437	struct assoc_array_edit *edit = NULL;
1438	int ret;
1439
1440	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441
1442	key_check(keyring);
1443	key_check(key);
1444
1445	ret = __key_link_lock(keyring, &key->index_key);
1446	if (ret < 0)
1447		goto error;
1448
1449	ret = __key_link_begin(keyring, &key->index_key, &edit);
1450	if (ret < 0)
1451		goto error_end;
1452
1453	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454	ret = __key_link_check_restriction(keyring, key);
1455	if (ret == 0)
1456		ret = __key_link_check_live_key(keyring, key);
1457	if (ret == 0)
1458		__key_link(keyring, key, &edit);
1459
1460error_end:
1461	__key_link_end(keyring, &key->index_key, edit);
1462error:
1463	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464	return ret;
1465}
1466EXPORT_SYMBOL(key_link);
1467
1468/*
1469 * Lock a keyring for unlink.
1470 */
1471static int __key_unlink_lock(struct key *keyring)
1472	__acquires(&keyring->sem)
1473{
1474	if (keyring->type != &key_type_keyring)
1475		return -ENOTDIR;
1476
1477	down_write(&keyring->sem);
1478	return 0;
1479}
1480
1481/*
1482 * Begin the process of unlinking a key from a keyring.
1483 */
1484static int __key_unlink_begin(struct key *keyring, struct key *key,
1485			      struct assoc_array_edit **_edit)
1486{
1487	struct assoc_array_edit *edit;
1488
1489	BUG_ON(*_edit != NULL);
1490
1491	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492				  &key->index_key);
1493	if (IS_ERR(edit))
1494		return PTR_ERR(edit);
1495
1496	if (!edit)
1497		return -ENOENT;
1498
1499	*_edit = edit;
1500	return 0;
1501}
1502
1503/*
1504 * Apply an unlink change.
1505 */
1506static void __key_unlink(struct key *keyring, struct key *key,
1507			 struct assoc_array_edit **_edit)
1508{
1509	assoc_array_apply_edit(*_edit);
1510	notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1511	*_edit = NULL;
1512	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1513}
1514
1515/*
1516 * Finish unlinking a key from to a keyring.
1517 */
1518static void __key_unlink_end(struct key *keyring,
1519			     struct key *key,
1520			     struct assoc_array_edit *edit)
1521	__releases(&keyring->sem)
1522{
1523	if (edit)
1524		assoc_array_cancel_edit(edit);
1525	up_write(&keyring->sem);
1526}
1527
1528/**
1529 * key_unlink - Unlink the first link to a key from a keyring.
1530 * @keyring: The keyring to remove the link from.
1531 * @key: The key the link is to.
1532 *
1533 * Remove a link from a keyring to a key.
1534 *
1535 * This function will write-lock the keyring's semaphore.
1536 *
1537 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1538 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1539 * memory.
1540 *
1541 * It is assumed that the caller has checked that it is permitted for a link to
1542 * be removed (the keyring should have Write permission; no permissions are
1543 * required on the key).
1544 */
1545int key_unlink(struct key *keyring, struct key *key)
1546{
1547	struct assoc_array_edit *edit = NULL;
1548	int ret;
1549
1550	key_check(keyring);
1551	key_check(key);
1552
1553	ret = __key_unlink_lock(keyring);
1554	if (ret < 0)
1555		return ret;
1556
1557	ret = __key_unlink_begin(keyring, key, &edit);
1558	if (ret == 0)
1559		__key_unlink(keyring, key, &edit);
1560	__key_unlink_end(keyring, key, edit);
1561	return ret;
1562}
1563EXPORT_SYMBOL(key_unlink);
1564
1565/**
1566 * key_move - Move a key from one keyring to another
1567 * @key: The key to move
1568 * @from_keyring: The keyring to remove the link from.
1569 * @to_keyring: The keyring to make the link in.
1570 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1571 *
1572 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1573 * on that key and the key can potentially be found by searching that keyring
1574 * whilst simultaneously removing a link to the key from @from_keyring.
1575 *
1576 * This function will write-lock both keyring's semaphores and will consume
1577 * some of the user's key data quota to hold the link on @to_keyring.
1578 *
1579 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1580 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1581 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1582 * to add another link or -ENOMEM if there's insufficient memory.  If
1583 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1584 * matching key in @to_keyring.
1585 *
1586 * It is assumed that the caller has checked that it is permitted for a link to
1587 * be made (the keyring should have Write permission and the key Link
1588 * permission).
1589 */
1590int key_move(struct key *key,
1591	     struct key *from_keyring,
1592	     struct key *to_keyring,
1593	     unsigned int flags)
1594{
1595	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1596	int ret;
1597
1598	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1599
1600	if (from_keyring == to_keyring)
1601		return 0;
1602
1603	key_check(key);
1604	key_check(from_keyring);
1605	key_check(to_keyring);
1606
1607	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1608	if (ret < 0)
1609		goto out;
1610	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1611	if (ret < 0)
1612		goto error;
1613	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1614	if (ret < 0)
1615		goto error;
1616
1617	ret = -EEXIST;
1618	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1619		goto error;
1620
1621	ret = __key_link_check_restriction(to_keyring, key);
1622	if (ret < 0)
1623		goto error;
1624	ret = __key_link_check_live_key(to_keyring, key);
1625	if (ret < 0)
1626		goto error;
1627
1628	__key_unlink(from_keyring, key, &from_edit);
1629	__key_link(to_keyring, key, &to_edit);
1630error:
1631	__key_link_end(to_keyring, &key->index_key, to_edit);
1632	__key_unlink_end(from_keyring, key, from_edit);
1633out:
1634	kleave(" = %d", ret);
1635	return ret;
1636}
1637EXPORT_SYMBOL(key_move);
1638
1639/**
1640 * keyring_clear - Clear a keyring
1641 * @keyring: The keyring to clear.
1642 *
1643 * Clear the contents of the specified keyring.
1644 *
1645 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1646 */
1647int keyring_clear(struct key *keyring)
1648{
1649	struct assoc_array_edit *edit;
1650	int ret;
1651
1652	if (keyring->type != &key_type_keyring)
1653		return -ENOTDIR;
1654
1655	down_write(&keyring->sem);
1656
1657	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1658	if (IS_ERR(edit)) {
1659		ret = PTR_ERR(edit);
1660	} else {
1661		if (edit)
1662			assoc_array_apply_edit(edit);
1663		notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1664		key_payload_reserve(keyring, 0);
1665		ret = 0;
1666	}
1667
1668	up_write(&keyring->sem);
1669	return ret;
1670}
1671EXPORT_SYMBOL(keyring_clear);
1672
1673/*
1674 * Dispose of the links from a revoked keyring.
1675 *
1676 * This is called with the key sem write-locked.
1677 */
1678static void keyring_revoke(struct key *keyring)
1679{
1680	struct assoc_array_edit *edit;
1681
1682	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1683	if (!IS_ERR(edit)) {
1684		if (edit)
1685			assoc_array_apply_edit(edit);
1686		key_payload_reserve(keyring, 0);
1687	}
1688}
1689
1690static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1691{
1692	struct key *key = keyring_ptr_to_key(object);
1693	time64_t *limit = iterator_data;
1694
1695	if (key_is_dead(key, *limit))
1696		return false;
1697	key_get(key);
1698	return true;
1699}
1700
1701static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1702{
1703	const struct key *key = keyring_ptr_to_key(object);
1704	time64_t *limit = iterator_data;
1705
1706	key_check(key);
1707	return key_is_dead(key, *limit);
1708}
1709
1710/*
1711 * Garbage collect pointers from a keyring.
1712 *
1713 * Not called with any locks held.  The keyring's key struct will not be
1714 * deallocated under us as only our caller may deallocate it.
1715 */
1716void keyring_gc(struct key *keyring, time64_t limit)
1717{
1718	int result;
1719
1720	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1721
1722	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1723			      (1 << KEY_FLAG_REVOKED)))
1724		goto dont_gc;
1725
1726	/* scan the keyring looking for dead keys */
1727	rcu_read_lock();
1728	result = assoc_array_iterate(&keyring->keys,
1729				     keyring_gc_check_iterator, &limit);
1730	rcu_read_unlock();
1731	if (result == true)
1732		goto do_gc;
1733
1734dont_gc:
1735	kleave(" [no gc]");
1736	return;
1737
1738do_gc:
1739	down_write(&keyring->sem);
1740	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1741		       keyring_gc_select_iterator, &limit);
1742	up_write(&keyring->sem);
1743	kleave(" [gc]");
1744}
1745
1746/*
1747 * Garbage collect restriction pointers from a keyring.
1748 *
1749 * Keyring restrictions are associated with a key type, and must be cleaned
1750 * up if the key type is unregistered. The restriction is altered to always
1751 * reject additional keys so a keyring cannot be opened up by unregistering
1752 * a key type.
1753 *
1754 * Not called with any keyring locks held. The keyring's key struct will not
1755 * be deallocated under us as only our caller may deallocate it.
1756 *
1757 * The caller is required to hold key_types_sem and dead_type->sem. This is
1758 * fulfilled by key_gc_keytype() holding the locks on behalf of
1759 * key_garbage_collector(), which it invokes on a workqueue.
1760 */
1761void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1762{
1763	struct key_restriction *keyres;
1764
1765	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1766
1767	/*
1768	 * keyring->restrict_link is only assigned at key allocation time
1769	 * or with the key type locked, so the only values that could be
1770	 * concurrently assigned to keyring->restrict_link are for key
1771	 * types other than dead_type. Given this, it's ok to check
1772	 * the key type before acquiring keyring->sem.
1773	 */
1774	if (!dead_type || !keyring->restrict_link ||
1775	    keyring->restrict_link->keytype != dead_type) {
1776		kleave(" [no restriction gc]");
1777		return;
1778	}
1779
1780	/* Lock the keyring to ensure that a link is not in progress */
1781	down_write(&keyring->sem);
1782
1783	keyres = keyring->restrict_link;
1784
1785	keyres->check = restrict_link_reject;
1786
1787	key_put(keyres->key);
1788	keyres->key = NULL;
1789	keyres->keytype = NULL;
1790
1791	up_write(&keyring->sem);
1792
1793	kleave(" [restriction gc]");
1794}
1795