1// SPDX-License-Identifier: GPL-2.0
2
3//! A reference-counted pointer.
4//!
5//! This module implements a way for users to create reference-counted objects and pointers to
6//! them. Such a pointer automatically increments and decrements the count, and drops the
7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8//! threads.
9//!
10//! It is different from the standard library's [`Arc`] in a few ways:
11//! 1. It is backed by the kernel's `refcount_t` type.
12//! 2. It does not support weak references, which allows it to be half the size.
13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15//!
16//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17
18use crate::{
19    alloc::{box_ext::BoxExt, AllocError, Flags},
20    error::{self, Error},
21    init::{self, InPlaceInit, Init, PinInit},
22    try_init,
23    types::{ForeignOwnable, Opaque},
24};
25use alloc::boxed::Box;
26use core::{
27    alloc::Layout,
28    fmt,
29    marker::{PhantomData, Unsize},
30    mem::{ManuallyDrop, MaybeUninit},
31    ops::{Deref, DerefMut},
32    pin::Pin,
33    ptr::NonNull,
34};
35use macros::pin_data;
36
37mod std_vendor;
38
39/// A reference-counted pointer to an instance of `T`.
40///
41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43///
44/// # Invariants
45///
46/// The reference count on an instance of [`Arc`] is always non-zero.
47/// The object pointed to by [`Arc`] is always pinned.
48///
49/// # Examples
50///
51/// ```
52/// use kernel::sync::Arc;
53///
54/// struct Example {
55///     a: u32,
56///     b: u32,
57/// }
58///
59/// // Create a refcounted instance of `Example`.
60/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61///
62/// // Get a new pointer to `obj` and increment the refcount.
63/// let cloned = obj.clone();
64///
65/// // Assert that both `obj` and `cloned` point to the same underlying object.
66/// assert!(core::ptr::eq(&*obj, &*cloned));
67///
68/// // Destroy `obj` and decrement its refcount.
69/// drop(obj);
70///
71/// // Check that the values are still accessible through `cloned`.
72/// assert_eq!(cloned.a, 10);
73/// assert_eq!(cloned.b, 20);
74///
75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76/// # Ok::<(), Error>(())
77/// ```
78///
79/// Using `Arc<T>` as the type of `self`:
80///
81/// ```
82/// use kernel::sync::Arc;
83///
84/// struct Example {
85///     a: u32,
86///     b: u32,
87/// }
88///
89/// impl Example {
90///     fn take_over(self: Arc<Self>) {
91///         // ...
92///     }
93///
94///     fn use_reference(self: &Arc<Self>) {
95///         // ...
96///     }
97/// }
98///
99/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111///     // Trait has a function whose `self` type is `Arc<Self>`.
112///     fn example1(self: Arc<Self>) {}
113///
114///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115///     fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128pub struct Arc<T: ?Sized> {
129    ptr: NonNull<ArcInner<T>>,
130    _p: PhantomData<ArcInner<T>>,
131}
132
133#[pin_data]
134#[repr(C)]
135struct ArcInner<T: ?Sized> {
136    refcount: Opaque<bindings::refcount_t>,
137    data: T,
138}
139
140impl<T: ?Sized> ArcInner<T> {
141    /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
142    ///
143    /// # Safety
144    ///
145    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
146    /// not yet have been destroyed.
147    unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
148        let refcount_layout = Layout::new::<bindings::refcount_t>();
149        // SAFETY: The caller guarantees that the pointer is valid.
150        let val_layout = Layout::for_value(unsafe { &*ptr });
151        // SAFETY: We're computing the layout of a real struct that existed when compiling this
152        // binary, so its layout is not so large that it can trigger arithmetic overflow.
153        let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
154
155        // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
156        // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
157        //
158        // This is documented at:
159        // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
160        let ptr = ptr as *const ArcInner<T>;
161
162        // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
163        // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
164        // still valid.
165        let ptr = unsafe { ptr.byte_sub(val_offset) };
166
167        // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
168        // address.
169        unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
170    }
171}
172
173// This is to allow [`Arc`] (and variants) to be used as the type of `self`.
174impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
175
176// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
177// dynamically-sized type (DST) `U`.
178impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
179
180// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
181impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
182
183// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
184// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
185// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
186// mutable reference when the reference count reaches zero and `T` is dropped.
187unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
188
189// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
190// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
191// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
192// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
193// the reference count reaches zero and `T` is dropped.
194unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
195
196impl<T> Arc<T> {
197    /// Constructs a new reference counted instance of `T`.
198    pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
199        // INVARIANT: The refcount is initialised to a non-zero value.
200        let value = ArcInner {
201            // SAFETY: There are no safety requirements for this FFI call.
202            refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
203            data: contents,
204        };
205
206        let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
207
208        // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
209        // `Arc` object.
210        Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
211    }
212
213    /// Use the given initializer to in-place initialize a `T`.
214    ///
215    /// If `T: !Unpin` it will not be able to move afterwards.
216    #[inline]
217    pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self>
218    where
219        Error: From<E>,
220    {
221        UniqueArc::pin_init(init, flags).map(|u| u.into())
222    }
223
224    /// Use the given initializer to in-place initialize a `T`.
225    ///
226    /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
227    #[inline]
228    pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
229    where
230        Error: From<E>,
231    {
232        UniqueArc::init(init, flags).map(|u| u.into())
233    }
234}
235
236impl<T: ?Sized> Arc<T> {
237    /// Constructs a new [`Arc`] from an existing [`ArcInner`].
238    ///
239    /// # Safety
240    ///
241    /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
242    /// count, one of which will be owned by the new [`Arc`] instance.
243    unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
244        // INVARIANT: By the safety requirements, the invariants hold.
245        Arc {
246            ptr: inner,
247            _p: PhantomData,
248        }
249    }
250
251    /// Convert the [`Arc`] into a raw pointer.
252    ///
253    /// The raw pointer has ownership of the refcount that this Arc object owned.
254    pub fn into_raw(self) -> *const T {
255        let ptr = self.ptr.as_ptr();
256        core::mem::forget(self);
257        // SAFETY: The pointer is valid.
258        unsafe { core::ptr::addr_of!((*ptr).data) }
259    }
260
261    /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
262    ///
263    /// # Safety
264    ///
265    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
266    /// must not be called more than once for each previous call to [`Arc::into_raw`].
267    pub unsafe fn from_raw(ptr: *const T) -> Self {
268        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
269        // `Arc` that is still valid.
270        let ptr = unsafe { ArcInner::container_of(ptr) };
271
272        // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
273        // reference count held then will be owned by the new `Arc` object.
274        unsafe { Self::from_inner(ptr) }
275    }
276
277    /// Returns an [`ArcBorrow`] from the given [`Arc`].
278    ///
279    /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
280    /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
281    #[inline]
282    pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
283        // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
284        // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
285        // reference can be created.
286        unsafe { ArcBorrow::new(self.ptr) }
287    }
288
289    /// Compare whether two [`Arc`] pointers reference the same underlying object.
290    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
291        core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
292    }
293
294    /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
295    ///
296    /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
297    /// this method will never call the destructor of the value.
298    ///
299    /// # Examples
300    ///
301    /// ```
302    /// use kernel::sync::{Arc, UniqueArc};
303    ///
304    /// let arc = Arc::new(42, GFP_KERNEL)?;
305    /// let unique_arc = arc.into_unique_or_drop();
306    ///
307    /// // The above conversion should succeed since refcount of `arc` is 1.
308    /// assert!(unique_arc.is_some());
309    ///
310    /// assert_eq!(*(unique_arc.unwrap()), 42);
311    ///
312    /// # Ok::<(), Error>(())
313    /// ```
314    ///
315    /// ```
316    /// use kernel::sync::{Arc, UniqueArc};
317    ///
318    /// let arc = Arc::new(42, GFP_KERNEL)?;
319    /// let another = arc.clone();
320    ///
321    /// let unique_arc = arc.into_unique_or_drop();
322    ///
323    /// // The above conversion should fail since refcount of `arc` is >1.
324    /// assert!(unique_arc.is_none());
325    ///
326    /// # Ok::<(), Error>(())
327    /// ```
328    pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
329        // We will manually manage the refcount in this method, so we disable the destructor.
330        let me = ManuallyDrop::new(self);
331        // SAFETY: We own a refcount, so the pointer is still valid.
332        let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
333
334        // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
335        // return without further touching the `Arc`. If the refcount reaches zero, then there are
336        // no other arcs, and we can create a `UniqueArc`.
337        //
338        // SAFETY: We own a refcount, so the pointer is not dangling.
339        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
340        if is_zero {
341            // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
342            // accesses to the refcount.
343            unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
344
345            // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
346            // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
347            // their values.
348            Some(Pin::from(UniqueArc {
349                inner: ManuallyDrop::into_inner(me),
350            }))
351        } else {
352            None
353        }
354    }
355}
356
357impl<T: 'static> ForeignOwnable for Arc<T> {
358    type Borrowed<'a> = ArcBorrow<'a, T>;
359
360    fn into_foreign(self) -> *const core::ffi::c_void {
361        ManuallyDrop::new(self).ptr.as_ptr() as _
362    }
363
364    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
365        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
366        // a previous call to `Arc::into_foreign`.
367        let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
368
369        // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
370        // for the lifetime of the returned value.
371        unsafe { ArcBorrow::new(inner) }
372    }
373
374    unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
375        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
376        // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
377        // holds a reference count increment that is transferrable to us.
378        unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
379    }
380}
381
382impl<T: ?Sized> Deref for Arc<T> {
383    type Target = T;
384
385    fn deref(&self) -> &Self::Target {
386        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
387        // safe to dereference it.
388        unsafe { &self.ptr.as_ref().data }
389    }
390}
391
392impl<T: ?Sized> AsRef<T> for Arc<T> {
393    fn as_ref(&self) -> &T {
394        self.deref()
395    }
396}
397
398impl<T: ?Sized> Clone for Arc<T> {
399    fn clone(&self) -> Self {
400        // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
401        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
402        // safe to increment the refcount.
403        unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
404
405        // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
406        unsafe { Self::from_inner(self.ptr) }
407    }
408}
409
410impl<T: ?Sized> Drop for Arc<T> {
411    fn drop(&mut self) {
412        // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
413        // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
414        // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
415        // freed/invalid memory as long as it is never dereferenced.
416        let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
417
418        // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
419        // this instance is being dropped, so the broken invariant is not observable.
420        // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
421        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
422        if is_zero {
423            // The count reached zero, we must free the memory.
424            //
425            // SAFETY: The pointer was initialised from the result of `Box::leak`.
426            unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
427        }
428    }
429}
430
431impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
432    fn from(item: UniqueArc<T>) -> Self {
433        item.inner
434    }
435}
436
437impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
438    fn from(item: Pin<UniqueArc<T>>) -> Self {
439        // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
440        unsafe { Pin::into_inner_unchecked(item).inner }
441    }
442}
443
444/// A borrowed reference to an [`Arc`] instance.
445///
446/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
447/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
448///
449/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
450/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
451/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
452/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
453/// needed.
454///
455/// # Invariants
456///
457/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
458/// lifetime of the [`ArcBorrow`] instance.
459///
460/// # Example
461///
462/// ```
463/// use kernel::sync::{Arc, ArcBorrow};
464///
465/// struct Example;
466///
467/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
468///     e.into()
469/// }
470///
471/// let obj = Arc::new(Example, GFP_KERNEL)?;
472/// let cloned = do_something(obj.as_arc_borrow());
473///
474/// // Assert that both `obj` and `cloned` point to the same underlying object.
475/// assert!(core::ptr::eq(&*obj, &*cloned));
476/// # Ok::<(), Error>(())
477/// ```
478///
479/// Using `ArcBorrow<T>` as the type of `self`:
480///
481/// ```
482/// use kernel::sync::{Arc, ArcBorrow};
483///
484/// struct Example {
485///     a: u32,
486///     b: u32,
487/// }
488///
489/// impl Example {
490///     fn use_reference(self: ArcBorrow<'_, Self>) {
491///         // ...
492///     }
493/// }
494///
495/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
496/// obj.as_arc_borrow().use_reference();
497/// # Ok::<(), Error>(())
498/// ```
499pub struct ArcBorrow<'a, T: ?Sized + 'a> {
500    inner: NonNull<ArcInner<T>>,
501    _p: PhantomData<&'a ()>,
502}
503
504// This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
505impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
506
507// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
508// `ArcBorrow<U>`.
509impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
510    for ArcBorrow<'_, T>
511{
512}
513
514impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
515    fn clone(&self) -> Self {
516        *self
517    }
518}
519
520impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
521
522impl<T: ?Sized> ArcBorrow<'_, T> {
523    /// Creates a new [`ArcBorrow`] instance.
524    ///
525    /// # Safety
526    ///
527    /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
528    /// 1. That `inner` remains valid;
529    /// 2. That no mutable references to `inner` are created.
530    unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
531        // INVARIANT: The safety requirements guarantee the invariants.
532        Self {
533            inner,
534            _p: PhantomData,
535        }
536    }
537
538    /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
539    /// [`Arc::into_raw`].
540    ///
541    /// # Safety
542    ///
543    /// * The provided pointer must originate from a call to [`Arc::into_raw`].
544    /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
545    ///   not hit zero.
546    /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
547    ///   [`UniqueArc`] reference to this value.
548    pub unsafe fn from_raw(ptr: *const T) -> Self {
549        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
550        // `Arc` that is still valid.
551        let ptr = unsafe { ArcInner::container_of(ptr) };
552
553        // SAFETY: The caller promises that the value remains valid since the reference count must
554        // not hit zero, and no mutable reference will be created since that would involve a
555        // `UniqueArc`.
556        unsafe { Self::new(ptr) }
557    }
558}
559
560impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
561    fn from(b: ArcBorrow<'_, T>) -> Self {
562        // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
563        // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
564        // increment.
565        ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
566            .deref()
567            .clone()
568    }
569}
570
571impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
572    type Target = T;
573
574    fn deref(&self) -> &Self::Target {
575        // SAFETY: By the type invariant, the underlying object is still alive with no mutable
576        // references to it, so it is safe to create a shared reference.
577        unsafe { &self.inner.as_ref().data }
578    }
579}
580
581/// A refcounted object that is known to have a refcount of 1.
582///
583/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
584///
585/// # Invariants
586///
587/// `inner` always has a reference count of 1.
588///
589/// # Examples
590///
591/// In the following example, we make changes to the inner object before turning it into an
592/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
593/// cannot fail.
594///
595/// ```
596/// use kernel::sync::{Arc, UniqueArc};
597///
598/// struct Example {
599///     a: u32,
600///     b: u32,
601/// }
602///
603/// fn test() -> Result<Arc<Example>> {
604///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
605///     x.a += 1;
606///     x.b += 1;
607///     Ok(x.into())
608/// }
609///
610/// # test().unwrap();
611/// ```
612///
613/// In the following example we first allocate memory for a refcounted `Example` but we don't
614/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
615/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
616/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
617///
618/// ```
619/// use kernel::sync::{Arc, UniqueArc};
620///
621/// struct Example {
622///     a: u32,
623///     b: u32,
624/// }
625///
626/// fn test() -> Result<Arc<Example>> {
627///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
628///     Ok(x.write(Example { a: 10, b: 20 }).into())
629/// }
630///
631/// # test().unwrap();
632/// ```
633///
634/// In the last example below, the caller gets a pinned instance of `Example` while converting to
635/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
636/// initialisation, for example, when initialising fields that are wrapped in locks.
637///
638/// ```
639/// use kernel::sync::{Arc, UniqueArc};
640///
641/// struct Example {
642///     a: u32,
643///     b: u32,
644/// }
645///
646/// fn test() -> Result<Arc<Example>> {
647///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
648///     // We can modify `pinned` because it is `Unpin`.
649///     pinned.as_mut().a += 1;
650///     Ok(pinned.into())
651/// }
652///
653/// # test().unwrap();
654/// ```
655pub struct UniqueArc<T: ?Sized> {
656    inner: Arc<T>,
657}
658
659impl<T> UniqueArc<T> {
660    /// Tries to allocate a new [`UniqueArc`] instance.
661    pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
662        Ok(Self {
663            // INVARIANT: The newly-created object has a refcount of 1.
664            inner: Arc::new(value, flags)?,
665        })
666    }
667
668    /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
669    pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
670        // INVARIANT: The refcount is initialised to a non-zero value.
671        let inner = Box::try_init::<AllocError>(
672            try_init!(ArcInner {
673                // SAFETY: There are no safety requirements for this FFI call.
674                refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
675                data <- init::uninit::<T, AllocError>(),
676            }? AllocError),
677            flags,
678        )?;
679        Ok(UniqueArc {
680            // INVARIANT: The newly-created object has a refcount of 1.
681            // SAFETY: The pointer from the `Box` is valid.
682            inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
683        })
684    }
685}
686
687impl<T> UniqueArc<MaybeUninit<T>> {
688    /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
689    pub fn write(mut self, value: T) -> UniqueArc<T> {
690        self.deref_mut().write(value);
691        // SAFETY: We just wrote the value to be initialized.
692        unsafe { self.assume_init() }
693    }
694
695    /// Unsafely assume that `self` is initialized.
696    ///
697    /// # Safety
698    ///
699    /// The caller guarantees that the value behind this pointer has been initialized. It is
700    /// *immediate* UB to call this when the value is not initialized.
701    pub unsafe fn assume_init(self) -> UniqueArc<T> {
702        let inner = ManuallyDrop::new(self).inner.ptr;
703        UniqueArc {
704            // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
705            // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
706            inner: unsafe { Arc::from_inner(inner.cast()) },
707        }
708    }
709
710    /// Initialize `self` using the given initializer.
711    pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
712        // SAFETY: The supplied pointer is valid for initialization.
713        match unsafe { init.__init(self.as_mut_ptr()) } {
714            // SAFETY: Initialization completed successfully.
715            Ok(()) => Ok(unsafe { self.assume_init() }),
716            Err(err) => Err(err),
717        }
718    }
719
720    /// Pin-initialize `self` using the given pin-initializer.
721    pub fn pin_init_with<E>(
722        mut self,
723        init: impl PinInit<T, E>,
724    ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
725        // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
726        // to ensure it does not move.
727        match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
728            // SAFETY: Initialization completed successfully.
729            Ok(()) => Ok(unsafe { self.assume_init() }.into()),
730            Err(err) => Err(err),
731        }
732    }
733}
734
735impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
736    fn from(obj: UniqueArc<T>) -> Self {
737        // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
738        // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
739        unsafe { Pin::new_unchecked(obj) }
740    }
741}
742
743impl<T: ?Sized> Deref for UniqueArc<T> {
744    type Target = T;
745
746    fn deref(&self) -> &Self::Target {
747        self.inner.deref()
748    }
749}
750
751impl<T: ?Sized> DerefMut for UniqueArc<T> {
752    fn deref_mut(&mut self) -> &mut Self::Target {
753        // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
754        // it is safe to dereference it. Additionally, we know there is only one reference when
755        // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
756        unsafe { &mut self.inner.ptr.as_mut().data }
757    }
758}
759
760impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
761    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
762        fmt::Display::fmt(self.deref(), f)
763    }
764}
765
766impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
767    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
768        fmt::Display::fmt(self.deref(), f)
769    }
770}
771
772impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
773    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
774        fmt::Debug::fmt(self.deref(), f)
775    }
776}
777
778impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
779    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
780        fmt::Debug::fmt(self.deref(), f)
781    }
782}
783