1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses.  You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 *     Redistribution and use in source and binary forms, with or
10 *     without modification, are permitted provided that the following
11 *     conditions are met:
12 *
13 *      - Redistributions of source code must retain the above
14 *        copyright notice, this list of conditions and the following
15 *        disclaimer.
16 *
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41#include "tls.h"
42#include "trace.h"
43
44/* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47static DECLARE_RWSEM(device_offload_lock);
48
49static struct workqueue_struct *destruct_wq __read_mostly;
50
51static LIST_HEAD(tls_device_list);
52static LIST_HEAD(tls_device_down_list);
53static DEFINE_SPINLOCK(tls_device_lock);
54
55static struct page *dummy_page;
56
57static void tls_device_free_ctx(struct tls_context *ctx)
58{
59	if (ctx->tx_conf == TLS_HW)
60		kfree(tls_offload_ctx_tx(ctx));
61
62	if (ctx->rx_conf == TLS_HW)
63		kfree(tls_offload_ctx_rx(ctx));
64
65	tls_ctx_free(NULL, ctx);
66}
67
68static void tls_device_tx_del_task(struct work_struct *work)
69{
70	struct tls_offload_context_tx *offload_ctx =
71		container_of(work, struct tls_offload_context_tx, destruct_work);
72	struct tls_context *ctx = offload_ctx->ctx;
73	struct net_device *netdev;
74
75	/* Safe, because this is the destroy flow, refcount is 0, so
76	 * tls_device_down can't store this field in parallel.
77	 */
78	netdev = rcu_dereference_protected(ctx->netdev,
79					   !refcount_read(&ctx->refcount));
80
81	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
82	dev_put(netdev);
83	ctx->netdev = NULL;
84	tls_device_free_ctx(ctx);
85}
86
87static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
88{
89	struct net_device *netdev;
90	unsigned long flags;
91	bool async_cleanup;
92
93	spin_lock_irqsave(&tls_device_lock, flags);
94	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
95		spin_unlock_irqrestore(&tls_device_lock, flags);
96		return;
97	}
98
99	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
100
101	/* Safe, because this is the destroy flow, refcount is 0, so
102	 * tls_device_down can't store this field in parallel.
103	 */
104	netdev = rcu_dereference_protected(ctx->netdev,
105					   !refcount_read(&ctx->refcount));
106
107	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
108	if (async_cleanup) {
109		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
110
111		/* queue_work inside the spinlock
112		 * to make sure tls_device_down waits for that work.
113		 */
114		queue_work(destruct_wq, &offload_ctx->destruct_work);
115	}
116	spin_unlock_irqrestore(&tls_device_lock, flags);
117
118	if (!async_cleanup)
119		tls_device_free_ctx(ctx);
120}
121
122/* We assume that the socket is already connected */
123static struct net_device *get_netdev_for_sock(struct sock *sk)
124{
125	struct dst_entry *dst = sk_dst_get(sk);
126	struct net_device *netdev = NULL;
127
128	if (likely(dst)) {
129		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
130		dev_hold(netdev);
131	}
132
133	dst_release(dst);
134
135	return netdev;
136}
137
138static void destroy_record(struct tls_record_info *record)
139{
140	int i;
141
142	for (i = 0; i < record->num_frags; i++)
143		__skb_frag_unref(&record->frags[i], false);
144	kfree(record);
145}
146
147static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
148{
149	struct tls_record_info *info, *temp;
150
151	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
152		list_del(&info->list);
153		destroy_record(info);
154	}
155
156	offload_ctx->retransmit_hint = NULL;
157}
158
159static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
160{
161	struct tls_context *tls_ctx = tls_get_ctx(sk);
162	struct tls_record_info *info, *temp;
163	struct tls_offload_context_tx *ctx;
164	u64 deleted_records = 0;
165	unsigned long flags;
166
167	if (!tls_ctx)
168		return;
169
170	ctx = tls_offload_ctx_tx(tls_ctx);
171
172	spin_lock_irqsave(&ctx->lock, flags);
173	info = ctx->retransmit_hint;
174	if (info && !before(acked_seq, info->end_seq))
175		ctx->retransmit_hint = NULL;
176
177	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
178		if (before(acked_seq, info->end_seq))
179			break;
180		list_del(&info->list);
181
182		destroy_record(info);
183		deleted_records++;
184	}
185
186	ctx->unacked_record_sn += deleted_records;
187	spin_unlock_irqrestore(&ctx->lock, flags);
188}
189
190/* At this point, there should be no references on this
191 * socket and no in-flight SKBs associated with this
192 * socket, so it is safe to free all the resources.
193 */
194void tls_device_sk_destruct(struct sock *sk)
195{
196	struct tls_context *tls_ctx = tls_get_ctx(sk);
197	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
198
199	tls_ctx->sk_destruct(sk);
200
201	if (tls_ctx->tx_conf == TLS_HW) {
202		if (ctx->open_record)
203			destroy_record(ctx->open_record);
204		delete_all_records(ctx);
205		crypto_free_aead(ctx->aead_send);
206		clean_acked_data_disable(inet_csk(sk));
207	}
208
209	tls_device_queue_ctx_destruction(tls_ctx);
210}
211EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
212
213void tls_device_free_resources_tx(struct sock *sk)
214{
215	struct tls_context *tls_ctx = tls_get_ctx(sk);
216
217	tls_free_partial_record(sk, tls_ctx);
218}
219
220void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
221{
222	struct tls_context *tls_ctx = tls_get_ctx(sk);
223
224	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
225	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
226}
227EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
228
229static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
230				 u32 seq)
231{
232	struct net_device *netdev;
233	struct sk_buff *skb;
234	int err = 0;
235	u8 *rcd_sn;
236
237	skb = tcp_write_queue_tail(sk);
238	if (skb)
239		TCP_SKB_CB(skb)->eor = 1;
240
241	rcd_sn = tls_ctx->tx.rec_seq;
242
243	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
244	down_read(&device_offload_lock);
245	netdev = rcu_dereference_protected(tls_ctx->netdev,
246					   lockdep_is_held(&device_offload_lock));
247	if (netdev)
248		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
249							 rcd_sn,
250							 TLS_OFFLOAD_CTX_DIR_TX);
251	up_read(&device_offload_lock);
252	if (err)
253		return;
254
255	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
256}
257
258static void tls_append_frag(struct tls_record_info *record,
259			    struct page_frag *pfrag,
260			    int size)
261{
262	skb_frag_t *frag;
263
264	frag = &record->frags[record->num_frags - 1];
265	if (skb_frag_page(frag) == pfrag->page &&
266	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
267		skb_frag_size_add(frag, size);
268	} else {
269		++frag;
270		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
271					size);
272		++record->num_frags;
273		get_page(pfrag->page);
274	}
275
276	pfrag->offset += size;
277	record->len += size;
278}
279
280static int tls_push_record(struct sock *sk,
281			   struct tls_context *ctx,
282			   struct tls_offload_context_tx *offload_ctx,
283			   struct tls_record_info *record,
284			   int flags)
285{
286	struct tls_prot_info *prot = &ctx->prot_info;
287	struct tcp_sock *tp = tcp_sk(sk);
288	skb_frag_t *frag;
289	int i;
290
291	record->end_seq = tp->write_seq + record->len;
292	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
293	offload_ctx->open_record = NULL;
294
295	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
296		tls_device_resync_tx(sk, ctx, tp->write_seq);
297
298	tls_advance_record_sn(sk, prot, &ctx->tx);
299
300	for (i = 0; i < record->num_frags; i++) {
301		frag = &record->frags[i];
302		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
303		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
304			    skb_frag_size(frag), skb_frag_off(frag));
305		sk_mem_charge(sk, skb_frag_size(frag));
306		get_page(skb_frag_page(frag));
307	}
308	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
309
310	/* all ready, send */
311	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
312}
313
314static void tls_device_record_close(struct sock *sk,
315				    struct tls_context *ctx,
316				    struct tls_record_info *record,
317				    struct page_frag *pfrag,
318				    unsigned char record_type)
319{
320	struct tls_prot_info *prot = &ctx->prot_info;
321	struct page_frag dummy_tag_frag;
322
323	/* append tag
324	 * device will fill in the tag, we just need to append a placeholder
325	 * use socket memory to improve coalescing (re-using a single buffer
326	 * increases frag count)
327	 * if we can't allocate memory now use the dummy page
328	 */
329	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
330	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
331		dummy_tag_frag.page = dummy_page;
332		dummy_tag_frag.offset = 0;
333		pfrag = &dummy_tag_frag;
334	}
335	tls_append_frag(record, pfrag, prot->tag_size);
336
337	/* fill prepend */
338	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
339			 record->len - prot->overhead_size,
340			 record_type);
341}
342
343static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
344				 struct page_frag *pfrag,
345				 size_t prepend_size)
346{
347	struct tls_record_info *record;
348	skb_frag_t *frag;
349
350	record = kmalloc(sizeof(*record), GFP_KERNEL);
351	if (!record)
352		return -ENOMEM;
353
354	frag = &record->frags[0];
355	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
356				prepend_size);
357
358	get_page(pfrag->page);
359	pfrag->offset += prepend_size;
360
361	record->num_frags = 1;
362	record->len = prepend_size;
363	offload_ctx->open_record = record;
364	return 0;
365}
366
367static int tls_do_allocation(struct sock *sk,
368			     struct tls_offload_context_tx *offload_ctx,
369			     struct page_frag *pfrag,
370			     size_t prepend_size)
371{
372	int ret;
373
374	if (!offload_ctx->open_record) {
375		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
376						   sk->sk_allocation))) {
377			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
378			sk_stream_moderate_sndbuf(sk);
379			return -ENOMEM;
380		}
381
382		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
383		if (ret)
384			return ret;
385
386		if (pfrag->size > pfrag->offset)
387			return 0;
388	}
389
390	if (!sk_page_frag_refill(sk, pfrag))
391		return -ENOMEM;
392
393	return 0;
394}
395
396static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
397{
398	size_t pre_copy, nocache;
399
400	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
401	if (pre_copy) {
402		pre_copy = min(pre_copy, bytes);
403		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
404			return -EFAULT;
405		bytes -= pre_copy;
406		addr += pre_copy;
407	}
408
409	nocache = round_down(bytes, SMP_CACHE_BYTES);
410	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
411		return -EFAULT;
412	bytes -= nocache;
413	addr += nocache;
414
415	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
416		return -EFAULT;
417
418	return 0;
419}
420
421static int tls_push_data(struct sock *sk,
422			 struct iov_iter *iter,
423			 size_t size, int flags,
424			 unsigned char record_type)
425{
426	struct tls_context *tls_ctx = tls_get_ctx(sk);
427	struct tls_prot_info *prot = &tls_ctx->prot_info;
428	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429	struct tls_record_info *record;
430	int tls_push_record_flags;
431	struct page_frag *pfrag;
432	size_t orig_size = size;
433	u32 max_open_record_len;
434	bool more = false;
435	bool done = false;
436	int copy, rc = 0;
437	long timeo;
438
439	if (flags &
440	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
441	      MSG_SPLICE_PAGES | MSG_EOR))
442		return -EOPNOTSUPP;
443
444	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
445		return -EINVAL;
446
447	if (unlikely(sk->sk_err))
448		return -sk->sk_err;
449
450	flags |= MSG_SENDPAGE_DECRYPTED;
451	tls_push_record_flags = flags | MSG_MORE;
452
453	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
454	if (tls_is_partially_sent_record(tls_ctx)) {
455		rc = tls_push_partial_record(sk, tls_ctx, flags);
456		if (rc < 0)
457			return rc;
458	}
459
460	pfrag = sk_page_frag(sk);
461
462	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
463	 * we need to leave room for an authentication tag.
464	 */
465	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
466			      prot->prepend_size;
467	do {
468		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
469		if (unlikely(rc)) {
470			rc = sk_stream_wait_memory(sk, &timeo);
471			if (!rc)
472				continue;
473
474			record = ctx->open_record;
475			if (!record)
476				break;
477handle_error:
478			if (record_type != TLS_RECORD_TYPE_DATA) {
479				/* avoid sending partial
480				 * record with type !=
481				 * application_data
482				 */
483				size = orig_size;
484				destroy_record(record);
485				ctx->open_record = NULL;
486			} else if (record->len > prot->prepend_size) {
487				goto last_record;
488			}
489
490			break;
491		}
492
493		record = ctx->open_record;
494
495		copy = min_t(size_t, size, max_open_record_len - record->len);
496		if (copy && (flags & MSG_SPLICE_PAGES)) {
497			struct page_frag zc_pfrag;
498			struct page **pages = &zc_pfrag.page;
499			size_t off;
500
501			rc = iov_iter_extract_pages(iter, &pages,
502						    copy, 1, 0, &off);
503			if (rc <= 0) {
504				if (rc == 0)
505					rc = -EIO;
506				goto handle_error;
507			}
508			copy = rc;
509
510			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
511				iov_iter_revert(iter, copy);
512				rc = -EIO;
513				goto handle_error;
514			}
515
516			zc_pfrag.offset = off;
517			zc_pfrag.size = copy;
518			tls_append_frag(record, &zc_pfrag, copy);
519		} else if (copy) {
520			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
521
522			rc = tls_device_copy_data(page_address(pfrag->page) +
523						  pfrag->offset, copy,
524						  iter);
525			if (rc)
526				goto handle_error;
527			tls_append_frag(record, pfrag, copy);
528		}
529
530		size -= copy;
531		if (!size) {
532last_record:
533			tls_push_record_flags = flags;
534			if (flags & MSG_MORE) {
535				more = true;
536				break;
537			}
538
539			done = true;
540		}
541
542		if (done || record->len >= max_open_record_len ||
543		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
544			tls_device_record_close(sk, tls_ctx, record,
545						pfrag, record_type);
546
547			rc = tls_push_record(sk,
548					     tls_ctx,
549					     ctx,
550					     record,
551					     tls_push_record_flags);
552			if (rc < 0)
553				break;
554		}
555	} while (!done);
556
557	tls_ctx->pending_open_record_frags = more;
558
559	if (orig_size - size > 0)
560		rc = orig_size - size;
561
562	return rc;
563}
564
565int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
566{
567	unsigned char record_type = TLS_RECORD_TYPE_DATA;
568	struct tls_context *tls_ctx = tls_get_ctx(sk);
569	int rc;
570
571	if (!tls_ctx->zerocopy_sendfile)
572		msg->msg_flags &= ~MSG_SPLICE_PAGES;
573
574	mutex_lock(&tls_ctx->tx_lock);
575	lock_sock(sk);
576
577	if (unlikely(msg->msg_controllen)) {
578		rc = tls_process_cmsg(sk, msg, &record_type);
579		if (rc)
580			goto out;
581	}
582
583	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
584			   record_type);
585
586out:
587	release_sock(sk);
588	mutex_unlock(&tls_ctx->tx_lock);
589	return rc;
590}
591
592void tls_device_splice_eof(struct socket *sock)
593{
594	struct sock *sk = sock->sk;
595	struct tls_context *tls_ctx = tls_get_ctx(sk);
596	struct iov_iter iter = {};
597
598	if (!tls_is_partially_sent_record(tls_ctx))
599		return;
600
601	mutex_lock(&tls_ctx->tx_lock);
602	lock_sock(sk);
603
604	if (tls_is_partially_sent_record(tls_ctx)) {
605		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
606		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
607	}
608
609	release_sock(sk);
610	mutex_unlock(&tls_ctx->tx_lock);
611}
612
613struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
614				       u32 seq, u64 *p_record_sn)
615{
616	u64 record_sn = context->hint_record_sn;
617	struct tls_record_info *info, *last;
618
619	info = context->retransmit_hint;
620	if (!info ||
621	    before(seq, info->end_seq - info->len)) {
622		/* if retransmit_hint is irrelevant start
623		 * from the beginning of the list
624		 */
625		info = list_first_entry_or_null(&context->records_list,
626						struct tls_record_info, list);
627		if (!info)
628			return NULL;
629		/* send the start_marker record if seq number is before the
630		 * tls offload start marker sequence number. This record is
631		 * required to handle TCP packets which are before TLS offload
632		 * started.
633		 *  And if it's not start marker, look if this seq number
634		 * belongs to the list.
635		 */
636		if (likely(!tls_record_is_start_marker(info))) {
637			/* we have the first record, get the last record to see
638			 * if this seq number belongs to the list.
639			 */
640			last = list_last_entry(&context->records_list,
641					       struct tls_record_info, list);
642
643			if (!between(seq, tls_record_start_seq(info),
644				     last->end_seq))
645				return NULL;
646		}
647		record_sn = context->unacked_record_sn;
648	}
649
650	/* We just need the _rcu for the READ_ONCE() */
651	rcu_read_lock();
652	list_for_each_entry_from_rcu(info, &context->records_list, list) {
653		if (before(seq, info->end_seq)) {
654			if (!context->retransmit_hint ||
655			    after(info->end_seq,
656				  context->retransmit_hint->end_seq)) {
657				context->hint_record_sn = record_sn;
658				context->retransmit_hint = info;
659			}
660			*p_record_sn = record_sn;
661			goto exit_rcu_unlock;
662		}
663		record_sn++;
664	}
665	info = NULL;
666
667exit_rcu_unlock:
668	rcu_read_unlock();
669	return info;
670}
671EXPORT_SYMBOL(tls_get_record);
672
673static int tls_device_push_pending_record(struct sock *sk, int flags)
674{
675	struct iov_iter iter;
676
677	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
678	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
679}
680
681void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
682{
683	if (tls_is_partially_sent_record(ctx)) {
684		gfp_t sk_allocation = sk->sk_allocation;
685
686		WARN_ON_ONCE(sk->sk_write_pending);
687
688		sk->sk_allocation = GFP_ATOMIC;
689		tls_push_partial_record(sk, ctx,
690					MSG_DONTWAIT | MSG_NOSIGNAL |
691					MSG_SENDPAGE_DECRYPTED);
692		sk->sk_allocation = sk_allocation;
693	}
694}
695
696static void tls_device_resync_rx(struct tls_context *tls_ctx,
697				 struct sock *sk, u32 seq, u8 *rcd_sn)
698{
699	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
700	struct net_device *netdev;
701
702	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
703	rcu_read_lock();
704	netdev = rcu_dereference(tls_ctx->netdev);
705	if (netdev)
706		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
707						   TLS_OFFLOAD_CTX_DIR_RX);
708	rcu_read_unlock();
709	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
710}
711
712static bool
713tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
714			   s64 resync_req, u32 *seq, u16 *rcd_delta)
715{
716	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
717	u32 req_seq = resync_req >> 32;
718	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
719	u16 i;
720
721	*rcd_delta = 0;
722
723	if (is_async) {
724		/* shouldn't get to wraparound:
725		 * too long in async stage, something bad happened
726		 */
727		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
728			return false;
729
730		/* asynchronous stage: log all headers seq such that
731		 * req_seq <= seq <= end_seq, and wait for real resync request
732		 */
733		if (before(*seq, req_seq))
734			return false;
735		if (!after(*seq, req_end) &&
736		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
737			resync_async->log[resync_async->loglen++] = *seq;
738
739		resync_async->rcd_delta++;
740
741		return false;
742	}
743
744	/* synchronous stage: check against the logged entries and
745	 * proceed to check the next entries if no match was found
746	 */
747	for (i = 0; i < resync_async->loglen; i++)
748		if (req_seq == resync_async->log[i] &&
749		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
750			*rcd_delta = resync_async->rcd_delta - i;
751			*seq = req_seq;
752			resync_async->loglen = 0;
753			resync_async->rcd_delta = 0;
754			return true;
755		}
756
757	resync_async->loglen = 0;
758	resync_async->rcd_delta = 0;
759
760	if (req_seq == *seq &&
761	    atomic64_try_cmpxchg(&resync_async->req,
762				 &resync_req, 0))
763		return true;
764
765	return false;
766}
767
768void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
769{
770	struct tls_context *tls_ctx = tls_get_ctx(sk);
771	struct tls_offload_context_rx *rx_ctx;
772	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
773	u32 sock_data, is_req_pending;
774	struct tls_prot_info *prot;
775	s64 resync_req;
776	u16 rcd_delta;
777	u32 req_seq;
778
779	if (tls_ctx->rx_conf != TLS_HW)
780		return;
781	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
782		return;
783
784	prot = &tls_ctx->prot_info;
785	rx_ctx = tls_offload_ctx_rx(tls_ctx);
786	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
787
788	switch (rx_ctx->resync_type) {
789	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
790		resync_req = atomic64_read(&rx_ctx->resync_req);
791		req_seq = resync_req >> 32;
792		seq += TLS_HEADER_SIZE - 1;
793		is_req_pending = resync_req;
794
795		if (likely(!is_req_pending) || req_seq != seq ||
796		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
797			return;
798		break;
799	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
800		if (likely(!rx_ctx->resync_nh_do_now))
801			return;
802
803		/* head of next rec is already in, note that the sock_inq will
804		 * include the currently parsed message when called from parser
805		 */
806		sock_data = tcp_inq(sk);
807		if (sock_data > rcd_len) {
808			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
809							    rcd_len);
810			return;
811		}
812
813		rx_ctx->resync_nh_do_now = 0;
814		seq += rcd_len;
815		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
816		break;
817	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
818		resync_req = atomic64_read(&rx_ctx->resync_async->req);
819		is_req_pending = resync_req;
820		if (likely(!is_req_pending))
821			return;
822
823		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
824						resync_req, &seq, &rcd_delta))
825			return;
826		tls_bigint_subtract(rcd_sn, rcd_delta);
827		break;
828	}
829
830	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
831}
832
833static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
834					   struct tls_offload_context_rx *ctx,
835					   struct sock *sk, struct sk_buff *skb)
836{
837	struct strp_msg *rxm;
838
839	/* device will request resyncs by itself based on stream scan */
840	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
841		return;
842	/* already scheduled */
843	if (ctx->resync_nh_do_now)
844		return;
845	/* seen decrypted fragments since last fully-failed record */
846	if (ctx->resync_nh_reset) {
847		ctx->resync_nh_reset = 0;
848		ctx->resync_nh.decrypted_failed = 1;
849		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
850		return;
851	}
852
853	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
854		return;
855
856	/* doing resync, bump the next target in case it fails */
857	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
858		ctx->resync_nh.decrypted_tgt *= 2;
859	else
860		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
861
862	rxm = strp_msg(skb);
863
864	/* head of next rec is already in, parser will sync for us */
865	if (tcp_inq(sk) > rxm->full_len) {
866		trace_tls_device_rx_resync_nh_schedule(sk);
867		ctx->resync_nh_do_now = 1;
868	} else {
869		struct tls_prot_info *prot = &tls_ctx->prot_info;
870		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
871
872		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
873		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
874
875		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
876				     rcd_sn);
877	}
878}
879
880static int
881tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
882{
883	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
884	const struct tls_cipher_desc *cipher_desc;
885	int err, offset, copy, data_len, pos;
886	struct sk_buff *skb, *skb_iter;
887	struct scatterlist sg[1];
888	struct strp_msg *rxm;
889	char *orig_buf, *buf;
890
891	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
892	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
893
894	rxm = strp_msg(tls_strp_msg(sw_ctx));
895	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
896			   sk->sk_allocation);
897	if (!orig_buf)
898		return -ENOMEM;
899	buf = orig_buf;
900
901	err = tls_strp_msg_cow(sw_ctx);
902	if (unlikely(err))
903		goto free_buf;
904
905	skb = tls_strp_msg(sw_ctx);
906	rxm = strp_msg(skb);
907	offset = rxm->offset;
908
909	sg_init_table(sg, 1);
910	sg_set_buf(&sg[0], buf,
911		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
912	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
913	if (err)
914		goto free_buf;
915
916	/* We are interested only in the decrypted data not the auth */
917	err = decrypt_skb(sk, sg);
918	if (err != -EBADMSG)
919		goto free_buf;
920	else
921		err = 0;
922
923	data_len = rxm->full_len - cipher_desc->tag;
924
925	if (skb_pagelen(skb) > offset) {
926		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
927
928		if (skb->decrypted) {
929			err = skb_store_bits(skb, offset, buf, copy);
930			if (err)
931				goto free_buf;
932		}
933
934		offset += copy;
935		buf += copy;
936	}
937
938	pos = skb_pagelen(skb);
939	skb_walk_frags(skb, skb_iter) {
940		int frag_pos;
941
942		/* Practically all frags must belong to msg if reencrypt
943		 * is needed with current strparser and coalescing logic,
944		 * but strparser may "get optimized", so let's be safe.
945		 */
946		if (pos + skb_iter->len <= offset)
947			goto done_with_frag;
948		if (pos >= data_len + rxm->offset)
949			break;
950
951		frag_pos = offset - pos;
952		copy = min_t(int, skb_iter->len - frag_pos,
953			     data_len + rxm->offset - offset);
954
955		if (skb_iter->decrypted) {
956			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
957			if (err)
958				goto free_buf;
959		}
960
961		offset += copy;
962		buf += copy;
963done_with_frag:
964		pos += skb_iter->len;
965	}
966
967free_buf:
968	kfree(orig_buf);
969	return err;
970}
971
972int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
973{
974	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
975	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
976	struct sk_buff *skb = tls_strp_msg(sw_ctx);
977	struct strp_msg *rxm = strp_msg(skb);
978	int is_decrypted, is_encrypted;
979
980	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
981		is_decrypted = skb->decrypted;
982		is_encrypted = !is_decrypted;
983	} else {
984		is_decrypted = 0;
985		is_encrypted = 0;
986	}
987
988	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
989				   tls_ctx->rx.rec_seq, rxm->full_len,
990				   is_encrypted, is_decrypted);
991
992	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
993		if (likely(is_encrypted || is_decrypted))
994			return is_decrypted;
995
996		/* After tls_device_down disables the offload, the next SKB will
997		 * likely have initial fragments decrypted, and final ones not
998		 * decrypted. We need to reencrypt that single SKB.
999		 */
1000		return tls_device_reencrypt(sk, tls_ctx);
1001	}
1002
1003	/* Return immediately if the record is either entirely plaintext or
1004	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1005	 * record.
1006	 */
1007	if (is_decrypted) {
1008		ctx->resync_nh_reset = 1;
1009		return is_decrypted;
1010	}
1011	if (is_encrypted) {
1012		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1013		return 0;
1014	}
1015
1016	ctx->resync_nh_reset = 1;
1017	return tls_device_reencrypt(sk, tls_ctx);
1018}
1019
1020static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1021			      struct net_device *netdev)
1022{
1023	if (sk->sk_destruct != tls_device_sk_destruct) {
1024		refcount_set(&ctx->refcount, 1);
1025		dev_hold(netdev);
1026		RCU_INIT_POINTER(ctx->netdev, netdev);
1027		spin_lock_irq(&tls_device_lock);
1028		list_add_tail(&ctx->list, &tls_device_list);
1029		spin_unlock_irq(&tls_device_lock);
1030
1031		ctx->sk_destruct = sk->sk_destruct;
1032		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1033	}
1034}
1035
1036static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1037{
1038	struct tls_offload_context_tx *offload_ctx;
1039	__be64 rcd_sn;
1040
1041	offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1042	if (!offload_ctx)
1043		return NULL;
1044
1045	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1046	INIT_LIST_HEAD(&offload_ctx->records_list);
1047	spin_lock_init(&offload_ctx->lock);
1048	sg_init_table(offload_ctx->sg_tx_data,
1049		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1050
1051	/* start at rec_seq - 1 to account for the start marker record */
1052	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1053	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1054
1055	offload_ctx->ctx = ctx;
1056
1057	return offload_ctx;
1058}
1059
1060int tls_set_device_offload(struct sock *sk)
1061{
1062	struct tls_record_info *start_marker_record;
1063	struct tls_offload_context_tx *offload_ctx;
1064	const struct tls_cipher_desc *cipher_desc;
1065	struct tls_crypto_info *crypto_info;
1066	struct tls_prot_info *prot;
1067	struct net_device *netdev;
1068	struct tls_context *ctx;
1069	struct sk_buff *skb;
1070	char *iv, *rec_seq;
1071	int rc;
1072
1073	ctx = tls_get_ctx(sk);
1074	prot = &ctx->prot_info;
1075
1076	if (ctx->priv_ctx_tx)
1077		return -EEXIST;
1078
1079	netdev = get_netdev_for_sock(sk);
1080	if (!netdev) {
1081		pr_err_ratelimited("%s: netdev not found\n", __func__);
1082		return -EINVAL;
1083	}
1084
1085	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1086		rc = -EOPNOTSUPP;
1087		goto release_netdev;
1088	}
1089
1090	crypto_info = &ctx->crypto_send.info;
1091	if (crypto_info->version != TLS_1_2_VERSION) {
1092		rc = -EOPNOTSUPP;
1093		goto release_netdev;
1094	}
1095
1096	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1097	if (!cipher_desc || !cipher_desc->offloadable) {
1098		rc = -EINVAL;
1099		goto release_netdev;
1100	}
1101
1102	rc = init_prot_info(prot, crypto_info, cipher_desc);
1103	if (rc)
1104		goto release_netdev;
1105
1106	iv = crypto_info_iv(crypto_info, cipher_desc);
1107	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1108
1109	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1110	memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1111
1112	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1113	if (!start_marker_record) {
1114		rc = -ENOMEM;
1115		goto release_netdev;
1116	}
1117
1118	offload_ctx = alloc_offload_ctx_tx(ctx);
1119	if (!offload_ctx) {
1120		rc = -ENOMEM;
1121		goto free_marker_record;
1122	}
1123
1124	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1125	if (rc)
1126		goto free_offload_ctx;
1127
1128	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1129	start_marker_record->len = 0;
1130	start_marker_record->num_frags = 0;
1131	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1132
1133	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1134	ctx->push_pending_record = tls_device_push_pending_record;
1135
1136	/* TLS offload is greatly simplified if we don't send
1137	 * SKBs where only part of the payload needs to be encrypted.
1138	 * So mark the last skb in the write queue as end of record.
1139	 */
1140	skb = tcp_write_queue_tail(sk);
1141	if (skb)
1142		TCP_SKB_CB(skb)->eor = 1;
1143
1144	/* Avoid offloading if the device is down
1145	 * We don't want to offload new flows after
1146	 * the NETDEV_DOWN event
1147	 *
1148	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1149	 * handler thus protecting from the device going down before
1150	 * ctx was added to tls_device_list.
1151	 */
1152	down_read(&device_offload_lock);
1153	if (!(netdev->flags & IFF_UP)) {
1154		rc = -EINVAL;
1155		goto release_lock;
1156	}
1157
1158	ctx->priv_ctx_tx = offload_ctx;
1159	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1160					     &ctx->crypto_send.info,
1161					     tcp_sk(sk)->write_seq);
1162	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1163				     tcp_sk(sk)->write_seq, rec_seq, rc);
1164	if (rc)
1165		goto release_lock;
1166
1167	tls_device_attach(ctx, sk, netdev);
1168	up_read(&device_offload_lock);
1169
1170	/* following this assignment tls_is_skb_tx_device_offloaded
1171	 * will return true and the context might be accessed
1172	 * by the netdev's xmit function.
1173	 */
1174	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1175	dev_put(netdev);
1176
1177	return 0;
1178
1179release_lock:
1180	up_read(&device_offload_lock);
1181	clean_acked_data_disable(inet_csk(sk));
1182	crypto_free_aead(offload_ctx->aead_send);
1183free_offload_ctx:
1184	kfree(offload_ctx);
1185	ctx->priv_ctx_tx = NULL;
1186free_marker_record:
1187	kfree(start_marker_record);
1188release_netdev:
1189	dev_put(netdev);
1190	return rc;
1191}
1192
1193int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1194{
1195	struct tls12_crypto_info_aes_gcm_128 *info;
1196	struct tls_offload_context_rx *context;
1197	struct net_device *netdev;
1198	int rc = 0;
1199
1200	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1201		return -EOPNOTSUPP;
1202
1203	netdev = get_netdev_for_sock(sk);
1204	if (!netdev) {
1205		pr_err_ratelimited("%s: netdev not found\n", __func__);
1206		return -EINVAL;
1207	}
1208
1209	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1210		rc = -EOPNOTSUPP;
1211		goto release_netdev;
1212	}
1213
1214	/* Avoid offloading if the device is down
1215	 * We don't want to offload new flows after
1216	 * the NETDEV_DOWN event
1217	 *
1218	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1219	 * handler thus protecting from the device going down before
1220	 * ctx was added to tls_device_list.
1221	 */
1222	down_read(&device_offload_lock);
1223	if (!(netdev->flags & IFF_UP)) {
1224		rc = -EINVAL;
1225		goto release_lock;
1226	}
1227
1228	context = kzalloc(sizeof(*context), GFP_KERNEL);
1229	if (!context) {
1230		rc = -ENOMEM;
1231		goto release_lock;
1232	}
1233	context->resync_nh_reset = 1;
1234
1235	ctx->priv_ctx_rx = context;
1236	rc = tls_set_sw_offload(sk, 0);
1237	if (rc)
1238		goto release_ctx;
1239
1240	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1241					     &ctx->crypto_recv.info,
1242					     tcp_sk(sk)->copied_seq);
1243	info = (void *)&ctx->crypto_recv.info;
1244	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1245				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1246	if (rc)
1247		goto free_sw_resources;
1248
1249	tls_device_attach(ctx, sk, netdev);
1250	up_read(&device_offload_lock);
1251
1252	dev_put(netdev);
1253
1254	return 0;
1255
1256free_sw_resources:
1257	up_read(&device_offload_lock);
1258	tls_sw_free_resources_rx(sk);
1259	down_read(&device_offload_lock);
1260release_ctx:
1261	ctx->priv_ctx_rx = NULL;
1262release_lock:
1263	up_read(&device_offload_lock);
1264release_netdev:
1265	dev_put(netdev);
1266	return rc;
1267}
1268
1269void tls_device_offload_cleanup_rx(struct sock *sk)
1270{
1271	struct tls_context *tls_ctx = tls_get_ctx(sk);
1272	struct net_device *netdev;
1273
1274	down_read(&device_offload_lock);
1275	netdev = rcu_dereference_protected(tls_ctx->netdev,
1276					   lockdep_is_held(&device_offload_lock));
1277	if (!netdev)
1278		goto out;
1279
1280	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1281					TLS_OFFLOAD_CTX_DIR_RX);
1282
1283	if (tls_ctx->tx_conf != TLS_HW) {
1284		dev_put(netdev);
1285		rcu_assign_pointer(tls_ctx->netdev, NULL);
1286	} else {
1287		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1288	}
1289out:
1290	up_read(&device_offload_lock);
1291	tls_sw_release_resources_rx(sk);
1292}
1293
1294static int tls_device_down(struct net_device *netdev)
1295{
1296	struct tls_context *ctx, *tmp;
1297	unsigned long flags;
1298	LIST_HEAD(list);
1299
1300	/* Request a write lock to block new offload attempts */
1301	down_write(&device_offload_lock);
1302
1303	spin_lock_irqsave(&tls_device_lock, flags);
1304	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1305		struct net_device *ctx_netdev =
1306			rcu_dereference_protected(ctx->netdev,
1307						  lockdep_is_held(&device_offload_lock));
1308
1309		if (ctx_netdev != netdev ||
1310		    !refcount_inc_not_zero(&ctx->refcount))
1311			continue;
1312
1313		list_move(&ctx->list, &list);
1314	}
1315	spin_unlock_irqrestore(&tls_device_lock, flags);
1316
1317	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1318		/* Stop offloaded TX and switch to the fallback.
1319		 * tls_is_skb_tx_device_offloaded will return false.
1320		 */
1321		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1322
1323		/* Stop the RX and TX resync.
1324		 * tls_dev_resync must not be called after tls_dev_del.
1325		 */
1326		rcu_assign_pointer(ctx->netdev, NULL);
1327
1328		/* Start skipping the RX resync logic completely. */
1329		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1330
1331		/* Sync with inflight packets. After this point:
1332		 * TX: no non-encrypted packets will be passed to the driver.
1333		 * RX: resync requests from the driver will be ignored.
1334		 */
1335		synchronize_net();
1336
1337		/* Release the offload context on the driver side. */
1338		if (ctx->tx_conf == TLS_HW)
1339			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1340							TLS_OFFLOAD_CTX_DIR_TX);
1341		if (ctx->rx_conf == TLS_HW &&
1342		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1343			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1344							TLS_OFFLOAD_CTX_DIR_RX);
1345
1346		dev_put(netdev);
1347
1348		/* Move the context to a separate list for two reasons:
1349		 * 1. When the context is deallocated, list_del is called.
1350		 * 2. It's no longer an offloaded context, so we don't want to
1351		 *    run offload-specific code on this context.
1352		 */
1353		spin_lock_irqsave(&tls_device_lock, flags);
1354		list_move_tail(&ctx->list, &tls_device_down_list);
1355		spin_unlock_irqrestore(&tls_device_lock, flags);
1356
1357		/* Device contexts for RX and TX will be freed in on sk_destruct
1358		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1359		 * Now release the ref taken above.
1360		 */
1361		if (refcount_dec_and_test(&ctx->refcount)) {
1362			/* sk_destruct ran after tls_device_down took a ref, and
1363			 * it returned early. Complete the destruction here.
1364			 */
1365			list_del(&ctx->list);
1366			tls_device_free_ctx(ctx);
1367		}
1368	}
1369
1370	up_write(&device_offload_lock);
1371
1372	flush_workqueue(destruct_wq);
1373
1374	return NOTIFY_DONE;
1375}
1376
1377static int tls_dev_event(struct notifier_block *this, unsigned long event,
1378			 void *ptr)
1379{
1380	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1381
1382	if (!dev->tlsdev_ops &&
1383	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1384		return NOTIFY_DONE;
1385
1386	switch (event) {
1387	case NETDEV_REGISTER:
1388	case NETDEV_FEAT_CHANGE:
1389		if (netif_is_bond_master(dev))
1390			return NOTIFY_DONE;
1391		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1392		    !dev->tlsdev_ops->tls_dev_resync)
1393			return NOTIFY_BAD;
1394
1395		if  (dev->tlsdev_ops &&
1396		     dev->tlsdev_ops->tls_dev_add &&
1397		     dev->tlsdev_ops->tls_dev_del)
1398			return NOTIFY_DONE;
1399		else
1400			return NOTIFY_BAD;
1401	case NETDEV_DOWN:
1402		return tls_device_down(dev);
1403	}
1404	return NOTIFY_DONE;
1405}
1406
1407static struct notifier_block tls_dev_notifier = {
1408	.notifier_call	= tls_dev_event,
1409};
1410
1411int __init tls_device_init(void)
1412{
1413	int err;
1414
1415	dummy_page = alloc_page(GFP_KERNEL);
1416	if (!dummy_page)
1417		return -ENOMEM;
1418
1419	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1420	if (!destruct_wq) {
1421		err = -ENOMEM;
1422		goto err_free_dummy;
1423	}
1424
1425	err = register_netdevice_notifier(&tls_dev_notifier);
1426	if (err)
1427		goto err_destroy_wq;
1428
1429	return 0;
1430
1431err_destroy_wq:
1432	destroy_workqueue(destruct_wq);
1433err_free_dummy:
1434	put_page(dummy_page);
1435	return err;
1436}
1437
1438void __exit tls_device_cleanup(void)
1439{
1440	unregister_netdevice_notifier(&tls_dev_notifier);
1441	destroy_workqueue(destruct_wq);
1442	clean_acked_data_flush();
1443	put_page(dummy_page);
1444}
1445