1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svcsock.c
4 *
5 * These are the RPC server socket internals.
6 *
7 * The server scheduling algorithm does not always distribute the load
8 * evenly when servicing a single client. May need to modify the
9 * svc_xprt_enqueue procedure...
10 *
11 * TCP support is largely untested and may be a little slow. The problem
12 * is that we currently do two separate recvfrom's, one for the 4-byte
13 * record length, and the second for the actual record. This could possibly
14 * be improved by always reading a minimum size of around 100 bytes and
15 * tucking any superfluous bytes away in a temporary store. Still, that
16 * leaves write requests out in the rain. An alternative may be to peek at
17 * the first skb in the queue, and if it matches the next TCP sequence
18 * number, to extract the record marker. Yuck.
19 *
20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21 */
22
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/module.h>
26#include <linux/errno.h>
27#include <linux/fcntl.h>
28#include <linux/net.h>
29#include <linux/in.h>
30#include <linux/inet.h>
31#include <linux/udp.h>
32#include <linux/tcp.h>
33#include <linux/unistd.h>
34#include <linux/slab.h>
35#include <linux/netdevice.h>
36#include <linux/skbuff.h>
37#include <linux/file.h>
38#include <linux/freezer.h>
39#include <linux/bvec.h>
40
41#include <net/sock.h>
42#include <net/checksum.h>
43#include <net/ip.h>
44#include <net/ipv6.h>
45#include <net/udp.h>
46#include <net/tcp.h>
47#include <net/tcp_states.h>
48#include <net/tls_prot.h>
49#include <net/handshake.h>
50#include <linux/uaccess.h>
51#include <linux/highmem.h>
52#include <asm/ioctls.h>
53#include <linux/key.h>
54
55#include <linux/sunrpc/types.h>
56#include <linux/sunrpc/clnt.h>
57#include <linux/sunrpc/xdr.h>
58#include <linux/sunrpc/msg_prot.h>
59#include <linux/sunrpc/svcsock.h>
60#include <linux/sunrpc/stats.h>
61#include <linux/sunrpc/xprt.h>
62
63#include <trace/events/sock.h>
64#include <trace/events/sunrpc.h>
65
66#include "socklib.h"
67#include "sunrpc.h"
68
69#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
70
71/* To-do: to avoid tying up an nfsd thread while waiting for a
72 * handshake request, the request could instead be deferred.
73 */
74enum {
75	SVC_HANDSHAKE_TO	= 5U * HZ
76};
77
78static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
79					 int flags);
80static int		svc_udp_recvfrom(struct svc_rqst *);
81static int		svc_udp_sendto(struct svc_rqst *);
82static void		svc_sock_detach(struct svc_xprt *);
83static void		svc_tcp_sock_detach(struct svc_xprt *);
84static void		svc_sock_free(struct svc_xprt *);
85
86static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
87					  struct net *, struct sockaddr *,
88					  int, int);
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90static struct lock_class_key svc_key[2];
91static struct lock_class_key svc_slock_key[2];
92
93static void svc_reclassify_socket(struct socket *sock)
94{
95	struct sock *sk = sock->sk;
96
97	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
98		return;
99
100	switch (sk->sk_family) {
101	case AF_INET:
102		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
103					      &svc_slock_key[0],
104					      "sk_xprt.xpt_lock-AF_INET-NFSD",
105					      &svc_key[0]);
106		break;
107
108	case AF_INET6:
109		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
110					      &svc_slock_key[1],
111					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
112					      &svc_key[1]);
113		break;
114
115	default:
116		BUG();
117	}
118}
119#else
120static void svc_reclassify_socket(struct socket *sock)
121{
122}
123#endif
124
125/**
126 * svc_tcp_release_ctxt - Release transport-related resources
127 * @xprt: the transport which owned the context
128 * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
129 *
130 */
131static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
132{
133}
134
135/**
136 * svc_udp_release_ctxt - Release transport-related resources
137 * @xprt: the transport which owned the context
138 * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
139 *
140 */
141static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
142{
143	struct sk_buff *skb = ctxt;
144
145	if (skb)
146		consume_skb(skb);
147}
148
149union svc_pktinfo_u {
150	struct in_pktinfo pkti;
151	struct in6_pktinfo pkti6;
152};
153#define SVC_PKTINFO_SPACE \
154	CMSG_SPACE(sizeof(union svc_pktinfo_u))
155
156static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
157{
158	struct svc_sock *svsk =
159		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
160	switch (svsk->sk_sk->sk_family) {
161	case AF_INET: {
162			struct in_pktinfo *pki = CMSG_DATA(cmh);
163
164			cmh->cmsg_level = SOL_IP;
165			cmh->cmsg_type = IP_PKTINFO;
166			pki->ipi_ifindex = 0;
167			pki->ipi_spec_dst.s_addr =
168				 svc_daddr_in(rqstp)->sin_addr.s_addr;
169			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
170		}
171		break;
172
173	case AF_INET6: {
174			struct in6_pktinfo *pki = CMSG_DATA(cmh);
175			struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
176
177			cmh->cmsg_level = SOL_IPV6;
178			cmh->cmsg_type = IPV6_PKTINFO;
179			pki->ipi6_ifindex = daddr->sin6_scope_id;
180			pki->ipi6_addr = daddr->sin6_addr;
181			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
182		}
183		break;
184	}
185}
186
187static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
188				   unsigned int length)
189{
190	return 0;
191}
192
193/*
194 * Report socket names for nfsdfs
195 */
196static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
197{
198	const struct sock *sk = svsk->sk_sk;
199	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
200							"udp" : "tcp";
201	int len;
202
203	switch (sk->sk_family) {
204	case PF_INET:
205		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
206				proto_name,
207				&inet_sk(sk)->inet_rcv_saddr,
208				inet_sk(sk)->inet_num);
209		break;
210#if IS_ENABLED(CONFIG_IPV6)
211	case PF_INET6:
212		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
213				proto_name,
214				&sk->sk_v6_rcv_saddr,
215				inet_sk(sk)->inet_num);
216		break;
217#endif
218	default:
219		len = snprintf(buf, remaining, "*unknown-%d*\n",
220				sk->sk_family);
221	}
222
223	if (len >= remaining) {
224		*buf = '\0';
225		return -ENAMETOOLONG;
226	}
227	return len;
228}
229
230static int
231svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg,
232			  struct cmsghdr *cmsg, int ret)
233{
234	u8 content_type = tls_get_record_type(sock->sk, cmsg);
235	u8 level, description;
236
237	switch (content_type) {
238	case 0:
239		break;
240	case TLS_RECORD_TYPE_DATA:
241		/* TLS sets EOR at the end of each application data
242		 * record, even though there might be more frames
243		 * waiting to be decrypted.
244		 */
245		msg->msg_flags &= ~MSG_EOR;
246		break;
247	case TLS_RECORD_TYPE_ALERT:
248		tls_alert_recv(sock->sk, msg, &level, &description);
249		ret = (level == TLS_ALERT_LEVEL_FATAL) ?
250			-ENOTCONN : -EAGAIN;
251		break;
252	default:
253		/* discard this record type */
254		ret = -EAGAIN;
255	}
256	return ret;
257}
258
259static int
260svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg)
261{
262	union {
263		struct cmsghdr	cmsg;
264		u8		buf[CMSG_SPACE(sizeof(u8))];
265	} u;
266	struct socket *sock = svsk->sk_sock;
267	int ret;
268
269	msg->msg_control = &u;
270	msg->msg_controllen = sizeof(u);
271	ret = sock_recvmsg(sock, msg, MSG_DONTWAIT);
272	if (unlikely(msg->msg_controllen != sizeof(u)))
273		ret = svc_tcp_sock_process_cmsg(sock, msg, &u.cmsg, ret);
274	return ret;
275}
276
277#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
278static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
279{
280	struct bvec_iter bi = {
281		.bi_size	= size + seek,
282	};
283	struct bio_vec bv;
284
285	bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
286	for_each_bvec(bv, bvec, bi, bi)
287		flush_dcache_page(bv.bv_page);
288}
289#else
290static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
291				  size_t seek)
292{
293}
294#endif
295
296/*
297 * Read from @rqstp's transport socket. The incoming message fills whole
298 * pages in @rqstp's rq_pages array until the last page of the message
299 * has been received into a partial page.
300 */
301static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
302				size_t seek)
303{
304	struct svc_sock *svsk =
305		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
306	struct bio_vec *bvec = rqstp->rq_bvec;
307	struct msghdr msg = { NULL };
308	unsigned int i;
309	ssize_t len;
310	size_t t;
311
312	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
313
314	for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
315		bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
316	rqstp->rq_respages = &rqstp->rq_pages[i];
317	rqstp->rq_next_page = rqstp->rq_respages + 1;
318
319	iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
320	if (seek) {
321		iov_iter_advance(&msg.msg_iter, seek);
322		buflen -= seek;
323	}
324	len = svc_tcp_sock_recv_cmsg(svsk, &msg);
325	if (len > 0)
326		svc_flush_bvec(bvec, len, seek);
327
328	/* If we read a full record, then assume there may be more
329	 * data to read (stream based sockets only!)
330	 */
331	if (len == buflen)
332		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
333
334	return len;
335}
336
337/*
338 * Set socket snd and rcv buffer lengths
339 */
340static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
341{
342	unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
343	struct socket *sock = svsk->sk_sock;
344
345	nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
346
347	lock_sock(sock->sk);
348	sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
349	sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
350	sock->sk->sk_write_space(sock->sk);
351	release_sock(sock->sk);
352}
353
354static void svc_sock_secure_port(struct svc_rqst *rqstp)
355{
356	if (svc_port_is_privileged(svc_addr(rqstp)))
357		set_bit(RQ_SECURE, &rqstp->rq_flags);
358	else
359		clear_bit(RQ_SECURE, &rqstp->rq_flags);
360}
361
362/*
363 * INET callback when data has been received on the socket.
364 */
365static void svc_data_ready(struct sock *sk)
366{
367	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
368
369	trace_sk_data_ready(sk);
370
371	if (svsk) {
372		/* Refer to svc_setup_socket() for details. */
373		rmb();
374		svsk->sk_odata(sk);
375		trace_svcsock_data_ready(&svsk->sk_xprt, 0);
376		if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags))
377			return;
378		if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
379			svc_xprt_enqueue(&svsk->sk_xprt);
380	}
381}
382
383/*
384 * INET callback when space is newly available on the socket.
385 */
386static void svc_write_space(struct sock *sk)
387{
388	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
389
390	if (svsk) {
391		/* Refer to svc_setup_socket() for details. */
392		rmb();
393		trace_svcsock_write_space(&svsk->sk_xprt, 0);
394		svsk->sk_owspace(sk);
395		svc_xprt_enqueue(&svsk->sk_xprt);
396	}
397}
398
399static int svc_tcp_has_wspace(struct svc_xprt *xprt)
400{
401	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
402
403	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
404		return 1;
405	return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
406}
407
408static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
409{
410	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
411
412	sock_no_linger(svsk->sk_sock->sk);
413}
414
415/**
416 * svc_tcp_handshake_done - Handshake completion handler
417 * @data: address of xprt to wake
418 * @status: status of handshake
419 * @peerid: serial number of key containing the remote peer's identity
420 *
421 * If a security policy is specified as an export option, we don't
422 * have a specific export here to check. So we set a "TLS session
423 * is present" flag on the xprt and let an upper layer enforce local
424 * security policy.
425 */
426static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid)
427{
428	struct svc_xprt *xprt = data;
429	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
430
431	if (!status) {
432		if (peerid != TLS_NO_PEERID)
433			set_bit(XPT_PEER_AUTH, &xprt->xpt_flags);
434		set_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
435	}
436	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
437	complete_all(&svsk->sk_handshake_done);
438}
439
440/**
441 * svc_tcp_handshake - Perform a transport-layer security handshake
442 * @xprt: connected transport endpoint
443 *
444 */
445static void svc_tcp_handshake(struct svc_xprt *xprt)
446{
447	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
448	struct sock *sk = svsk->sk_sock->sk;
449	struct tls_handshake_args args = {
450		.ta_sock	= svsk->sk_sock,
451		.ta_done	= svc_tcp_handshake_done,
452		.ta_data	= xprt,
453	};
454	int ret;
455
456	trace_svc_tls_upcall(xprt);
457
458	clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
459	init_completion(&svsk->sk_handshake_done);
460
461	ret = tls_server_hello_x509(&args, GFP_KERNEL);
462	if (ret) {
463		trace_svc_tls_not_started(xprt);
464		goto out_failed;
465	}
466
467	ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done,
468							SVC_HANDSHAKE_TO);
469	if (ret <= 0) {
470		if (tls_handshake_cancel(sk)) {
471			trace_svc_tls_timed_out(xprt);
472			goto out_close;
473		}
474	}
475
476	if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) {
477		trace_svc_tls_unavailable(xprt);
478		goto out_close;
479	}
480
481	/* Mark the transport ready in case the remote sent RPC
482	 * traffic before the kernel received the handshake
483	 * completion downcall.
484	 */
485	set_bit(XPT_DATA, &xprt->xpt_flags);
486	svc_xprt_enqueue(xprt);
487	return;
488
489out_close:
490	set_bit(XPT_CLOSE, &xprt->xpt_flags);
491out_failed:
492	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
493	set_bit(XPT_DATA, &xprt->xpt_flags);
494	svc_xprt_enqueue(xprt);
495}
496
497/*
498 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
499 */
500static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
501				     struct cmsghdr *cmh)
502{
503	struct in_pktinfo *pki = CMSG_DATA(cmh);
504	struct sockaddr_in *daddr = svc_daddr_in(rqstp);
505
506	if (cmh->cmsg_type != IP_PKTINFO)
507		return 0;
508
509	daddr->sin_family = AF_INET;
510	daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
511	return 1;
512}
513
514/*
515 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
516 */
517static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
518				     struct cmsghdr *cmh)
519{
520	struct in6_pktinfo *pki = CMSG_DATA(cmh);
521	struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
522
523	if (cmh->cmsg_type != IPV6_PKTINFO)
524		return 0;
525
526	daddr->sin6_family = AF_INET6;
527	daddr->sin6_addr = pki->ipi6_addr;
528	daddr->sin6_scope_id = pki->ipi6_ifindex;
529	return 1;
530}
531
532/*
533 * Copy the UDP datagram's destination address to the rqstp structure.
534 * The 'destination' address in this case is the address to which the
535 * peer sent the datagram, i.e. our local address. For multihomed
536 * hosts, this can change from msg to msg. Note that only the IP
537 * address changes, the port number should remain the same.
538 */
539static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
540				    struct cmsghdr *cmh)
541{
542	switch (cmh->cmsg_level) {
543	case SOL_IP:
544		return svc_udp_get_dest_address4(rqstp, cmh);
545	case SOL_IPV6:
546		return svc_udp_get_dest_address6(rqstp, cmh);
547	}
548
549	return 0;
550}
551
552/**
553 * svc_udp_recvfrom - Receive a datagram from a UDP socket.
554 * @rqstp: request structure into which to receive an RPC Call
555 *
556 * Called in a loop when XPT_DATA has been set.
557 *
558 * Returns:
559 *   On success, the number of bytes in a received RPC Call, or
560 *   %0 if a complete RPC Call message was not ready to return
561 */
562static int svc_udp_recvfrom(struct svc_rqst *rqstp)
563{
564	struct svc_sock	*svsk =
565		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
566	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
567	struct sk_buff	*skb;
568	union {
569		struct cmsghdr	hdr;
570		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
571	} buffer;
572	struct cmsghdr *cmh = &buffer.hdr;
573	struct msghdr msg = {
574		.msg_name = svc_addr(rqstp),
575		.msg_control = cmh,
576		.msg_controllen = sizeof(buffer),
577		.msg_flags = MSG_DONTWAIT,
578	};
579	size_t len;
580	int err;
581
582	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
583	    /* udp sockets need large rcvbuf as all pending
584	     * requests are still in that buffer.  sndbuf must
585	     * also be large enough that there is enough space
586	     * for one reply per thread.  We count all threads
587	     * rather than threads in a particular pool, which
588	     * provides an upper bound on the number of threads
589	     * which will access the socket.
590	     */
591	    svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
592
593	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
594	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
595			     0, 0, MSG_PEEK | MSG_DONTWAIT);
596	if (err < 0)
597		goto out_recv_err;
598	skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
599	if (!skb)
600		goto out_recv_err;
601
602	len = svc_addr_len(svc_addr(rqstp));
603	rqstp->rq_addrlen = len;
604	if (skb->tstamp == 0) {
605		skb->tstamp = ktime_get_real();
606		/* Don't enable netstamp, sunrpc doesn't
607		   need that much accuracy */
608	}
609	sock_write_timestamp(svsk->sk_sk, skb->tstamp);
610	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
611
612	len = skb->len;
613	rqstp->rq_arg.len = len;
614	trace_svcsock_udp_recv(&svsk->sk_xprt, len);
615
616	rqstp->rq_prot = IPPROTO_UDP;
617
618	if (!svc_udp_get_dest_address(rqstp, cmh))
619		goto out_cmsg_err;
620	rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
621
622	if (skb_is_nonlinear(skb)) {
623		/* we have to copy */
624		local_bh_disable();
625		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
626			goto out_bh_enable;
627		local_bh_enable();
628		consume_skb(skb);
629	} else {
630		/* we can use it in-place */
631		rqstp->rq_arg.head[0].iov_base = skb->data;
632		rqstp->rq_arg.head[0].iov_len = len;
633		if (skb_checksum_complete(skb))
634			goto out_free;
635		rqstp->rq_xprt_ctxt = skb;
636	}
637
638	rqstp->rq_arg.page_base = 0;
639	if (len <= rqstp->rq_arg.head[0].iov_len) {
640		rqstp->rq_arg.head[0].iov_len = len;
641		rqstp->rq_arg.page_len = 0;
642		rqstp->rq_respages = rqstp->rq_pages+1;
643	} else {
644		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
645		rqstp->rq_respages = rqstp->rq_pages + 1 +
646			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
647	}
648	rqstp->rq_next_page = rqstp->rq_respages+1;
649
650	if (serv->sv_stats)
651		serv->sv_stats->netudpcnt++;
652
653	svc_sock_secure_port(rqstp);
654	svc_xprt_received(rqstp->rq_xprt);
655	return len;
656
657out_recv_err:
658	if (err != -EAGAIN) {
659		/* possibly an icmp error */
660		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
661	}
662	trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
663	goto out_clear_busy;
664out_cmsg_err:
665	net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
666			     cmh->cmsg_level, cmh->cmsg_type);
667	goto out_free;
668out_bh_enable:
669	local_bh_enable();
670out_free:
671	kfree_skb(skb);
672out_clear_busy:
673	svc_xprt_received(rqstp->rq_xprt);
674	return 0;
675}
676
677/**
678 * svc_udp_sendto - Send out a reply on a UDP socket
679 * @rqstp: completed svc_rqst
680 *
681 * xpt_mutex ensures @rqstp's whole message is written to the socket
682 * without interruption.
683 *
684 * Returns the number of bytes sent, or a negative errno.
685 */
686static int svc_udp_sendto(struct svc_rqst *rqstp)
687{
688	struct svc_xprt *xprt = rqstp->rq_xprt;
689	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
690	struct xdr_buf *xdr = &rqstp->rq_res;
691	union {
692		struct cmsghdr	hdr;
693		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
694	} buffer;
695	struct cmsghdr *cmh = &buffer.hdr;
696	struct msghdr msg = {
697		.msg_name	= &rqstp->rq_addr,
698		.msg_namelen	= rqstp->rq_addrlen,
699		.msg_control	= cmh,
700		.msg_flags	= MSG_SPLICE_PAGES,
701		.msg_controllen	= sizeof(buffer),
702	};
703	unsigned int count;
704	int err;
705
706	svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
707	rqstp->rq_xprt_ctxt = NULL;
708
709	svc_set_cmsg_data(rqstp, cmh);
710
711	mutex_lock(&xprt->xpt_mutex);
712
713	if (svc_xprt_is_dead(xprt))
714		goto out_notconn;
715
716	count = xdr_buf_to_bvec(rqstp->rq_bvec,
717				ARRAY_SIZE(rqstp->rq_bvec), xdr);
718
719	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
720		      count, rqstp->rq_res.len);
721	err = sock_sendmsg(svsk->sk_sock, &msg);
722	if (err == -ECONNREFUSED) {
723		/* ICMP error on earlier request. */
724		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
725			      count, rqstp->rq_res.len);
726		err = sock_sendmsg(svsk->sk_sock, &msg);
727	}
728
729	trace_svcsock_udp_send(xprt, err);
730
731	mutex_unlock(&xprt->xpt_mutex);
732	return err;
733
734out_notconn:
735	mutex_unlock(&xprt->xpt_mutex);
736	return -ENOTCONN;
737}
738
739static int svc_udp_has_wspace(struct svc_xprt *xprt)
740{
741	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
742	struct svc_serv	*serv = xprt->xpt_server;
743	unsigned long required;
744
745	/*
746	 * Set the SOCK_NOSPACE flag before checking the available
747	 * sock space.
748	 */
749	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
750	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
751	if (required*2 > sock_wspace(svsk->sk_sk))
752		return 0;
753	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
754	return 1;
755}
756
757static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
758{
759	BUG();
760	return NULL;
761}
762
763static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
764{
765}
766
767static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
768				       struct net *net,
769				       struct sockaddr *sa, int salen,
770				       int flags)
771{
772	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
773}
774
775static const struct svc_xprt_ops svc_udp_ops = {
776	.xpo_create = svc_udp_create,
777	.xpo_recvfrom = svc_udp_recvfrom,
778	.xpo_sendto = svc_udp_sendto,
779	.xpo_result_payload = svc_sock_result_payload,
780	.xpo_release_ctxt = svc_udp_release_ctxt,
781	.xpo_detach = svc_sock_detach,
782	.xpo_free = svc_sock_free,
783	.xpo_has_wspace = svc_udp_has_wspace,
784	.xpo_accept = svc_udp_accept,
785	.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
786};
787
788static struct svc_xprt_class svc_udp_class = {
789	.xcl_name = "udp",
790	.xcl_owner = THIS_MODULE,
791	.xcl_ops = &svc_udp_ops,
792	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
793	.xcl_ident = XPRT_TRANSPORT_UDP,
794};
795
796static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
797{
798	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
799		      &svsk->sk_xprt, serv);
800	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
801	svsk->sk_sk->sk_data_ready = svc_data_ready;
802	svsk->sk_sk->sk_write_space = svc_write_space;
803
804	/* initialise setting must have enough space to
805	 * receive and respond to one request.
806	 * svc_udp_recvfrom will re-adjust if necessary
807	 */
808	svc_sock_setbufsize(svsk, 3);
809
810	/* data might have come in before data_ready set up */
811	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
812	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
813
814	/* make sure we get destination address info */
815	switch (svsk->sk_sk->sk_family) {
816	case AF_INET:
817		ip_sock_set_pktinfo(svsk->sk_sock->sk);
818		break;
819	case AF_INET6:
820		ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
821		break;
822	default:
823		BUG();
824	}
825}
826
827/*
828 * A data_ready event on a listening socket means there's a connection
829 * pending. Do not use state_change as a substitute for it.
830 */
831static void svc_tcp_listen_data_ready(struct sock *sk)
832{
833	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
834
835	trace_sk_data_ready(sk);
836
837	/*
838	 * This callback may called twice when a new connection
839	 * is established as a child socket inherits everything
840	 * from a parent LISTEN socket.
841	 * 1) data_ready method of the parent socket will be called
842	 *    when one of child sockets become ESTABLISHED.
843	 * 2) data_ready method of the child socket may be called
844	 *    when it receives data before the socket is accepted.
845	 * In case of 2, we should ignore it silently and DO NOT
846	 * dereference svsk.
847	 */
848	if (sk->sk_state != TCP_LISTEN)
849		return;
850
851	if (svsk) {
852		/* Refer to svc_setup_socket() for details. */
853		rmb();
854		svsk->sk_odata(sk);
855		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
856		svc_xprt_enqueue(&svsk->sk_xprt);
857	}
858}
859
860/*
861 * A state change on a connected socket means it's dying or dead.
862 */
863static void svc_tcp_state_change(struct sock *sk)
864{
865	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
866
867	if (svsk) {
868		/* Refer to svc_setup_socket() for details. */
869		rmb();
870		svsk->sk_ostate(sk);
871		trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
872		if (sk->sk_state != TCP_ESTABLISHED)
873			svc_xprt_deferred_close(&svsk->sk_xprt);
874	}
875}
876
877/*
878 * Accept a TCP connection
879 */
880static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
881{
882	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
883	struct sockaddr_storage addr;
884	struct sockaddr	*sin = (struct sockaddr *) &addr;
885	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
886	struct socket	*sock = svsk->sk_sock;
887	struct socket	*newsock;
888	struct svc_sock	*newsvsk;
889	int		err, slen;
890
891	if (!sock)
892		return NULL;
893
894	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
895	err = kernel_accept(sock, &newsock, O_NONBLOCK);
896	if (err < 0) {
897		if (err != -EAGAIN)
898			trace_svcsock_accept_err(xprt, serv->sv_name, err);
899		return NULL;
900	}
901	if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL)))
902		return NULL;
903
904	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
905
906	err = kernel_getpeername(newsock, sin);
907	if (err < 0) {
908		trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
909		goto failed;		/* aborted connection or whatever */
910	}
911	slen = err;
912
913	/* Reset the inherited callbacks before calling svc_setup_socket */
914	newsock->sk->sk_state_change = svsk->sk_ostate;
915	newsock->sk->sk_data_ready = svsk->sk_odata;
916	newsock->sk->sk_write_space = svsk->sk_owspace;
917
918	/* make sure that a write doesn't block forever when
919	 * low on memory
920	 */
921	newsock->sk->sk_sndtimeo = HZ*30;
922
923	newsvsk = svc_setup_socket(serv, newsock,
924				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
925	if (IS_ERR(newsvsk))
926		goto failed;
927	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
928	err = kernel_getsockname(newsock, sin);
929	slen = err;
930	if (unlikely(err < 0))
931		slen = offsetof(struct sockaddr, sa_data);
932	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
933
934	if (sock_is_loopback(newsock->sk))
935		set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
936	else
937		clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
938	if (serv->sv_stats)
939		serv->sv_stats->nettcpconn++;
940
941	return &newsvsk->sk_xprt;
942
943failed:
944	sockfd_put(newsock);
945	return NULL;
946}
947
948static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
949				    struct svc_rqst *rqstp)
950{
951	size_t len = svsk->sk_datalen;
952	unsigned int i, npages;
953
954	if (!len)
955		return 0;
956	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
957	for (i = 0; i < npages; i++) {
958		if (rqstp->rq_pages[i] != NULL)
959			put_page(rqstp->rq_pages[i]);
960		BUG_ON(svsk->sk_pages[i] == NULL);
961		rqstp->rq_pages[i] = svsk->sk_pages[i];
962		svsk->sk_pages[i] = NULL;
963	}
964	rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
965	return len;
966}
967
968static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
969{
970	unsigned int i, len, npages;
971
972	if (svsk->sk_datalen == 0)
973		return;
974	len = svsk->sk_datalen;
975	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
976	for (i = 0; i < npages; i++) {
977		svsk->sk_pages[i] = rqstp->rq_pages[i];
978		rqstp->rq_pages[i] = NULL;
979	}
980}
981
982static void svc_tcp_clear_pages(struct svc_sock *svsk)
983{
984	unsigned int i, len, npages;
985
986	if (svsk->sk_datalen == 0)
987		goto out;
988	len = svsk->sk_datalen;
989	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
990	for (i = 0; i < npages; i++) {
991		if (svsk->sk_pages[i] == NULL) {
992			WARN_ON_ONCE(1);
993			continue;
994		}
995		put_page(svsk->sk_pages[i]);
996		svsk->sk_pages[i] = NULL;
997	}
998out:
999	svsk->sk_tcplen = 0;
1000	svsk->sk_datalen = 0;
1001}
1002
1003/*
1004 * Receive fragment record header into sk_marker.
1005 */
1006static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
1007				   struct svc_rqst *rqstp)
1008{
1009	ssize_t want, len;
1010
1011	/* If we haven't gotten the record length yet,
1012	 * get the next four bytes.
1013	 */
1014	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
1015		struct msghdr	msg = { NULL };
1016		struct kvec	iov;
1017
1018		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
1019		iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
1020		iov.iov_len  = want;
1021		iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
1022		len = svc_tcp_sock_recv_cmsg(svsk, &msg);
1023		if (len < 0)
1024			return len;
1025		svsk->sk_tcplen += len;
1026		if (len < want) {
1027			/* call again to read the remaining bytes */
1028			goto err_short;
1029		}
1030		trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
1031		if (svc_sock_reclen(svsk) + svsk->sk_datalen >
1032		    svsk->sk_xprt.xpt_server->sv_max_mesg)
1033			goto err_too_large;
1034	}
1035	return svc_sock_reclen(svsk);
1036
1037err_too_large:
1038	net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
1039			       __func__, svsk->sk_xprt.xpt_server->sv_name,
1040			       svc_sock_reclen(svsk));
1041	svc_xprt_deferred_close(&svsk->sk_xprt);
1042err_short:
1043	return -EAGAIN;
1044}
1045
1046static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
1047{
1048	struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1049	struct rpc_rqst *req = NULL;
1050	struct kvec *src, *dst;
1051	__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1052	__be32 xid = *p;
1053
1054	if (!bc_xprt)
1055		return -EAGAIN;
1056	spin_lock(&bc_xprt->queue_lock);
1057	req = xprt_lookup_rqst(bc_xprt, xid);
1058	if (!req)
1059		goto unlock_eagain;
1060
1061	memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
1062	/*
1063	 * XXX!: cheating for now!  Only copying HEAD.
1064	 * But we know this is good enough for now (in fact, for any
1065	 * callback reply in the forseeable future).
1066	 */
1067	dst = &req->rq_private_buf.head[0];
1068	src = &rqstp->rq_arg.head[0];
1069	if (dst->iov_len < src->iov_len)
1070		goto unlock_eagain; /* whatever; just giving up. */
1071	memcpy(dst->iov_base, src->iov_base, src->iov_len);
1072	xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
1073	rqstp->rq_arg.len = 0;
1074	spin_unlock(&bc_xprt->queue_lock);
1075	return 0;
1076unlock_eagain:
1077	spin_unlock(&bc_xprt->queue_lock);
1078	return -EAGAIN;
1079}
1080
1081static void svc_tcp_fragment_received(struct svc_sock *svsk)
1082{
1083	/* If we have more data, signal svc_xprt_enqueue() to try again */
1084	svsk->sk_tcplen = 0;
1085	svsk->sk_marker = xdr_zero;
1086
1087	smp_wmb();
1088	tcp_set_rcvlowat(svsk->sk_sk, 1);
1089}
1090
1091/**
1092 * svc_tcp_recvfrom - Receive data from a TCP socket
1093 * @rqstp: request structure into which to receive an RPC Call
1094 *
1095 * Called in a loop when XPT_DATA has been set.
1096 *
1097 * Read the 4-byte stream record marker, then use the record length
1098 * in that marker to set up exactly the resources needed to receive
1099 * the next RPC message into @rqstp.
1100 *
1101 * Returns:
1102 *   On success, the number of bytes in a received RPC Call, or
1103 *   %0 if a complete RPC Call message was not ready to return
1104 *
1105 * The zero return case handles partial receives and callback Replies.
1106 * The state of a partial receive is preserved in the svc_sock for
1107 * the next call to svc_tcp_recvfrom.
1108 */
1109static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1110{
1111	struct svc_sock	*svsk =
1112		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1113	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
1114	size_t want, base;
1115	ssize_t len;
1116	__be32 *p;
1117	__be32 calldir;
1118
1119	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1120	len = svc_tcp_read_marker(svsk, rqstp);
1121	if (len < 0)
1122		goto error;
1123
1124	base = svc_tcp_restore_pages(svsk, rqstp);
1125	want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
1126	len = svc_tcp_read_msg(rqstp, base + want, base);
1127	if (len >= 0) {
1128		trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
1129		svsk->sk_tcplen += len;
1130		svsk->sk_datalen += len;
1131	}
1132	if (len != want || !svc_sock_final_rec(svsk))
1133		goto err_incomplete;
1134	if (svsk->sk_datalen < 8)
1135		goto err_nuts;
1136
1137	rqstp->rq_arg.len = svsk->sk_datalen;
1138	rqstp->rq_arg.page_base = 0;
1139	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1140		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1141		rqstp->rq_arg.page_len = 0;
1142	} else
1143		rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1144
1145	rqstp->rq_xprt_ctxt   = NULL;
1146	rqstp->rq_prot	      = IPPROTO_TCP;
1147	if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1148		set_bit(RQ_LOCAL, &rqstp->rq_flags);
1149	else
1150		clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1151
1152	p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1153	calldir = p[1];
1154	if (calldir)
1155		len = receive_cb_reply(svsk, rqstp);
1156
1157	/* Reset TCP read info */
1158	svsk->sk_datalen = 0;
1159	svc_tcp_fragment_received(svsk);
1160
1161	if (len < 0)
1162		goto error;
1163
1164	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1165	if (serv->sv_stats)
1166		serv->sv_stats->nettcpcnt++;
1167
1168	svc_sock_secure_port(rqstp);
1169	svc_xprt_received(rqstp->rq_xprt);
1170	return rqstp->rq_arg.len;
1171
1172err_incomplete:
1173	svc_tcp_save_pages(svsk, rqstp);
1174	if (len < 0 && len != -EAGAIN)
1175		goto err_delete;
1176	if (len == want)
1177		svc_tcp_fragment_received(svsk);
1178	else {
1179		/* Avoid more ->sk_data_ready() calls until the rest
1180		 * of the message has arrived. This reduces service
1181		 * thread wake-ups on large incoming messages. */
1182		tcp_set_rcvlowat(svsk->sk_sk,
1183				 svc_sock_reclen(svsk) - svsk->sk_tcplen);
1184
1185		trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1186				svc_sock_reclen(svsk),
1187				svsk->sk_tcplen - sizeof(rpc_fraghdr));
1188	}
1189	goto err_noclose;
1190error:
1191	if (len != -EAGAIN)
1192		goto err_delete;
1193	trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1194	goto err_noclose;
1195err_nuts:
1196	svsk->sk_datalen = 0;
1197err_delete:
1198	trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1199	svc_xprt_deferred_close(&svsk->sk_xprt);
1200err_noclose:
1201	svc_xprt_received(rqstp->rq_xprt);
1202	return 0;	/* record not complete */
1203}
1204
1205/*
1206 * MSG_SPLICE_PAGES is used exclusively to reduce the number of
1207 * copy operations in this path. Therefore the caller must ensure
1208 * that the pages backing @xdr are unchanging.
1209 */
1210static int svc_tcp_sendmsg(struct svc_sock *svsk, struct svc_rqst *rqstp,
1211			   rpc_fraghdr marker, unsigned int *sentp)
1212{
1213	struct msghdr msg = {
1214		.msg_flags	= MSG_SPLICE_PAGES,
1215	};
1216	unsigned int count;
1217	void *buf;
1218	int ret;
1219
1220	*sentp = 0;
1221
1222	/* The stream record marker is copied into a temporary page
1223	 * fragment buffer so that it can be included in rq_bvec.
1224	 */
1225	buf = page_frag_alloc(&svsk->sk_frag_cache, sizeof(marker),
1226			      GFP_KERNEL);
1227	if (!buf)
1228		return -ENOMEM;
1229	memcpy(buf, &marker, sizeof(marker));
1230	bvec_set_virt(rqstp->rq_bvec, buf, sizeof(marker));
1231
1232	count = xdr_buf_to_bvec(rqstp->rq_bvec + 1,
1233				ARRAY_SIZE(rqstp->rq_bvec) - 1, &rqstp->rq_res);
1234
1235	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
1236		      1 + count, sizeof(marker) + rqstp->rq_res.len);
1237	ret = sock_sendmsg(svsk->sk_sock, &msg);
1238	page_frag_free(buf);
1239	if (ret < 0)
1240		return ret;
1241	*sentp += ret;
1242	return 0;
1243}
1244
1245/**
1246 * svc_tcp_sendto - Send out a reply on a TCP socket
1247 * @rqstp: completed svc_rqst
1248 *
1249 * xpt_mutex ensures @rqstp's whole message is written to the socket
1250 * without interruption.
1251 *
1252 * Returns the number of bytes sent, or a negative errno.
1253 */
1254static int svc_tcp_sendto(struct svc_rqst *rqstp)
1255{
1256	struct svc_xprt *xprt = rqstp->rq_xprt;
1257	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
1258	struct xdr_buf *xdr = &rqstp->rq_res;
1259	rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1260					 (u32)xdr->len);
1261	unsigned int sent;
1262	int err;
1263
1264	svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
1265	rqstp->rq_xprt_ctxt = NULL;
1266
1267	mutex_lock(&xprt->xpt_mutex);
1268	if (svc_xprt_is_dead(xprt))
1269		goto out_notconn;
1270	err = svc_tcp_sendmsg(svsk, rqstp, marker, &sent);
1271	trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
1272	if (err < 0 || sent != (xdr->len + sizeof(marker)))
1273		goto out_close;
1274	mutex_unlock(&xprt->xpt_mutex);
1275	return sent;
1276
1277out_notconn:
1278	mutex_unlock(&xprt->xpt_mutex);
1279	return -ENOTCONN;
1280out_close:
1281	pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1282		  xprt->xpt_server->sv_name,
1283		  (err < 0) ? "got error" : "sent",
1284		  (err < 0) ? err : sent, xdr->len);
1285	svc_xprt_deferred_close(xprt);
1286	mutex_unlock(&xprt->xpt_mutex);
1287	return -EAGAIN;
1288}
1289
1290static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1291				       struct net *net,
1292				       struct sockaddr *sa, int salen,
1293				       int flags)
1294{
1295	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1296}
1297
1298static const struct svc_xprt_ops svc_tcp_ops = {
1299	.xpo_create = svc_tcp_create,
1300	.xpo_recvfrom = svc_tcp_recvfrom,
1301	.xpo_sendto = svc_tcp_sendto,
1302	.xpo_result_payload = svc_sock_result_payload,
1303	.xpo_release_ctxt = svc_tcp_release_ctxt,
1304	.xpo_detach = svc_tcp_sock_detach,
1305	.xpo_free = svc_sock_free,
1306	.xpo_has_wspace = svc_tcp_has_wspace,
1307	.xpo_accept = svc_tcp_accept,
1308	.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1309	.xpo_handshake = svc_tcp_handshake,
1310};
1311
1312static struct svc_xprt_class svc_tcp_class = {
1313	.xcl_name = "tcp",
1314	.xcl_owner = THIS_MODULE,
1315	.xcl_ops = &svc_tcp_ops,
1316	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1317	.xcl_ident = XPRT_TRANSPORT_TCP,
1318};
1319
1320void svc_init_xprt_sock(void)
1321{
1322	svc_reg_xprt_class(&svc_tcp_class);
1323	svc_reg_xprt_class(&svc_udp_class);
1324}
1325
1326void svc_cleanup_xprt_sock(void)
1327{
1328	svc_unreg_xprt_class(&svc_tcp_class);
1329	svc_unreg_xprt_class(&svc_udp_class);
1330}
1331
1332static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1333{
1334	struct sock	*sk = svsk->sk_sk;
1335
1336	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1337		      &svsk->sk_xprt, serv);
1338	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1339	set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1340	if (sk->sk_state == TCP_LISTEN) {
1341		strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1342		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1343		sk->sk_data_ready = svc_tcp_listen_data_ready;
1344		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1345	} else {
1346		sk->sk_state_change = svc_tcp_state_change;
1347		sk->sk_data_ready = svc_data_ready;
1348		sk->sk_write_space = svc_write_space;
1349
1350		svsk->sk_marker = xdr_zero;
1351		svsk->sk_tcplen = 0;
1352		svsk->sk_datalen = 0;
1353		memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
1354
1355		tcp_sock_set_nodelay(sk);
1356
1357		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1358		switch (sk->sk_state) {
1359		case TCP_SYN_RECV:
1360		case TCP_ESTABLISHED:
1361			break;
1362		default:
1363			svc_xprt_deferred_close(&svsk->sk_xprt);
1364		}
1365	}
1366}
1367
1368void svc_sock_update_bufs(struct svc_serv *serv)
1369{
1370	/*
1371	 * The number of server threads has changed. Update
1372	 * rcvbuf and sndbuf accordingly on all sockets
1373	 */
1374	struct svc_sock *svsk;
1375
1376	spin_lock_bh(&serv->sv_lock);
1377	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1378		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1379	spin_unlock_bh(&serv->sv_lock);
1380}
1381EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1382
1383/*
1384 * Initialize socket for RPC use and create svc_sock struct
1385 */
1386static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1387						struct socket *sock,
1388						int flags)
1389{
1390	struct svc_sock	*svsk;
1391	struct sock	*inet;
1392	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1393
1394	svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1395	if (!svsk)
1396		return ERR_PTR(-ENOMEM);
1397
1398	inet = sock->sk;
1399
1400	if (pmap_register) {
1401		int err;
1402
1403		err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1404				     inet->sk_protocol,
1405				     ntohs(inet_sk(inet)->inet_sport));
1406		if (err < 0) {
1407			kfree(svsk);
1408			return ERR_PTR(err);
1409		}
1410	}
1411
1412	svsk->sk_sock = sock;
1413	svsk->sk_sk = inet;
1414	svsk->sk_ostate = inet->sk_state_change;
1415	svsk->sk_odata = inet->sk_data_ready;
1416	svsk->sk_owspace = inet->sk_write_space;
1417	/*
1418	 * This barrier is necessary in order to prevent race condition
1419	 * with svc_data_ready(), svc_tcp_listen_data_ready(), and others
1420	 * when calling callbacks above.
1421	 */
1422	wmb();
1423	inet->sk_user_data = svsk;
1424
1425	/* Initialize the socket */
1426	if (sock->type == SOCK_DGRAM)
1427		svc_udp_init(svsk, serv);
1428	else
1429		svc_tcp_init(svsk, serv);
1430
1431	trace_svcsock_new(svsk, sock);
1432	return svsk;
1433}
1434
1435/**
1436 * svc_addsock - add a listener socket to an RPC service
1437 * @serv: pointer to RPC service to which to add a new listener
1438 * @net: caller's network namespace
1439 * @fd: file descriptor of the new listener
1440 * @name_return: pointer to buffer to fill in with name of listener
1441 * @len: size of the buffer
1442 * @cred: credential
1443 *
1444 * Fills in socket name and returns positive length of name if successful.
1445 * Name is terminated with '\n'.  On error, returns a negative errno
1446 * value.
1447 */
1448int svc_addsock(struct svc_serv *serv, struct net *net, const int fd,
1449		char *name_return, const size_t len, const struct cred *cred)
1450{
1451	int err = 0;
1452	struct socket *so = sockfd_lookup(fd, &err);
1453	struct svc_sock *svsk = NULL;
1454	struct sockaddr_storage addr;
1455	struct sockaddr *sin = (struct sockaddr *)&addr;
1456	int salen;
1457
1458	if (!so)
1459		return err;
1460	err = -EINVAL;
1461	if (sock_net(so->sk) != net)
1462		goto out;
1463	err = -EAFNOSUPPORT;
1464	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1465		goto out;
1466	err =  -EPROTONOSUPPORT;
1467	if (so->sk->sk_protocol != IPPROTO_TCP &&
1468	    so->sk->sk_protocol != IPPROTO_UDP)
1469		goto out;
1470	err = -EISCONN;
1471	if (so->state > SS_UNCONNECTED)
1472		goto out;
1473	err = -ENOENT;
1474	if (!try_module_get(THIS_MODULE))
1475		goto out;
1476	svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1477	if (IS_ERR(svsk)) {
1478		module_put(THIS_MODULE);
1479		err = PTR_ERR(svsk);
1480		goto out;
1481	}
1482	salen = kernel_getsockname(svsk->sk_sock, sin);
1483	if (salen >= 0)
1484		svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1485	svsk->sk_xprt.xpt_cred = get_cred(cred);
1486	svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1487	return svc_one_sock_name(svsk, name_return, len);
1488out:
1489	sockfd_put(so);
1490	return err;
1491}
1492EXPORT_SYMBOL_GPL(svc_addsock);
1493
1494/*
1495 * Create socket for RPC service.
1496 */
1497static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1498					  int protocol,
1499					  struct net *net,
1500					  struct sockaddr *sin, int len,
1501					  int flags)
1502{
1503	struct svc_sock	*svsk;
1504	struct socket	*sock;
1505	int		error;
1506	int		type;
1507	struct sockaddr_storage addr;
1508	struct sockaddr *newsin = (struct sockaddr *)&addr;
1509	int		newlen;
1510	int		family;
1511
1512	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1513		printk(KERN_WARNING "svc: only UDP and TCP "
1514				"sockets supported\n");
1515		return ERR_PTR(-EINVAL);
1516	}
1517
1518	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1519	switch (sin->sa_family) {
1520	case AF_INET6:
1521		family = PF_INET6;
1522		break;
1523	case AF_INET:
1524		family = PF_INET;
1525		break;
1526	default:
1527		return ERR_PTR(-EINVAL);
1528	}
1529
1530	error = __sock_create(net, family, type, protocol, &sock, 1);
1531	if (error < 0)
1532		return ERR_PTR(error);
1533
1534	svc_reclassify_socket(sock);
1535
1536	/*
1537	 * If this is an PF_INET6 listener, we want to avoid
1538	 * getting requests from IPv4 remotes.  Those should
1539	 * be shunted to a PF_INET listener via rpcbind.
1540	 */
1541	if (family == PF_INET6)
1542		ip6_sock_set_v6only(sock->sk);
1543	if (type == SOCK_STREAM)
1544		sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1545	error = kernel_bind(sock, sin, len);
1546	if (error < 0)
1547		goto bummer;
1548
1549	error = kernel_getsockname(sock, newsin);
1550	if (error < 0)
1551		goto bummer;
1552	newlen = error;
1553
1554	if (protocol == IPPROTO_TCP) {
1555		if ((error = kernel_listen(sock, 64)) < 0)
1556			goto bummer;
1557	}
1558
1559	svsk = svc_setup_socket(serv, sock, flags);
1560	if (IS_ERR(svsk)) {
1561		error = PTR_ERR(svsk);
1562		goto bummer;
1563	}
1564	svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1565	return (struct svc_xprt *)svsk;
1566bummer:
1567	sock_release(sock);
1568	return ERR_PTR(error);
1569}
1570
1571/*
1572 * Detach the svc_sock from the socket so that no
1573 * more callbacks occur.
1574 */
1575static void svc_sock_detach(struct svc_xprt *xprt)
1576{
1577	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1578	struct sock *sk = svsk->sk_sk;
1579
1580	/* put back the old socket callbacks */
1581	lock_sock(sk);
1582	sk->sk_state_change = svsk->sk_ostate;
1583	sk->sk_data_ready = svsk->sk_odata;
1584	sk->sk_write_space = svsk->sk_owspace;
1585	sk->sk_user_data = NULL;
1586	release_sock(sk);
1587}
1588
1589/*
1590 * Disconnect the socket, and reset the callbacks
1591 */
1592static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1593{
1594	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1595
1596	tls_handshake_close(svsk->sk_sock);
1597
1598	svc_sock_detach(xprt);
1599
1600	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1601		svc_tcp_clear_pages(svsk);
1602		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1603	}
1604}
1605
1606/*
1607 * Free the svc_sock's socket resources and the svc_sock itself.
1608 */
1609static void svc_sock_free(struct svc_xprt *xprt)
1610{
1611	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1612	struct page_frag_cache *pfc = &svsk->sk_frag_cache;
1613	struct socket *sock = svsk->sk_sock;
1614
1615	trace_svcsock_free(svsk, sock);
1616
1617	tls_handshake_cancel(sock->sk);
1618	if (sock->file)
1619		sockfd_put(sock);
1620	else
1621		sock_release(sock);
1622	if (pfc->va)
1623		__page_frag_cache_drain(virt_to_head_page(pfc->va),
1624					pfc->pagecnt_bias);
1625	kfree(svsk);
1626}
1627