1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/sunrpc/bc_xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 *	svc_pool->sp_lock protects most of the fields of that pool.
50 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 *	when both need to be taken (rare), svc_serv->sv_lock is first.
52 *	The "service mutex" protects svc_serv->sv_nrthread.
53 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54 *             and the ->sk_info_authunix cache.
55 *
56 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57 *	enqueued multiply. During normal transport processing this bit
58 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59 *	Providers should not manipulate this bit directly.
60 *
61 *	Some flags can be set to certain values at any time
62 *	providing that certain rules are followed:
63 *
64 *	XPT_CONN, XPT_DATA:
65 *		- Can be set or cleared at any time.
66 *		- After a set, svc_xprt_enqueue must be called to enqueue
67 *		  the transport for processing.
68 *		- After a clear, the transport must be read/accepted.
69 *		  If this succeeds, it must be set again.
70 *	XPT_CLOSE:
71 *		- Can set at any time. It is never cleared.
72 *      XPT_DEAD:
73 *		- Can only be set while XPT_BUSY is held which ensures
74 *		  that no other thread will be using the transport or will
75 *		  try to set XPT_DEAD.
76 */
77
78/**
79 * svc_reg_xprt_class - Register a server-side RPC transport class
80 * @xcl: New transport class to be registered
81 *
82 * Returns zero on success; otherwise a negative errno is returned.
83 */
84int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85{
86	struct svc_xprt_class *cl;
87	int res = -EEXIST;
88
89	INIT_LIST_HEAD(&xcl->xcl_list);
90	spin_lock(&svc_xprt_class_lock);
91	/* Make sure there isn't already a class with the same name */
92	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
93		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
94			goto out;
95	}
96	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
97	res = 0;
98out:
99	spin_unlock(&svc_xprt_class_lock);
100	return res;
101}
102EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
103
104/**
105 * svc_unreg_xprt_class - Unregister a server-side RPC transport class
106 * @xcl: Transport class to be unregistered
107 *
108 */
109void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
110{
111	spin_lock(&svc_xprt_class_lock);
112	list_del_init(&xcl->xcl_list);
113	spin_unlock(&svc_xprt_class_lock);
114}
115EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
116
117/**
118 * svc_print_xprts - Format the transport list for printing
119 * @buf: target buffer for formatted address
120 * @maxlen: length of target buffer
121 *
122 * Fills in @buf with a string containing a list of transport names, each name
123 * terminated with '\n'. If the buffer is too small, some entries may be
124 * missing, but it is guaranteed that all lines in the output buffer are
125 * complete.
126 *
127 * Returns positive length of the filled-in string.
128 */
129int svc_print_xprts(char *buf, int maxlen)
130{
131	struct svc_xprt_class *xcl;
132	char tmpstr[80];
133	int len = 0;
134	buf[0] = '\0';
135
136	spin_lock(&svc_xprt_class_lock);
137	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
138		int slen;
139
140		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
141				xcl->xcl_name, xcl->xcl_max_payload);
142		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
143			break;
144		len += slen;
145		strcat(buf, tmpstr);
146	}
147	spin_unlock(&svc_xprt_class_lock);
148
149	return len;
150}
151
152/**
153 * svc_xprt_deferred_close - Close a transport
154 * @xprt: transport instance
155 *
156 * Used in contexts that need to defer the work of shutting down
157 * the transport to an nfsd thread.
158 */
159void svc_xprt_deferred_close(struct svc_xprt *xprt)
160{
161	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162		svc_xprt_enqueue(xprt);
163}
164EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165
166static void svc_xprt_free(struct kref *kref)
167{
168	struct svc_xprt *xprt =
169		container_of(kref, struct svc_xprt, xpt_ref);
170	struct module *owner = xprt->xpt_class->xcl_owner;
171	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172		svcauth_unix_info_release(xprt);
173	put_cred(xprt->xpt_cred);
174	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176	if (xprt->xpt_bc_xprt)
177		xprt_put(xprt->xpt_bc_xprt);
178	if (xprt->xpt_bc_xps)
179		xprt_switch_put(xprt->xpt_bc_xps);
180	trace_svc_xprt_free(xprt);
181	xprt->xpt_ops->xpo_free(xprt);
182	module_put(owner);
183}
184
185void svc_xprt_put(struct svc_xprt *xprt)
186{
187	kref_put(&xprt->xpt_ref, svc_xprt_free);
188}
189EXPORT_SYMBOL_GPL(svc_xprt_put);
190
191/*
192 * Called by transport drivers to initialize the transport independent
193 * portion of the transport instance.
194 */
195void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196		   struct svc_xprt *xprt, struct svc_serv *serv)
197{
198	memset(xprt, 0, sizeof(*xprt));
199	xprt->xpt_class = xcl;
200	xprt->xpt_ops = xcl->xcl_ops;
201	kref_init(&xprt->xpt_ref);
202	xprt->xpt_server = serv;
203	INIT_LIST_HEAD(&xprt->xpt_list);
204	INIT_LIST_HEAD(&xprt->xpt_deferred);
205	INIT_LIST_HEAD(&xprt->xpt_users);
206	mutex_init(&xprt->xpt_mutex);
207	spin_lock_init(&xprt->xpt_lock);
208	set_bit(XPT_BUSY, &xprt->xpt_flags);
209	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210	strcpy(xprt->xpt_remotebuf, "uninitialized");
211}
212EXPORT_SYMBOL_GPL(svc_xprt_init);
213
214static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
215					 struct svc_serv *serv,
216					 struct net *net,
217					 const int family,
218					 const unsigned short port,
219					 int flags)
220{
221	struct sockaddr_in sin = {
222		.sin_family		= AF_INET,
223		.sin_addr.s_addr	= htonl(INADDR_ANY),
224		.sin_port		= htons(port),
225	};
226#if IS_ENABLED(CONFIG_IPV6)
227	struct sockaddr_in6 sin6 = {
228		.sin6_family		= AF_INET6,
229		.sin6_addr		= IN6ADDR_ANY_INIT,
230		.sin6_port		= htons(port),
231	};
232#endif
233	struct svc_xprt *xprt;
234	struct sockaddr *sap;
235	size_t len;
236
237	switch (family) {
238	case PF_INET:
239		sap = (struct sockaddr *)&sin;
240		len = sizeof(sin);
241		break;
242#if IS_ENABLED(CONFIG_IPV6)
243	case PF_INET6:
244		sap = (struct sockaddr *)&sin6;
245		len = sizeof(sin6);
246		break;
247#endif
248	default:
249		return ERR_PTR(-EAFNOSUPPORT);
250	}
251
252	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
253	if (IS_ERR(xprt))
254		trace_svc_xprt_create_err(serv->sv_program->pg_name,
255					  xcl->xcl_name, sap, len, xprt);
256	return xprt;
257}
258
259/**
260 * svc_xprt_received - start next receiver thread
261 * @xprt: controlling transport
262 *
263 * The caller must hold the XPT_BUSY bit and must
264 * not thereafter touch transport data.
265 *
266 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
267 * insufficient) data.
268 */
269void svc_xprt_received(struct svc_xprt *xprt)
270{
271	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
272		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
273		return;
274	}
275
276	/* As soon as we clear busy, the xprt could be closed and
277	 * 'put', so we need a reference to call svc_xprt_enqueue with:
278	 */
279	svc_xprt_get(xprt);
280	smp_mb__before_atomic();
281	clear_bit(XPT_BUSY, &xprt->xpt_flags);
282	svc_xprt_enqueue(xprt);
283	svc_xprt_put(xprt);
284}
285EXPORT_SYMBOL_GPL(svc_xprt_received);
286
287void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
288{
289	clear_bit(XPT_TEMP, &new->xpt_flags);
290	spin_lock_bh(&serv->sv_lock);
291	list_add(&new->xpt_list, &serv->sv_permsocks);
292	spin_unlock_bh(&serv->sv_lock);
293	svc_xprt_received(new);
294}
295
296static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
297			    struct net *net, const int family,
298			    const unsigned short port, int flags,
299			    const struct cred *cred)
300{
301	struct svc_xprt_class *xcl;
302
303	spin_lock(&svc_xprt_class_lock);
304	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
305		struct svc_xprt *newxprt;
306		unsigned short newport;
307
308		if (strcmp(xprt_name, xcl->xcl_name))
309			continue;
310
311		if (!try_module_get(xcl->xcl_owner))
312			goto err;
313
314		spin_unlock(&svc_xprt_class_lock);
315		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
316		if (IS_ERR(newxprt)) {
317			module_put(xcl->xcl_owner);
318			return PTR_ERR(newxprt);
319		}
320		newxprt->xpt_cred = get_cred(cred);
321		svc_add_new_perm_xprt(serv, newxprt);
322		newport = svc_xprt_local_port(newxprt);
323		return newport;
324	}
325 err:
326	spin_unlock(&svc_xprt_class_lock);
327	/* This errno is exposed to user space.  Provide a reasonable
328	 * perror msg for a bad transport. */
329	return -EPROTONOSUPPORT;
330}
331
332/**
333 * svc_xprt_create - Add a new listener to @serv
334 * @serv: target RPC service
335 * @xprt_name: transport class name
336 * @net: network namespace
337 * @family: network address family
338 * @port: listener port
339 * @flags: SVC_SOCK flags
340 * @cred: credential to bind to this transport
341 *
342 * Return values:
343 *   %0: New listener added successfully
344 *   %-EPROTONOSUPPORT: Requested transport type not supported
345 */
346int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
347		    struct net *net, const int family,
348		    const unsigned short port, int flags,
349		    const struct cred *cred)
350{
351	int err;
352
353	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
354	if (err == -EPROTONOSUPPORT) {
355		request_module("svc%s", xprt_name);
356		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
357	}
358	return err;
359}
360EXPORT_SYMBOL_GPL(svc_xprt_create);
361
362/*
363 * Copy the local and remote xprt addresses to the rqstp structure
364 */
365void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
366{
367	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
368	rqstp->rq_addrlen = xprt->xpt_remotelen;
369
370	/*
371	 * Destination address in request is needed for binding the
372	 * source address in RPC replies/callbacks later.
373	 */
374	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
375	rqstp->rq_daddrlen = xprt->xpt_locallen;
376}
377EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
378
379/**
380 * svc_print_addr - Format rq_addr field for printing
381 * @rqstp: svc_rqst struct containing address to print
382 * @buf: target buffer for formatted address
383 * @len: length of target buffer
384 *
385 */
386char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
387{
388	return __svc_print_addr(svc_addr(rqstp), buf, len);
389}
390EXPORT_SYMBOL_GPL(svc_print_addr);
391
392static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
393{
394	unsigned int limit = svc_rpc_per_connection_limit;
395	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
396
397	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
398}
399
400static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
401{
402	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
403		if (!svc_xprt_slots_in_range(xprt))
404			return false;
405		atomic_inc(&xprt->xpt_nr_rqsts);
406		set_bit(RQ_DATA, &rqstp->rq_flags);
407	}
408	return true;
409}
410
411static void svc_xprt_release_slot(struct svc_rqst *rqstp)
412{
413	struct svc_xprt	*xprt = rqstp->rq_xprt;
414	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
415		atomic_dec(&xprt->xpt_nr_rqsts);
416		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
417		svc_xprt_enqueue(xprt);
418	}
419}
420
421static bool svc_xprt_ready(struct svc_xprt *xprt)
422{
423	unsigned long xpt_flags;
424
425	/*
426	 * If another cpu has recently updated xpt_flags,
427	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
428	 * know about it; otherwise it's possible that both that cpu and
429	 * this one could call svc_xprt_enqueue() without either
430	 * svc_xprt_enqueue() recognizing that the conditions below
431	 * are satisfied, and we could stall indefinitely:
432	 */
433	smp_rmb();
434	xpt_flags = READ_ONCE(xprt->xpt_flags);
435
436	trace_svc_xprt_enqueue(xprt, xpt_flags);
437	if (xpt_flags & BIT(XPT_BUSY))
438		return false;
439	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
440		return true;
441	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
442		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
443		    svc_xprt_slots_in_range(xprt))
444			return true;
445		trace_svc_xprt_no_write_space(xprt);
446		return false;
447	}
448	return false;
449}
450
451/**
452 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
453 * @xprt: transport with data pending
454 *
455 */
456void svc_xprt_enqueue(struct svc_xprt *xprt)
457{
458	struct svc_pool *pool;
459
460	if (!svc_xprt_ready(xprt))
461		return;
462
463	/* Mark transport as busy. It will remain in this state until
464	 * the provider calls svc_xprt_received. We update XPT_BUSY
465	 * atomically because it also guards against trying to enqueue
466	 * the transport twice.
467	 */
468	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
469		return;
470
471	pool = svc_pool_for_cpu(xprt->xpt_server);
472
473	percpu_counter_inc(&pool->sp_sockets_queued);
474	lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
475
476	svc_pool_wake_idle_thread(pool);
477}
478EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
479
480/*
481 * Dequeue the first transport, if there is one.
482 */
483static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
484{
485	struct svc_xprt	*xprt = NULL;
486
487	xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
488	if (xprt)
489		svc_xprt_get(xprt);
490	return xprt;
491}
492
493/**
494 * svc_reserve - change the space reserved for the reply to a request.
495 * @rqstp:  The request in question
496 * @space: new max space to reserve
497 *
498 * Each request reserves some space on the output queue of the transport
499 * to make sure the reply fits.  This function reduces that reserved
500 * space to be the amount of space used already, plus @space.
501 *
502 */
503void svc_reserve(struct svc_rqst *rqstp, int space)
504{
505	struct svc_xprt *xprt = rqstp->rq_xprt;
506
507	space += rqstp->rq_res.head[0].iov_len;
508
509	if (xprt && space < rqstp->rq_reserved) {
510		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
511		rqstp->rq_reserved = space;
512		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
513		svc_xprt_enqueue(xprt);
514	}
515}
516EXPORT_SYMBOL_GPL(svc_reserve);
517
518static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
519{
520	if (!dr)
521		return;
522
523	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
524	kfree(dr);
525}
526
527static void svc_xprt_release(struct svc_rqst *rqstp)
528{
529	struct svc_xprt	*xprt = rqstp->rq_xprt;
530
531	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
532	rqstp->rq_xprt_ctxt = NULL;
533
534	free_deferred(xprt, rqstp->rq_deferred);
535	rqstp->rq_deferred = NULL;
536
537	svc_rqst_release_pages(rqstp);
538	rqstp->rq_res.page_len = 0;
539	rqstp->rq_res.page_base = 0;
540
541	/* Reset response buffer and release
542	 * the reservation.
543	 * But first, check that enough space was reserved
544	 * for the reply, otherwise we have a bug!
545	 */
546	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
547		printk(KERN_ERR "RPC request reserved %d but used %d\n",
548		       rqstp->rq_reserved,
549		       rqstp->rq_res.len);
550
551	rqstp->rq_res.head[0].iov_len = 0;
552	svc_reserve(rqstp, 0);
553	svc_xprt_release_slot(rqstp);
554	rqstp->rq_xprt = NULL;
555	svc_xprt_put(xprt);
556}
557
558/**
559 * svc_wake_up - Wake up a service thread for non-transport work
560 * @serv: RPC service
561 *
562 * Some svc_serv's will have occasional work to do, even when a xprt is not
563 * waiting to be serviced. This function is there to "kick" a task in one of
564 * those services so that it can wake up and do that work. Note that we only
565 * bother with pool 0 as we don't need to wake up more than one thread for
566 * this purpose.
567 */
568void svc_wake_up(struct svc_serv *serv)
569{
570	struct svc_pool *pool = &serv->sv_pools[0];
571
572	set_bit(SP_TASK_PENDING, &pool->sp_flags);
573	svc_pool_wake_idle_thread(pool);
574}
575EXPORT_SYMBOL_GPL(svc_wake_up);
576
577int svc_port_is_privileged(struct sockaddr *sin)
578{
579	switch (sin->sa_family) {
580	case AF_INET:
581		return ntohs(((struct sockaddr_in *)sin)->sin_port)
582			< PROT_SOCK;
583	case AF_INET6:
584		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585			< PROT_SOCK;
586	default:
587		return 0;
588	}
589}
590
591/*
592 * Make sure that we don't have too many active connections. If we have,
593 * something must be dropped. It's not clear what will happen if we allow
594 * "too many" connections, but when dealing with network-facing software,
595 * we have to code defensively. Here we do that by imposing hard limits.
596 *
597 * There's no point in trying to do random drop here for DoS
598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599 * attacker can easily beat that.
600 *
601 * The only somewhat efficient mechanism would be if drop old
602 * connections from the same IP first. But right now we don't even
603 * record the client IP in svc_sock.
604 *
605 * single-threaded services that expect a lot of clients will probably
606 * need to set sv_maxconn to override the default value which is based
607 * on the number of threads
608 */
609static void svc_check_conn_limits(struct svc_serv *serv)
610{
611	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612				(serv->sv_nrthreads+3) * 20;
613
614	if (serv->sv_tmpcnt > limit) {
615		struct svc_xprt *xprt = NULL;
616		spin_lock_bh(&serv->sv_lock);
617		if (!list_empty(&serv->sv_tempsocks)) {
618			/* Try to help the admin */
619			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620					       serv->sv_name, serv->sv_maxconn ?
621					       "max number of connections" :
622					       "number of threads");
623			/*
624			 * Always select the oldest connection. It's not fair,
625			 * but so is life
626			 */
627			xprt = list_entry(serv->sv_tempsocks.prev,
628					  struct svc_xprt,
629					  xpt_list);
630			set_bit(XPT_CLOSE, &xprt->xpt_flags);
631			svc_xprt_get(xprt);
632		}
633		spin_unlock_bh(&serv->sv_lock);
634
635		if (xprt) {
636			svc_xprt_enqueue(xprt);
637			svc_xprt_put(xprt);
638		}
639	}
640}
641
642static bool svc_alloc_arg(struct svc_rqst *rqstp)
643{
644	struct svc_serv *serv = rqstp->rq_server;
645	struct xdr_buf *arg = &rqstp->rq_arg;
646	unsigned long pages, filled, ret;
647
648	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
649	if (pages > RPCSVC_MAXPAGES) {
650		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
651			     pages, RPCSVC_MAXPAGES);
652		/* use as many pages as possible */
653		pages = RPCSVC_MAXPAGES;
654	}
655
656	for (filled = 0; filled < pages; filled = ret) {
657		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
658					     rqstp->rq_pages);
659		if (ret > filled)
660			/* Made progress, don't sleep yet */
661			continue;
662
663		set_current_state(TASK_IDLE);
664		if (svc_thread_should_stop(rqstp)) {
665			set_current_state(TASK_RUNNING);
666			return false;
667		}
668		trace_svc_alloc_arg_err(pages, ret);
669		memalloc_retry_wait(GFP_KERNEL);
670	}
671	rqstp->rq_page_end = &rqstp->rq_pages[pages];
672	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
673
674	/* Make arg->head point to first page and arg->pages point to rest */
675	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
676	arg->head[0].iov_len = PAGE_SIZE;
677	arg->pages = rqstp->rq_pages + 1;
678	arg->page_base = 0;
679	/* save at least one page for response */
680	arg->page_len = (pages-2)*PAGE_SIZE;
681	arg->len = (pages-1)*PAGE_SIZE;
682	arg->tail[0].iov_len = 0;
683
684	rqstp->rq_xid = xdr_zero;
685	return true;
686}
687
688static bool
689svc_thread_should_sleep(struct svc_rqst *rqstp)
690{
691	struct svc_pool		*pool = rqstp->rq_pool;
692
693	/* did someone call svc_wake_up? */
694	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
695		return false;
696
697	/* was a socket queued? */
698	if (!lwq_empty(&pool->sp_xprts))
699		return false;
700
701	/* are we shutting down? */
702	if (svc_thread_should_stop(rqstp))
703		return false;
704
705#if defined(CONFIG_SUNRPC_BACKCHANNEL)
706	if (svc_is_backchannel(rqstp)) {
707		if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
708			return false;
709	}
710#endif
711
712	return true;
713}
714
715static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
716{
717	struct svc_pool *pool = rqstp->rq_pool;
718
719	if (svc_thread_should_sleep(rqstp)) {
720		set_current_state(TASK_IDLE | TASK_FREEZABLE);
721		llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
722		if (likely(svc_thread_should_sleep(rqstp)))
723			schedule();
724
725		while (!llist_del_first_this(&pool->sp_idle_threads,
726					     &rqstp->rq_idle)) {
727			/* Work just became available.  This thread can only
728			 * handle it after removing rqstp from the idle
729			 * list. If that attempt failed, some other thread
730			 * must have queued itself after finding no
731			 * work to do, so that thread has taken responsibly
732			 * for this new work.  This thread can safely sleep
733			 * until woken again.
734			 */
735			schedule();
736			set_current_state(TASK_IDLE | TASK_FREEZABLE);
737		}
738		__set_current_state(TASK_RUNNING);
739	} else {
740		cond_resched();
741	}
742	try_to_freeze();
743}
744
745static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
746{
747	spin_lock_bh(&serv->sv_lock);
748	set_bit(XPT_TEMP, &newxpt->xpt_flags);
749	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
750	serv->sv_tmpcnt++;
751	if (serv->sv_temptimer.function == NULL) {
752		/* setup timer to age temp transports */
753		serv->sv_temptimer.function = svc_age_temp_xprts;
754		mod_timer(&serv->sv_temptimer,
755			  jiffies + svc_conn_age_period * HZ);
756	}
757	spin_unlock_bh(&serv->sv_lock);
758	svc_xprt_received(newxpt);
759}
760
761static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
762{
763	struct svc_serv *serv = rqstp->rq_server;
764	int len = 0;
765
766	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
767		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
768			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
769		svc_delete_xprt(xprt);
770		/* Leave XPT_BUSY set on the dead xprt: */
771		goto out;
772	}
773	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
774		struct svc_xprt *newxpt;
775		/*
776		 * We know this module_get will succeed because the
777		 * listener holds a reference too
778		 */
779		__module_get(xprt->xpt_class->xcl_owner);
780		svc_check_conn_limits(xprt->xpt_server);
781		newxpt = xprt->xpt_ops->xpo_accept(xprt);
782		if (newxpt) {
783			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
784			svc_add_new_temp_xprt(serv, newxpt);
785			trace_svc_xprt_accept(newxpt, serv->sv_name);
786		} else {
787			module_put(xprt->xpt_class->xcl_owner);
788		}
789		svc_xprt_received(xprt);
790	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
791		xprt->xpt_ops->xpo_handshake(xprt);
792		svc_xprt_received(xprt);
793	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
794		/* XPT_DATA|XPT_DEFERRED case: */
795		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
796		if (rqstp->rq_deferred)
797			len = svc_deferred_recv(rqstp);
798		else
799			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
800		rqstp->rq_reserved = serv->sv_max_mesg;
801		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
802		if (len <= 0)
803			goto out;
804
805		trace_svc_xdr_recvfrom(&rqstp->rq_arg);
806
807		clear_bit(XPT_OLD, &xprt->xpt_flags);
808
809		rqstp->rq_chandle.defer = svc_defer;
810
811		if (serv->sv_stats)
812			serv->sv_stats->netcnt++;
813		percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
814		rqstp->rq_stime = ktime_get();
815		svc_process(rqstp);
816	} else
817		svc_xprt_received(xprt);
818
819out:
820	rqstp->rq_res.len = 0;
821	svc_xprt_release(rqstp);
822}
823
824static void svc_thread_wake_next(struct svc_rqst *rqstp)
825{
826	if (!svc_thread_should_sleep(rqstp))
827		/* More work pending after I dequeued some,
828		 * wake another worker
829		 */
830		svc_pool_wake_idle_thread(rqstp->rq_pool);
831}
832
833/**
834 * svc_recv - Receive and process the next request on any transport
835 * @rqstp: an idle RPC service thread
836 *
837 * This code is carefully organised not to touch any cachelines in
838 * the shared svc_serv structure, only cachelines in the local
839 * svc_pool.
840 */
841void svc_recv(struct svc_rqst *rqstp)
842{
843	struct svc_pool *pool = rqstp->rq_pool;
844
845	if (!svc_alloc_arg(rqstp))
846		return;
847
848	svc_thread_wait_for_work(rqstp);
849
850	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
851
852	if (svc_thread_should_stop(rqstp)) {
853		svc_thread_wake_next(rqstp);
854		return;
855	}
856
857	rqstp->rq_xprt = svc_xprt_dequeue(pool);
858	if (rqstp->rq_xprt) {
859		struct svc_xprt *xprt = rqstp->rq_xprt;
860
861		svc_thread_wake_next(rqstp);
862		/* Normally we will wait up to 5 seconds for any required
863		 * cache information to be provided.  When there are no
864		 * idle threads, we reduce the wait time.
865		 */
866		if (pool->sp_idle_threads.first)
867			rqstp->rq_chandle.thread_wait = 5 * HZ;
868		else
869			rqstp->rq_chandle.thread_wait = 1 * HZ;
870
871		trace_svc_xprt_dequeue(rqstp);
872		svc_handle_xprt(rqstp, xprt);
873	}
874
875#if defined(CONFIG_SUNRPC_BACKCHANNEL)
876	if (svc_is_backchannel(rqstp)) {
877		struct svc_serv *serv = rqstp->rq_server;
878		struct rpc_rqst *req;
879
880		req = lwq_dequeue(&serv->sv_cb_list,
881				  struct rpc_rqst, rq_bc_list);
882		if (req) {
883			svc_thread_wake_next(rqstp);
884			svc_process_bc(req, rqstp);
885		}
886	}
887#endif
888}
889EXPORT_SYMBOL_GPL(svc_recv);
890
891/*
892 * Drop request
893 */
894void svc_drop(struct svc_rqst *rqstp)
895{
896	trace_svc_drop(rqstp);
897}
898EXPORT_SYMBOL_GPL(svc_drop);
899
900/**
901 * svc_send - Return reply to client
902 * @rqstp: RPC transaction context
903 *
904 */
905void svc_send(struct svc_rqst *rqstp)
906{
907	struct svc_xprt	*xprt;
908	struct xdr_buf	*xb;
909	int status;
910
911	xprt = rqstp->rq_xprt;
912
913	/* calculate over-all length */
914	xb = &rqstp->rq_res;
915	xb->len = xb->head[0].iov_len +
916		xb->page_len +
917		xb->tail[0].iov_len;
918	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
919	trace_svc_stats_latency(rqstp);
920
921	status = xprt->xpt_ops->xpo_sendto(rqstp);
922
923	trace_svc_send(rqstp, status);
924}
925
926/*
927 * Timer function to close old temporary transports, using
928 * a mark-and-sweep algorithm.
929 */
930static void svc_age_temp_xprts(struct timer_list *t)
931{
932	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933	struct svc_xprt *xprt;
934	struct list_head *le, *next;
935
936	dprintk("svc_age_temp_xprts\n");
937
938	if (!spin_trylock_bh(&serv->sv_lock)) {
939		/* busy, try again 1 sec later */
940		dprintk("svc_age_temp_xprts: busy\n");
941		mod_timer(&serv->sv_temptimer, jiffies + HZ);
942		return;
943	}
944
945	list_for_each_safe(le, next, &serv->sv_tempsocks) {
946		xprt = list_entry(le, struct svc_xprt, xpt_list);
947
948		/* First time through, just mark it OLD. Second time
949		 * through, close it. */
950		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951			continue;
952		if (kref_read(&xprt->xpt_ref) > 1 ||
953		    test_bit(XPT_BUSY, &xprt->xpt_flags))
954			continue;
955		list_del_init(le);
956		set_bit(XPT_CLOSE, &xprt->xpt_flags);
957		dprintk("queuing xprt %p for closing\n", xprt);
958
959		/* a thread will dequeue and close it soon */
960		svc_xprt_enqueue(xprt);
961	}
962	spin_unlock_bh(&serv->sv_lock);
963
964	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965}
966
967/* Close temporary transports whose xpt_local matches server_addr immediately
968 * instead of waiting for them to be picked up by the timer.
969 *
970 * This is meant to be called from a notifier_block that runs when an ip
971 * address is deleted.
972 */
973void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974{
975	struct svc_xprt *xprt;
976	struct list_head *le, *next;
977	LIST_HEAD(to_be_closed);
978
979	spin_lock_bh(&serv->sv_lock);
980	list_for_each_safe(le, next, &serv->sv_tempsocks) {
981		xprt = list_entry(le, struct svc_xprt, xpt_list);
982		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983				&xprt->xpt_local)) {
984			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985			list_move(le, &to_be_closed);
986		}
987	}
988	spin_unlock_bh(&serv->sv_lock);
989
990	while (!list_empty(&to_be_closed)) {
991		le = to_be_closed.next;
992		list_del_init(le);
993		xprt = list_entry(le, struct svc_xprt, xpt_list);
994		set_bit(XPT_CLOSE, &xprt->xpt_flags);
995		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997				xprt);
998		svc_xprt_enqueue(xprt);
999	}
1000}
1001EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002
1003static void call_xpt_users(struct svc_xprt *xprt)
1004{
1005	struct svc_xpt_user *u;
1006
1007	spin_lock(&xprt->xpt_lock);
1008	while (!list_empty(&xprt->xpt_users)) {
1009		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010		list_del_init(&u->list);
1011		u->callback(u);
1012	}
1013	spin_unlock(&xprt->xpt_lock);
1014}
1015
1016/*
1017 * Remove a dead transport
1018 */
1019static void svc_delete_xprt(struct svc_xprt *xprt)
1020{
1021	struct svc_serv	*serv = xprt->xpt_server;
1022	struct svc_deferred_req *dr;
1023
1024	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1025		return;
1026
1027	trace_svc_xprt_detach(xprt);
1028	xprt->xpt_ops->xpo_detach(xprt);
1029	if (xprt->xpt_bc_xprt)
1030		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1031
1032	spin_lock_bh(&serv->sv_lock);
1033	list_del_init(&xprt->xpt_list);
1034	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1035		serv->sv_tmpcnt--;
1036	spin_unlock_bh(&serv->sv_lock);
1037
1038	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1039		free_deferred(xprt, dr);
1040
1041	call_xpt_users(xprt);
1042	svc_xprt_put(xprt);
1043}
1044
1045/**
1046 * svc_xprt_close - Close a client connection
1047 * @xprt: transport to disconnect
1048 *
1049 */
1050void svc_xprt_close(struct svc_xprt *xprt)
1051{
1052	trace_svc_xprt_close(xprt);
1053	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1055		/* someone else will have to effect the close */
1056		return;
1057	/*
1058	 * We expect svc_close_xprt() to work even when no threads are
1059	 * running (e.g., while configuring the server before starting
1060	 * any threads), so if the transport isn't busy, we delete
1061	 * it ourself:
1062	 */
1063	svc_delete_xprt(xprt);
1064}
1065EXPORT_SYMBOL_GPL(svc_xprt_close);
1066
1067static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1068{
1069	struct svc_xprt *xprt;
1070	int ret = 0;
1071
1072	spin_lock_bh(&serv->sv_lock);
1073	list_for_each_entry(xprt, xprt_list, xpt_list) {
1074		if (xprt->xpt_net != net)
1075			continue;
1076		ret++;
1077		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1078		svc_xprt_enqueue(xprt);
1079	}
1080	spin_unlock_bh(&serv->sv_lock);
1081	return ret;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086	struct svc_xprt *xprt;
1087	int i;
1088
1089	for (i = 0; i < serv->sv_nrpools; i++) {
1090		struct svc_pool *pool = &serv->sv_pools[i];
1091		struct llist_node *q, **t1, *t2;
1092
1093		q = lwq_dequeue_all(&pool->sp_xprts);
1094		lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1095			if (xprt->xpt_net == net) {
1096				set_bit(XPT_CLOSE, &xprt->xpt_flags);
1097				svc_delete_xprt(xprt);
1098				xprt = NULL;
1099			}
1100		}
1101
1102		if (q)
1103			lwq_enqueue_batch(q, &pool->sp_xprts);
1104	}
1105}
1106
1107/**
1108 * svc_xprt_destroy_all - Destroy transports associated with @serv
1109 * @serv: RPC service to be shut down
1110 * @net: target network namespace
1111 *
1112 * Server threads may still be running (especially in the case where the
1113 * service is still running in other network namespaces).
1114 *
1115 * So we shut down sockets the same way we would on a running server, by
1116 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1117 * the close.  In the case there are no such other threads,
1118 * threads running, svc_clean_up_xprts() does a simple version of a
1119 * server's main event loop, and in the case where there are other
1120 * threads, we may need to wait a little while and then check again to
1121 * see if they're done.
1122 */
1123void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1124{
1125	int delay = 0;
1126
1127	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1128	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1129
1130		svc_clean_up_xprts(serv, net);
1131		msleep(delay++);
1132	}
1133}
1134EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1135
1136/*
1137 * Handle defer and revisit of requests
1138 */
1139
1140static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141{
1142	struct svc_deferred_req *dr =
1143		container_of(dreq, struct svc_deferred_req, handle);
1144	struct svc_xprt *xprt = dr->xprt;
1145
1146	spin_lock(&xprt->xpt_lock);
1147	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149		spin_unlock(&xprt->xpt_lock);
1150		trace_svc_defer_drop(dr);
1151		free_deferred(xprt, dr);
1152		svc_xprt_put(xprt);
1153		return;
1154	}
1155	dr->xprt = NULL;
1156	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1157	spin_unlock(&xprt->xpt_lock);
1158	trace_svc_defer_queue(dr);
1159	svc_xprt_enqueue(xprt);
1160	svc_xprt_put(xprt);
1161}
1162
1163/*
1164 * Save the request off for later processing. The request buffer looks
1165 * like this:
1166 *
1167 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1168 *
1169 * This code can only handle requests that consist of an xprt-header
1170 * and rpc-header.
1171 */
1172static struct cache_deferred_req *svc_defer(struct cache_req *req)
1173{
1174	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1175	struct svc_deferred_req *dr;
1176
1177	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1178		return NULL; /* if more than a page, give up FIXME */
1179	if (rqstp->rq_deferred) {
1180		dr = rqstp->rq_deferred;
1181		rqstp->rq_deferred = NULL;
1182	} else {
1183		size_t skip;
1184		size_t size;
1185		/* FIXME maybe discard if size too large */
1186		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1187		dr = kmalloc(size, GFP_KERNEL);
1188		if (dr == NULL)
1189			return NULL;
1190
1191		dr->handle.owner = rqstp->rq_server;
1192		dr->prot = rqstp->rq_prot;
1193		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1194		dr->addrlen = rqstp->rq_addrlen;
1195		dr->daddr = rqstp->rq_daddr;
1196		dr->argslen = rqstp->rq_arg.len >> 2;
1197
1198		/* back up head to the start of the buffer and copy */
1199		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1200		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1201		       dr->argslen << 2);
1202	}
1203	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1204	rqstp->rq_xprt_ctxt = NULL;
1205	trace_svc_defer(rqstp);
1206	svc_xprt_get(rqstp->rq_xprt);
1207	dr->xprt = rqstp->rq_xprt;
1208	set_bit(RQ_DROPME, &rqstp->rq_flags);
1209
1210	dr->handle.revisit = svc_revisit;
1211	return &dr->handle;
1212}
1213
1214/*
1215 * recv data from a deferred request into an active one
1216 */
1217static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1218{
1219	struct svc_deferred_req *dr = rqstp->rq_deferred;
1220
1221	trace_svc_defer_recv(dr);
1222
1223	/* setup iov_base past transport header */
1224	rqstp->rq_arg.head[0].iov_base = dr->args;
1225	/* The iov_len does not include the transport header bytes */
1226	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1227	rqstp->rq_arg.page_len = 0;
1228	/* The rq_arg.len includes the transport header bytes */
1229	rqstp->rq_arg.len     = dr->argslen << 2;
1230	rqstp->rq_prot        = dr->prot;
1231	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1232	rqstp->rq_addrlen     = dr->addrlen;
1233	/* Save off transport header len in case we get deferred again */
1234	rqstp->rq_daddr       = dr->daddr;
1235	rqstp->rq_respages    = rqstp->rq_pages;
1236	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1237
1238	dr->xprt_ctxt = NULL;
1239	svc_xprt_received(rqstp->rq_xprt);
1240	return dr->argslen << 2;
1241}
1242
1243
1244static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1245{
1246	struct svc_deferred_req *dr = NULL;
1247
1248	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1249		return NULL;
1250	spin_lock(&xprt->xpt_lock);
1251	if (!list_empty(&xprt->xpt_deferred)) {
1252		dr = list_entry(xprt->xpt_deferred.next,
1253				struct svc_deferred_req,
1254				handle.recent);
1255		list_del_init(&dr->handle.recent);
1256	} else
1257		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1258	spin_unlock(&xprt->xpt_lock);
1259	return dr;
1260}
1261
1262/**
1263 * svc_find_xprt - find an RPC transport instance
1264 * @serv: pointer to svc_serv to search
1265 * @xcl_name: C string containing transport's class name
1266 * @net: owner net pointer
1267 * @af: Address family of transport's local address
1268 * @port: transport's IP port number
1269 *
1270 * Return the transport instance pointer for the endpoint accepting
1271 * connections/peer traffic from the specified transport class,
1272 * address family and port.
1273 *
1274 * Specifying 0 for the address family or port is effectively a
1275 * wild-card, and will result in matching the first transport in the
1276 * service's list that has a matching class name.
1277 */
1278struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1279			       struct net *net, const sa_family_t af,
1280			       const unsigned short port)
1281{
1282	struct svc_xprt *xprt;
1283	struct svc_xprt *found = NULL;
1284
1285	/* Sanity check the args */
1286	if (serv == NULL || xcl_name == NULL)
1287		return found;
1288
1289	spin_lock_bh(&serv->sv_lock);
1290	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1291		if (xprt->xpt_net != net)
1292			continue;
1293		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1294			continue;
1295		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1296			continue;
1297		if (port != 0 && port != svc_xprt_local_port(xprt))
1298			continue;
1299		found = xprt;
1300		svc_xprt_get(xprt);
1301		break;
1302	}
1303	spin_unlock_bh(&serv->sv_lock);
1304	return found;
1305}
1306EXPORT_SYMBOL_GPL(svc_find_xprt);
1307
1308static int svc_one_xprt_name(const struct svc_xprt *xprt,
1309			     char *pos, int remaining)
1310{
1311	int len;
1312
1313	len = snprintf(pos, remaining, "%s %u\n",
1314			xprt->xpt_class->xcl_name,
1315			svc_xprt_local_port(xprt));
1316	if (len >= remaining)
1317		return -ENAMETOOLONG;
1318	return len;
1319}
1320
1321/**
1322 * svc_xprt_names - format a buffer with a list of transport names
1323 * @serv: pointer to an RPC service
1324 * @buf: pointer to a buffer to be filled in
1325 * @buflen: length of buffer to be filled in
1326 *
1327 * Fills in @buf with a string containing a list of transport names,
1328 * each name terminated with '\n'.
1329 *
1330 * Returns positive length of the filled-in string on success; otherwise
1331 * a negative errno value is returned if an error occurs.
1332 */
1333int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1334{
1335	struct svc_xprt *xprt;
1336	int len, totlen;
1337	char *pos;
1338
1339	/* Sanity check args */
1340	if (!serv)
1341		return 0;
1342
1343	spin_lock_bh(&serv->sv_lock);
1344
1345	pos = buf;
1346	totlen = 0;
1347	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1348		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1349		if (len < 0) {
1350			*buf = '\0';
1351			totlen = len;
1352		}
1353		if (len <= 0)
1354			break;
1355
1356		pos += len;
1357		totlen += len;
1358	}
1359
1360	spin_unlock_bh(&serv->sv_lock);
1361	return totlen;
1362}
1363EXPORT_SYMBOL_GPL(svc_xprt_names);
1364
1365/*----------------------------------------------------------------------------*/
1366
1367static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1368{
1369	unsigned int pidx = (unsigned int)*pos;
1370	struct svc_info *si = m->private;
1371
1372	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1373
1374	mutex_lock(si->mutex);
1375
1376	if (!pidx)
1377		return SEQ_START_TOKEN;
1378	if (!si->serv)
1379		return NULL;
1380	return pidx > si->serv->sv_nrpools ? NULL
1381		: &si->serv->sv_pools[pidx - 1];
1382}
1383
1384static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1385{
1386	struct svc_pool *pool = p;
1387	struct svc_info *si = m->private;
1388	struct svc_serv *serv = si->serv;
1389
1390	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1391
1392	if (!serv) {
1393		pool = NULL;
1394	} else if (p == SEQ_START_TOKEN) {
1395		pool = &serv->sv_pools[0];
1396	} else {
1397		unsigned int pidx = (pool - &serv->sv_pools[0]);
1398		if (pidx < serv->sv_nrpools-1)
1399			pool = &serv->sv_pools[pidx+1];
1400		else
1401			pool = NULL;
1402	}
1403	++*pos;
1404	return pool;
1405}
1406
1407static void svc_pool_stats_stop(struct seq_file *m, void *p)
1408{
1409	struct svc_info *si = m->private;
1410
1411	mutex_unlock(si->mutex);
1412}
1413
1414static int svc_pool_stats_show(struct seq_file *m, void *p)
1415{
1416	struct svc_pool *pool = p;
1417
1418	if (p == SEQ_START_TOKEN) {
1419		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1420		return 0;
1421	}
1422
1423	seq_printf(m, "%u %llu %llu %llu 0\n",
1424		   pool->sp_id,
1425		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1426		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1427		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1428
1429	return 0;
1430}
1431
1432static const struct seq_operations svc_pool_stats_seq_ops = {
1433	.start	= svc_pool_stats_start,
1434	.next	= svc_pool_stats_next,
1435	.stop	= svc_pool_stats_stop,
1436	.show	= svc_pool_stats_show,
1437};
1438
1439int svc_pool_stats_open(struct svc_info *info, struct file *file)
1440{
1441	struct seq_file *seq;
1442	int err;
1443
1444	err = seq_open(file, &svc_pool_stats_seq_ops);
1445	if (err)
1446		return err;
1447	seq = file->private_data;
1448	seq->private = info;
1449
1450	return 0;
1451}
1452EXPORT_SYMBOL(svc_pool_stats_open);
1453
1454/*----------------------------------------------------------------------------*/
1455