1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13#include <linux/module.h>
14
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/mempool.h>
19#include <linux/smp.h>
20#include <linux/spinlock.h>
21#include <linux/mutex.h>
22#include <linux/freezer.h>
23#include <linux/sched/mm.h>
24
25#include <linux/sunrpc/clnt.h>
26#include <linux/sunrpc/metrics.h>
27
28#include "sunrpc.h"
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/sunrpc.h>
32
33/*
34 * RPC slabs and memory pools
35 */
36#define RPC_BUFFER_MAXSIZE	(2048)
37#define RPC_BUFFER_POOLSIZE	(8)
38#define RPC_TASK_POOLSIZE	(8)
39static struct kmem_cache	*rpc_task_slabp __read_mostly;
40static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41static mempool_t	*rpc_task_mempool __read_mostly;
42static mempool_t	*rpc_buffer_mempool __read_mostly;
43
44static void			rpc_async_schedule(struct work_struct *);
45static void			 rpc_release_task(struct rpc_task *task);
46static void __rpc_queue_timer_fn(struct work_struct *);
47
48/*
49 * RPC tasks sit here while waiting for conditions to improve.
50 */
51static struct rpc_wait_queue delay_queue;
52
53/*
54 * rpciod-related stuff
55 */
56struct workqueue_struct *rpciod_workqueue __read_mostly;
57struct workqueue_struct *xprtiod_workqueue __read_mostly;
58EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60gfp_t rpc_task_gfp_mask(void)
61{
62	if (current->flags & PF_WQ_WORKER)
63		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64	return GFP_KERNEL;
65}
66EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67
68bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status)
69{
70	if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0)
71		return true;
72	return false;
73}
74
75unsigned long
76rpc_task_timeout(const struct rpc_task *task)
77{
78	unsigned long timeout = READ_ONCE(task->tk_timeout);
79
80	if (timeout != 0) {
81		unsigned long now = jiffies;
82		if (time_before(now, timeout))
83			return timeout - now;
84	}
85	return 0;
86}
87EXPORT_SYMBOL_GPL(rpc_task_timeout);
88
89/*
90 * Disable the timer for a given RPC task. Should be called with
91 * queue->lock and bh_disabled in order to avoid races within
92 * rpc_run_timer().
93 */
94static void
95__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
96{
97	if (list_empty(&task->u.tk_wait.timer_list))
98		return;
99	task->tk_timeout = 0;
100	list_del(&task->u.tk_wait.timer_list);
101	if (list_empty(&queue->timer_list.list))
102		cancel_delayed_work(&queue->timer_list.dwork);
103}
104
105static void
106rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
107{
108	unsigned long now = jiffies;
109	queue->timer_list.expires = expires;
110	if (time_before_eq(expires, now))
111		expires = 0;
112	else
113		expires -= now;
114	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
115}
116
117/*
118 * Set up a timer for the current task.
119 */
120static void
121__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
122		unsigned long timeout)
123{
124	task->tk_timeout = timeout;
125	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
126		rpc_set_queue_timer(queue, timeout);
127	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
128}
129
130static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
131{
132	if (queue->priority != priority) {
133		queue->priority = priority;
134		queue->nr = 1U << priority;
135	}
136}
137
138static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
139{
140	rpc_set_waitqueue_priority(queue, queue->maxpriority);
141}
142
143/*
144 * Add a request to a queue list
145 */
146static void
147__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
148{
149	struct rpc_task *t;
150
151	list_for_each_entry(t, q, u.tk_wait.list) {
152		if (t->tk_owner == task->tk_owner) {
153			list_add_tail(&task->u.tk_wait.links,
154					&t->u.tk_wait.links);
155			/* Cache the queue head in task->u.tk_wait.list */
156			task->u.tk_wait.list.next = q;
157			task->u.tk_wait.list.prev = NULL;
158			return;
159		}
160	}
161	INIT_LIST_HEAD(&task->u.tk_wait.links);
162	list_add_tail(&task->u.tk_wait.list, q);
163}
164
165/*
166 * Remove request from a queue list
167 */
168static void
169__rpc_list_dequeue_task(struct rpc_task *task)
170{
171	struct list_head *q;
172	struct rpc_task *t;
173
174	if (task->u.tk_wait.list.prev == NULL) {
175		list_del(&task->u.tk_wait.links);
176		return;
177	}
178	if (!list_empty(&task->u.tk_wait.links)) {
179		t = list_first_entry(&task->u.tk_wait.links,
180				struct rpc_task,
181				u.tk_wait.links);
182		/* Assume __rpc_list_enqueue_task() cached the queue head */
183		q = t->u.tk_wait.list.next;
184		list_add_tail(&t->u.tk_wait.list, q);
185		list_del(&task->u.tk_wait.links);
186	}
187	list_del(&task->u.tk_wait.list);
188}
189
190/*
191 * Add new request to a priority queue.
192 */
193static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
194		struct rpc_task *task,
195		unsigned char queue_priority)
196{
197	if (unlikely(queue_priority > queue->maxpriority))
198		queue_priority = queue->maxpriority;
199	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
200}
201
202/*
203 * Add new request to wait queue.
204 */
205static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
206		struct rpc_task *task,
207		unsigned char queue_priority)
208{
209	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
210	if (RPC_IS_PRIORITY(queue))
211		__rpc_add_wait_queue_priority(queue, task, queue_priority);
212	else
213		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214	task->tk_waitqueue = queue;
215	queue->qlen++;
216	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
217	smp_wmb();
218	rpc_set_queued(task);
219}
220
221/*
222 * Remove request from a priority queue.
223 */
224static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
225{
226	__rpc_list_dequeue_task(task);
227}
228
229/*
230 * Remove request from queue.
231 * Note: must be called with spin lock held.
232 */
233static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
234{
235	__rpc_disable_timer(queue, task);
236	if (RPC_IS_PRIORITY(queue))
237		__rpc_remove_wait_queue_priority(task);
238	else
239		list_del(&task->u.tk_wait.list);
240	queue->qlen--;
241}
242
243static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244{
245	int i;
246
247	spin_lock_init(&queue->lock);
248	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249		INIT_LIST_HEAD(&queue->tasks[i]);
250	queue->maxpriority = nr_queues - 1;
251	rpc_reset_waitqueue_priority(queue);
252	queue->qlen = 0;
253	queue->timer_list.expires = 0;
254	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
255	INIT_LIST_HEAD(&queue->timer_list.list);
256	rpc_assign_waitqueue_name(queue, qname);
257}
258
259void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260{
261	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
262}
263EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
264
265void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
266{
267	__rpc_init_priority_wait_queue(queue, qname, 1);
268}
269EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
270
271void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
272{
273	cancel_delayed_work_sync(&queue->timer_list.dwork);
274}
275EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
276
277static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
278{
279	schedule();
280	if (signal_pending_state(mode, current))
281		return -ERESTARTSYS;
282	return 0;
283}
284
285#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
286static void rpc_task_set_debuginfo(struct rpc_task *task)
287{
288	struct rpc_clnt *clnt = task->tk_client;
289
290	/* Might be a task carrying a reverse-direction operation */
291	if (!clnt) {
292		static atomic_t rpc_pid;
293
294		task->tk_pid = atomic_inc_return(&rpc_pid);
295		return;
296	}
297
298	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
299}
300#else
301static inline void rpc_task_set_debuginfo(struct rpc_task *task)
302{
303}
304#endif
305
306static void rpc_set_active(struct rpc_task *task)
307{
308	rpc_task_set_debuginfo(task);
309	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
310	trace_rpc_task_begin(task, NULL);
311}
312
313/*
314 * Mark an RPC call as having completed by clearing the 'active' bit
315 * and then waking up all tasks that were sleeping.
316 */
317static int rpc_complete_task(struct rpc_task *task)
318{
319	void *m = &task->tk_runstate;
320	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
321	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
322	unsigned long flags;
323	int ret;
324
325	trace_rpc_task_complete(task, NULL);
326
327	spin_lock_irqsave(&wq->lock, flags);
328	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
329	ret = atomic_dec_and_test(&task->tk_count);
330	if (waitqueue_active(wq))
331		__wake_up_locked_key(wq, TASK_NORMAL, &k);
332	spin_unlock_irqrestore(&wq->lock, flags);
333	return ret;
334}
335
336/*
337 * Allow callers to wait for completion of an RPC call
338 *
339 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
340 * to enforce taking of the wq->lock and hence avoid races with
341 * rpc_complete_task().
342 */
343int rpc_wait_for_completion_task(struct rpc_task *task)
344{
345	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
346			rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
347}
348EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
349
350/*
351 * Make an RPC task runnable.
352 *
353 * Note: If the task is ASYNC, and is being made runnable after sitting on an
354 * rpc_wait_queue, this must be called with the queue spinlock held to protect
355 * the wait queue operation.
356 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
357 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
358 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
359 * the RPC_TASK_RUNNING flag.
360 */
361static void rpc_make_runnable(struct workqueue_struct *wq,
362		struct rpc_task *task)
363{
364	bool need_wakeup = !rpc_test_and_set_running(task);
365
366	rpc_clear_queued(task);
367	if (!need_wakeup)
368		return;
369	if (RPC_IS_ASYNC(task)) {
370		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
371		queue_work(wq, &task->u.tk_work);
372	} else
373		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
374}
375
376/*
377 * Prepare for sleeping on a wait queue.
378 * By always appending tasks to the list we ensure FIFO behavior.
379 * NB: An RPC task will only receive interrupt-driven events as long
380 * as it's on a wait queue.
381 */
382static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
383		struct rpc_task *task,
384		unsigned char queue_priority)
385{
386	trace_rpc_task_sleep(task, q);
387
388	__rpc_add_wait_queue(q, task, queue_priority);
389}
390
391static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
392		struct rpc_task *task,
393		unsigned char queue_priority)
394{
395	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
396		return;
397	__rpc_do_sleep_on_priority(q, task, queue_priority);
398}
399
400static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
401		struct rpc_task *task, unsigned long timeout,
402		unsigned char queue_priority)
403{
404	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
405		return;
406	if (time_is_after_jiffies(timeout)) {
407		__rpc_do_sleep_on_priority(q, task, queue_priority);
408		__rpc_add_timer(q, task, timeout);
409	} else
410		task->tk_status = -ETIMEDOUT;
411}
412
413static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
414{
415	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
416		task->tk_callback = action;
417}
418
419static bool rpc_sleep_check_activated(struct rpc_task *task)
420{
421	/* We shouldn't ever put an inactive task to sleep */
422	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
423		task->tk_status = -EIO;
424		rpc_put_task_async(task);
425		return false;
426	}
427	return true;
428}
429
430void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
431				rpc_action action, unsigned long timeout)
432{
433	if (!rpc_sleep_check_activated(task))
434		return;
435
436	rpc_set_tk_callback(task, action);
437
438	/*
439	 * Protect the queue operations.
440	 */
441	spin_lock(&q->lock);
442	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
443	spin_unlock(&q->lock);
444}
445EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
446
447void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
448				rpc_action action)
449{
450	if (!rpc_sleep_check_activated(task))
451		return;
452
453	rpc_set_tk_callback(task, action);
454
455	WARN_ON_ONCE(task->tk_timeout != 0);
456	/*
457	 * Protect the queue operations.
458	 */
459	spin_lock(&q->lock);
460	__rpc_sleep_on_priority(q, task, task->tk_priority);
461	spin_unlock(&q->lock);
462}
463EXPORT_SYMBOL_GPL(rpc_sleep_on);
464
465void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
466		struct rpc_task *task, unsigned long timeout, int priority)
467{
468	if (!rpc_sleep_check_activated(task))
469		return;
470
471	priority -= RPC_PRIORITY_LOW;
472	/*
473	 * Protect the queue operations.
474	 */
475	spin_lock(&q->lock);
476	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
477	spin_unlock(&q->lock);
478}
479EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
480
481void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
482		int priority)
483{
484	if (!rpc_sleep_check_activated(task))
485		return;
486
487	WARN_ON_ONCE(task->tk_timeout != 0);
488	priority -= RPC_PRIORITY_LOW;
489	/*
490	 * Protect the queue operations.
491	 */
492	spin_lock(&q->lock);
493	__rpc_sleep_on_priority(q, task, priority);
494	spin_unlock(&q->lock);
495}
496EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
497
498/**
499 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
500 * @wq: workqueue on which to run task
501 * @queue: wait queue
502 * @task: task to be woken up
503 *
504 * Caller must hold queue->lock, and have cleared the task queued flag.
505 */
506static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
507		struct rpc_wait_queue *queue,
508		struct rpc_task *task)
509{
510	/* Has the task been executed yet? If not, we cannot wake it up! */
511	if (!RPC_IS_ACTIVATED(task)) {
512		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
513		return;
514	}
515
516	trace_rpc_task_wakeup(task, queue);
517
518	__rpc_remove_wait_queue(queue, task);
519
520	rpc_make_runnable(wq, task);
521}
522
523/*
524 * Wake up a queued task while the queue lock is being held
525 */
526static struct rpc_task *
527rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
528		struct rpc_wait_queue *queue, struct rpc_task *task,
529		bool (*action)(struct rpc_task *, void *), void *data)
530{
531	if (RPC_IS_QUEUED(task)) {
532		smp_rmb();
533		if (task->tk_waitqueue == queue) {
534			if (action == NULL || action(task, data)) {
535				__rpc_do_wake_up_task_on_wq(wq, queue, task);
536				return task;
537			}
538		}
539	}
540	return NULL;
541}
542
543/*
544 * Wake up a queued task while the queue lock is being held
545 */
546static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
547					  struct rpc_task *task)
548{
549	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
550						   task, NULL, NULL);
551}
552
553/*
554 * Wake up a task on a specific queue
555 */
556void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
557{
558	if (!RPC_IS_QUEUED(task))
559		return;
560	spin_lock(&queue->lock);
561	rpc_wake_up_task_queue_locked(queue, task);
562	spin_unlock(&queue->lock);
563}
564EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
565
566static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
567{
568	task->tk_status = *(int *)status;
569	return true;
570}
571
572static void
573rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
574		struct rpc_task *task, int status)
575{
576	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
577			task, rpc_task_action_set_status, &status);
578}
579
580/**
581 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
582 * @queue: pointer to rpc_wait_queue
583 * @task: pointer to rpc_task
584 * @status: integer error value
585 *
586 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
587 * set to the value of @status.
588 */
589void
590rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
591		struct rpc_task *task, int status)
592{
593	if (!RPC_IS_QUEUED(task))
594		return;
595	spin_lock(&queue->lock);
596	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
597	spin_unlock(&queue->lock);
598}
599
600/*
601 * Wake up the next task on a priority queue.
602 */
603static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
604{
605	struct list_head *q;
606	struct rpc_task *task;
607
608	/*
609	 * Service the privileged queue.
610	 */
611	q = &queue->tasks[RPC_NR_PRIORITY - 1];
612	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
613		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
614		goto out;
615	}
616
617	/*
618	 * Service a batch of tasks from a single owner.
619	 */
620	q = &queue->tasks[queue->priority];
621	if (!list_empty(q) && queue->nr) {
622		queue->nr--;
623		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
624		goto out;
625	}
626
627	/*
628	 * Service the next queue.
629	 */
630	do {
631		if (q == &queue->tasks[0])
632			q = &queue->tasks[queue->maxpriority];
633		else
634			q = q - 1;
635		if (!list_empty(q)) {
636			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
637			goto new_queue;
638		}
639	} while (q != &queue->tasks[queue->priority]);
640
641	rpc_reset_waitqueue_priority(queue);
642	return NULL;
643
644new_queue:
645	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
646out:
647	return task;
648}
649
650static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
651{
652	if (RPC_IS_PRIORITY(queue))
653		return __rpc_find_next_queued_priority(queue);
654	if (!list_empty(&queue->tasks[0]))
655		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
656	return NULL;
657}
658
659/*
660 * Wake up the first task on the wait queue.
661 */
662struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
663		struct rpc_wait_queue *queue,
664		bool (*func)(struct rpc_task *, void *), void *data)
665{
666	struct rpc_task	*task = NULL;
667
668	spin_lock(&queue->lock);
669	task = __rpc_find_next_queued(queue);
670	if (task != NULL)
671		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
672				task, func, data);
673	spin_unlock(&queue->lock);
674
675	return task;
676}
677
678/*
679 * Wake up the first task on the wait queue.
680 */
681struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
682		bool (*func)(struct rpc_task *, void *), void *data)
683{
684	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
685}
686EXPORT_SYMBOL_GPL(rpc_wake_up_first);
687
688static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
689{
690	return true;
691}
692
693/*
694 * Wake up the next task on the wait queue.
695*/
696struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
697{
698	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
699}
700EXPORT_SYMBOL_GPL(rpc_wake_up_next);
701
702/**
703 * rpc_wake_up_locked - wake up all rpc_tasks
704 * @queue: rpc_wait_queue on which the tasks are sleeping
705 *
706 */
707static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
708{
709	struct rpc_task *task;
710
711	for (;;) {
712		task = __rpc_find_next_queued(queue);
713		if (task == NULL)
714			break;
715		rpc_wake_up_task_queue_locked(queue, task);
716	}
717}
718
719/**
720 * rpc_wake_up - wake up all rpc_tasks
721 * @queue: rpc_wait_queue on which the tasks are sleeping
722 *
723 * Grabs queue->lock
724 */
725void rpc_wake_up(struct rpc_wait_queue *queue)
726{
727	spin_lock(&queue->lock);
728	rpc_wake_up_locked(queue);
729	spin_unlock(&queue->lock);
730}
731EXPORT_SYMBOL_GPL(rpc_wake_up);
732
733/**
734 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
735 * @queue: rpc_wait_queue on which the tasks are sleeping
736 * @status: status value to set
737 */
738static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
739{
740	struct rpc_task *task;
741
742	for (;;) {
743		task = __rpc_find_next_queued(queue);
744		if (task == NULL)
745			break;
746		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
747	}
748}
749
750/**
751 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
752 * @queue: rpc_wait_queue on which the tasks are sleeping
753 * @status: status value to set
754 *
755 * Grabs queue->lock
756 */
757void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
758{
759	spin_lock(&queue->lock);
760	rpc_wake_up_status_locked(queue, status);
761	spin_unlock(&queue->lock);
762}
763EXPORT_SYMBOL_GPL(rpc_wake_up_status);
764
765static void __rpc_queue_timer_fn(struct work_struct *work)
766{
767	struct rpc_wait_queue *queue = container_of(work,
768			struct rpc_wait_queue,
769			timer_list.dwork.work);
770	struct rpc_task *task, *n;
771	unsigned long expires, now, timeo;
772
773	spin_lock(&queue->lock);
774	expires = now = jiffies;
775	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
776		timeo = task->tk_timeout;
777		if (time_after_eq(now, timeo)) {
778			trace_rpc_task_timeout(task, task->tk_action);
779			task->tk_status = -ETIMEDOUT;
780			rpc_wake_up_task_queue_locked(queue, task);
781			continue;
782		}
783		if (expires == now || time_after(expires, timeo))
784			expires = timeo;
785	}
786	if (!list_empty(&queue->timer_list.list))
787		rpc_set_queue_timer(queue, expires);
788	spin_unlock(&queue->lock);
789}
790
791static void __rpc_atrun(struct rpc_task *task)
792{
793	if (task->tk_status == -ETIMEDOUT)
794		task->tk_status = 0;
795}
796
797/*
798 * Run a task at a later time
799 */
800void rpc_delay(struct rpc_task *task, unsigned long delay)
801{
802	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
803}
804EXPORT_SYMBOL_GPL(rpc_delay);
805
806/*
807 * Helper to call task->tk_ops->rpc_call_prepare
808 */
809void rpc_prepare_task(struct rpc_task *task)
810{
811	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
812}
813
814static void
815rpc_init_task_statistics(struct rpc_task *task)
816{
817	/* Initialize retry counters */
818	task->tk_garb_retry = 2;
819	task->tk_cred_retry = 2;
820
821	/* starting timestamp */
822	task->tk_start = ktime_get();
823}
824
825static void
826rpc_reset_task_statistics(struct rpc_task *task)
827{
828	task->tk_timeouts = 0;
829	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
830	rpc_init_task_statistics(task);
831}
832
833/*
834 * Helper that calls task->tk_ops->rpc_call_done if it exists
835 */
836void rpc_exit_task(struct rpc_task *task)
837{
838	trace_rpc_task_end(task, task->tk_action);
839	task->tk_action = NULL;
840	if (task->tk_ops->rpc_count_stats)
841		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
842	else if (task->tk_client)
843		rpc_count_iostats(task, task->tk_client->cl_metrics);
844	if (task->tk_ops->rpc_call_done != NULL) {
845		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
846		task->tk_ops->rpc_call_done(task, task->tk_calldata);
847		if (task->tk_action != NULL) {
848			/* Always release the RPC slot and buffer memory */
849			xprt_release(task);
850			rpc_reset_task_statistics(task);
851		}
852	}
853}
854
855void rpc_signal_task(struct rpc_task *task)
856{
857	struct rpc_wait_queue *queue;
858
859	if (!RPC_IS_ACTIVATED(task))
860		return;
861
862	if (!rpc_task_set_rpc_status(task, -ERESTARTSYS))
863		return;
864	trace_rpc_task_signalled(task, task->tk_action);
865	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
866	smp_mb__after_atomic();
867	queue = READ_ONCE(task->tk_waitqueue);
868	if (queue)
869		rpc_wake_up_queued_task(queue, task);
870}
871
872void rpc_task_try_cancel(struct rpc_task *task, int error)
873{
874	struct rpc_wait_queue *queue;
875
876	if (!rpc_task_set_rpc_status(task, error))
877		return;
878	queue = READ_ONCE(task->tk_waitqueue);
879	if (queue)
880		rpc_wake_up_queued_task(queue, task);
881}
882
883void rpc_exit(struct rpc_task *task, int status)
884{
885	task->tk_status = status;
886	task->tk_action = rpc_exit_task;
887	rpc_wake_up_queued_task(task->tk_waitqueue, task);
888}
889EXPORT_SYMBOL_GPL(rpc_exit);
890
891void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
892{
893	if (ops->rpc_release != NULL)
894		ops->rpc_release(calldata);
895}
896
897static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
898{
899	if (!xprt)
900		return false;
901	if (!atomic_read(&xprt->swapper))
902		return false;
903	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
904}
905
906/*
907 * This is the RPC `scheduler' (or rather, the finite state machine).
908 */
909static void __rpc_execute(struct rpc_task *task)
910{
911	struct rpc_wait_queue *queue;
912	int task_is_async = RPC_IS_ASYNC(task);
913	int status = 0;
914	unsigned long pflags = current->flags;
915
916	WARN_ON_ONCE(RPC_IS_QUEUED(task));
917	if (RPC_IS_QUEUED(task))
918		return;
919
920	for (;;) {
921		void (*do_action)(struct rpc_task *);
922
923		/*
924		 * Perform the next FSM step or a pending callback.
925		 *
926		 * tk_action may be NULL if the task has been killed.
927		 */
928		do_action = task->tk_action;
929		/* Tasks with an RPC error status should exit */
930		if (do_action && do_action != rpc_exit_task &&
931		    (status = READ_ONCE(task->tk_rpc_status)) != 0) {
932			task->tk_status = status;
933			do_action = rpc_exit_task;
934		}
935		/* Callbacks override all actions */
936		if (task->tk_callback) {
937			do_action = task->tk_callback;
938			task->tk_callback = NULL;
939		}
940		if (!do_action)
941			break;
942		if (RPC_IS_SWAPPER(task) ||
943		    xprt_needs_memalloc(task->tk_xprt, task))
944			current->flags |= PF_MEMALLOC;
945
946		trace_rpc_task_run_action(task, do_action);
947		do_action(task);
948
949		/*
950		 * Lockless check for whether task is sleeping or not.
951		 */
952		if (!RPC_IS_QUEUED(task)) {
953			cond_resched();
954			continue;
955		}
956
957		/*
958		 * The queue->lock protects against races with
959		 * rpc_make_runnable().
960		 *
961		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
962		 * rpc_task, rpc_make_runnable() can assign it to a
963		 * different workqueue. We therefore cannot assume that the
964		 * rpc_task pointer may still be dereferenced.
965		 */
966		queue = task->tk_waitqueue;
967		spin_lock(&queue->lock);
968		if (!RPC_IS_QUEUED(task)) {
969			spin_unlock(&queue->lock);
970			continue;
971		}
972		/* Wake up any task that has an exit status */
973		if (READ_ONCE(task->tk_rpc_status) != 0) {
974			rpc_wake_up_task_queue_locked(queue, task);
975			spin_unlock(&queue->lock);
976			continue;
977		}
978		rpc_clear_running(task);
979		spin_unlock(&queue->lock);
980		if (task_is_async)
981			goto out;
982
983		/* sync task: sleep here */
984		trace_rpc_task_sync_sleep(task, task->tk_action);
985		status = out_of_line_wait_on_bit(&task->tk_runstate,
986				RPC_TASK_QUEUED, rpc_wait_bit_killable,
987				TASK_KILLABLE|TASK_FREEZABLE);
988		if (status < 0) {
989			/*
990			 * When a sync task receives a signal, it exits with
991			 * -ERESTARTSYS. In order to catch any callbacks that
992			 * clean up after sleeping on some queue, we don't
993			 * break the loop here, but go around once more.
994			 */
995			rpc_signal_task(task);
996		}
997		trace_rpc_task_sync_wake(task, task->tk_action);
998	}
999
1000	/* Release all resources associated with the task */
1001	rpc_release_task(task);
1002out:
1003	current_restore_flags(pflags, PF_MEMALLOC);
1004}
1005
1006/*
1007 * User-visible entry point to the scheduler.
1008 *
1009 * This may be called recursively if e.g. an async NFS task updates
1010 * the attributes and finds that dirty pages must be flushed.
1011 * NOTE: Upon exit of this function the task is guaranteed to be
1012 *	 released. In particular note that tk_release() will have
1013 *	 been called, so your task memory may have been freed.
1014 */
1015void rpc_execute(struct rpc_task *task)
1016{
1017	bool is_async = RPC_IS_ASYNC(task);
1018
1019	rpc_set_active(task);
1020	rpc_make_runnable(rpciod_workqueue, task);
1021	if (!is_async) {
1022		unsigned int pflags = memalloc_nofs_save();
1023		__rpc_execute(task);
1024		memalloc_nofs_restore(pflags);
1025	}
1026}
1027
1028static void rpc_async_schedule(struct work_struct *work)
1029{
1030	unsigned int pflags = memalloc_nofs_save();
1031
1032	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1033	memalloc_nofs_restore(pflags);
1034}
1035
1036/**
1037 * rpc_malloc - allocate RPC buffer resources
1038 * @task: RPC task
1039 *
1040 * A single memory region is allocated, which is split between the
1041 * RPC call and RPC reply that this task is being used for. When
1042 * this RPC is retired, the memory is released by calling rpc_free.
1043 *
1044 * To prevent rpciod from hanging, this allocator never sleeps,
1045 * returning -ENOMEM and suppressing warning if the request cannot
1046 * be serviced immediately. The caller can arrange to sleep in a
1047 * way that is safe for rpciod.
1048 *
1049 * Most requests are 'small' (under 2KiB) and can be serviced from a
1050 * mempool, ensuring that NFS reads and writes can always proceed,
1051 * and that there is good locality of reference for these buffers.
1052 */
1053int rpc_malloc(struct rpc_task *task)
1054{
1055	struct rpc_rqst *rqst = task->tk_rqstp;
1056	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1057	struct rpc_buffer *buf;
1058	gfp_t gfp = rpc_task_gfp_mask();
1059
1060	size += sizeof(struct rpc_buffer);
1061	if (size <= RPC_BUFFER_MAXSIZE) {
1062		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1063		/* Reach for the mempool if dynamic allocation fails */
1064		if (!buf && RPC_IS_ASYNC(task))
1065			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1066	} else
1067		buf = kmalloc(size, gfp);
1068
1069	if (!buf)
1070		return -ENOMEM;
1071
1072	buf->len = size;
1073	rqst->rq_buffer = buf->data;
1074	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1075	return 0;
1076}
1077EXPORT_SYMBOL_GPL(rpc_malloc);
1078
1079/**
1080 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1081 * @task: RPC task
1082 *
1083 */
1084void rpc_free(struct rpc_task *task)
1085{
1086	void *buffer = task->tk_rqstp->rq_buffer;
1087	size_t size;
1088	struct rpc_buffer *buf;
1089
1090	buf = container_of(buffer, struct rpc_buffer, data);
1091	size = buf->len;
1092
1093	if (size <= RPC_BUFFER_MAXSIZE)
1094		mempool_free(buf, rpc_buffer_mempool);
1095	else
1096		kfree(buf);
1097}
1098EXPORT_SYMBOL_GPL(rpc_free);
1099
1100/*
1101 * Creation and deletion of RPC task structures
1102 */
1103static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1104{
1105	memset(task, 0, sizeof(*task));
1106	atomic_set(&task->tk_count, 1);
1107	task->tk_flags  = task_setup_data->flags;
1108	task->tk_ops = task_setup_data->callback_ops;
1109	task->tk_calldata = task_setup_data->callback_data;
1110	INIT_LIST_HEAD(&task->tk_task);
1111
1112	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1113	task->tk_owner = current->tgid;
1114
1115	/* Initialize workqueue for async tasks */
1116	task->tk_workqueue = task_setup_data->workqueue;
1117
1118	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1119			xprt_get(task_setup_data->rpc_xprt));
1120
1121	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1122
1123	if (task->tk_ops->rpc_call_prepare != NULL)
1124		task->tk_action = rpc_prepare_task;
1125
1126	rpc_init_task_statistics(task);
1127}
1128
1129static struct rpc_task *rpc_alloc_task(void)
1130{
1131	struct rpc_task *task;
1132
1133	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1134	if (task)
1135		return task;
1136	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1137}
1138
1139/*
1140 * Create a new task for the specified client.
1141 */
1142struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1143{
1144	struct rpc_task	*task = setup_data->task;
1145	unsigned short flags = 0;
1146
1147	if (task == NULL) {
1148		task = rpc_alloc_task();
1149		if (task == NULL) {
1150			rpc_release_calldata(setup_data->callback_ops,
1151					     setup_data->callback_data);
1152			return ERR_PTR(-ENOMEM);
1153		}
1154		flags = RPC_TASK_DYNAMIC;
1155	}
1156
1157	rpc_init_task(task, setup_data);
1158	task->tk_flags |= flags;
1159	return task;
1160}
1161
1162/*
1163 * rpc_free_task - release rpc task and perform cleanups
1164 *
1165 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1166 * in order to work around a workqueue dependency issue.
1167 *
1168 * Tejun Heo states:
1169 * "Workqueue currently considers two work items to be the same if they're
1170 * on the same address and won't execute them concurrently - ie. it
1171 * makes a work item which is queued again while being executed wait
1172 * for the previous execution to complete.
1173 *
1174 * If a work function frees the work item, and then waits for an event
1175 * which should be performed by another work item and *that* work item
1176 * recycles the freed work item, it can create a false dependency loop.
1177 * There really is no reliable way to detect this short of verifying
1178 * every memory free."
1179 *
1180 */
1181static void rpc_free_task(struct rpc_task *task)
1182{
1183	unsigned short tk_flags = task->tk_flags;
1184
1185	put_rpccred(task->tk_op_cred);
1186	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1187
1188	if (tk_flags & RPC_TASK_DYNAMIC)
1189		mempool_free(task, rpc_task_mempool);
1190}
1191
1192static void rpc_async_release(struct work_struct *work)
1193{
1194	unsigned int pflags = memalloc_nofs_save();
1195
1196	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1197	memalloc_nofs_restore(pflags);
1198}
1199
1200static void rpc_release_resources_task(struct rpc_task *task)
1201{
1202	xprt_release(task);
1203	if (task->tk_msg.rpc_cred) {
1204		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1205			put_cred(task->tk_msg.rpc_cred);
1206		task->tk_msg.rpc_cred = NULL;
1207	}
1208	rpc_task_release_client(task);
1209}
1210
1211static void rpc_final_put_task(struct rpc_task *task,
1212		struct workqueue_struct *q)
1213{
1214	if (q != NULL) {
1215		INIT_WORK(&task->u.tk_work, rpc_async_release);
1216		queue_work(q, &task->u.tk_work);
1217	} else
1218		rpc_free_task(task);
1219}
1220
1221static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1222{
1223	if (atomic_dec_and_test(&task->tk_count)) {
1224		rpc_release_resources_task(task);
1225		rpc_final_put_task(task, q);
1226	}
1227}
1228
1229void rpc_put_task(struct rpc_task *task)
1230{
1231	rpc_do_put_task(task, NULL);
1232}
1233EXPORT_SYMBOL_GPL(rpc_put_task);
1234
1235void rpc_put_task_async(struct rpc_task *task)
1236{
1237	rpc_do_put_task(task, task->tk_workqueue);
1238}
1239EXPORT_SYMBOL_GPL(rpc_put_task_async);
1240
1241static void rpc_release_task(struct rpc_task *task)
1242{
1243	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1244
1245	rpc_release_resources_task(task);
1246
1247	/*
1248	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1249	 * so it should be safe to use task->tk_count as a test for whether
1250	 * or not any other processes still hold references to our rpc_task.
1251	 */
1252	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1253		/* Wake up anyone who may be waiting for task completion */
1254		if (!rpc_complete_task(task))
1255			return;
1256	} else {
1257		if (!atomic_dec_and_test(&task->tk_count))
1258			return;
1259	}
1260	rpc_final_put_task(task, task->tk_workqueue);
1261}
1262
1263int rpciod_up(void)
1264{
1265	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1266}
1267
1268void rpciod_down(void)
1269{
1270	module_put(THIS_MODULE);
1271}
1272
1273/*
1274 * Start up the rpciod workqueue.
1275 */
1276static int rpciod_start(void)
1277{
1278	struct workqueue_struct *wq;
1279
1280	/*
1281	 * Create the rpciod thread and wait for it to start.
1282	 */
1283	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1284	if (!wq)
1285		goto out_failed;
1286	rpciod_workqueue = wq;
1287	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1288	if (!wq)
1289		goto free_rpciod;
1290	xprtiod_workqueue = wq;
1291	return 1;
1292free_rpciod:
1293	wq = rpciod_workqueue;
1294	rpciod_workqueue = NULL;
1295	destroy_workqueue(wq);
1296out_failed:
1297	return 0;
1298}
1299
1300static void rpciod_stop(void)
1301{
1302	struct workqueue_struct *wq = NULL;
1303
1304	if (rpciod_workqueue == NULL)
1305		return;
1306
1307	wq = rpciod_workqueue;
1308	rpciod_workqueue = NULL;
1309	destroy_workqueue(wq);
1310	wq = xprtiod_workqueue;
1311	xprtiod_workqueue = NULL;
1312	destroy_workqueue(wq);
1313}
1314
1315void
1316rpc_destroy_mempool(void)
1317{
1318	rpciod_stop();
1319	mempool_destroy(rpc_buffer_mempool);
1320	mempool_destroy(rpc_task_mempool);
1321	kmem_cache_destroy(rpc_task_slabp);
1322	kmem_cache_destroy(rpc_buffer_slabp);
1323	rpc_destroy_wait_queue(&delay_queue);
1324}
1325
1326int
1327rpc_init_mempool(void)
1328{
1329	/*
1330	 * The following is not strictly a mempool initialisation,
1331	 * but there is no harm in doing it here
1332	 */
1333	rpc_init_wait_queue(&delay_queue, "delayq");
1334	if (!rpciod_start())
1335		goto err_nomem;
1336
1337	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1338					     sizeof(struct rpc_task),
1339					     0, SLAB_HWCACHE_ALIGN,
1340					     NULL);
1341	if (!rpc_task_slabp)
1342		goto err_nomem;
1343	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1344					     RPC_BUFFER_MAXSIZE,
1345					     0, SLAB_HWCACHE_ALIGN,
1346					     NULL);
1347	if (!rpc_buffer_slabp)
1348		goto err_nomem;
1349	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1350						    rpc_task_slabp);
1351	if (!rpc_task_mempool)
1352		goto err_nomem;
1353	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1354						      rpc_buffer_slabp);
1355	if (!rpc_buffer_mempool)
1356		goto err_nomem;
1357	return 0;
1358err_nomem:
1359	rpc_destroy_mempool();
1360	return -ENOMEM;
1361}
1362