1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/bitops.h>
12#include <linux/errno.h>
13#include <linux/netdevice.h>
14#include <linux/pkt_sched.h>
15#include <net/sch_generic.h>
16#include <net/pkt_sched.h>
17#include <net/pkt_cls.h>
18
19
20/*  Quick Fair Queueing Plus
21    ========================
22
23    Sources:
24
25    [1] Paolo Valente,
26    "Reducing the Execution Time of Fair-Queueing Schedulers."
27    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29    Sources for QFQ:
30
31    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34    See also:
35    http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38/*
39
40  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41  classes. Each aggregate is timestamped with a virtual start time S
42  and a virtual finish time F, and scheduled according to its
43  timestamps. S and F are computed as a function of a system virtual
44  time function V. The classes within each aggregate are instead
45  scheduled with DRR.
46
47  To speed up operations, QFQ+ divides also aggregates into a limited
48  number of groups. Which group a class belongs to depends on the
49  ratio between the maximum packet length for the class and the weight
50  of the class. Groups have their own S and F. In the end, QFQ+
51  schedules groups, then aggregates within groups, then classes within
52  aggregates. See [1] and [2] for a full description.
53
54  Virtual time computations.
55
56  S, F and V are all computed in fixed point arithmetic with
57  FRAC_BITS decimal bits.
58
59  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60	one bit per index.
61  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63  The layout of the bits is as below:
64
65                   [ MTU_SHIFT ][      FRAC_BITS    ]
66                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67				 ^.__grp->index = 0
68				 *.__grp->slot_shift
69
70  where MIN_SLOT_SHIFT is derived by difference from the others.
71
72  The max group index corresponds to Lmax/w_min, where
73  Lmax=1<<MTU_SHIFT, w_min = 1 .
74  From this, and knowing how many groups (MAX_INDEX) we want,
75  we can derive the shift corresponding to each group.
76
77  Because we often need to compute
78	F = S + len/w_i  and V = V + len/wsum
79  instead of storing w_i store the value
80	inv_w = (1<<FRAC_BITS)/w_i
81  so we can do F = S + len * inv_w * wsum.
82  We use W_TOT in the formulas so we can easily move between
83  static and adaptive weight sum.
84
85  The per-scheduler-instance data contain all the data structures
86  for the scheduler: bitmaps and bucket lists.
87
88 */
89
90/*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94#define QFQ_MAX_SLOTS	32
95
96/*
97 * Shifts used for aggregate<->group mapping.  We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105#define QFQ_MAX_INDEX		24
106#define QFQ_MAX_WSHIFT		10
107
108#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109#define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110
111#define FRAC_BITS		30	/* fixed point arithmetic */
112#define ONE_FP			(1UL << FRAC_BITS)
113
114#define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115#define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116#define QFQ_MAX_LMAX		(1UL << QFQ_MTU_SHIFT)
117
118#define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
119
120/*
121 * Possible group states.  These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
123 */
124enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125
126struct qfq_group;
127
128struct qfq_aggregate;
129
130struct qfq_class {
131	struct Qdisc_class_common common;
132
133	struct gnet_stats_basic_sync bstats;
134	struct gnet_stats_queue qstats;
135	struct net_rate_estimator __rcu *rate_est;
136	struct Qdisc *qdisc;
137	struct list_head alist;		/* Link for active-classes list. */
138	struct qfq_aggregate *agg;	/* Parent aggregate. */
139	int deficit;			/* DRR deficit counter. */
140};
141
142struct qfq_aggregate {
143	struct hlist_node next;	/* Link for the slot list. */
144	u64 S, F;		/* flow timestamps (exact) */
145
146	/* group we belong to. In principle we would need the index,
147	 * which is log_2(lmax/weight), but we never reference it
148	 * directly, only the group.
149	 */
150	struct qfq_group *grp;
151
152	/* these are copied from the flowset. */
153	u32	class_weight; /* Weight of each class in this aggregate. */
154	/* Max pkt size for the classes in this aggregate, DRR quantum. */
155	int	lmax;
156
157	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
158	u32	budgetmax;  /* Max budget for this aggregate. */
159	u32	initial_budget, budget;     /* Initial and current budget. */
160
161	int		  num_classes;	/* Number of classes in this aggr. */
162	struct list_head  active;	/* DRR queue of active classes. */
163
164	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
165};
166
167struct qfq_group {
168	u64 S, F;			/* group timestamps (approx). */
169	unsigned int slot_shift;	/* Slot shift. */
170	unsigned int index;		/* Group index. */
171	unsigned int front;		/* Index of the front slot. */
172	unsigned long full_slots;	/* non-empty slots */
173
174	/* Array of RR lists of active aggregates. */
175	struct hlist_head slots[QFQ_MAX_SLOTS];
176};
177
178struct qfq_sched {
179	struct tcf_proto __rcu *filter_list;
180	struct tcf_block	*block;
181	struct Qdisc_class_hash clhash;
182
183	u64			oldV, V;	/* Precise virtual times. */
184	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
185	u32			wsum;		/* weight sum */
186	u32			iwsum;		/* inverse weight sum */
187
188	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
189	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
191
192	u32 max_agg_classes;		/* Max number of classes per aggr. */
193	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194};
195
196/*
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
199 *	    for service
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 *	    must be rescheduled for service
202 */
203enum update_reason {enqueue, requeue};
204
205static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
206{
207	struct qfq_sched *q = qdisc_priv(sch);
208	struct Qdisc_class_common *clc;
209
210	clc = qdisc_class_find(&q->clhash, classid);
211	if (clc == NULL)
212		return NULL;
213	return container_of(clc, struct qfq_class, common);
214}
215
216static const struct netlink_range_validation lmax_range = {
217	.min = QFQ_MIN_LMAX,
218	.max = QFQ_MAX_LMAX,
219};
220
221static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
222	[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
223	[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
224};
225
226/*
227 * Calculate a flow index, given its weight and maximum packet length.
228 * index = log_2(maxlen/weight) but we need to apply the scaling.
229 * This is used only once at flow creation.
230 */
231static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
232{
233	u64 slot_size = (u64)maxlen * inv_w;
234	unsigned long size_map;
235	int index = 0;
236
237	size_map = slot_size >> min_slot_shift;
238	if (!size_map)
239		goto out;
240
241	index = __fls(size_map) + 1;	/* basically a log_2 */
242	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
243
244	if (index < 0)
245		index = 0;
246out:
247	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
248		 (unsigned long) ONE_FP/inv_w, maxlen, index);
249
250	return index;
251}
252
253static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
254static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
255			     enum update_reason);
256
257static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
258			 u32 lmax, u32 weight)
259{
260	INIT_LIST_HEAD(&agg->active);
261	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
262
263	agg->lmax = lmax;
264	agg->class_weight = weight;
265}
266
267static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
268					  u32 lmax, u32 weight)
269{
270	struct qfq_aggregate *agg;
271
272	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
273		if (agg->lmax == lmax && agg->class_weight == weight)
274			return agg;
275
276	return NULL;
277}
278
279
280/* Update aggregate as a function of the new number of classes. */
281static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
282			   int new_num_classes)
283{
284	u32 new_agg_weight;
285
286	if (new_num_classes == q->max_agg_classes)
287		hlist_del_init(&agg->nonfull_next);
288
289	if (agg->num_classes > new_num_classes &&
290	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
291		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
292
293	/* The next assignment may let
294	 * agg->initial_budget > agg->budgetmax
295	 * hold, we will take it into account in charge_actual_service().
296	 */
297	agg->budgetmax = new_num_classes * agg->lmax;
298	new_agg_weight = agg->class_weight * new_num_classes;
299	agg->inv_w = ONE_FP/new_agg_weight;
300
301	if (agg->grp == NULL) {
302		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
303				       q->min_slot_shift);
304		agg->grp = &q->groups[i];
305	}
306
307	q->wsum +=
308		(int) agg->class_weight * (new_num_classes - agg->num_classes);
309	q->iwsum = ONE_FP / q->wsum;
310
311	agg->num_classes = new_num_classes;
312}
313
314/* Add class to aggregate. */
315static void qfq_add_to_agg(struct qfq_sched *q,
316			   struct qfq_aggregate *agg,
317			   struct qfq_class *cl)
318{
319	cl->agg = agg;
320
321	qfq_update_agg(q, agg, agg->num_classes+1);
322	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
323		list_add_tail(&cl->alist, &agg->active);
324		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
325		    cl && q->in_serv_agg != agg) /* agg was inactive */
326			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
327	}
328}
329
330static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
331
332static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
333{
334	hlist_del_init(&agg->nonfull_next);
335	q->wsum -= agg->class_weight;
336	if (q->wsum != 0)
337		q->iwsum = ONE_FP / q->wsum;
338
339	if (q->in_serv_agg == agg)
340		q->in_serv_agg = qfq_choose_next_agg(q);
341	kfree(agg);
342}
343
344/* Deschedule class from within its parent aggregate. */
345static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
346{
347	struct qfq_aggregate *agg = cl->agg;
348
349
350	list_del(&cl->alist); /* remove from RR queue of the aggregate */
351	if (list_empty(&agg->active)) /* agg is now inactive */
352		qfq_deactivate_agg(q, agg);
353}
354
355/* Remove class from its parent aggregate. */
356static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
357{
358	struct qfq_aggregate *agg = cl->agg;
359
360	cl->agg = NULL;
361	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
362		qfq_destroy_agg(q, agg);
363		return;
364	}
365	qfq_update_agg(q, agg, agg->num_classes-1);
366}
367
368/* Deschedule class and remove it from its parent aggregate. */
369static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
370{
371	if (cl->qdisc->q.qlen > 0) /* class is active */
372		qfq_deactivate_class(q, cl);
373
374	qfq_rm_from_agg(q, cl);
375}
376
377/* Move class to a new aggregate, matching the new class weight and/or lmax */
378static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
379			   u32 lmax)
380{
381	struct qfq_sched *q = qdisc_priv(sch);
382	struct qfq_aggregate *new_agg;
383
384	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
385	if (lmax > QFQ_MAX_LMAX)
386		return -EINVAL;
387
388	new_agg = qfq_find_agg(q, lmax, weight);
389	if (new_agg == NULL) { /* create new aggregate */
390		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
391		if (new_agg == NULL)
392			return -ENOBUFS;
393		qfq_init_agg(q, new_agg, lmax, weight);
394	}
395	qfq_deact_rm_from_agg(q, cl);
396	qfq_add_to_agg(q, new_agg, cl);
397
398	return 0;
399}
400
401static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
402			    struct nlattr **tca, unsigned long *arg,
403			    struct netlink_ext_ack *extack)
404{
405	struct qfq_sched *q = qdisc_priv(sch);
406	struct qfq_class *cl = (struct qfq_class *)*arg;
407	bool existing = false;
408	struct nlattr *tb[TCA_QFQ_MAX + 1];
409	struct qfq_aggregate *new_agg = NULL;
410	u32 weight, lmax, inv_w;
411	int err;
412	int delta_w;
413
414	if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
415		NL_SET_ERR_MSG_MOD(extack, "missing options");
416		return -EINVAL;
417	}
418
419	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
420					  qfq_policy, extack);
421	if (err < 0)
422		return err;
423
424	if (tb[TCA_QFQ_WEIGHT])
425		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
426	else
427		weight = 1;
428
429	if (tb[TCA_QFQ_LMAX]) {
430		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
431	} else {
432		/* MTU size is user controlled */
433		lmax = psched_mtu(qdisc_dev(sch));
434		if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
435			NL_SET_ERR_MSG_MOD(extack,
436					   "MTU size out of bounds for qfq");
437			return -EINVAL;
438		}
439	}
440
441	inv_w = ONE_FP / weight;
442	weight = ONE_FP / inv_w;
443
444	if (cl != NULL &&
445	    lmax == cl->agg->lmax &&
446	    weight == cl->agg->class_weight)
447		return 0; /* nothing to change */
448
449	delta_w = weight - (cl ? cl->agg->class_weight : 0);
450
451	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
452		NL_SET_ERR_MSG_FMT_MOD(extack,
453				       "total weight out of range (%d + %u)\n",
454				       delta_w, q->wsum);
455		return -EINVAL;
456	}
457
458	if (cl != NULL) { /* modify existing class */
459		if (tca[TCA_RATE]) {
460			err = gen_replace_estimator(&cl->bstats, NULL,
461						    &cl->rate_est,
462						    NULL,
463						    true,
464						    tca[TCA_RATE]);
465			if (err)
466				return err;
467		}
468		existing = true;
469		goto set_change_agg;
470	}
471
472	/* create and init new class */
473	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
474	if (cl == NULL)
475		return -ENOBUFS;
476
477	gnet_stats_basic_sync_init(&cl->bstats);
478	cl->common.classid = classid;
479	cl->deficit = lmax;
480
481	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
482				      classid, NULL);
483	if (cl->qdisc == NULL)
484		cl->qdisc = &noop_qdisc;
485
486	if (tca[TCA_RATE]) {
487		err = gen_new_estimator(&cl->bstats, NULL,
488					&cl->rate_est,
489					NULL,
490					true,
491					tca[TCA_RATE]);
492		if (err)
493			goto destroy_class;
494	}
495
496	if (cl->qdisc != &noop_qdisc)
497		qdisc_hash_add(cl->qdisc, true);
498
499set_change_agg:
500	sch_tree_lock(sch);
501	new_agg = qfq_find_agg(q, lmax, weight);
502	if (new_agg == NULL) { /* create new aggregate */
503		sch_tree_unlock(sch);
504		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
505		if (new_agg == NULL) {
506			err = -ENOBUFS;
507			gen_kill_estimator(&cl->rate_est);
508			goto destroy_class;
509		}
510		sch_tree_lock(sch);
511		qfq_init_agg(q, new_agg, lmax, weight);
512	}
513	if (existing)
514		qfq_deact_rm_from_agg(q, cl);
515	else
516		qdisc_class_hash_insert(&q->clhash, &cl->common);
517	qfq_add_to_agg(q, new_agg, cl);
518	sch_tree_unlock(sch);
519	qdisc_class_hash_grow(sch, &q->clhash);
520
521	*arg = (unsigned long)cl;
522	return 0;
523
524destroy_class:
525	qdisc_put(cl->qdisc);
526	kfree(cl);
527	return err;
528}
529
530static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
531{
532	struct qfq_sched *q = qdisc_priv(sch);
533
534	qfq_rm_from_agg(q, cl);
535	gen_kill_estimator(&cl->rate_est);
536	qdisc_put(cl->qdisc);
537	kfree(cl);
538}
539
540static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
541			    struct netlink_ext_ack *extack)
542{
543	struct qfq_sched *q = qdisc_priv(sch);
544	struct qfq_class *cl = (struct qfq_class *)arg;
545
546	if (qdisc_class_in_use(&cl->common)) {
547		NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
548		return -EBUSY;
549	}
550
551	sch_tree_lock(sch);
552
553	qdisc_purge_queue(cl->qdisc);
554	qdisc_class_hash_remove(&q->clhash, &cl->common);
555
556	sch_tree_unlock(sch);
557
558	qfq_destroy_class(sch, cl);
559	return 0;
560}
561
562static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
563{
564	return (unsigned long)qfq_find_class(sch, classid);
565}
566
567static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
568				       struct netlink_ext_ack *extack)
569{
570	struct qfq_sched *q = qdisc_priv(sch);
571
572	if (cl)
573		return NULL;
574
575	return q->block;
576}
577
578static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
579				  u32 classid)
580{
581	struct qfq_class *cl = qfq_find_class(sch, classid);
582
583	if (cl)
584		qdisc_class_get(&cl->common);
585
586	return (unsigned long)cl;
587}
588
589static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
590{
591	struct qfq_class *cl = (struct qfq_class *)arg;
592
593	qdisc_class_put(&cl->common);
594}
595
596static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
597			   struct Qdisc *new, struct Qdisc **old,
598			   struct netlink_ext_ack *extack)
599{
600	struct qfq_class *cl = (struct qfq_class *)arg;
601
602	if (new == NULL) {
603		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
604					cl->common.classid, NULL);
605		if (new == NULL)
606			new = &noop_qdisc;
607	}
608
609	*old = qdisc_replace(sch, new, &cl->qdisc);
610	return 0;
611}
612
613static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
614{
615	struct qfq_class *cl = (struct qfq_class *)arg;
616
617	return cl->qdisc;
618}
619
620static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
621			  struct sk_buff *skb, struct tcmsg *tcm)
622{
623	struct qfq_class *cl = (struct qfq_class *)arg;
624	struct nlattr *nest;
625
626	tcm->tcm_parent	= TC_H_ROOT;
627	tcm->tcm_handle	= cl->common.classid;
628	tcm->tcm_info	= cl->qdisc->handle;
629
630	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
631	if (nest == NULL)
632		goto nla_put_failure;
633	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
634	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
635		goto nla_put_failure;
636	return nla_nest_end(skb, nest);
637
638nla_put_failure:
639	nla_nest_cancel(skb, nest);
640	return -EMSGSIZE;
641}
642
643static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
644				struct gnet_dump *d)
645{
646	struct qfq_class *cl = (struct qfq_class *)arg;
647	struct tc_qfq_stats xstats;
648
649	memset(&xstats, 0, sizeof(xstats));
650
651	xstats.weight = cl->agg->class_weight;
652	xstats.lmax = cl->agg->lmax;
653
654	if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
655	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
656	    qdisc_qstats_copy(d, cl->qdisc) < 0)
657		return -1;
658
659	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
660}
661
662static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
663{
664	struct qfq_sched *q = qdisc_priv(sch);
665	struct qfq_class *cl;
666	unsigned int i;
667
668	if (arg->stop)
669		return;
670
671	for (i = 0; i < q->clhash.hashsize; i++) {
672		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
673			if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
674				return;
675		}
676	}
677}
678
679static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
680				      int *qerr)
681{
682	struct qfq_sched *q = qdisc_priv(sch);
683	struct qfq_class *cl;
684	struct tcf_result res;
685	struct tcf_proto *fl;
686	int result;
687
688	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
689		pr_debug("qfq_classify: found %d\n", skb->priority);
690		cl = qfq_find_class(sch, skb->priority);
691		if (cl != NULL)
692			return cl;
693	}
694
695	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
696	fl = rcu_dereference_bh(q->filter_list);
697	result = tcf_classify(skb, NULL, fl, &res, false);
698	if (result >= 0) {
699#ifdef CONFIG_NET_CLS_ACT
700		switch (result) {
701		case TC_ACT_QUEUED:
702		case TC_ACT_STOLEN:
703		case TC_ACT_TRAP:
704			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
705			fallthrough;
706		case TC_ACT_SHOT:
707			return NULL;
708		}
709#endif
710		cl = (struct qfq_class *)res.class;
711		if (cl == NULL)
712			cl = qfq_find_class(sch, res.classid);
713		return cl;
714	}
715
716	return NULL;
717}
718
719/* Generic comparison function, handling wraparound. */
720static inline int qfq_gt(u64 a, u64 b)
721{
722	return (s64)(a - b) > 0;
723}
724
725/* Round a precise timestamp to its slotted value. */
726static inline u64 qfq_round_down(u64 ts, unsigned int shift)
727{
728	return ts & ~((1ULL << shift) - 1);
729}
730
731/* return the pointer to the group with lowest index in the bitmap */
732static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
733					unsigned long bitmap)
734{
735	int index = __ffs(bitmap);
736	return &q->groups[index];
737}
738/* Calculate a mask to mimic what would be ffs_from(). */
739static inline unsigned long mask_from(unsigned long bitmap, int from)
740{
741	return bitmap & ~((1UL << from) - 1);
742}
743
744/*
745 * The state computation relies on ER=0, IR=1, EB=2, IB=3
746 * First compute eligibility comparing grp->S, q->V,
747 * then check if someone is blocking us and possibly add EB
748 */
749static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
750{
751	/* if S > V we are not eligible */
752	unsigned int state = qfq_gt(grp->S, q->V);
753	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
754	struct qfq_group *next;
755
756	if (mask) {
757		next = qfq_ffs(q, mask);
758		if (qfq_gt(grp->F, next->F))
759			state |= EB;
760	}
761
762	return state;
763}
764
765
766/*
767 * In principle
768 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
769 *	q->bitmaps[src] &= ~mask;
770 * but we should make sure that src != dst
771 */
772static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
773				   int src, int dst)
774{
775	q->bitmaps[dst] |= q->bitmaps[src] & mask;
776	q->bitmaps[src] &= ~mask;
777}
778
779static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
780{
781	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
782	struct qfq_group *next;
783
784	if (mask) {
785		next = qfq_ffs(q, mask);
786		if (!qfq_gt(next->F, old_F))
787			return;
788	}
789
790	mask = (1UL << index) - 1;
791	qfq_move_groups(q, mask, EB, ER);
792	qfq_move_groups(q, mask, IB, IR);
793}
794
795/*
796 * perhaps
797 *
798	old_V ^= q->V;
799	old_V >>= q->min_slot_shift;
800	if (old_V) {
801		...
802	}
803 *
804 */
805static void qfq_make_eligible(struct qfq_sched *q)
806{
807	unsigned long vslot = q->V >> q->min_slot_shift;
808	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
809
810	if (vslot != old_vslot) {
811		unsigned long mask;
812		int last_flip_pos = fls(vslot ^ old_vslot);
813
814		if (last_flip_pos > 31) /* higher than the number of groups */
815			mask = ~0UL;    /* make all groups eligible */
816		else
817			mask = (1UL << last_flip_pos) - 1;
818
819		qfq_move_groups(q, mask, IR, ER);
820		qfq_move_groups(q, mask, IB, EB);
821	}
822}
823
824/*
825 * The index of the slot in which the input aggregate agg is to be
826 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
827 * and not a '-1' because the start time of the group may be moved
828 * backward by one slot after the aggregate has been inserted, and
829 * this would cause non-empty slots to be right-shifted by one
830 * position.
831 *
832 * QFQ+ fully satisfies this bound to the slot index if the parameters
833 * of the classes are not changed dynamically, and if QFQ+ never
834 * happens to postpone the service of agg unjustly, i.e., it never
835 * happens that the aggregate becomes backlogged and eligible, or just
836 * eligible, while an aggregate with a higher approximated finish time
837 * is being served. In particular, in this case QFQ+ guarantees that
838 * the timestamps of agg are low enough that the slot index is never
839 * higher than 2. Unfortunately, QFQ+ cannot provide the same
840 * guarantee if it happens to unjustly postpone the service of agg, or
841 * if the parameters of some class are changed.
842 *
843 * As for the first event, i.e., an out-of-order service, the
844 * upper bound to the slot index guaranteed by QFQ+ grows to
845 * 2 +
846 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
847 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
848 *
849 * The following function deals with this problem by backward-shifting
850 * the timestamps of agg, if needed, so as to guarantee that the slot
851 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
852 * cause the service of other aggregates to be postponed, yet the
853 * worst-case guarantees of these aggregates are not violated.  In
854 * fact, in case of no out-of-order service, the timestamps of agg
855 * would have been even lower than they are after the backward shift,
856 * because QFQ+ would have guaranteed a maximum value equal to 2 for
857 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
858 * service is postponed because of the backward-shift would have
859 * however waited for the service of agg before being served.
860 *
861 * The other event that may cause the slot index to be higher than 2
862 * for agg is a recent change of the parameters of some class. If the
863 * weight of a class is increased or the lmax (max_pkt_size) of the
864 * class is decreased, then a new aggregate with smaller slot size
865 * than the original parent aggregate of the class may happen to be
866 * activated. The activation of this aggregate should be properly
867 * delayed to when the service of the class has finished in the ideal
868 * system tracked by QFQ+. If the activation of the aggregate is not
869 * delayed to this reference time instant, then this aggregate may be
870 * unjustly served before other aggregates waiting for service. This
871 * may cause the above bound to the slot index to be violated for some
872 * of these unlucky aggregates.
873 *
874 * Instead of delaying the activation of the new aggregate, which is
875 * quite complex, the above-discussed capping of the slot index is
876 * used to handle also the consequences of a change of the parameters
877 * of a class.
878 */
879static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
880			    u64 roundedS)
881{
882	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
883	unsigned int i; /* slot index in the bucket list */
884
885	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
886		u64 deltaS = roundedS - grp->S -
887			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
888		agg->S -= deltaS;
889		agg->F -= deltaS;
890		slot = QFQ_MAX_SLOTS - 2;
891	}
892
893	i = (grp->front + slot) % QFQ_MAX_SLOTS;
894
895	hlist_add_head(&agg->next, &grp->slots[i]);
896	__set_bit(slot, &grp->full_slots);
897}
898
899/* Maybe introduce hlist_first_entry?? */
900static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
901{
902	return hlist_entry(grp->slots[grp->front].first,
903			   struct qfq_aggregate, next);
904}
905
906/*
907 * remove the entry from the slot
908 */
909static void qfq_front_slot_remove(struct qfq_group *grp)
910{
911	struct qfq_aggregate *agg = qfq_slot_head(grp);
912
913	BUG_ON(!agg);
914	hlist_del(&agg->next);
915	if (hlist_empty(&grp->slots[grp->front]))
916		__clear_bit(0, &grp->full_slots);
917}
918
919/*
920 * Returns the first aggregate in the first non-empty bucket of the
921 * group. As a side effect, adjusts the bucket list so the first
922 * non-empty bucket is at position 0 in full_slots.
923 */
924static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
925{
926	unsigned int i;
927
928	pr_debug("qfq slot_scan: grp %u full %#lx\n",
929		 grp->index, grp->full_slots);
930
931	if (grp->full_slots == 0)
932		return NULL;
933
934	i = __ffs(grp->full_slots);  /* zero based */
935	if (i > 0) {
936		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
937		grp->full_slots >>= i;
938	}
939
940	return qfq_slot_head(grp);
941}
942
943/*
944 * adjust the bucket list. When the start time of a group decreases,
945 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
946 * move the objects. The mask of occupied slots must be shifted
947 * because we use ffs() to find the first non-empty slot.
948 * This covers decreases in the group's start time, but what about
949 * increases of the start time ?
950 * Here too we should make sure that i is less than 32
951 */
952static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
953{
954	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
955
956	grp->full_slots <<= i;
957	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
958}
959
960static void qfq_update_eligible(struct qfq_sched *q)
961{
962	struct qfq_group *grp;
963	unsigned long ineligible;
964
965	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
966	if (ineligible) {
967		if (!q->bitmaps[ER]) {
968			grp = qfq_ffs(q, ineligible);
969			if (qfq_gt(grp->S, q->V))
970				q->V = grp->S;
971		}
972		qfq_make_eligible(q);
973	}
974}
975
976/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
977static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
978				   struct qfq_class *cl, unsigned int len)
979{
980	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
981
982	if (!skb)
983		return NULL;
984
985	cl->deficit -= (int) len;
986
987	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
988		list_del(&cl->alist);
989	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
990		cl->deficit += agg->lmax;
991		list_move_tail(&cl->alist, &agg->active);
992	}
993
994	return skb;
995}
996
997static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
998					   struct qfq_class **cl,
999					   unsigned int *len)
1000{
1001	struct sk_buff *skb;
1002
1003	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1004	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1005	if (skb == NULL)
1006		qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1007	else
1008		*len = qdisc_pkt_len(skb);
1009
1010	return skb;
1011}
1012
1013/* Update F according to the actual service received by the aggregate. */
1014static inline void charge_actual_service(struct qfq_aggregate *agg)
1015{
1016	/* Compute the service received by the aggregate, taking into
1017	 * account that, after decreasing the number of classes in
1018	 * agg, it may happen that
1019	 * agg->initial_budget - agg->budget > agg->bugdetmax
1020	 */
1021	u32 service_received = min(agg->budgetmax,
1022				   agg->initial_budget - agg->budget);
1023
1024	agg->F = agg->S + (u64)service_received * agg->inv_w;
1025}
1026
1027/* Assign a reasonable start time for a new aggregate in group i.
1028 * Admissible values for \hat(F) are multiples of \sigma_i
1029 * no greater than V+\sigma_i . Larger values mean that
1030 * we had a wraparound so we consider the timestamp to be stale.
1031 *
1032 * If F is not stale and F >= V then we set S = F.
1033 * Otherwise we should assign S = V, but this may violate
1034 * the ordering in EB (see [2]). So, if we have groups in ER,
1035 * set S to the F_j of the first group j which would be blocking us.
1036 * We are guaranteed not to move S backward because
1037 * otherwise our group i would still be blocked.
1038 */
1039static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1040{
1041	unsigned long mask;
1042	u64 limit, roundedF;
1043	int slot_shift = agg->grp->slot_shift;
1044
1045	roundedF = qfq_round_down(agg->F, slot_shift);
1046	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1047
1048	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1049		/* timestamp was stale */
1050		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1051		if (mask) {
1052			struct qfq_group *next = qfq_ffs(q, mask);
1053			if (qfq_gt(roundedF, next->F)) {
1054				if (qfq_gt(limit, next->F))
1055					agg->S = next->F;
1056				else /* preserve timestamp correctness */
1057					agg->S = limit;
1058				return;
1059			}
1060		}
1061		agg->S = q->V;
1062	} else  /* timestamp is not stale */
1063		agg->S = agg->F;
1064}
1065
1066/* Update the timestamps of agg before scheduling/rescheduling it for
1067 * service.  In particular, assign to agg->F its maximum possible
1068 * value, i.e., the virtual finish time with which the aggregate
1069 * should be labeled if it used all its budget once in service.
1070 */
1071static inline void
1072qfq_update_agg_ts(struct qfq_sched *q,
1073		    struct qfq_aggregate *agg, enum update_reason reason)
1074{
1075	if (reason != requeue)
1076		qfq_update_start(q, agg);
1077	else /* just charge agg for the service received */
1078		agg->S = agg->F;
1079
1080	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1081}
1082
1083static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1084
1085static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1086{
1087	struct qfq_sched *q = qdisc_priv(sch);
1088	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1089	struct qfq_class *cl;
1090	struct sk_buff *skb = NULL;
1091	/* next-packet len, 0 means no more active classes in in-service agg */
1092	unsigned int len = 0;
1093
1094	if (in_serv_agg == NULL)
1095		return NULL;
1096
1097	if (!list_empty(&in_serv_agg->active))
1098		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1099
1100	/*
1101	 * If there are no active classes in the in-service aggregate,
1102	 * or if the aggregate has not enough budget to serve its next
1103	 * class, then choose the next aggregate to serve.
1104	 */
1105	if (len == 0 || in_serv_agg->budget < len) {
1106		charge_actual_service(in_serv_agg);
1107
1108		/* recharge the budget of the aggregate */
1109		in_serv_agg->initial_budget = in_serv_agg->budget =
1110			in_serv_agg->budgetmax;
1111
1112		if (!list_empty(&in_serv_agg->active)) {
1113			/*
1114			 * Still active: reschedule for
1115			 * service. Possible optimization: if no other
1116			 * aggregate is active, then there is no point
1117			 * in rescheduling this aggregate, and we can
1118			 * just keep it as the in-service one. This
1119			 * should be however a corner case, and to
1120			 * handle it, we would need to maintain an
1121			 * extra num_active_aggs field.
1122			*/
1123			qfq_update_agg_ts(q, in_serv_agg, requeue);
1124			qfq_schedule_agg(q, in_serv_agg);
1125		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1126			q->in_serv_agg = NULL;
1127			return NULL;
1128		}
1129
1130		/*
1131		 * If we get here, there are other aggregates queued:
1132		 * choose the new aggregate to serve.
1133		 */
1134		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1135		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1136	}
1137	if (!skb)
1138		return NULL;
1139
1140	sch->q.qlen--;
1141
1142	skb = agg_dequeue(in_serv_agg, cl, len);
1143
1144	if (!skb) {
1145		sch->q.qlen++;
1146		return NULL;
1147	}
1148
1149	qdisc_qstats_backlog_dec(sch, skb);
1150	qdisc_bstats_update(sch, skb);
1151
1152	/* If lmax is lowered, through qfq_change_class, for a class
1153	 * owning pending packets with larger size than the new value
1154	 * of lmax, then the following condition may hold.
1155	 */
1156	if (unlikely(in_serv_agg->budget < len))
1157		in_serv_agg->budget = 0;
1158	else
1159		in_serv_agg->budget -= len;
1160
1161	q->V += (u64)len * q->iwsum;
1162	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1163		 len, (unsigned long long) in_serv_agg->F,
1164		 (unsigned long long) q->V);
1165
1166	return skb;
1167}
1168
1169static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1170{
1171	struct qfq_group *grp;
1172	struct qfq_aggregate *agg, *new_front_agg;
1173	u64 old_F;
1174
1175	qfq_update_eligible(q);
1176	q->oldV = q->V;
1177
1178	if (!q->bitmaps[ER])
1179		return NULL;
1180
1181	grp = qfq_ffs(q, q->bitmaps[ER]);
1182	old_F = grp->F;
1183
1184	agg = qfq_slot_head(grp);
1185
1186	/* agg starts to be served, remove it from schedule */
1187	qfq_front_slot_remove(grp);
1188
1189	new_front_agg = qfq_slot_scan(grp);
1190
1191	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1192		__clear_bit(grp->index, &q->bitmaps[ER]);
1193	else {
1194		u64 roundedS = qfq_round_down(new_front_agg->S,
1195					      grp->slot_shift);
1196		unsigned int s;
1197
1198		if (grp->S == roundedS)
1199			return agg;
1200		grp->S = roundedS;
1201		grp->F = roundedS + (2ULL << grp->slot_shift);
1202		__clear_bit(grp->index, &q->bitmaps[ER]);
1203		s = qfq_calc_state(q, grp);
1204		__set_bit(grp->index, &q->bitmaps[s]);
1205	}
1206
1207	qfq_unblock_groups(q, grp->index, old_F);
1208
1209	return agg;
1210}
1211
1212static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1213		       struct sk_buff **to_free)
1214{
1215	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1216	struct qfq_sched *q = qdisc_priv(sch);
1217	struct qfq_class *cl;
1218	struct qfq_aggregate *agg;
1219	int err = 0;
1220	bool first;
1221
1222	cl = qfq_classify(skb, sch, &err);
1223	if (cl == NULL) {
1224		if (err & __NET_XMIT_BYPASS)
1225			qdisc_qstats_drop(sch);
1226		__qdisc_drop(skb, to_free);
1227		return err;
1228	}
1229	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1230
1231	if (unlikely(cl->agg->lmax < len)) {
1232		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1233			 cl->agg->lmax, len, cl->common.classid);
1234		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1235		if (err) {
1236			cl->qstats.drops++;
1237			return qdisc_drop(skb, sch, to_free);
1238		}
1239	}
1240
1241	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1242	first = !cl->qdisc->q.qlen;
1243	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1244	if (unlikely(err != NET_XMIT_SUCCESS)) {
1245		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1246		if (net_xmit_drop_count(err)) {
1247			cl->qstats.drops++;
1248			qdisc_qstats_drop(sch);
1249		}
1250		return err;
1251	}
1252
1253	_bstats_update(&cl->bstats, len, gso_segs);
1254	sch->qstats.backlog += len;
1255	++sch->q.qlen;
1256
1257	agg = cl->agg;
1258	/* if the queue was not empty, then done here */
1259	if (!first) {
1260		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1261		    list_first_entry(&agg->active, struct qfq_class, alist)
1262		    == cl && cl->deficit < len)
1263			list_move_tail(&cl->alist, &agg->active);
1264
1265		return err;
1266	}
1267
1268	/* schedule class for service within the aggregate */
1269	cl->deficit = agg->lmax;
1270	list_add_tail(&cl->alist, &agg->active);
1271
1272	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1273	    q->in_serv_agg == agg)
1274		return err; /* non-empty or in service, nothing else to do */
1275
1276	qfq_activate_agg(q, agg, enqueue);
1277
1278	return err;
1279}
1280
1281/*
1282 * Schedule aggregate according to its timestamps.
1283 */
1284static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1285{
1286	struct qfq_group *grp = agg->grp;
1287	u64 roundedS;
1288	int s;
1289
1290	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1291
1292	/*
1293	 * Insert agg in the correct bucket.
1294	 * If agg->S >= grp->S we don't need to adjust the
1295	 * bucket list and simply go to the insertion phase.
1296	 * Otherwise grp->S is decreasing, we must make room
1297	 * in the bucket list, and also recompute the group state.
1298	 * Finally, if there were no flows in this group and nobody
1299	 * was in ER make sure to adjust V.
1300	 */
1301	if (grp->full_slots) {
1302		if (!qfq_gt(grp->S, agg->S))
1303			goto skip_update;
1304
1305		/* create a slot for this agg->S */
1306		qfq_slot_rotate(grp, roundedS);
1307		/* group was surely ineligible, remove */
1308		__clear_bit(grp->index, &q->bitmaps[IR]);
1309		__clear_bit(grp->index, &q->bitmaps[IB]);
1310	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1311		   q->in_serv_agg == NULL)
1312		q->V = roundedS;
1313
1314	grp->S = roundedS;
1315	grp->F = roundedS + (2ULL << grp->slot_shift);
1316	s = qfq_calc_state(q, grp);
1317	__set_bit(grp->index, &q->bitmaps[s]);
1318
1319	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1320		 s, q->bitmaps[s],
1321		 (unsigned long long) agg->S,
1322		 (unsigned long long) agg->F,
1323		 (unsigned long long) q->V);
1324
1325skip_update:
1326	qfq_slot_insert(grp, agg, roundedS);
1327}
1328
1329
1330/* Update agg ts and schedule agg for service */
1331static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1332			     enum update_reason reason)
1333{
1334	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1335
1336	qfq_update_agg_ts(q, agg, reason);
1337	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1338		q->in_serv_agg = agg; /* start serving this aggregate */
1339		 /* update V: to be in service, agg must be eligible */
1340		q->oldV = q->V = agg->S;
1341	} else if (agg != q->in_serv_agg)
1342		qfq_schedule_agg(q, agg);
1343}
1344
1345static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1346			    struct qfq_aggregate *agg)
1347{
1348	unsigned int i, offset;
1349	u64 roundedS;
1350
1351	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1352	offset = (roundedS - grp->S) >> grp->slot_shift;
1353
1354	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1355
1356	hlist_del(&agg->next);
1357	if (hlist_empty(&grp->slots[i]))
1358		__clear_bit(offset, &grp->full_slots);
1359}
1360
1361/*
1362 * Called to forcibly deschedule an aggregate.  If the aggregate is
1363 * not in the front bucket, or if the latter has other aggregates in
1364 * the front bucket, we can simply remove the aggregate with no other
1365 * side effects.
1366 * Otherwise we must propagate the event up.
1367 */
1368static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1369{
1370	struct qfq_group *grp = agg->grp;
1371	unsigned long mask;
1372	u64 roundedS;
1373	int s;
1374
1375	if (agg == q->in_serv_agg) {
1376		charge_actual_service(agg);
1377		q->in_serv_agg = qfq_choose_next_agg(q);
1378		return;
1379	}
1380
1381	agg->F = agg->S;
1382	qfq_slot_remove(q, grp, agg);
1383
1384	if (!grp->full_slots) {
1385		__clear_bit(grp->index, &q->bitmaps[IR]);
1386		__clear_bit(grp->index, &q->bitmaps[EB]);
1387		__clear_bit(grp->index, &q->bitmaps[IB]);
1388
1389		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1390		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1391			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1392			if (mask)
1393				mask = ~((1UL << __fls(mask)) - 1);
1394			else
1395				mask = ~0UL;
1396			qfq_move_groups(q, mask, EB, ER);
1397			qfq_move_groups(q, mask, IB, IR);
1398		}
1399		__clear_bit(grp->index, &q->bitmaps[ER]);
1400	} else if (hlist_empty(&grp->slots[grp->front])) {
1401		agg = qfq_slot_scan(grp);
1402		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1403		if (grp->S != roundedS) {
1404			__clear_bit(grp->index, &q->bitmaps[ER]);
1405			__clear_bit(grp->index, &q->bitmaps[IR]);
1406			__clear_bit(grp->index, &q->bitmaps[EB]);
1407			__clear_bit(grp->index, &q->bitmaps[IB]);
1408			grp->S = roundedS;
1409			grp->F = roundedS + (2ULL << grp->slot_shift);
1410			s = qfq_calc_state(q, grp);
1411			__set_bit(grp->index, &q->bitmaps[s]);
1412		}
1413	}
1414}
1415
1416static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1417{
1418	struct qfq_sched *q = qdisc_priv(sch);
1419	struct qfq_class *cl = (struct qfq_class *)arg;
1420
1421	qfq_deactivate_class(q, cl);
1422}
1423
1424static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1425			  struct netlink_ext_ack *extack)
1426{
1427	struct qfq_sched *q = qdisc_priv(sch);
1428	struct qfq_group *grp;
1429	int i, j, err;
1430	u32 max_cl_shift, maxbudg_shift, max_classes;
1431
1432	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1433	if (err)
1434		return err;
1435
1436	err = qdisc_class_hash_init(&q->clhash);
1437	if (err < 0)
1438		return err;
1439
1440	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1441			    QFQ_MAX_AGG_CLASSES);
1442	/* max_cl_shift = floor(log_2(max_classes)) */
1443	max_cl_shift = __fls(max_classes);
1444	q->max_agg_classes = 1<<max_cl_shift;
1445
1446	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1447	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1448	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1449
1450	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1451		grp = &q->groups[i];
1452		grp->index = i;
1453		grp->slot_shift = q->min_slot_shift + i;
1454		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1455			INIT_HLIST_HEAD(&grp->slots[j]);
1456	}
1457
1458	INIT_HLIST_HEAD(&q->nonfull_aggs);
1459
1460	return 0;
1461}
1462
1463static void qfq_reset_qdisc(struct Qdisc *sch)
1464{
1465	struct qfq_sched *q = qdisc_priv(sch);
1466	struct qfq_class *cl;
1467	unsigned int i;
1468
1469	for (i = 0; i < q->clhash.hashsize; i++) {
1470		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1471			if (cl->qdisc->q.qlen > 0)
1472				qfq_deactivate_class(q, cl);
1473
1474			qdisc_reset(cl->qdisc);
1475		}
1476	}
1477}
1478
1479static void qfq_destroy_qdisc(struct Qdisc *sch)
1480{
1481	struct qfq_sched *q = qdisc_priv(sch);
1482	struct qfq_class *cl;
1483	struct hlist_node *next;
1484	unsigned int i;
1485
1486	tcf_block_put(q->block);
1487
1488	for (i = 0; i < q->clhash.hashsize; i++) {
1489		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1490					  common.hnode) {
1491			qfq_destroy_class(sch, cl);
1492		}
1493	}
1494	qdisc_class_hash_destroy(&q->clhash);
1495}
1496
1497static const struct Qdisc_class_ops qfq_class_ops = {
1498	.change		= qfq_change_class,
1499	.delete		= qfq_delete_class,
1500	.find		= qfq_search_class,
1501	.tcf_block	= qfq_tcf_block,
1502	.bind_tcf	= qfq_bind_tcf,
1503	.unbind_tcf	= qfq_unbind_tcf,
1504	.graft		= qfq_graft_class,
1505	.leaf		= qfq_class_leaf,
1506	.qlen_notify	= qfq_qlen_notify,
1507	.dump		= qfq_dump_class,
1508	.dump_stats	= qfq_dump_class_stats,
1509	.walk		= qfq_walk,
1510};
1511
1512static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1513	.cl_ops		= &qfq_class_ops,
1514	.id		= "qfq",
1515	.priv_size	= sizeof(struct qfq_sched),
1516	.enqueue	= qfq_enqueue,
1517	.dequeue	= qfq_dequeue,
1518	.peek		= qdisc_peek_dequeued,
1519	.init		= qfq_init_qdisc,
1520	.reset		= qfq_reset_qdisc,
1521	.destroy	= qfq_destroy_qdisc,
1522	.owner		= THIS_MODULE,
1523};
1524MODULE_ALIAS_NET_SCH("qfq");
1525
1526static int __init qfq_init(void)
1527{
1528	return register_qdisc(&qfq_qdisc_ops);
1529}
1530
1531static void __exit qfq_exit(void)
1532{
1533	unregister_qdisc(&qfq_qdisc_ops);
1534}
1535
1536module_init(qfq_init);
1537module_exit(qfq_exit);
1538MODULE_LICENSE("GPL");
1539MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1540