1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * net/sched/sch_netem.c	Network emulator
4 *
5 *  		Many of the algorithms and ideas for this came from
6 *		NIST Net which is not copyrighted.
7 *
8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10 */
11
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/skbuff.h>
19#include <linux/vmalloc.h>
20#include <linux/rtnetlink.h>
21#include <linux/reciprocal_div.h>
22#include <linux/rbtree.h>
23
24#include <net/gso.h>
25#include <net/netlink.h>
26#include <net/pkt_sched.h>
27#include <net/inet_ecn.h>
28
29#define VERSION "1.3"
30
31/*	Network Emulation Queuing algorithm.
32	====================================
33
34	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
35		 Network Emulation Tool
36		 [2] Luigi Rizzo, DummyNet for FreeBSD
37
38	 ----------------------------------------------------------------
39
40	 This started out as a simple way to delay outgoing packets to
41	 test TCP but has grown to include most of the functionality
42	 of a full blown network emulator like NISTnet. It can delay
43	 packets and add random jitter (and correlation). The random
44	 distribution can be loaded from a table as well to provide
45	 normal, Pareto, or experimental curves. Packet loss,
46	 duplication, and reordering can also be emulated.
47
48	 This qdisc does not do classification that can be handled in
49	 layering other disciplines.  It does not need to do bandwidth
50	 control either since that can be handled by using token
51	 bucket or other rate control.
52
53     Correlated Loss Generator models
54
55	Added generation of correlated loss according to the
56	"Gilbert-Elliot" model, a 4-state markov model.
57
58	References:
59	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
60	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
61	and intuitive loss model for packet networks and its implementation
62	in the Netem module in the Linux kernel", available in [1]
63
64	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
65		 Fabio Ludovici <fabio.ludovici at yahoo.it>
66*/
67
68struct disttable {
69	u32  size;
70	s16 table[] __counted_by(size);
71};
72
73struct netem_sched_data {
74	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
75	struct rb_root t_root;
76
77	/* a linear queue; reduces rbtree rebalancing when jitter is low */
78	struct sk_buff	*t_head;
79	struct sk_buff	*t_tail;
80
81	/* optional qdisc for classful handling (NULL at netem init) */
82	struct Qdisc	*qdisc;
83
84	struct qdisc_watchdog watchdog;
85
86	s64 latency;
87	s64 jitter;
88
89	u32 loss;
90	u32 ecn;
91	u32 limit;
92	u32 counter;
93	u32 gap;
94	u32 duplicate;
95	u32 reorder;
96	u32 corrupt;
97	u64 rate;
98	s32 packet_overhead;
99	u32 cell_size;
100	struct reciprocal_value cell_size_reciprocal;
101	s32 cell_overhead;
102
103	struct crndstate {
104		u32 last;
105		u32 rho;
106	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
107
108	struct prng  {
109		u64 seed;
110		struct rnd_state prng_state;
111	} prng;
112
113	struct disttable *delay_dist;
114
115	enum  {
116		CLG_RANDOM,
117		CLG_4_STATES,
118		CLG_GILB_ELL,
119	} loss_model;
120
121	enum {
122		TX_IN_GAP_PERIOD = 1,
123		TX_IN_BURST_PERIOD,
124		LOST_IN_GAP_PERIOD,
125		LOST_IN_BURST_PERIOD,
126	} _4_state_model;
127
128	enum {
129		GOOD_STATE = 1,
130		BAD_STATE,
131	} GE_state_model;
132
133	/* Correlated Loss Generation models */
134	struct clgstate {
135		/* state of the Markov chain */
136		u8 state;
137
138		/* 4-states and Gilbert-Elliot models */
139		u32 a1;	/* p13 for 4-states or p for GE */
140		u32 a2;	/* p31 for 4-states or r for GE */
141		u32 a3;	/* p32 for 4-states or h for GE */
142		u32 a4;	/* p14 for 4-states or 1-k for GE */
143		u32 a5; /* p23 used only in 4-states */
144	} clg;
145
146	struct tc_netem_slot slot_config;
147	struct slotstate {
148		u64 slot_next;
149		s32 packets_left;
150		s32 bytes_left;
151	} slot;
152
153	struct disttable *slot_dist;
154};
155
156/* Time stamp put into socket buffer control block
157 * Only valid when skbs are in our internal t(ime)fifo queue.
158 *
159 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
160 * and skb->next & skb->prev are scratch space for a qdisc,
161 * we save skb->tstamp value in skb->cb[] before destroying it.
162 */
163struct netem_skb_cb {
164	u64	        time_to_send;
165};
166
167static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
168{
169	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
170	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
171	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
172}
173
174/* init_crandom - initialize correlated random number generator
175 * Use entropy source for initial seed.
176 */
177static void init_crandom(struct crndstate *state, unsigned long rho)
178{
179	state->rho = rho;
180	state->last = get_random_u32();
181}
182
183/* get_crandom - correlated random number generator
184 * Next number depends on last value.
185 * rho is scaled to avoid floating point.
186 */
187static u32 get_crandom(struct crndstate *state, struct prng *p)
188{
189	u64 value, rho;
190	unsigned long answer;
191	struct rnd_state *s = &p->prng_state;
192
193	if (!state || state->rho == 0)	/* no correlation */
194		return prandom_u32_state(s);
195
196	value = prandom_u32_state(s);
197	rho = (u64)state->rho + 1;
198	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
199	state->last = answer;
200	return answer;
201}
202
203/* loss_4state - 4-state model loss generator
204 * Generates losses according to the 4-state Markov chain adopted in
205 * the GI (General and Intuitive) loss model.
206 */
207static bool loss_4state(struct netem_sched_data *q)
208{
209	struct clgstate *clg = &q->clg;
210	u32 rnd = prandom_u32_state(&q->prng.prng_state);
211
212	/*
213	 * Makes a comparison between rnd and the transition
214	 * probabilities outgoing from the current state, then decides the
215	 * next state and if the next packet has to be transmitted or lost.
216	 * The four states correspond to:
217	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
218	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
219	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
220	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
221	 */
222	switch (clg->state) {
223	case TX_IN_GAP_PERIOD:
224		if (rnd < clg->a4) {
225			clg->state = LOST_IN_GAP_PERIOD;
226			return true;
227		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
228			clg->state = LOST_IN_BURST_PERIOD;
229			return true;
230		} else if (clg->a1 + clg->a4 < rnd) {
231			clg->state = TX_IN_GAP_PERIOD;
232		}
233
234		break;
235	case TX_IN_BURST_PERIOD:
236		if (rnd < clg->a5) {
237			clg->state = LOST_IN_BURST_PERIOD;
238			return true;
239		} else {
240			clg->state = TX_IN_BURST_PERIOD;
241		}
242
243		break;
244	case LOST_IN_BURST_PERIOD:
245		if (rnd < clg->a3)
246			clg->state = TX_IN_BURST_PERIOD;
247		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
248			clg->state = TX_IN_GAP_PERIOD;
249		} else if (clg->a2 + clg->a3 < rnd) {
250			clg->state = LOST_IN_BURST_PERIOD;
251			return true;
252		}
253		break;
254	case LOST_IN_GAP_PERIOD:
255		clg->state = TX_IN_GAP_PERIOD;
256		break;
257	}
258
259	return false;
260}
261
262/* loss_gilb_ell - Gilbert-Elliot model loss generator
263 * Generates losses according to the Gilbert-Elliot loss model or
264 * its special cases  (Gilbert or Simple Gilbert)
265 *
266 * Makes a comparison between random number and the transition
267 * probabilities outgoing from the current state, then decides the
268 * next state. A second random number is extracted and the comparison
269 * with the loss probability of the current state decides if the next
270 * packet will be transmitted or lost.
271 */
272static bool loss_gilb_ell(struct netem_sched_data *q)
273{
274	struct clgstate *clg = &q->clg;
275	struct rnd_state *s = &q->prng.prng_state;
276
277	switch (clg->state) {
278	case GOOD_STATE:
279		if (prandom_u32_state(s) < clg->a1)
280			clg->state = BAD_STATE;
281		if (prandom_u32_state(s) < clg->a4)
282			return true;
283		break;
284	case BAD_STATE:
285		if (prandom_u32_state(s) < clg->a2)
286			clg->state = GOOD_STATE;
287		if (prandom_u32_state(s) > clg->a3)
288			return true;
289	}
290
291	return false;
292}
293
294static bool loss_event(struct netem_sched_data *q)
295{
296	switch (q->loss_model) {
297	case CLG_RANDOM:
298		/* Random packet drop 0 => none, ~0 => all */
299		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
300
301	case CLG_4_STATES:
302		/* 4state loss model algorithm (used also for GI model)
303		* Extracts a value from the markov 4 state loss generator,
304		* if it is 1 drops a packet and if needed writes the event in
305		* the kernel logs
306		*/
307		return loss_4state(q);
308
309	case CLG_GILB_ELL:
310		/* Gilbert-Elliot loss model algorithm
311		* Extracts a value from the Gilbert-Elliot loss generator,
312		* if it is 1 drops a packet and if needed writes the event in
313		* the kernel logs
314		*/
315		return loss_gilb_ell(q);
316	}
317
318	return false;	/* not reached */
319}
320
321
322/* tabledist - return a pseudo-randomly distributed value with mean mu and
323 * std deviation sigma.  Uses table lookup to approximate the desired
324 * distribution, and a uniformly-distributed pseudo-random source.
325 */
326static s64 tabledist(s64 mu, s32 sigma,
327		     struct crndstate *state,
328		     struct prng *prng,
329		     const struct disttable *dist)
330{
331	s64 x;
332	long t;
333	u32 rnd;
334
335	if (sigma == 0)
336		return mu;
337
338	rnd = get_crandom(state, prng);
339
340	/* default uniform distribution */
341	if (dist == NULL)
342		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
343
344	t = dist->table[rnd % dist->size];
345	x = (sigma % NETEM_DIST_SCALE) * t;
346	if (x >= 0)
347		x += NETEM_DIST_SCALE/2;
348	else
349		x -= NETEM_DIST_SCALE/2;
350
351	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
352}
353
354static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
355{
356	len += q->packet_overhead;
357
358	if (q->cell_size) {
359		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
360
361		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
362			cells++;
363		len = cells * (q->cell_size + q->cell_overhead);
364	}
365
366	return div64_u64(len * NSEC_PER_SEC, q->rate);
367}
368
369static void tfifo_reset(struct Qdisc *sch)
370{
371	struct netem_sched_data *q = qdisc_priv(sch);
372	struct rb_node *p = rb_first(&q->t_root);
373
374	while (p) {
375		struct sk_buff *skb = rb_to_skb(p);
376
377		p = rb_next(p);
378		rb_erase(&skb->rbnode, &q->t_root);
379		rtnl_kfree_skbs(skb, skb);
380	}
381
382	rtnl_kfree_skbs(q->t_head, q->t_tail);
383	q->t_head = NULL;
384	q->t_tail = NULL;
385}
386
387static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
388{
389	struct netem_sched_data *q = qdisc_priv(sch);
390	u64 tnext = netem_skb_cb(nskb)->time_to_send;
391
392	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
393		if (q->t_tail)
394			q->t_tail->next = nskb;
395		else
396			q->t_head = nskb;
397		q->t_tail = nskb;
398	} else {
399		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
400
401		while (*p) {
402			struct sk_buff *skb;
403
404			parent = *p;
405			skb = rb_to_skb(parent);
406			if (tnext >= netem_skb_cb(skb)->time_to_send)
407				p = &parent->rb_right;
408			else
409				p = &parent->rb_left;
410		}
411		rb_link_node(&nskb->rbnode, parent, p);
412		rb_insert_color(&nskb->rbnode, &q->t_root);
413	}
414	sch->q.qlen++;
415}
416
417/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
418 * when we statistically choose to corrupt one, we instead segment it, returning
419 * the first packet to be corrupted, and re-enqueue the remaining frames
420 */
421static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
422				     struct sk_buff **to_free)
423{
424	struct sk_buff *segs;
425	netdev_features_t features = netif_skb_features(skb);
426
427	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
428
429	if (IS_ERR_OR_NULL(segs)) {
430		qdisc_drop(skb, sch, to_free);
431		return NULL;
432	}
433	consume_skb(skb);
434	return segs;
435}
436
437/*
438 * Insert one skb into qdisc.
439 * Note: parent depends on return value to account for queue length.
440 * 	NET_XMIT_DROP: queue length didn't change.
441 *      NET_XMIT_SUCCESS: one skb was queued.
442 */
443static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
444			 struct sk_buff **to_free)
445{
446	struct netem_sched_data *q = qdisc_priv(sch);
447	/* We don't fill cb now as skb_unshare() may invalidate it */
448	struct netem_skb_cb *cb;
449	struct sk_buff *skb2;
450	struct sk_buff *segs = NULL;
451	unsigned int prev_len = qdisc_pkt_len(skb);
452	int count = 1;
453	int rc = NET_XMIT_SUCCESS;
454	int rc_drop = NET_XMIT_DROP;
455
456	/* Do not fool qdisc_drop_all() */
457	skb->prev = NULL;
458
459	/* Random duplication */
460	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
461		++count;
462
463	/* Drop packet? */
464	if (loss_event(q)) {
465		if (q->ecn && INET_ECN_set_ce(skb))
466			qdisc_qstats_drop(sch); /* mark packet */
467		else
468			--count;
469	}
470	if (count == 0) {
471		qdisc_qstats_drop(sch);
472		__qdisc_drop(skb, to_free);
473		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
474	}
475
476	/* If a delay is expected, orphan the skb. (orphaning usually takes
477	 * place at TX completion time, so _before_ the link transit delay)
478	 */
479	if (q->latency || q->jitter || q->rate)
480		skb_orphan_partial(skb);
481
482	/*
483	 * If we need to duplicate packet, then re-insert at top of the
484	 * qdisc tree, since parent queuer expects that only one
485	 * skb will be queued.
486	 */
487	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
488		struct Qdisc *rootq = qdisc_root_bh(sch);
489		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
490
491		q->duplicate = 0;
492		rootq->enqueue(skb2, rootq, to_free);
493		q->duplicate = dupsave;
494		rc_drop = NET_XMIT_SUCCESS;
495	}
496
497	/*
498	 * Randomized packet corruption.
499	 * Make copy if needed since we are modifying
500	 * If packet is going to be hardware checksummed, then
501	 * do it now in software before we mangle it.
502	 */
503	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
504		if (skb_is_gso(skb)) {
505			skb = netem_segment(skb, sch, to_free);
506			if (!skb)
507				return rc_drop;
508			segs = skb->next;
509			skb_mark_not_on_list(skb);
510			qdisc_skb_cb(skb)->pkt_len = skb->len;
511		}
512
513		skb = skb_unshare(skb, GFP_ATOMIC);
514		if (unlikely(!skb)) {
515			qdisc_qstats_drop(sch);
516			goto finish_segs;
517		}
518		if (skb->ip_summed == CHECKSUM_PARTIAL &&
519		    skb_checksum_help(skb)) {
520			qdisc_drop(skb, sch, to_free);
521			skb = NULL;
522			goto finish_segs;
523		}
524
525		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
526			1<<get_random_u32_below(8);
527	}
528
529	if (unlikely(sch->q.qlen >= sch->limit)) {
530		/* re-link segs, so that qdisc_drop_all() frees them all */
531		skb->next = segs;
532		qdisc_drop_all(skb, sch, to_free);
533		return rc_drop;
534	}
535
536	qdisc_qstats_backlog_inc(sch, skb);
537
538	cb = netem_skb_cb(skb);
539	if (q->gap == 0 ||		/* not doing reordering */
540	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
541	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
542		u64 now;
543		s64 delay;
544
545		delay = tabledist(q->latency, q->jitter,
546				  &q->delay_cor, &q->prng, q->delay_dist);
547
548		now = ktime_get_ns();
549
550		if (q->rate) {
551			struct netem_skb_cb *last = NULL;
552
553			if (sch->q.tail)
554				last = netem_skb_cb(sch->q.tail);
555			if (q->t_root.rb_node) {
556				struct sk_buff *t_skb;
557				struct netem_skb_cb *t_last;
558
559				t_skb = skb_rb_last(&q->t_root);
560				t_last = netem_skb_cb(t_skb);
561				if (!last ||
562				    t_last->time_to_send > last->time_to_send)
563					last = t_last;
564			}
565			if (q->t_tail) {
566				struct netem_skb_cb *t_last =
567					netem_skb_cb(q->t_tail);
568
569				if (!last ||
570				    t_last->time_to_send > last->time_to_send)
571					last = t_last;
572			}
573
574			if (last) {
575				/*
576				 * Last packet in queue is reference point (now),
577				 * calculate this time bonus and subtract
578				 * from delay.
579				 */
580				delay -= last->time_to_send - now;
581				delay = max_t(s64, 0, delay);
582				now = last->time_to_send;
583			}
584
585			delay += packet_time_ns(qdisc_pkt_len(skb), q);
586		}
587
588		cb->time_to_send = now + delay;
589		++q->counter;
590		tfifo_enqueue(skb, sch);
591	} else {
592		/*
593		 * Do re-ordering by putting one out of N packets at the front
594		 * of the queue.
595		 */
596		cb->time_to_send = ktime_get_ns();
597		q->counter = 0;
598
599		__qdisc_enqueue_head(skb, &sch->q);
600		sch->qstats.requeues++;
601	}
602
603finish_segs:
604	if (segs) {
605		unsigned int len, last_len;
606		int nb;
607
608		len = skb ? skb->len : 0;
609		nb = skb ? 1 : 0;
610
611		while (segs) {
612			skb2 = segs->next;
613			skb_mark_not_on_list(segs);
614			qdisc_skb_cb(segs)->pkt_len = segs->len;
615			last_len = segs->len;
616			rc = qdisc_enqueue(segs, sch, to_free);
617			if (rc != NET_XMIT_SUCCESS) {
618				if (net_xmit_drop_count(rc))
619					qdisc_qstats_drop(sch);
620			} else {
621				nb++;
622				len += last_len;
623			}
624			segs = skb2;
625		}
626		/* Parent qdiscs accounted for 1 skb of size @prev_len */
627		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
628	} else if (!skb) {
629		return NET_XMIT_DROP;
630	}
631	return NET_XMIT_SUCCESS;
632}
633
634/* Delay the next round with a new future slot with a
635 * correct number of bytes and packets.
636 */
637
638static void get_slot_next(struct netem_sched_data *q, u64 now)
639{
640	s64 next_delay;
641
642	if (!q->slot_dist)
643		next_delay = q->slot_config.min_delay +
644				(get_random_u32() *
645				 (q->slot_config.max_delay -
646				  q->slot_config.min_delay) >> 32);
647	else
648		next_delay = tabledist(q->slot_config.dist_delay,
649				       (s32)(q->slot_config.dist_jitter),
650				       NULL, &q->prng, q->slot_dist);
651
652	q->slot.slot_next = now + next_delay;
653	q->slot.packets_left = q->slot_config.max_packets;
654	q->slot.bytes_left = q->slot_config.max_bytes;
655}
656
657static struct sk_buff *netem_peek(struct netem_sched_data *q)
658{
659	struct sk_buff *skb = skb_rb_first(&q->t_root);
660	u64 t1, t2;
661
662	if (!skb)
663		return q->t_head;
664	if (!q->t_head)
665		return skb;
666
667	t1 = netem_skb_cb(skb)->time_to_send;
668	t2 = netem_skb_cb(q->t_head)->time_to_send;
669	if (t1 < t2)
670		return skb;
671	return q->t_head;
672}
673
674static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
675{
676	if (skb == q->t_head) {
677		q->t_head = skb->next;
678		if (!q->t_head)
679			q->t_tail = NULL;
680	} else {
681		rb_erase(&skb->rbnode, &q->t_root);
682	}
683}
684
685static struct sk_buff *netem_dequeue(struct Qdisc *sch)
686{
687	struct netem_sched_data *q = qdisc_priv(sch);
688	struct sk_buff *skb;
689
690tfifo_dequeue:
691	skb = __qdisc_dequeue_head(&sch->q);
692	if (skb) {
693		qdisc_qstats_backlog_dec(sch, skb);
694deliver:
695		qdisc_bstats_update(sch, skb);
696		return skb;
697	}
698	skb = netem_peek(q);
699	if (skb) {
700		u64 time_to_send;
701		u64 now = ktime_get_ns();
702
703		/* if more time remaining? */
704		time_to_send = netem_skb_cb(skb)->time_to_send;
705		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
706			get_slot_next(q, now);
707
708		if (time_to_send <= now && q->slot.slot_next <= now) {
709			netem_erase_head(q, skb);
710			sch->q.qlen--;
711			qdisc_qstats_backlog_dec(sch, skb);
712			skb->next = NULL;
713			skb->prev = NULL;
714			/* skb->dev shares skb->rbnode area,
715			 * we need to restore its value.
716			 */
717			skb->dev = qdisc_dev(sch);
718
719			if (q->slot.slot_next) {
720				q->slot.packets_left--;
721				q->slot.bytes_left -= qdisc_pkt_len(skb);
722				if (q->slot.packets_left <= 0 ||
723				    q->slot.bytes_left <= 0)
724					get_slot_next(q, now);
725			}
726
727			if (q->qdisc) {
728				unsigned int pkt_len = qdisc_pkt_len(skb);
729				struct sk_buff *to_free = NULL;
730				int err;
731
732				err = qdisc_enqueue(skb, q->qdisc, &to_free);
733				kfree_skb_list(to_free);
734				if (err != NET_XMIT_SUCCESS &&
735				    net_xmit_drop_count(err)) {
736					qdisc_qstats_drop(sch);
737					qdisc_tree_reduce_backlog(sch, 1,
738								  pkt_len);
739				}
740				goto tfifo_dequeue;
741			}
742			goto deliver;
743		}
744
745		if (q->qdisc) {
746			skb = q->qdisc->ops->dequeue(q->qdisc);
747			if (skb)
748				goto deliver;
749		}
750
751		qdisc_watchdog_schedule_ns(&q->watchdog,
752					   max(time_to_send,
753					       q->slot.slot_next));
754	}
755
756	if (q->qdisc) {
757		skb = q->qdisc->ops->dequeue(q->qdisc);
758		if (skb)
759			goto deliver;
760	}
761	return NULL;
762}
763
764static void netem_reset(struct Qdisc *sch)
765{
766	struct netem_sched_data *q = qdisc_priv(sch);
767
768	qdisc_reset_queue(sch);
769	tfifo_reset(sch);
770	if (q->qdisc)
771		qdisc_reset(q->qdisc);
772	qdisc_watchdog_cancel(&q->watchdog);
773}
774
775static void dist_free(struct disttable *d)
776{
777	kvfree(d);
778}
779
780/*
781 * Distribution data is a variable size payload containing
782 * signed 16 bit values.
783 */
784
785static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
786{
787	size_t n = nla_len(attr)/sizeof(__s16);
788	const __s16 *data = nla_data(attr);
789	struct disttable *d;
790	int i;
791
792	if (!n || n > NETEM_DIST_MAX)
793		return -EINVAL;
794
795	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
796	if (!d)
797		return -ENOMEM;
798
799	d->size = n;
800	for (i = 0; i < n; i++)
801		d->table[i] = data[i];
802
803	*tbl = d;
804	return 0;
805}
806
807static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
808{
809	const struct tc_netem_slot *c = nla_data(attr);
810
811	q->slot_config = *c;
812	if (q->slot_config.max_packets == 0)
813		q->slot_config.max_packets = INT_MAX;
814	if (q->slot_config.max_bytes == 0)
815		q->slot_config.max_bytes = INT_MAX;
816
817	/* capping dist_jitter to the range acceptable by tabledist() */
818	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
819
820	q->slot.packets_left = q->slot_config.max_packets;
821	q->slot.bytes_left = q->slot_config.max_bytes;
822	if (q->slot_config.min_delay | q->slot_config.max_delay |
823	    q->slot_config.dist_jitter)
824		q->slot.slot_next = ktime_get_ns();
825	else
826		q->slot.slot_next = 0;
827}
828
829static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
830{
831	const struct tc_netem_corr *c = nla_data(attr);
832
833	init_crandom(&q->delay_cor, c->delay_corr);
834	init_crandom(&q->loss_cor, c->loss_corr);
835	init_crandom(&q->dup_cor, c->dup_corr);
836}
837
838static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
839{
840	const struct tc_netem_reorder *r = nla_data(attr);
841
842	q->reorder = r->probability;
843	init_crandom(&q->reorder_cor, r->correlation);
844}
845
846static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
847{
848	const struct tc_netem_corrupt *r = nla_data(attr);
849
850	q->corrupt = r->probability;
851	init_crandom(&q->corrupt_cor, r->correlation);
852}
853
854static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
855{
856	const struct tc_netem_rate *r = nla_data(attr);
857
858	q->rate = r->rate;
859	q->packet_overhead = r->packet_overhead;
860	q->cell_size = r->cell_size;
861	q->cell_overhead = r->cell_overhead;
862	if (q->cell_size)
863		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
864	else
865		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
866}
867
868static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
869{
870	const struct nlattr *la;
871	int rem;
872
873	nla_for_each_nested(la, attr, rem) {
874		u16 type = nla_type(la);
875
876		switch (type) {
877		case NETEM_LOSS_GI: {
878			const struct tc_netem_gimodel *gi = nla_data(la);
879
880			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
881				pr_info("netem: incorrect gi model size\n");
882				return -EINVAL;
883			}
884
885			q->loss_model = CLG_4_STATES;
886
887			q->clg.state = TX_IN_GAP_PERIOD;
888			q->clg.a1 = gi->p13;
889			q->clg.a2 = gi->p31;
890			q->clg.a3 = gi->p32;
891			q->clg.a4 = gi->p14;
892			q->clg.a5 = gi->p23;
893			break;
894		}
895
896		case NETEM_LOSS_GE: {
897			const struct tc_netem_gemodel *ge = nla_data(la);
898
899			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
900				pr_info("netem: incorrect ge model size\n");
901				return -EINVAL;
902			}
903
904			q->loss_model = CLG_GILB_ELL;
905			q->clg.state = GOOD_STATE;
906			q->clg.a1 = ge->p;
907			q->clg.a2 = ge->r;
908			q->clg.a3 = ge->h;
909			q->clg.a4 = ge->k1;
910			break;
911		}
912
913		default:
914			pr_info("netem: unknown loss type %u\n", type);
915			return -EINVAL;
916		}
917	}
918
919	return 0;
920}
921
922static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
923	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
924	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
925	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
926	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
927	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
928	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
929	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
930	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
931	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
932	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
933	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
934};
935
936static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
937		      const struct nla_policy *policy, int len)
938{
939	int nested_len = nla_len(nla) - NLA_ALIGN(len);
940
941	if (nested_len < 0) {
942		pr_info("netem: invalid attributes len %d\n", nested_len);
943		return -EINVAL;
944	}
945
946	if (nested_len >= nla_attr_size(0))
947		return nla_parse_deprecated(tb, maxtype,
948					    nla_data(nla) + NLA_ALIGN(len),
949					    nested_len, policy, NULL);
950
951	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
952	return 0;
953}
954
955/* Parse netlink message to set options */
956static int netem_change(struct Qdisc *sch, struct nlattr *opt,
957			struct netlink_ext_ack *extack)
958{
959	struct netem_sched_data *q = qdisc_priv(sch);
960	struct nlattr *tb[TCA_NETEM_MAX + 1];
961	struct disttable *delay_dist = NULL;
962	struct disttable *slot_dist = NULL;
963	struct tc_netem_qopt *qopt;
964	struct clgstate old_clg;
965	int old_loss_model = CLG_RANDOM;
966	int ret;
967
968	qopt = nla_data(opt);
969	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
970	if (ret < 0)
971		return ret;
972
973	if (tb[TCA_NETEM_DELAY_DIST]) {
974		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
975		if (ret)
976			goto table_free;
977	}
978
979	if (tb[TCA_NETEM_SLOT_DIST]) {
980		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
981		if (ret)
982			goto table_free;
983	}
984
985	sch_tree_lock(sch);
986	/* backup q->clg and q->loss_model */
987	old_clg = q->clg;
988	old_loss_model = q->loss_model;
989
990	if (tb[TCA_NETEM_LOSS]) {
991		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
992		if (ret) {
993			q->loss_model = old_loss_model;
994			q->clg = old_clg;
995			goto unlock;
996		}
997	} else {
998		q->loss_model = CLG_RANDOM;
999	}
1000
1001	if (delay_dist)
1002		swap(q->delay_dist, delay_dist);
1003	if (slot_dist)
1004		swap(q->slot_dist, slot_dist);
1005	sch->limit = qopt->limit;
1006
1007	q->latency = PSCHED_TICKS2NS(qopt->latency);
1008	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1009	q->limit = qopt->limit;
1010	q->gap = qopt->gap;
1011	q->counter = 0;
1012	q->loss = qopt->loss;
1013	q->duplicate = qopt->duplicate;
1014
1015	/* for compatibility with earlier versions.
1016	 * if gap is set, need to assume 100% probability
1017	 */
1018	if (q->gap)
1019		q->reorder = ~0;
1020
1021	if (tb[TCA_NETEM_CORR])
1022		get_correlation(q, tb[TCA_NETEM_CORR]);
1023
1024	if (tb[TCA_NETEM_REORDER])
1025		get_reorder(q, tb[TCA_NETEM_REORDER]);
1026
1027	if (tb[TCA_NETEM_CORRUPT])
1028		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1029
1030	if (tb[TCA_NETEM_RATE])
1031		get_rate(q, tb[TCA_NETEM_RATE]);
1032
1033	if (tb[TCA_NETEM_RATE64])
1034		q->rate = max_t(u64, q->rate,
1035				nla_get_u64(tb[TCA_NETEM_RATE64]));
1036
1037	if (tb[TCA_NETEM_LATENCY64])
1038		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1039
1040	if (tb[TCA_NETEM_JITTER64])
1041		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1042
1043	if (tb[TCA_NETEM_ECN])
1044		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1045
1046	if (tb[TCA_NETEM_SLOT])
1047		get_slot(q, tb[TCA_NETEM_SLOT]);
1048
1049	/* capping jitter to the range acceptable by tabledist() */
1050	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1051
1052	if (tb[TCA_NETEM_PRNG_SEED])
1053		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1054	else
1055		q->prng.seed = get_random_u64();
1056	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1057
1058unlock:
1059	sch_tree_unlock(sch);
1060
1061table_free:
1062	dist_free(delay_dist);
1063	dist_free(slot_dist);
1064	return ret;
1065}
1066
1067static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1068		      struct netlink_ext_ack *extack)
1069{
1070	struct netem_sched_data *q = qdisc_priv(sch);
1071	int ret;
1072
1073	qdisc_watchdog_init(&q->watchdog, sch);
1074
1075	if (!opt)
1076		return -EINVAL;
1077
1078	q->loss_model = CLG_RANDOM;
1079	ret = netem_change(sch, opt, extack);
1080	if (ret)
1081		pr_info("netem: change failed\n");
1082	return ret;
1083}
1084
1085static void netem_destroy(struct Qdisc *sch)
1086{
1087	struct netem_sched_data *q = qdisc_priv(sch);
1088
1089	qdisc_watchdog_cancel(&q->watchdog);
1090	if (q->qdisc)
1091		qdisc_put(q->qdisc);
1092	dist_free(q->delay_dist);
1093	dist_free(q->slot_dist);
1094}
1095
1096static int dump_loss_model(const struct netem_sched_data *q,
1097			   struct sk_buff *skb)
1098{
1099	struct nlattr *nest;
1100
1101	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1102	if (nest == NULL)
1103		goto nla_put_failure;
1104
1105	switch (q->loss_model) {
1106	case CLG_RANDOM:
1107		/* legacy loss model */
1108		nla_nest_cancel(skb, nest);
1109		return 0;	/* no data */
1110
1111	case CLG_4_STATES: {
1112		struct tc_netem_gimodel gi = {
1113			.p13 = q->clg.a1,
1114			.p31 = q->clg.a2,
1115			.p32 = q->clg.a3,
1116			.p14 = q->clg.a4,
1117			.p23 = q->clg.a5,
1118		};
1119
1120		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1121			goto nla_put_failure;
1122		break;
1123	}
1124	case CLG_GILB_ELL: {
1125		struct tc_netem_gemodel ge = {
1126			.p = q->clg.a1,
1127			.r = q->clg.a2,
1128			.h = q->clg.a3,
1129			.k1 = q->clg.a4,
1130		};
1131
1132		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1133			goto nla_put_failure;
1134		break;
1135	}
1136	}
1137
1138	nla_nest_end(skb, nest);
1139	return 0;
1140
1141nla_put_failure:
1142	nla_nest_cancel(skb, nest);
1143	return -1;
1144}
1145
1146static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1147{
1148	const struct netem_sched_data *q = qdisc_priv(sch);
1149	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1150	struct tc_netem_qopt qopt;
1151	struct tc_netem_corr cor;
1152	struct tc_netem_reorder reorder;
1153	struct tc_netem_corrupt corrupt;
1154	struct tc_netem_rate rate;
1155	struct tc_netem_slot slot;
1156
1157	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1158			     UINT_MAX);
1159	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1160			    UINT_MAX);
1161	qopt.limit = q->limit;
1162	qopt.loss = q->loss;
1163	qopt.gap = q->gap;
1164	qopt.duplicate = q->duplicate;
1165	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1166		goto nla_put_failure;
1167
1168	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1169		goto nla_put_failure;
1170
1171	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1172		goto nla_put_failure;
1173
1174	cor.delay_corr = q->delay_cor.rho;
1175	cor.loss_corr = q->loss_cor.rho;
1176	cor.dup_corr = q->dup_cor.rho;
1177	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1178		goto nla_put_failure;
1179
1180	reorder.probability = q->reorder;
1181	reorder.correlation = q->reorder_cor.rho;
1182	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1183		goto nla_put_failure;
1184
1185	corrupt.probability = q->corrupt;
1186	corrupt.correlation = q->corrupt_cor.rho;
1187	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1188		goto nla_put_failure;
1189
1190	if (q->rate >= (1ULL << 32)) {
1191		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1192				      TCA_NETEM_PAD))
1193			goto nla_put_failure;
1194		rate.rate = ~0U;
1195	} else {
1196		rate.rate = q->rate;
1197	}
1198	rate.packet_overhead = q->packet_overhead;
1199	rate.cell_size = q->cell_size;
1200	rate.cell_overhead = q->cell_overhead;
1201	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1202		goto nla_put_failure;
1203
1204	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1205		goto nla_put_failure;
1206
1207	if (dump_loss_model(q, skb) != 0)
1208		goto nla_put_failure;
1209
1210	if (q->slot_config.min_delay | q->slot_config.max_delay |
1211	    q->slot_config.dist_jitter) {
1212		slot = q->slot_config;
1213		if (slot.max_packets == INT_MAX)
1214			slot.max_packets = 0;
1215		if (slot.max_bytes == INT_MAX)
1216			slot.max_bytes = 0;
1217		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1218			goto nla_put_failure;
1219	}
1220
1221	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1222			      TCA_NETEM_PAD))
1223		goto nla_put_failure;
1224
1225	return nla_nest_end(skb, nla);
1226
1227nla_put_failure:
1228	nlmsg_trim(skb, nla);
1229	return -1;
1230}
1231
1232static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1233			  struct sk_buff *skb, struct tcmsg *tcm)
1234{
1235	struct netem_sched_data *q = qdisc_priv(sch);
1236
1237	if (cl != 1 || !q->qdisc) 	/* only one class */
1238		return -ENOENT;
1239
1240	tcm->tcm_handle |= TC_H_MIN(1);
1241	tcm->tcm_info = q->qdisc->handle;
1242
1243	return 0;
1244}
1245
1246static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1247		     struct Qdisc **old, struct netlink_ext_ack *extack)
1248{
1249	struct netem_sched_data *q = qdisc_priv(sch);
1250
1251	*old = qdisc_replace(sch, new, &q->qdisc);
1252	return 0;
1253}
1254
1255static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1256{
1257	struct netem_sched_data *q = qdisc_priv(sch);
1258	return q->qdisc;
1259}
1260
1261static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1262{
1263	return 1;
1264}
1265
1266static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1267{
1268	if (!walker->stop) {
1269		if (!tc_qdisc_stats_dump(sch, 1, walker))
1270			return;
1271	}
1272}
1273
1274static const struct Qdisc_class_ops netem_class_ops = {
1275	.graft		=	netem_graft,
1276	.leaf		=	netem_leaf,
1277	.find		=	netem_find,
1278	.walk		=	netem_walk,
1279	.dump		=	netem_dump_class,
1280};
1281
1282static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1283	.id		=	"netem",
1284	.cl_ops		=	&netem_class_ops,
1285	.priv_size	=	sizeof(struct netem_sched_data),
1286	.enqueue	=	netem_enqueue,
1287	.dequeue	=	netem_dequeue,
1288	.peek		=	qdisc_peek_dequeued,
1289	.init		=	netem_init,
1290	.reset		=	netem_reset,
1291	.destroy	=	netem_destroy,
1292	.change		=	netem_change,
1293	.dump		=	netem_dump,
1294	.owner		=	THIS_MODULE,
1295};
1296MODULE_ALIAS_NET_SCH("netem");
1297
1298
1299static int __init netem_module_init(void)
1300{
1301	pr_info("netem: version " VERSION "\n");
1302	return register_qdisc(&netem_qdisc_ops);
1303}
1304static void __exit netem_module_exit(void)
1305{
1306	unregister_qdisc(&netem_qdisc_ops);
1307}
1308module_init(netem_module_init)
1309module_exit(netem_module_exit)
1310MODULE_LICENSE("GPL");
1311MODULE_DESCRIPTION("Network characteristics emulator qdisc");
1312