1// SPDX-License-Identifier: GPL-2.0-only
2/* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
3 *
4 * Copyright (C) 2013 Terry Lam <vtlam@google.com>
5 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
6 */
7
8#include <linux/jiffies.h>
9#include <linux/module.h>
10#include <linux/skbuff.h>
11#include <linux/vmalloc.h>
12#include <linux/siphash.h>
13#include <net/pkt_sched.h>
14#include <net/sock.h>
15
16/*	Heavy-Hitter Filter (HHF)
17 *
18 * Principles :
19 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
20 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
21 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
22 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
23 * in which the heavy-hitter bucket is served with less weight.
24 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
25 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
26 * higher share of bandwidth.
27 *
28 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
29 * following paper:
30 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
31 * Accounting", in ACM SIGCOMM, 2002.
32 *
33 * Conceptually, a multi-stage filter comprises k independent hash functions
34 * and k counter arrays. Packets are indexed into k counter arrays by k hash
35 * functions, respectively. The counters are then increased by the packet sizes.
36 * Therefore,
37 *    - For a heavy-hitter flow: *all* of its k array counters must be large.
38 *    - For a non-heavy-hitter flow: some of its k array counters can be large
39 *      due to hash collision with other small flows; however, with high
40 *      probability, not *all* k counters are large.
41 *
42 * By the design of the multi-stage filter algorithm, the false negative rate
43 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
44 * susceptible to false positives (non-heavy-hitters mistakenly classified as
45 * heavy-hitters).
46 * Therefore, we also implement the following optimizations to reduce false
47 * positives by avoiding unnecessary increment of the counter values:
48 *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
49 *        accounted in the array counters. This technique is called "shielding"
50 *        in Section 3.3.1 of [EV02].
51 *    - Optimization O2: conservative update of counters
52 *                       (Section 3.3.2 of [EV02]),
53 *        New counter value = max {old counter value,
54 *                                 smallest counter value + packet bytes}
55 *
56 * Finally, we refresh the counters periodically since otherwise the counter
57 * values will keep accumulating.
58 *
59 * Once a flow is classified as heavy-hitter, we also save its per-flow state
60 * in an exact-matching flow table so that its subsequent packets can be
61 * dispatched to the heavy-hitter bucket accordingly.
62 *
63 *
64 * At a high level, this qdisc works as follows:
65 * Given a packet p:
66 *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
67 *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
68 *     bucket.
69 *   - Otherwise, forward p to the multi-stage filter, denoted filter F
70 *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
71 *          to the non-heavy-hitter bucket.
72 *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
73 *          then set up a new flow entry for the flow-id of p in the table T and
74 *          send p to the heavy-hitter bucket.
75 *
76 * In this implementation:
77 *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
78 *     resolved by linked-list chaining.
79 *   - F has four counter arrays, each array containing 1024 32-bit counters.
80 *     That means 4 * 1024 * 32 bits = 16KB of memory.
81 *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
82 *     index into each array.
83 *     Hence, instead of having four hash functions, we chop the 32-bit
84 *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
85 *     computed as XOR sum of those three chunks.
86 *   - We need to clear the counter arrays periodically; however, directly
87 *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
88 *     So by representing each counter by a valid bit, we only need to reset
89 *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
90 *   - The Deficit Round Robin engine is taken from fq_codel implementation
91 *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
92 *     fq_codel_flow in fq_codel implementation.
93 *
94 */
95
96/* Non-configurable parameters */
97#define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
98#define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
99#define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
100#define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
101#define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
102
103#define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
104enum wdrr_bucket_idx {
105	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
106	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
107};
108
109#define hhf_time_before(a, b)	\
110	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
111
112/* Heavy-hitter per-flow state */
113struct hh_flow_state {
114	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
115	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
116	struct list_head flowchain;	/* chaining under hash collision */
117};
118
119/* Weighted Deficit Round Robin (WDRR) scheduler */
120struct wdrr_bucket {
121	struct sk_buff	  *head;
122	struct sk_buff	  *tail;
123	struct list_head  bucketchain;
124	int		  deficit;
125};
126
127struct hhf_sched_data {
128	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
129	siphash_key_t	   perturbation;   /* hash perturbation */
130	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
131	u32		   drop_overlimit; /* number of times max qdisc packet
132					    * limit was hit
133					    */
134	struct list_head   *hh_flows;       /* table T (currently active HHs) */
135	u32		   hh_flows_limit;            /* max active HH allocs */
136	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
137	u32		   hh_flows_total_cnt;          /* total admitted HHs */
138	u32		   hh_flows_current_cnt;        /* total current HHs  */
139	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
140	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
141							 * was reset
142							 */
143	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
144							     * of hhf_arrays
145							     */
146	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
147	struct list_head   new_buckets; /* list of new buckets */
148	struct list_head   old_buckets; /* list of old buckets */
149
150	/* Configurable HHF parameters */
151	u32		   hhf_reset_timeout; /* interval to reset counter
152					       * arrays in filter F
153					       * (default 40ms)
154					       */
155	u32		   hhf_admit_bytes;   /* counter thresh to classify as
156					       * HH (default 128KB).
157					       * With these default values,
158					       * 128KB / 40ms = 25 Mbps
159					       * i.e., we expect to capture HHs
160					       * sending > 25 Mbps.
161					       */
162	u32		   hhf_evict_timeout; /* aging threshold to evict idle
163					       * HHs out of table T. This should
164					       * be large enough to avoid
165					       * reordering during HH eviction.
166					       * (default 1s)
167					       */
168	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
169					       * (default 2,
170					       *  i.e., non-HH : HH = 2 : 1)
171					       */
172};
173
174static u32 hhf_time_stamp(void)
175{
176	return jiffies;
177}
178
179/* Looks up a heavy-hitter flow in a chaining list of table T. */
180static struct hh_flow_state *seek_list(const u32 hash,
181				       struct list_head *head,
182				       struct hhf_sched_data *q)
183{
184	struct hh_flow_state *flow, *next;
185	u32 now = hhf_time_stamp();
186
187	if (list_empty(head))
188		return NULL;
189
190	list_for_each_entry_safe(flow, next, head, flowchain) {
191		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
192
193		if (hhf_time_before(prev, now)) {
194			/* Delete expired heavy-hitters, but preserve one entry
195			 * to avoid kzalloc() when next time this slot is hit.
196			 */
197			if (list_is_last(&flow->flowchain, head))
198				return NULL;
199			list_del(&flow->flowchain);
200			kfree(flow);
201			q->hh_flows_current_cnt--;
202		} else if (flow->hash_id == hash) {
203			return flow;
204		}
205	}
206	return NULL;
207}
208
209/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
210 * entry or dynamically alloc a new entry.
211 */
212static struct hh_flow_state *alloc_new_hh(struct list_head *head,
213					  struct hhf_sched_data *q)
214{
215	struct hh_flow_state *flow;
216	u32 now = hhf_time_stamp();
217
218	if (!list_empty(head)) {
219		/* Find an expired heavy-hitter flow entry. */
220		list_for_each_entry(flow, head, flowchain) {
221			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
222
223			if (hhf_time_before(prev, now))
224				return flow;
225		}
226	}
227
228	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
229		q->hh_flows_overlimit++;
230		return NULL;
231	}
232	/* Create new entry. */
233	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
234	if (!flow)
235		return NULL;
236
237	q->hh_flows_current_cnt++;
238	INIT_LIST_HEAD(&flow->flowchain);
239	list_add_tail(&flow->flowchain, head);
240
241	return flow;
242}
243
244/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
245 * classify heavy-hitters.
246 */
247static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
248{
249	struct hhf_sched_data *q = qdisc_priv(sch);
250	u32 tmp_hash, hash;
251	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
252	struct hh_flow_state *flow;
253	u32 pkt_len, min_hhf_val;
254	int i;
255	u32 prev;
256	u32 now = hhf_time_stamp();
257
258	/* Reset the HHF counter arrays if this is the right time. */
259	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
260	if (hhf_time_before(prev, now)) {
261		for (i = 0; i < HHF_ARRAYS_CNT; i++)
262			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
263		q->hhf_arrays_reset_timestamp = now;
264	}
265
266	/* Get hashed flow-id of the skb. */
267	hash = skb_get_hash_perturb(skb, &q->perturbation);
268
269	/* Check if this packet belongs to an already established HH flow. */
270	flow_pos = hash & HHF_BIT_MASK;
271	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
272	if (flow) { /* found its HH flow */
273		flow->hit_timestamp = now;
274		return WDRR_BUCKET_FOR_HH;
275	}
276
277	/* Now pass the packet through the multi-stage filter. */
278	tmp_hash = hash;
279	xorsum = 0;
280	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
281		/* Split the skb_hash into three 10-bit chunks. */
282		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
283		xorsum ^= filter_pos[i];
284		tmp_hash >>= HHF_BIT_MASK_LEN;
285	}
286	/* The last chunk is computed as XOR sum of other chunks. */
287	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
288
289	pkt_len = qdisc_pkt_len(skb);
290	min_hhf_val = ~0U;
291	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
292		u32 val;
293
294		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
295			q->hhf_arrays[i][filter_pos[i]] = 0;
296			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
297		}
298
299		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
300		if (min_hhf_val > val)
301			min_hhf_val = val;
302	}
303
304	/* Found a new HH iff all counter values > HH admit threshold. */
305	if (min_hhf_val > q->hhf_admit_bytes) {
306		/* Just captured a new heavy-hitter. */
307		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
308		if (!flow) /* memory alloc problem */
309			return WDRR_BUCKET_FOR_NON_HH;
310		flow->hash_id = hash;
311		flow->hit_timestamp = now;
312		q->hh_flows_total_cnt++;
313
314		/* By returning without updating counters in q->hhf_arrays,
315		 * we implicitly implement "shielding" (see Optimization O1).
316		 */
317		return WDRR_BUCKET_FOR_HH;
318	}
319
320	/* Conservative update of HHF arrays (see Optimization O2). */
321	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
322		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
323			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
324	}
325	return WDRR_BUCKET_FOR_NON_HH;
326}
327
328/* Removes one skb from head of bucket. */
329static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
330{
331	struct sk_buff *skb = bucket->head;
332
333	bucket->head = skb->next;
334	skb_mark_not_on_list(skb);
335	return skb;
336}
337
338/* Tail-adds skb to bucket. */
339static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
340{
341	if (bucket->head == NULL)
342		bucket->head = skb;
343	else
344		bucket->tail->next = skb;
345	bucket->tail = skb;
346	skb->next = NULL;
347}
348
349static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
350{
351	struct hhf_sched_data *q = qdisc_priv(sch);
352	struct wdrr_bucket *bucket;
353
354	/* Always try to drop from heavy-hitters first. */
355	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
356	if (!bucket->head)
357		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
358
359	if (bucket->head) {
360		struct sk_buff *skb = dequeue_head(bucket);
361
362		sch->q.qlen--;
363		qdisc_qstats_backlog_dec(sch, skb);
364		qdisc_drop(skb, sch, to_free);
365	}
366
367	/* Return id of the bucket from which the packet was dropped. */
368	return bucket - q->buckets;
369}
370
371static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
372		       struct sk_buff **to_free)
373{
374	struct hhf_sched_data *q = qdisc_priv(sch);
375	enum wdrr_bucket_idx idx;
376	struct wdrr_bucket *bucket;
377	unsigned int prev_backlog;
378
379	idx = hhf_classify(skb, sch);
380
381	bucket = &q->buckets[idx];
382	bucket_add(bucket, skb);
383	qdisc_qstats_backlog_inc(sch, skb);
384
385	if (list_empty(&bucket->bucketchain)) {
386		unsigned int weight;
387
388		/* The logic of new_buckets vs. old_buckets is the same as
389		 * new_flows vs. old_flows in the implementation of fq_codel,
390		 * i.e., short bursts of non-HHs should have strict priority.
391		 */
392		if (idx == WDRR_BUCKET_FOR_HH) {
393			/* Always move heavy-hitters to old bucket. */
394			weight = 1;
395			list_add_tail(&bucket->bucketchain, &q->old_buckets);
396		} else {
397			weight = q->hhf_non_hh_weight;
398			list_add_tail(&bucket->bucketchain, &q->new_buckets);
399		}
400		bucket->deficit = weight * q->quantum;
401	}
402	if (++sch->q.qlen <= sch->limit)
403		return NET_XMIT_SUCCESS;
404
405	prev_backlog = sch->qstats.backlog;
406	q->drop_overlimit++;
407	/* Return Congestion Notification only if we dropped a packet from this
408	 * bucket.
409	 */
410	if (hhf_drop(sch, to_free) == idx)
411		return NET_XMIT_CN;
412
413	/* As we dropped a packet, better let upper stack know this. */
414	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
415	return NET_XMIT_SUCCESS;
416}
417
418static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
419{
420	struct hhf_sched_data *q = qdisc_priv(sch);
421	struct sk_buff *skb = NULL;
422	struct wdrr_bucket *bucket;
423	struct list_head *head;
424
425begin:
426	head = &q->new_buckets;
427	if (list_empty(head)) {
428		head = &q->old_buckets;
429		if (list_empty(head))
430			return NULL;
431	}
432	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
433
434	if (bucket->deficit <= 0) {
435		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
436			      1 : q->hhf_non_hh_weight;
437
438		bucket->deficit += weight * q->quantum;
439		list_move_tail(&bucket->bucketchain, &q->old_buckets);
440		goto begin;
441	}
442
443	if (bucket->head) {
444		skb = dequeue_head(bucket);
445		sch->q.qlen--;
446		qdisc_qstats_backlog_dec(sch, skb);
447	}
448
449	if (!skb) {
450		/* Force a pass through old_buckets to prevent starvation. */
451		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
452			list_move_tail(&bucket->bucketchain, &q->old_buckets);
453		else
454			list_del_init(&bucket->bucketchain);
455		goto begin;
456	}
457	qdisc_bstats_update(sch, skb);
458	bucket->deficit -= qdisc_pkt_len(skb);
459
460	return skb;
461}
462
463static void hhf_reset(struct Qdisc *sch)
464{
465	struct sk_buff *skb;
466
467	while ((skb = hhf_dequeue(sch)) != NULL)
468		rtnl_kfree_skbs(skb, skb);
469}
470
471static void hhf_destroy(struct Qdisc *sch)
472{
473	int i;
474	struct hhf_sched_data *q = qdisc_priv(sch);
475
476	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
477		kvfree(q->hhf_arrays[i]);
478		kvfree(q->hhf_valid_bits[i]);
479	}
480
481	if (!q->hh_flows)
482		return;
483
484	for (i = 0; i < HH_FLOWS_CNT; i++) {
485		struct hh_flow_state *flow, *next;
486		struct list_head *head = &q->hh_flows[i];
487
488		if (list_empty(head))
489			continue;
490		list_for_each_entry_safe(flow, next, head, flowchain) {
491			list_del(&flow->flowchain);
492			kfree(flow);
493		}
494	}
495	kvfree(q->hh_flows);
496}
497
498static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
499	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
500	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
501	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
502	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
503	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
504	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
505	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
506};
507
508static int hhf_change(struct Qdisc *sch, struct nlattr *opt,
509		      struct netlink_ext_ack *extack)
510{
511	struct hhf_sched_data *q = qdisc_priv(sch);
512	struct nlattr *tb[TCA_HHF_MAX + 1];
513	unsigned int qlen, prev_backlog;
514	int err;
515	u64 non_hh_quantum;
516	u32 new_quantum = q->quantum;
517	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
518
519	err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy,
520					  NULL);
521	if (err < 0)
522		return err;
523
524	if (tb[TCA_HHF_QUANTUM])
525		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
526
527	if (tb[TCA_HHF_NON_HH_WEIGHT])
528		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
529
530	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
531	if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX)
532		return -EINVAL;
533
534	sch_tree_lock(sch);
535
536	if (tb[TCA_HHF_BACKLOG_LIMIT])
537		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
538
539	q->quantum = new_quantum;
540	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
541
542	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
543		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
544
545	if (tb[TCA_HHF_RESET_TIMEOUT]) {
546		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
547
548		q->hhf_reset_timeout = usecs_to_jiffies(us);
549	}
550
551	if (tb[TCA_HHF_ADMIT_BYTES])
552		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
553
554	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
555		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
556
557		q->hhf_evict_timeout = usecs_to_jiffies(us);
558	}
559
560	qlen = sch->q.qlen;
561	prev_backlog = sch->qstats.backlog;
562	while (sch->q.qlen > sch->limit) {
563		struct sk_buff *skb = hhf_dequeue(sch);
564
565		rtnl_kfree_skbs(skb, skb);
566	}
567	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
568				  prev_backlog - sch->qstats.backlog);
569
570	sch_tree_unlock(sch);
571	return 0;
572}
573
574static int hhf_init(struct Qdisc *sch, struct nlattr *opt,
575		    struct netlink_ext_ack *extack)
576{
577	struct hhf_sched_data *q = qdisc_priv(sch);
578	int i;
579
580	sch->limit = 1000;
581	q->quantum = psched_mtu(qdisc_dev(sch));
582	get_random_bytes(&q->perturbation, sizeof(q->perturbation));
583	INIT_LIST_HEAD(&q->new_buckets);
584	INIT_LIST_HEAD(&q->old_buckets);
585
586	/* Configurable HHF parameters */
587	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
588	q->hhf_admit_bytes = 131072;    /* 128 KB */
589	q->hhf_evict_timeout = HZ;      /* 1  sec */
590	q->hhf_non_hh_weight = 2;
591
592	if (opt) {
593		int err = hhf_change(sch, opt, extack);
594
595		if (err)
596			return err;
597	}
598
599	if (!q->hh_flows) {
600		/* Initialize heavy-hitter flow table. */
601		q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head),
602				       GFP_KERNEL);
603		if (!q->hh_flows)
604			return -ENOMEM;
605		for (i = 0; i < HH_FLOWS_CNT; i++)
606			INIT_LIST_HEAD(&q->hh_flows[i]);
607
608		/* Cap max active HHs at twice len of hh_flows table. */
609		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
610		q->hh_flows_overlimit = 0;
611		q->hh_flows_total_cnt = 0;
612		q->hh_flows_current_cnt = 0;
613
614		/* Initialize heavy-hitter filter arrays. */
615		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
616			q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN,
617						    sizeof(u32),
618						    GFP_KERNEL);
619			if (!q->hhf_arrays[i]) {
620				/* Note: hhf_destroy() will be called
621				 * by our caller.
622				 */
623				return -ENOMEM;
624			}
625		}
626		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
627
628		/* Initialize valid bits of heavy-hitter filter arrays. */
629		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
630			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
631							  BITS_PER_BYTE, GFP_KERNEL);
632			if (!q->hhf_valid_bits[i]) {
633				/* Note: hhf_destroy() will be called
634				 * by our caller.
635				 */
636				return -ENOMEM;
637			}
638		}
639
640		/* Initialize Weighted DRR buckets. */
641		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
642			struct wdrr_bucket *bucket = q->buckets + i;
643
644			INIT_LIST_HEAD(&bucket->bucketchain);
645		}
646	}
647
648	return 0;
649}
650
651static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
652{
653	struct hhf_sched_data *q = qdisc_priv(sch);
654	struct nlattr *opts;
655
656	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
657	if (opts == NULL)
658		goto nla_put_failure;
659
660	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
661	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
662	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
663	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
664			jiffies_to_usecs(q->hhf_reset_timeout)) ||
665	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
666	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
667			jiffies_to_usecs(q->hhf_evict_timeout)) ||
668	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
669		goto nla_put_failure;
670
671	return nla_nest_end(skb, opts);
672
673nla_put_failure:
674	return -1;
675}
676
677static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
678{
679	struct hhf_sched_data *q = qdisc_priv(sch);
680	struct tc_hhf_xstats st = {
681		.drop_overlimit = q->drop_overlimit,
682		.hh_overlimit	= q->hh_flows_overlimit,
683		.hh_tot_count	= q->hh_flows_total_cnt,
684		.hh_cur_count	= q->hh_flows_current_cnt,
685	};
686
687	return gnet_stats_copy_app(d, &st, sizeof(st));
688}
689
690static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
691	.id		=	"hhf",
692	.priv_size	=	sizeof(struct hhf_sched_data),
693
694	.enqueue	=	hhf_enqueue,
695	.dequeue	=	hhf_dequeue,
696	.peek		=	qdisc_peek_dequeued,
697	.init		=	hhf_init,
698	.reset		=	hhf_reset,
699	.destroy	=	hhf_destroy,
700	.change		=	hhf_change,
701	.dump		=	hhf_dump,
702	.dump_stats	=	hhf_dump_stats,
703	.owner		=	THIS_MODULE,
704};
705MODULE_ALIAS_NET_SCH("hhf");
706
707static int __init hhf_module_init(void)
708{
709	return register_qdisc(&hhf_qdisc_ops);
710}
711
712static void __exit hhf_module_exit(void)
713{
714	unregister_qdisc(&hhf_qdisc_ops);
715}
716
717module_init(hhf_module_init)
718module_exit(hhf_module_exit)
719MODULE_AUTHOR("Terry Lam");
720MODULE_AUTHOR("Nandita Dukkipati");
721MODULE_LICENSE("GPL");
722MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)");
723