1/*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/in.h>
35#include <linux/device.h>
36#include <linux/dmapool.h>
37#include <linux/ratelimit.h>
38
39#include "rds_single_path.h"
40#include "rds.h"
41#include "ib.h"
42#include "ib_mr.h"
43
44/*
45 * Convert IB-specific error message to RDS error message and call core
46 * completion handler.
47 */
48static void rds_ib_send_complete(struct rds_message *rm,
49				 int wc_status,
50				 void (*complete)(struct rds_message *rm, int status))
51{
52	int notify_status;
53
54	switch (wc_status) {
55	case IB_WC_WR_FLUSH_ERR:
56		return;
57
58	case IB_WC_SUCCESS:
59		notify_status = RDS_RDMA_SUCCESS;
60		break;
61
62	case IB_WC_REM_ACCESS_ERR:
63		notify_status = RDS_RDMA_REMOTE_ERROR;
64		break;
65
66	default:
67		notify_status = RDS_RDMA_OTHER_ERROR;
68		break;
69	}
70	complete(rm, notify_status);
71}
72
73static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
74				   struct rm_data_op *op,
75				   int wc_status)
76{
77	if (op->op_nents)
78		ib_dma_unmap_sg(ic->i_cm_id->device,
79				op->op_sg, op->op_nents,
80				DMA_TO_DEVICE);
81}
82
83static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
84				   struct rm_rdma_op *op,
85				   int wc_status)
86{
87	if (op->op_mapped) {
88		ib_dma_unmap_sg(ic->i_cm_id->device,
89				op->op_sg, op->op_nents,
90				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
91		op->op_mapped = 0;
92	}
93
94	/* If the user asked for a completion notification on this
95	 * message, we can implement three different semantics:
96	 *  1.	Notify when we received the ACK on the RDS message
97	 *	that was queued with the RDMA. This provides reliable
98	 *	notification of RDMA status at the expense of a one-way
99	 *	packet delay.
100	 *  2.	Notify when the IB stack gives us the completion event for
101	 *	the RDMA operation.
102	 *  3.	Notify when the IB stack gives us the completion event for
103	 *	the accompanying RDS messages.
104	 * Here, we implement approach #3. To implement approach #2,
105	 * we would need to take an event for the rdma WR. To implement #1,
106	 * don't call rds_rdma_send_complete at all, and fall back to the notify
107	 * handling in the ACK processing code.
108	 *
109	 * Note: There's no need to explicitly sync any RDMA buffers using
110	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
111	 * operation itself unmapped the RDMA buffers, which takes care
112	 * of synching.
113	 */
114	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
115			     wc_status, rds_rdma_send_complete);
116
117	if (op->op_write)
118		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
119	else
120		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
121}
122
123static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
124				     struct rm_atomic_op *op,
125				     int wc_status)
126{
127	/* unmap atomic recvbuf */
128	if (op->op_mapped) {
129		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
130				DMA_FROM_DEVICE);
131		op->op_mapped = 0;
132	}
133
134	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
135			     wc_status, rds_atomic_send_complete);
136
137	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
138		rds_ib_stats_inc(s_ib_atomic_cswp);
139	else
140		rds_ib_stats_inc(s_ib_atomic_fadd);
141}
142
143/*
144 * Unmap the resources associated with a struct send_work.
145 *
146 * Returns the rm for no good reason other than it is unobtainable
147 * other than by switching on wr.opcode, currently, and the caller,
148 * the event handler, needs it.
149 */
150static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
151						struct rds_ib_send_work *send,
152						int wc_status)
153{
154	struct rds_message *rm = NULL;
155
156	/* In the error case, wc.opcode sometimes contains garbage */
157	switch (send->s_wr.opcode) {
158	case IB_WR_SEND:
159		if (send->s_op) {
160			rm = container_of(send->s_op, struct rds_message, data);
161			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
162		}
163		break;
164	case IB_WR_RDMA_WRITE:
165	case IB_WR_RDMA_READ:
166		if (send->s_op) {
167			rm = container_of(send->s_op, struct rds_message, rdma);
168			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
169		}
170		break;
171	case IB_WR_ATOMIC_FETCH_AND_ADD:
172	case IB_WR_ATOMIC_CMP_AND_SWP:
173		if (send->s_op) {
174			rm = container_of(send->s_op, struct rds_message, atomic);
175			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
176		}
177		break;
178	default:
179		printk_ratelimited(KERN_NOTICE
180			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
181			       __func__, send->s_wr.opcode);
182		break;
183	}
184
185	send->s_wr.opcode = 0xdead;
186
187	return rm;
188}
189
190void rds_ib_send_init_ring(struct rds_ib_connection *ic)
191{
192	struct rds_ib_send_work *send;
193	u32 i;
194
195	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
196		struct ib_sge *sge;
197
198		send->s_op = NULL;
199
200		send->s_wr.wr_id = i;
201		send->s_wr.sg_list = send->s_sge;
202		send->s_wr.ex.imm_data = 0;
203
204		sge = &send->s_sge[0];
205		sge->addr = ic->i_send_hdrs_dma[i];
206
207		sge->length = sizeof(struct rds_header);
208		sge->lkey = ic->i_pd->local_dma_lkey;
209
210		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
211	}
212}
213
214void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
215{
216	struct rds_ib_send_work *send;
217	u32 i;
218
219	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
220		if (send->s_op && send->s_wr.opcode != 0xdead)
221			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
222	}
223}
224
225/*
226 * The only fast path caller always has a non-zero nr, so we don't
227 * bother testing nr before performing the atomic sub.
228 */
229static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
230{
231	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
232	    waitqueue_active(&rds_ib_ring_empty_wait))
233		wake_up(&rds_ib_ring_empty_wait);
234	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
235}
236
237/*
238 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
239 * operations performed in the send path.  As the sender allocs and potentially
240 * unallocs the next free entry in the ring it doesn't alter which is
241 * the next to be freed, which is what this is concerned with.
242 */
243void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
244{
245	struct rds_message *rm = NULL;
246	struct rds_connection *conn = ic->conn;
247	struct rds_ib_send_work *send;
248	u32 completed;
249	u32 oldest;
250	u32 i = 0;
251	int nr_sig = 0;
252
253
254	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
255		 (unsigned long long)wc->wr_id, wc->status,
256		 ib_wc_status_msg(wc->status), wc->byte_len,
257		 be32_to_cpu(wc->ex.imm_data));
258	rds_ib_stats_inc(s_ib_tx_cq_event);
259
260	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
261		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
262			rds_ib_stats_inc(s_ib_tx_stalled);
263		rds_ib_ack_send_complete(ic);
264		return;
265	}
266
267	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
268
269	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
270
271	for (i = 0; i < completed; i++) {
272		send = &ic->i_sends[oldest];
273		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
274			nr_sig++;
275
276		rm = rds_ib_send_unmap_op(ic, send, wc->status);
277
278		if (time_after(jiffies, send->s_queued + HZ / 2))
279			rds_ib_stats_inc(s_ib_tx_stalled);
280
281		if (send->s_op) {
282			if (send->s_op == rm->m_final_op) {
283				/* If anyone waited for this message to get
284				 * flushed out, wake them up now
285				 */
286				rds_message_unmapped(rm);
287			}
288			rds_message_put(rm);
289			send->s_op = NULL;
290		}
291
292		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
293	}
294
295	rds_ib_ring_free(&ic->i_send_ring, completed);
296	rds_ib_sub_signaled(ic, nr_sig);
297
298	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
299	    test_bit(0, &conn->c_map_queued))
300		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
301
302	/* We expect errors as the qp is drained during shutdown */
303	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
304		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
305				  &conn->c_laddr, &conn->c_faddr,
306				  conn->c_tos, wc->status,
307				  ib_wc_status_msg(wc->status), wc->vendor_err);
308	}
309}
310
311/*
312 * This is the main function for allocating credits when sending
313 * messages.
314 *
315 * Conceptually, we have two counters:
316 *  -	send credits: this tells us how many WRs we're allowed
317 *	to submit without overruning the receiver's queue. For
318 *	each SEND WR we post, we decrement this by one.
319 *
320 *  -	posted credits: this tells us how many WRs we recently
321 *	posted to the receive queue. This value is transferred
322 *	to the peer as a "credit update" in a RDS header field.
323 *	Every time we transmit credits to the peer, we subtract
324 *	the amount of transferred credits from this counter.
325 *
326 * It is essential that we avoid situations where both sides have
327 * exhausted their send credits, and are unable to send new credits
328 * to the peer. We achieve this by requiring that we send at least
329 * one credit update to the peer before exhausting our credits.
330 * When new credits arrive, we subtract one credit that is withheld
331 * until we've posted new buffers and are ready to transmit these
332 * credits (see rds_ib_send_add_credits below).
333 *
334 * The RDS send code is essentially single-threaded; rds_send_xmit
335 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
336 * However, the ACK sending code is independent and can race with
337 * message SENDs.
338 *
339 * In the send path, we need to update the counters for send credits
340 * and the counter of posted buffers atomically - when we use the
341 * last available credit, we cannot allow another thread to race us
342 * and grab the posted credits counter.  Hence, we have to use a
343 * spinlock to protect the credit counter, or use atomics.
344 *
345 * Spinlocks shared between the send and the receive path are bad,
346 * because they create unnecessary delays. An early implementation
347 * using a spinlock showed a 5% degradation in throughput at some
348 * loads.
349 *
350 * This implementation avoids spinlocks completely, putting both
351 * counters into a single atomic, and updating that atomic using
352 * atomic_add (in the receive path, when receiving fresh credits),
353 * and using atomic_cmpxchg when updating the two counters.
354 */
355int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
356			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
357{
358	unsigned int avail, posted, got = 0, advertise;
359	long oldval, newval;
360
361	*adv_credits = 0;
362	if (!ic->i_flowctl)
363		return wanted;
364
365try_again:
366	advertise = 0;
367	oldval = newval = atomic_read(&ic->i_credits);
368	posted = IB_GET_POST_CREDITS(oldval);
369	avail = IB_GET_SEND_CREDITS(oldval);
370
371	rdsdebug("wanted=%u credits=%u posted=%u\n",
372			wanted, avail, posted);
373
374	/* The last credit must be used to send a credit update. */
375	if (avail && !posted)
376		avail--;
377
378	if (avail < wanted) {
379		struct rds_connection *conn = ic->i_cm_id->context;
380
381		/* Oops, there aren't that many credits left! */
382		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
383		got = avail;
384	} else {
385		/* Sometimes you get what you want, lalala. */
386		got = wanted;
387	}
388	newval -= IB_SET_SEND_CREDITS(got);
389
390	/*
391	 * If need_posted is non-zero, then the caller wants
392	 * the posted regardless of whether any send credits are
393	 * available.
394	 */
395	if (posted && (got || need_posted)) {
396		advertise = min_t(unsigned int, posted, max_posted);
397		newval -= IB_SET_POST_CREDITS(advertise);
398	}
399
400	/* Finally bill everything */
401	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
402		goto try_again;
403
404	*adv_credits = advertise;
405	return got;
406}
407
408void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
409{
410	struct rds_ib_connection *ic = conn->c_transport_data;
411
412	if (credits == 0)
413		return;
414
415	rdsdebug("credits=%u current=%u%s\n",
416			credits,
417			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
418			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
419
420	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
421	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
422		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
423
424	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
425
426	rds_ib_stats_inc(s_ib_rx_credit_updates);
427}
428
429void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
430{
431	struct rds_ib_connection *ic = conn->c_transport_data;
432
433	if (posted == 0)
434		return;
435
436	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
437
438	/* Decide whether to send an update to the peer now.
439	 * If we would send a credit update for every single buffer we
440	 * post, we would end up with an ACK storm (ACK arrives,
441	 * consumes buffer, we refill the ring, send ACK to remote
442	 * advertising the newly posted buffer... ad inf)
443	 *
444	 * Performance pretty much depends on how often we send
445	 * credit updates - too frequent updates mean lots of ACKs.
446	 * Too infrequent updates, and the peer will run out of
447	 * credits and has to throttle.
448	 * For the time being, 16 seems to be a good compromise.
449	 */
450	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
451		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
452}
453
454static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
455					     struct rds_ib_send_work *send,
456					     bool notify)
457{
458	/*
459	 * We want to delay signaling completions just enough to get
460	 * the batching benefits but not so much that we create dead time
461	 * on the wire.
462	 */
463	if (ic->i_unsignaled_wrs-- == 0 || notify) {
464		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
465		send->s_wr.send_flags |= IB_SEND_SIGNALED;
466		return 1;
467	}
468	return 0;
469}
470
471/*
472 * This can be called multiple times for a given message.  The first time
473 * we see a message we map its scatterlist into the IB device so that
474 * we can provide that mapped address to the IB scatter gather entries
475 * in the IB work requests.  We translate the scatterlist into a series
476 * of work requests that fragment the message.  These work requests complete
477 * in order so we pass ownership of the message to the completion handler
478 * once we send the final fragment.
479 *
480 * The RDS core uses the c_send_lock to only enter this function once
481 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
482 * don't get out of sync and confuse the ring.
483 */
484int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
485		unsigned int hdr_off, unsigned int sg, unsigned int off)
486{
487	struct rds_ib_connection *ic = conn->c_transport_data;
488	struct ib_device *dev = ic->i_cm_id->device;
489	struct rds_ib_send_work *send = NULL;
490	struct rds_ib_send_work *first;
491	struct rds_ib_send_work *prev;
492	const struct ib_send_wr *failed_wr;
493	struct scatterlist *scat;
494	u32 pos;
495	u32 i;
496	u32 work_alloc;
497	u32 credit_alloc = 0;
498	u32 posted;
499	u32 adv_credits = 0;
500	int send_flags = 0;
501	int bytes_sent = 0;
502	int ret;
503	int flow_controlled = 0;
504	int nr_sig = 0;
505
506	BUG_ON(off % RDS_FRAG_SIZE);
507	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
508
509	/* Do not send cong updates to IB loopback */
510	if (conn->c_loopback
511	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
512		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
513		scat = &rm->data.op_sg[sg];
514		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
515		return sizeof(struct rds_header) + ret;
516	}
517
518	/* FIXME we may overallocate here */
519	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
520		i = 1;
521	else
522		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
523
524	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
525	if (work_alloc == 0) {
526		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
527		rds_ib_stats_inc(s_ib_tx_ring_full);
528		ret = -ENOMEM;
529		goto out;
530	}
531
532	if (ic->i_flowctl) {
533		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
534		adv_credits += posted;
535		if (credit_alloc < work_alloc) {
536			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
537			work_alloc = credit_alloc;
538			flow_controlled = 1;
539		}
540		if (work_alloc == 0) {
541			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
542			rds_ib_stats_inc(s_ib_tx_throttle);
543			ret = -ENOMEM;
544			goto out;
545		}
546	}
547
548	/* map the message the first time we see it */
549	if (!ic->i_data_op) {
550		if (rm->data.op_nents) {
551			rm->data.op_count = ib_dma_map_sg(dev,
552							  rm->data.op_sg,
553							  rm->data.op_nents,
554							  DMA_TO_DEVICE);
555			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
556			if (rm->data.op_count == 0) {
557				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
558				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
559				ret = -ENOMEM; /* XXX ? */
560				goto out;
561			}
562		} else {
563			rm->data.op_count = 0;
564		}
565
566		rds_message_addref(rm);
567		rm->data.op_dmasg = 0;
568		rm->data.op_dmaoff = 0;
569		ic->i_data_op = &rm->data;
570
571		/* Finalize the header */
572		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
573			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
574		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
575			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
576
577		/* If it has a RDMA op, tell the peer we did it. This is
578		 * used by the peer to release use-once RDMA MRs. */
579		if (rm->rdma.op_active) {
580			struct rds_ext_header_rdma ext_hdr;
581
582			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
583			rds_message_add_extension(&rm->m_inc.i_hdr,
584					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
585		}
586		if (rm->m_rdma_cookie) {
587			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
588					rds_rdma_cookie_key(rm->m_rdma_cookie),
589					rds_rdma_cookie_offset(rm->m_rdma_cookie));
590		}
591
592		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
593		 * we should not do this unless we have a chance of at least
594		 * sticking the header into the send ring. Which is why we
595		 * should call rds_ib_ring_alloc first. */
596		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
597		rds_message_make_checksum(&rm->m_inc.i_hdr);
598
599		/*
600		 * Update adv_credits since we reset the ACK_REQUIRED bit.
601		 */
602		if (ic->i_flowctl) {
603			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
604			adv_credits += posted;
605			BUG_ON(adv_credits > 255);
606		}
607	}
608
609	/* Sometimes you want to put a fence between an RDMA
610	 * READ and the following SEND.
611	 * We could either do this all the time
612	 * or when requested by the user. Right now, we let
613	 * the application choose.
614	 */
615	if (rm->rdma.op_active && rm->rdma.op_fence)
616		send_flags = IB_SEND_FENCE;
617
618	/* Each frag gets a header. Msgs may be 0 bytes */
619	send = &ic->i_sends[pos];
620	first = send;
621	prev = NULL;
622	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
623	i = 0;
624	do {
625		unsigned int len = 0;
626
627		/* Set up the header */
628		send->s_wr.send_flags = send_flags;
629		send->s_wr.opcode = IB_WR_SEND;
630		send->s_wr.num_sge = 1;
631		send->s_wr.next = NULL;
632		send->s_queued = jiffies;
633		send->s_op = NULL;
634
635		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
636
637		send->s_sge[0].length = sizeof(struct rds_header);
638		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
639
640		ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev,
641					   ic->i_send_hdrs_dma[pos],
642					   sizeof(struct rds_header),
643					   DMA_TO_DEVICE);
644		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
645		       sizeof(struct rds_header));
646
647
648		/* Set up the data, if present */
649		if (i < work_alloc
650		    && scat != &rm->data.op_sg[rm->data.op_count]) {
651			len = min(RDS_FRAG_SIZE,
652				  sg_dma_len(scat) - rm->data.op_dmaoff);
653			send->s_wr.num_sge = 2;
654
655			send->s_sge[1].addr = sg_dma_address(scat);
656			send->s_sge[1].addr += rm->data.op_dmaoff;
657			send->s_sge[1].length = len;
658			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
659
660			bytes_sent += len;
661			rm->data.op_dmaoff += len;
662			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
663				scat++;
664				rm->data.op_dmasg++;
665				rm->data.op_dmaoff = 0;
666			}
667		}
668
669		rds_ib_set_wr_signal_state(ic, send, false);
670
671		/*
672		 * Always signal the last one if we're stopping due to flow control.
673		 */
674		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
675			rds_ib_set_wr_signal_state(ic, send, true);
676			send->s_wr.send_flags |= IB_SEND_SOLICITED;
677		}
678
679		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
680			nr_sig++;
681
682		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
683			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
684
685		if (ic->i_flowctl && adv_credits) {
686			struct rds_header *hdr = ic->i_send_hdrs[pos];
687
688			/* add credit and redo the header checksum */
689			hdr->h_credit = adv_credits;
690			rds_message_make_checksum(hdr);
691			adv_credits = 0;
692			rds_ib_stats_inc(s_ib_tx_credit_updates);
693		}
694		ib_dma_sync_single_for_device(ic->rds_ibdev->dev,
695					      ic->i_send_hdrs_dma[pos],
696					      sizeof(struct rds_header),
697					      DMA_TO_DEVICE);
698
699		if (prev)
700			prev->s_wr.next = &send->s_wr;
701		prev = send;
702
703		pos = (pos + 1) % ic->i_send_ring.w_nr;
704		send = &ic->i_sends[pos];
705		i++;
706
707	} while (i < work_alloc
708		 && scat != &rm->data.op_sg[rm->data.op_count]);
709
710	/* Account the RDS header in the number of bytes we sent, but just once.
711	 * The caller has no concept of fragmentation. */
712	if (hdr_off == 0)
713		bytes_sent += sizeof(struct rds_header);
714
715	/* if we finished the message then send completion owns it */
716	if (scat == &rm->data.op_sg[rm->data.op_count]) {
717		prev->s_op = ic->i_data_op;
718		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
719		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
720			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
721		ic->i_data_op = NULL;
722	}
723
724	/* Put back wrs & credits we didn't use */
725	if (i < work_alloc) {
726		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
727		work_alloc = i;
728	}
729	if (ic->i_flowctl && i < credit_alloc)
730		rds_ib_send_add_credits(conn, credit_alloc - i);
731
732	if (nr_sig)
733		atomic_add(nr_sig, &ic->i_signaled_sends);
734
735	/* XXX need to worry about failed_wr and partial sends. */
736	failed_wr = &first->s_wr;
737	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
738	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
739		 first, &first->s_wr, ret, failed_wr);
740	BUG_ON(failed_wr != &first->s_wr);
741	if (ret) {
742		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
743		       "returned %d\n", &conn->c_faddr, ret);
744		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
745		rds_ib_sub_signaled(ic, nr_sig);
746		if (prev->s_op) {
747			ic->i_data_op = prev->s_op;
748			prev->s_op = NULL;
749		}
750
751		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
752		goto out;
753	}
754
755	ret = bytes_sent;
756out:
757	BUG_ON(adv_credits);
758	return ret;
759}
760
761/*
762 * Issue atomic operation.
763 * A simplified version of the rdma case, we always map 1 SG, and
764 * only 8 bytes, for the return value from the atomic operation.
765 */
766int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
767{
768	struct rds_ib_connection *ic = conn->c_transport_data;
769	struct rds_ib_send_work *send = NULL;
770	const struct ib_send_wr *failed_wr;
771	u32 pos;
772	u32 work_alloc;
773	int ret;
774	int nr_sig = 0;
775
776	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
777	if (work_alloc != 1) {
778		rds_ib_stats_inc(s_ib_tx_ring_full);
779		ret = -ENOMEM;
780		goto out;
781	}
782
783	/* address of send request in ring */
784	send = &ic->i_sends[pos];
785	send->s_queued = jiffies;
786
787	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
788		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
789		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
790		send->s_atomic_wr.swap = op->op_m_cswp.swap;
791		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
792		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
793	} else { /* FADD */
794		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
795		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
796		send->s_atomic_wr.swap = 0;
797		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
798		send->s_atomic_wr.swap_mask = 0;
799	}
800	send->s_wr.send_flags = 0;
801	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
802	send->s_atomic_wr.wr.num_sge = 1;
803	send->s_atomic_wr.wr.next = NULL;
804	send->s_atomic_wr.remote_addr = op->op_remote_addr;
805	send->s_atomic_wr.rkey = op->op_rkey;
806	send->s_op = op;
807	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
808
809	/* map 8 byte retval buffer to the device */
810	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
811	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
812	if (ret != 1) {
813		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
814		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
815		ret = -ENOMEM; /* XXX ? */
816		goto out;
817	}
818
819	/* Convert our struct scatterlist to struct ib_sge */
820	send->s_sge[0].addr = sg_dma_address(op->op_sg);
821	send->s_sge[0].length = sg_dma_len(op->op_sg);
822	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
823
824	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
825		 send->s_sge[0].addr, send->s_sge[0].length);
826
827	if (nr_sig)
828		atomic_add(nr_sig, &ic->i_signaled_sends);
829
830	failed_wr = &send->s_atomic_wr.wr;
831	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
832	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
833		 send, &send->s_atomic_wr, ret, failed_wr);
834	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
835	if (ret) {
836		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
837		       "returned %d\n", &conn->c_faddr, ret);
838		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
839		rds_ib_sub_signaled(ic, nr_sig);
840		goto out;
841	}
842
843	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
844		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
845		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
846	}
847
848out:
849	return ret;
850}
851
852int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
853{
854	struct rds_ib_connection *ic = conn->c_transport_data;
855	struct rds_ib_send_work *send = NULL;
856	struct rds_ib_send_work *first;
857	struct rds_ib_send_work *prev;
858	const struct ib_send_wr *failed_wr;
859	struct scatterlist *scat;
860	unsigned long len;
861	u64 remote_addr = op->op_remote_addr;
862	u32 max_sge = ic->rds_ibdev->max_sge;
863	u32 pos;
864	u32 work_alloc;
865	u32 i;
866	u32 j;
867	int sent;
868	int ret;
869	int num_sge;
870	int nr_sig = 0;
871	u64 odp_addr = op->op_odp_addr;
872	u32 odp_lkey = 0;
873
874	/* map the op the first time we see it */
875	if (!op->op_odp_mr) {
876		if (!op->op_mapped) {
877			op->op_count =
878				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
879					      op->op_nents,
880					      (op->op_write) ? DMA_TO_DEVICE :
881							       DMA_FROM_DEVICE);
882			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
883				 op->op_count);
884			if (op->op_count == 0) {
885				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
886				ret = -ENOMEM; /* XXX ? */
887				goto out;
888			}
889			op->op_mapped = 1;
890		}
891	} else {
892		op->op_count = op->op_nents;
893		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
894	}
895
896	/*
897	 * Instead of knowing how to return a partial rdma read/write we insist that there
898	 * be enough work requests to send the entire message.
899	 */
900	i = DIV_ROUND_UP(op->op_count, max_sge);
901
902	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
903	if (work_alloc != i) {
904		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
905		rds_ib_stats_inc(s_ib_tx_ring_full);
906		ret = -ENOMEM;
907		goto out;
908	}
909
910	send = &ic->i_sends[pos];
911	first = send;
912	prev = NULL;
913	scat = &op->op_sg[0];
914	sent = 0;
915	num_sge = op->op_count;
916
917	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
918		send->s_wr.send_flags = 0;
919		send->s_queued = jiffies;
920		send->s_op = NULL;
921
922		if (!op->op_notify)
923			nr_sig += rds_ib_set_wr_signal_state(ic, send,
924							     op->op_notify);
925
926		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
927		send->s_rdma_wr.remote_addr = remote_addr;
928		send->s_rdma_wr.rkey = op->op_rkey;
929
930		if (num_sge > max_sge) {
931			send->s_rdma_wr.wr.num_sge = max_sge;
932			num_sge -= max_sge;
933		} else {
934			send->s_rdma_wr.wr.num_sge = num_sge;
935		}
936
937		send->s_rdma_wr.wr.next = NULL;
938
939		if (prev)
940			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
941
942		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
943		     scat != &op->op_sg[op->op_count]; j++) {
944			len = sg_dma_len(scat);
945			if (!op->op_odp_mr) {
946				send->s_sge[j].addr = sg_dma_address(scat);
947				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
948			} else {
949				send->s_sge[j].addr = odp_addr;
950				send->s_sge[j].lkey = odp_lkey;
951			}
952			send->s_sge[j].length = len;
953
954			sent += len;
955			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
956
957			remote_addr += len;
958			odp_addr += len;
959			scat++;
960		}
961
962		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
963			&send->s_rdma_wr.wr,
964			send->s_rdma_wr.wr.num_sge,
965			send->s_rdma_wr.wr.next);
966
967		prev = send;
968		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
969			send = ic->i_sends;
970	}
971
972	/* give a reference to the last op */
973	if (scat == &op->op_sg[op->op_count]) {
974		prev->s_op = op;
975		rds_message_addref(container_of(op, struct rds_message, rdma));
976	}
977
978	if (i < work_alloc) {
979		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
980		work_alloc = i;
981	}
982
983	if (nr_sig)
984		atomic_add(nr_sig, &ic->i_signaled_sends);
985
986	failed_wr = &first->s_rdma_wr.wr;
987	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
988	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
989		 first, &first->s_rdma_wr.wr, ret, failed_wr);
990	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
991	if (ret) {
992		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
993		       "returned %d\n", &conn->c_faddr, ret);
994		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
995		rds_ib_sub_signaled(ic, nr_sig);
996		goto out;
997	}
998
999	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
1000		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
1001		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
1002	}
1003
1004
1005out:
1006	return ret;
1007}
1008
1009void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
1010{
1011	struct rds_connection *conn = cp->cp_conn;
1012	struct rds_ib_connection *ic = conn->c_transport_data;
1013
1014	/* We may have a pending ACK or window update we were unable
1015	 * to send previously (due to flow control). Try again. */
1016	rds_ib_attempt_ack(ic);
1017}
1018