1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include <linux/uaccess.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9#include <linux/if_ether.h>
10#include <linux/if_vlan.h>
11#include <net/llc_pdu.h>
12#include <linux/kernel.h>
13#include <linux/jhash.h>
14#include <linux/jiffies.h>
15#include <linux/llc.h>
16#include <linux/module.h>
17#include <linux/in.h>
18#include <linux/rcupdate.h>
19#include <linux/cpumask.h>
20#include <linux/if_arp.h>
21#include <linux/ip.h>
22#include <linux/ipv6.h>
23#include <linux/mpls.h>
24#include <linux/sctp.h>
25#include <linux/smp.h>
26#include <linux/tcp.h>
27#include <linux/udp.h>
28#include <linux/icmp.h>
29#include <linux/icmpv6.h>
30#include <linux/rculist.h>
31#include <net/ip.h>
32#include <net/ip_tunnels.h>
33#include <net/ipv6.h>
34#include <net/mpls.h>
35#include <net/ndisc.h>
36#include <net/nsh.h>
37#include <net/pkt_cls.h>
38#include <net/netfilter/nf_conntrack_zones.h>
39
40#include "conntrack.h"
41#include "datapath.h"
42#include "flow.h"
43#include "flow_netlink.h"
44#include "vport.h"
45
46u64 ovs_flow_used_time(unsigned long flow_jiffies)
47{
48	struct timespec64 cur_ts;
49	u64 cur_ms, idle_ms;
50
51	ktime_get_ts64(&cur_ts);
52	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
53	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
54		 cur_ts.tv_nsec / NSEC_PER_MSEC;
55
56	return cur_ms - idle_ms;
57}
58
59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
60
61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
62			   const struct sk_buff *skb)
63{
64	struct sw_flow_stats *stats;
65	unsigned int cpu = smp_processor_id();
66	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
67
68	stats = rcu_dereference(flow->stats[cpu]);
69
70	/* Check if already have CPU-specific stats. */
71	if (likely(stats)) {
72		spin_lock(&stats->lock);
73		/* Mark if we write on the pre-allocated stats. */
74		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
75			flow->stats_last_writer = cpu;
76	} else {
77		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
78		spin_lock(&stats->lock);
79
80		/* If the current CPU is the only writer on the
81		 * pre-allocated stats keep using them.
82		 */
83		if (unlikely(flow->stats_last_writer != cpu)) {
84			/* A previous locker may have already allocated the
85			 * stats, so we need to check again.  If CPU-specific
86			 * stats were already allocated, we update the pre-
87			 * allocated stats as we have already locked them.
88			 */
89			if (likely(flow->stats_last_writer != -1) &&
90			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
91				/* Try to allocate CPU-specific stats. */
92				struct sw_flow_stats *new_stats;
93
94				new_stats =
95					kmem_cache_alloc_node(flow_stats_cache,
96							      GFP_NOWAIT |
97							      __GFP_THISNODE |
98							      __GFP_NOWARN |
99							      __GFP_NOMEMALLOC,
100							      numa_node_id());
101				if (likely(new_stats)) {
102					new_stats->used = jiffies;
103					new_stats->packet_count = 1;
104					new_stats->byte_count = len;
105					new_stats->tcp_flags = tcp_flags;
106					spin_lock_init(&new_stats->lock);
107
108					rcu_assign_pointer(flow->stats[cpu],
109							   new_stats);
110					cpumask_set_cpu(cpu,
111							flow->cpu_used_mask);
112					goto unlock;
113				}
114			}
115			flow->stats_last_writer = cpu;
116		}
117	}
118
119	stats->used = jiffies;
120	stats->packet_count++;
121	stats->byte_count += len;
122	stats->tcp_flags |= tcp_flags;
123unlock:
124	spin_unlock(&stats->lock);
125}
126
127/* Must be called with rcu_read_lock or ovs_mutex. */
128void ovs_flow_stats_get(const struct sw_flow *flow,
129			struct ovs_flow_stats *ovs_stats,
130			unsigned long *used, __be16 *tcp_flags)
131{
132	int cpu;
133
134	*used = 0;
135	*tcp_flags = 0;
136	memset(ovs_stats, 0, sizeof(*ovs_stats));
137
138	/* We open code this to make sure cpu 0 is always considered */
139	for (cpu = 0; cpu < nr_cpu_ids;
140	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
141		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
142
143		if (stats) {
144			/* Local CPU may write on non-local stats, so we must
145			 * block bottom-halves here.
146			 */
147			spin_lock_bh(&stats->lock);
148			if (!*used || time_after(stats->used, *used))
149				*used = stats->used;
150			*tcp_flags |= stats->tcp_flags;
151			ovs_stats->n_packets += stats->packet_count;
152			ovs_stats->n_bytes += stats->byte_count;
153			spin_unlock_bh(&stats->lock);
154		}
155	}
156}
157
158/* Called with ovs_mutex. */
159void ovs_flow_stats_clear(struct sw_flow *flow)
160{
161	int cpu;
162
163	/* We open code this to make sure cpu 0 is always considered */
164	for (cpu = 0; cpu < nr_cpu_ids;
165	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
166		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
167
168		if (stats) {
169			spin_lock_bh(&stats->lock);
170			stats->used = 0;
171			stats->packet_count = 0;
172			stats->byte_count = 0;
173			stats->tcp_flags = 0;
174			spin_unlock_bh(&stats->lock);
175		}
176	}
177}
178
179static int check_header(struct sk_buff *skb, int len)
180{
181	if (unlikely(skb->len < len))
182		return -EINVAL;
183	if (unlikely(!pskb_may_pull(skb, len)))
184		return -ENOMEM;
185	return 0;
186}
187
188static bool arphdr_ok(struct sk_buff *skb)
189{
190	return pskb_may_pull(skb, skb_network_offset(skb) +
191				  sizeof(struct arp_eth_header));
192}
193
194static int check_iphdr(struct sk_buff *skb)
195{
196	unsigned int nh_ofs = skb_network_offset(skb);
197	unsigned int ip_len;
198	int err;
199
200	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
201	if (unlikely(err))
202		return err;
203
204	ip_len = ip_hdrlen(skb);
205	if (unlikely(ip_len < sizeof(struct iphdr) ||
206		     skb->len < nh_ofs + ip_len))
207		return -EINVAL;
208
209	skb_set_transport_header(skb, nh_ofs + ip_len);
210	return 0;
211}
212
213static bool tcphdr_ok(struct sk_buff *skb)
214{
215	int th_ofs = skb_transport_offset(skb);
216	int tcp_len;
217
218	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
219		return false;
220
221	tcp_len = tcp_hdrlen(skb);
222	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
223		     skb->len < th_ofs + tcp_len))
224		return false;
225
226	return true;
227}
228
229static bool udphdr_ok(struct sk_buff *skb)
230{
231	return pskb_may_pull(skb, skb_transport_offset(skb) +
232				  sizeof(struct udphdr));
233}
234
235static bool sctphdr_ok(struct sk_buff *skb)
236{
237	return pskb_may_pull(skb, skb_transport_offset(skb) +
238				  sizeof(struct sctphdr));
239}
240
241static bool icmphdr_ok(struct sk_buff *skb)
242{
243	return pskb_may_pull(skb, skb_transport_offset(skb) +
244				  sizeof(struct icmphdr));
245}
246
247/**
248 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
249 *
250 * @skb: buffer where extension header data starts in packet
251 * @nh: ipv6 header
252 * @ext_hdrs: flags are stored here
253 *
254 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
255 * is unexpectedly encountered. (Two destination options headers may be
256 * expected and would not cause this bit to be set.)
257 *
258 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
259 * preferred (but not required) by RFC 2460:
260 *
261 * When more than one extension header is used in the same packet, it is
262 * recommended that those headers appear in the following order:
263 *      IPv6 header
264 *      Hop-by-Hop Options header
265 *      Destination Options header
266 *      Routing header
267 *      Fragment header
268 *      Authentication header
269 *      Encapsulating Security Payload header
270 *      Destination Options header
271 *      upper-layer header
272 */
273static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
274			      u16 *ext_hdrs)
275{
276	u8 next_type = nh->nexthdr;
277	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
278	int dest_options_header_count = 0;
279
280	*ext_hdrs = 0;
281
282	while (ipv6_ext_hdr(next_type)) {
283		struct ipv6_opt_hdr _hdr, *hp;
284
285		switch (next_type) {
286		case IPPROTO_NONE:
287			*ext_hdrs |= OFPIEH12_NONEXT;
288			/* stop parsing */
289			return;
290
291		case IPPROTO_ESP:
292			if (*ext_hdrs & OFPIEH12_ESP)
293				*ext_hdrs |= OFPIEH12_UNREP;
294			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
295					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
296					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
297			    dest_options_header_count >= 2) {
298				*ext_hdrs |= OFPIEH12_UNSEQ;
299			}
300			*ext_hdrs |= OFPIEH12_ESP;
301			break;
302
303		case IPPROTO_AH:
304			if (*ext_hdrs & OFPIEH12_AUTH)
305				*ext_hdrs |= OFPIEH12_UNREP;
306			if ((*ext_hdrs &
307			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
308			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
309			    dest_options_header_count >= 2) {
310				*ext_hdrs |= OFPIEH12_UNSEQ;
311			}
312			*ext_hdrs |= OFPIEH12_AUTH;
313			break;
314
315		case IPPROTO_DSTOPTS:
316			if (dest_options_header_count == 0) {
317				if (*ext_hdrs &
318				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
319					*ext_hdrs |= OFPIEH12_UNSEQ;
320				*ext_hdrs |= OFPIEH12_DEST;
321			} else if (dest_options_header_count == 1) {
322				if (*ext_hdrs &
323				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
324				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
325				      OFPIEH12_AUTH | OFPIEH12_ESP |
326				      OFPIEH12_UNREP)) {
327					*ext_hdrs |= OFPIEH12_UNSEQ;
328				}
329			} else {
330				*ext_hdrs |= OFPIEH12_UNREP;
331			}
332			dest_options_header_count++;
333			break;
334
335		case IPPROTO_FRAGMENT:
336			if (*ext_hdrs & OFPIEH12_FRAG)
337				*ext_hdrs |= OFPIEH12_UNREP;
338			if ((*ext_hdrs & ~(OFPIEH12_HOP |
339					   OFPIEH12_DEST |
340					   OFPIEH12_ROUTER |
341					   OFPIEH12_UNREP)) ||
342			    dest_options_header_count >= 2) {
343				*ext_hdrs |= OFPIEH12_UNSEQ;
344			}
345			*ext_hdrs |= OFPIEH12_FRAG;
346			break;
347
348		case IPPROTO_ROUTING:
349			if (*ext_hdrs & OFPIEH12_ROUTER)
350				*ext_hdrs |= OFPIEH12_UNREP;
351			if ((*ext_hdrs & ~(OFPIEH12_HOP |
352					   OFPIEH12_DEST |
353					   OFPIEH12_UNREP)) ||
354			    dest_options_header_count >= 2) {
355				*ext_hdrs |= OFPIEH12_UNSEQ;
356			}
357			*ext_hdrs |= OFPIEH12_ROUTER;
358			break;
359
360		case IPPROTO_HOPOPTS:
361			if (*ext_hdrs & OFPIEH12_HOP)
362				*ext_hdrs |= OFPIEH12_UNREP;
363			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
364			 * extension header is present as the first
365			 * extension header in the packet.
366			 */
367			if (*ext_hdrs == 0)
368				*ext_hdrs |= OFPIEH12_HOP;
369			else
370				*ext_hdrs |= OFPIEH12_UNSEQ;
371			break;
372
373		default:
374			return;
375		}
376
377		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
378		if (!hp)
379			break;
380		next_type = hp->nexthdr;
381		start += ipv6_optlen(hp);
382	}
383}
384
385static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
386{
387	unsigned short frag_off;
388	unsigned int payload_ofs = 0;
389	unsigned int nh_ofs = skb_network_offset(skb);
390	unsigned int nh_len;
391	struct ipv6hdr *nh;
392	int err, nexthdr, flags = 0;
393
394	err = check_header(skb, nh_ofs + sizeof(*nh));
395	if (unlikely(err))
396		return err;
397
398	nh = ipv6_hdr(skb);
399
400	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
401
402	key->ip.proto = NEXTHDR_NONE;
403	key->ip.tos = ipv6_get_dsfield(nh);
404	key->ip.ttl = nh->hop_limit;
405	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
406	key->ipv6.addr.src = nh->saddr;
407	key->ipv6.addr.dst = nh->daddr;
408
409	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
410	if (flags & IP6_FH_F_FRAG) {
411		if (frag_off) {
412			key->ip.frag = OVS_FRAG_TYPE_LATER;
413			key->ip.proto = NEXTHDR_FRAGMENT;
414			return 0;
415		}
416		key->ip.frag = OVS_FRAG_TYPE_FIRST;
417	} else {
418		key->ip.frag = OVS_FRAG_TYPE_NONE;
419	}
420
421	/* Delayed handling of error in ipv6_find_hdr() as it
422	 * always sets flags and frag_off to a valid value which may be
423	 * used to set key->ip.frag above.
424	 */
425	if (unlikely(nexthdr < 0))
426		return -EPROTO;
427
428	nh_len = payload_ofs - nh_ofs;
429	skb_set_transport_header(skb, nh_ofs + nh_len);
430	key->ip.proto = nexthdr;
431	return nh_len;
432}
433
434static bool icmp6hdr_ok(struct sk_buff *skb)
435{
436	return pskb_may_pull(skb, skb_transport_offset(skb) +
437				  sizeof(struct icmp6hdr));
438}
439
440/**
441 * parse_vlan_tag - Parse vlan tag from vlan header.
442 * @skb: skb containing frame to parse
443 * @key_vh: pointer to parsed vlan tag
444 * @untag_vlan: should the vlan header be removed from the frame
445 *
446 * Return: ERROR on memory error.
447 * %0 if it encounters a non-vlan or incomplete packet.
448 * %1 after successfully parsing vlan tag.
449 */
450static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
451			  bool untag_vlan)
452{
453	struct vlan_head *vh = (struct vlan_head *)skb->data;
454
455	if (likely(!eth_type_vlan(vh->tpid)))
456		return 0;
457
458	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
459		return 0;
460
461	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
462				 sizeof(__be16))))
463		return -ENOMEM;
464
465	vh = (struct vlan_head *)skb->data;
466	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
467	key_vh->tpid = vh->tpid;
468
469	if (unlikely(untag_vlan)) {
470		int offset = skb->data - skb_mac_header(skb);
471		u16 tci;
472		int err;
473
474		__skb_push(skb, offset);
475		err = __skb_vlan_pop(skb, &tci);
476		__skb_pull(skb, offset);
477		if (err)
478			return err;
479		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
480	} else {
481		__skb_pull(skb, sizeof(struct vlan_head));
482	}
483	return 1;
484}
485
486static void clear_vlan(struct sw_flow_key *key)
487{
488	key->eth.vlan.tci = 0;
489	key->eth.vlan.tpid = 0;
490	key->eth.cvlan.tci = 0;
491	key->eth.cvlan.tpid = 0;
492}
493
494static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
495{
496	int res;
497
498	if (skb_vlan_tag_present(skb)) {
499		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
500		key->eth.vlan.tpid = skb->vlan_proto;
501	} else {
502		/* Parse outer vlan tag in the non-accelerated case. */
503		res = parse_vlan_tag(skb, &key->eth.vlan, true);
504		if (res <= 0)
505			return res;
506	}
507
508	/* Parse inner vlan tag. */
509	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
510	if (res <= 0)
511		return res;
512
513	return 0;
514}
515
516static __be16 parse_ethertype(struct sk_buff *skb)
517{
518	struct llc_snap_hdr {
519		u8  dsap;  /* Always 0xAA */
520		u8  ssap;  /* Always 0xAA */
521		u8  ctrl;
522		u8  oui[3];
523		__be16 ethertype;
524	};
525	struct llc_snap_hdr *llc;
526	__be16 proto;
527
528	proto = *(__be16 *) skb->data;
529	__skb_pull(skb, sizeof(__be16));
530
531	if (eth_proto_is_802_3(proto))
532		return proto;
533
534	if (skb->len < sizeof(struct llc_snap_hdr))
535		return htons(ETH_P_802_2);
536
537	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
538		return htons(0);
539
540	llc = (struct llc_snap_hdr *) skb->data;
541	if (llc->dsap != LLC_SAP_SNAP ||
542	    llc->ssap != LLC_SAP_SNAP ||
543	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
544		return htons(ETH_P_802_2);
545
546	__skb_pull(skb, sizeof(struct llc_snap_hdr));
547
548	if (eth_proto_is_802_3(llc->ethertype))
549		return llc->ethertype;
550
551	return htons(ETH_P_802_2);
552}
553
554static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
555			int nh_len)
556{
557	struct icmp6hdr *icmp = icmp6_hdr(skb);
558
559	/* The ICMPv6 type and code fields use the 16-bit transport port
560	 * fields, so we need to store them in 16-bit network byte order.
561	 */
562	key->tp.src = htons(icmp->icmp6_type);
563	key->tp.dst = htons(icmp->icmp6_code);
564	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
565
566	if (icmp->icmp6_code == 0 &&
567	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
568	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
569		int icmp_len = skb->len - skb_transport_offset(skb);
570		struct nd_msg *nd;
571		int offset;
572
573		/* In order to process neighbor discovery options, we need the
574		 * entire packet.
575		 */
576		if (unlikely(icmp_len < sizeof(*nd)))
577			return 0;
578
579		if (unlikely(skb_linearize(skb)))
580			return -ENOMEM;
581
582		nd = (struct nd_msg *)skb_transport_header(skb);
583		key->ipv6.nd.target = nd->target;
584
585		icmp_len -= sizeof(*nd);
586		offset = 0;
587		while (icmp_len >= 8) {
588			struct nd_opt_hdr *nd_opt =
589				 (struct nd_opt_hdr *)(nd->opt + offset);
590			int opt_len = nd_opt->nd_opt_len * 8;
591
592			if (unlikely(!opt_len || opt_len > icmp_len))
593				return 0;
594
595			/* Store the link layer address if the appropriate
596			 * option is provided.  It is considered an error if
597			 * the same link layer option is specified twice.
598			 */
599			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
600			    && opt_len == 8) {
601				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
602					goto invalid;
603				ether_addr_copy(key->ipv6.nd.sll,
604						&nd->opt[offset+sizeof(*nd_opt)]);
605			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
606				   && opt_len == 8) {
607				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
608					goto invalid;
609				ether_addr_copy(key->ipv6.nd.tll,
610						&nd->opt[offset+sizeof(*nd_opt)]);
611			}
612
613			icmp_len -= opt_len;
614			offset += opt_len;
615		}
616	}
617
618	return 0;
619
620invalid:
621	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
622	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
623	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
624
625	return 0;
626}
627
628static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
629{
630	struct nshhdr *nh;
631	unsigned int nh_ofs = skb_network_offset(skb);
632	u8 version, length;
633	int err;
634
635	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
636	if (unlikely(err))
637		return err;
638
639	nh = nsh_hdr(skb);
640	version = nsh_get_ver(nh);
641	length = nsh_hdr_len(nh);
642
643	if (version != 0)
644		return -EINVAL;
645
646	err = check_header(skb, nh_ofs + length);
647	if (unlikely(err))
648		return err;
649
650	nh = nsh_hdr(skb);
651	key->nsh.base.flags = nsh_get_flags(nh);
652	key->nsh.base.ttl = nsh_get_ttl(nh);
653	key->nsh.base.mdtype = nh->mdtype;
654	key->nsh.base.np = nh->np;
655	key->nsh.base.path_hdr = nh->path_hdr;
656	switch (key->nsh.base.mdtype) {
657	case NSH_M_TYPE1:
658		if (length != NSH_M_TYPE1_LEN)
659			return -EINVAL;
660		memcpy(key->nsh.context, nh->md1.context,
661		       sizeof(nh->md1));
662		break;
663	case NSH_M_TYPE2:
664		memset(key->nsh.context, 0,
665		       sizeof(nh->md1));
666		break;
667	default:
668		return -EINVAL;
669	}
670
671	return 0;
672}
673
674/**
675 * key_extract_l3l4 - extracts L3/L4 header information.
676 * @skb: sk_buff that contains the frame, with skb->data pointing to the
677 *       L3 header
678 * @key: output flow key
679 *
680 * Return: %0 if successful, otherwise a negative errno value.
681 */
682static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
683{
684	int error;
685
686	/* Network layer. */
687	if (key->eth.type == htons(ETH_P_IP)) {
688		struct iphdr *nh;
689		__be16 offset;
690
691		error = check_iphdr(skb);
692		if (unlikely(error)) {
693			memset(&key->ip, 0, sizeof(key->ip));
694			memset(&key->ipv4, 0, sizeof(key->ipv4));
695			if (error == -EINVAL) {
696				skb->transport_header = skb->network_header;
697				error = 0;
698			}
699			return error;
700		}
701
702		nh = ip_hdr(skb);
703		key->ipv4.addr.src = nh->saddr;
704		key->ipv4.addr.dst = nh->daddr;
705
706		key->ip.proto = nh->protocol;
707		key->ip.tos = nh->tos;
708		key->ip.ttl = nh->ttl;
709
710		offset = nh->frag_off & htons(IP_OFFSET);
711		if (offset) {
712			key->ip.frag = OVS_FRAG_TYPE_LATER;
713			memset(&key->tp, 0, sizeof(key->tp));
714			return 0;
715		}
716		if (nh->frag_off & htons(IP_MF) ||
717			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
718			key->ip.frag = OVS_FRAG_TYPE_FIRST;
719		else
720			key->ip.frag = OVS_FRAG_TYPE_NONE;
721
722		/* Transport layer. */
723		if (key->ip.proto == IPPROTO_TCP) {
724			if (tcphdr_ok(skb)) {
725				struct tcphdr *tcp = tcp_hdr(skb);
726				key->tp.src = tcp->source;
727				key->tp.dst = tcp->dest;
728				key->tp.flags = TCP_FLAGS_BE16(tcp);
729			} else {
730				memset(&key->tp, 0, sizeof(key->tp));
731			}
732
733		} else if (key->ip.proto == IPPROTO_UDP) {
734			if (udphdr_ok(skb)) {
735				struct udphdr *udp = udp_hdr(skb);
736				key->tp.src = udp->source;
737				key->tp.dst = udp->dest;
738			} else {
739				memset(&key->tp, 0, sizeof(key->tp));
740			}
741		} else if (key->ip.proto == IPPROTO_SCTP) {
742			if (sctphdr_ok(skb)) {
743				struct sctphdr *sctp = sctp_hdr(skb);
744				key->tp.src = sctp->source;
745				key->tp.dst = sctp->dest;
746			} else {
747				memset(&key->tp, 0, sizeof(key->tp));
748			}
749		} else if (key->ip.proto == IPPROTO_ICMP) {
750			if (icmphdr_ok(skb)) {
751				struct icmphdr *icmp = icmp_hdr(skb);
752				/* The ICMP type and code fields use the 16-bit
753				 * transport port fields, so we need to store
754				 * them in 16-bit network byte order. */
755				key->tp.src = htons(icmp->type);
756				key->tp.dst = htons(icmp->code);
757			} else {
758				memset(&key->tp, 0, sizeof(key->tp));
759			}
760		}
761
762	} else if (key->eth.type == htons(ETH_P_ARP) ||
763		   key->eth.type == htons(ETH_P_RARP)) {
764		struct arp_eth_header *arp;
765		bool arp_available = arphdr_ok(skb);
766
767		arp = (struct arp_eth_header *)skb_network_header(skb);
768
769		if (arp_available &&
770		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
771		    arp->ar_pro == htons(ETH_P_IP) &&
772		    arp->ar_hln == ETH_ALEN &&
773		    arp->ar_pln == 4) {
774
775			/* We only match on the lower 8 bits of the opcode. */
776			if (ntohs(arp->ar_op) <= 0xff)
777				key->ip.proto = ntohs(arp->ar_op);
778			else
779				key->ip.proto = 0;
780
781			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
782			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
783			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
784			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
785		} else {
786			memset(&key->ip, 0, sizeof(key->ip));
787			memset(&key->ipv4, 0, sizeof(key->ipv4));
788		}
789	} else if (eth_p_mpls(key->eth.type)) {
790		u8 label_count = 1;
791
792		memset(&key->mpls, 0, sizeof(key->mpls));
793		skb_set_inner_network_header(skb, skb->mac_len);
794		while (1) {
795			__be32 lse;
796
797			error = check_header(skb, skb->mac_len +
798					     label_count * MPLS_HLEN);
799			if (unlikely(error))
800				return 0;
801
802			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
803
804			if (label_count <= MPLS_LABEL_DEPTH)
805				memcpy(&key->mpls.lse[label_count - 1], &lse,
806				       MPLS_HLEN);
807
808			skb_set_inner_network_header(skb, skb->mac_len +
809						     label_count * MPLS_HLEN);
810			if (lse & htonl(MPLS_LS_S_MASK))
811				break;
812
813			label_count++;
814		}
815		if (label_count > MPLS_LABEL_DEPTH)
816			label_count = MPLS_LABEL_DEPTH;
817
818		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
819	} else if (key->eth.type == htons(ETH_P_IPV6)) {
820		int nh_len;             /* IPv6 Header + Extensions */
821
822		nh_len = parse_ipv6hdr(skb, key);
823		if (unlikely(nh_len < 0)) {
824			switch (nh_len) {
825			case -EINVAL:
826				memset(&key->ip, 0, sizeof(key->ip));
827				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
828				fallthrough;
829			case -EPROTO:
830				skb->transport_header = skb->network_header;
831				error = 0;
832				break;
833			default:
834				error = nh_len;
835			}
836			return error;
837		}
838
839		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
840			memset(&key->tp, 0, sizeof(key->tp));
841			return 0;
842		}
843		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
844			key->ip.frag = OVS_FRAG_TYPE_FIRST;
845
846		/* Transport layer. */
847		if (key->ip.proto == NEXTHDR_TCP) {
848			if (tcphdr_ok(skb)) {
849				struct tcphdr *tcp = tcp_hdr(skb);
850				key->tp.src = tcp->source;
851				key->tp.dst = tcp->dest;
852				key->tp.flags = TCP_FLAGS_BE16(tcp);
853			} else {
854				memset(&key->tp, 0, sizeof(key->tp));
855			}
856		} else if (key->ip.proto == NEXTHDR_UDP) {
857			if (udphdr_ok(skb)) {
858				struct udphdr *udp = udp_hdr(skb);
859				key->tp.src = udp->source;
860				key->tp.dst = udp->dest;
861			} else {
862				memset(&key->tp, 0, sizeof(key->tp));
863			}
864		} else if (key->ip.proto == NEXTHDR_SCTP) {
865			if (sctphdr_ok(skb)) {
866				struct sctphdr *sctp = sctp_hdr(skb);
867				key->tp.src = sctp->source;
868				key->tp.dst = sctp->dest;
869			} else {
870				memset(&key->tp, 0, sizeof(key->tp));
871			}
872		} else if (key->ip.proto == NEXTHDR_ICMP) {
873			if (icmp6hdr_ok(skb)) {
874				error = parse_icmpv6(skb, key, nh_len);
875				if (error)
876					return error;
877			} else {
878				memset(&key->tp, 0, sizeof(key->tp));
879			}
880		}
881	} else if (key->eth.type == htons(ETH_P_NSH)) {
882		error = parse_nsh(skb, key);
883		if (error)
884			return error;
885	}
886	return 0;
887}
888
889/**
890 * key_extract - extracts a flow key from an Ethernet frame.
891 * @skb: sk_buff that contains the frame, with skb->data pointing to the
892 * Ethernet header
893 * @key: output flow key
894 *
895 * The caller must ensure that skb->len >= ETH_HLEN.
896 *
897 * Initializes @skb header fields as follows:
898 *
899 *    - skb->mac_header: the L2 header.
900 *
901 *    - skb->network_header: just past the L2 header, or just past the
902 *      VLAN header, to the first byte of the L2 payload.
903 *
904 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
905 *      on output, then just past the IP header, if one is present and
906 *      of a correct length, otherwise the same as skb->network_header.
907 *      For other key->eth.type values it is left untouched.
908 *
909 *    - skb->protocol: the type of the data starting at skb->network_header.
910 *      Equals to key->eth.type.
911 *
912 * Return: %0 if successful, otherwise a negative errno value.
913 */
914static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
915{
916	struct ethhdr *eth;
917
918	/* Flags are always used as part of stats */
919	key->tp.flags = 0;
920
921	skb_reset_mac_header(skb);
922
923	/* Link layer. */
924	clear_vlan(key);
925	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
926		if (unlikely(eth_type_vlan(skb->protocol)))
927			return -EINVAL;
928
929		skb_reset_network_header(skb);
930		key->eth.type = skb->protocol;
931	} else {
932		eth = eth_hdr(skb);
933		ether_addr_copy(key->eth.src, eth->h_source);
934		ether_addr_copy(key->eth.dst, eth->h_dest);
935
936		__skb_pull(skb, 2 * ETH_ALEN);
937		/* We are going to push all headers that we pull, so no need to
938		 * update skb->csum here.
939		 */
940
941		if (unlikely(parse_vlan(skb, key)))
942			return -ENOMEM;
943
944		key->eth.type = parse_ethertype(skb);
945		if (unlikely(key->eth.type == htons(0)))
946			return -ENOMEM;
947
948		/* Multiple tagged packets need to retain TPID to satisfy
949		 * skb_vlan_pop(), which will later shift the ethertype into
950		 * skb->protocol.
951		 */
952		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
953			skb->protocol = key->eth.cvlan.tpid;
954		else
955			skb->protocol = key->eth.type;
956
957		skb_reset_network_header(skb);
958		__skb_push(skb, skb->data - skb_mac_header(skb));
959	}
960
961	skb_reset_mac_len(skb);
962
963	/* Fill out L3/L4 key info, if any */
964	return key_extract_l3l4(skb, key);
965}
966
967/* In the case of conntrack fragment handling it expects L3 headers,
968 * add a helper.
969 */
970int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
971{
972	return key_extract_l3l4(skb, key);
973}
974
975int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
976{
977	int res;
978
979	res = key_extract(skb, key);
980	if (!res)
981		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
982
983	return res;
984}
985
986static int key_extract_mac_proto(struct sk_buff *skb)
987{
988	switch (skb->dev->type) {
989	case ARPHRD_ETHER:
990		return MAC_PROTO_ETHERNET;
991	case ARPHRD_NONE:
992		if (skb->protocol == htons(ETH_P_TEB))
993			return MAC_PROTO_ETHERNET;
994		return MAC_PROTO_NONE;
995	}
996	WARN_ON_ONCE(1);
997	return -EINVAL;
998}
999
1000int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
1001			 struct sk_buff *skb, struct sw_flow_key *key)
1002{
1003#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1004	struct tc_skb_ext *tc_ext;
1005#endif
1006	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1007	int res, err;
1008	u16 zone = 0;
1009
1010	/* Extract metadata from packet. */
1011	if (tun_info) {
1012		key->tun_proto = ip_tunnel_info_af(tun_info);
1013		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1014
1015		if (tun_info->options_len) {
1016			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1017						   8)) - 1
1018					> sizeof(key->tun_opts));
1019
1020			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1021						tun_info);
1022			key->tun_opts_len = tun_info->options_len;
1023		} else {
1024			key->tun_opts_len = 0;
1025		}
1026	} else  {
1027		key->tun_proto = 0;
1028		key->tun_opts_len = 0;
1029		memset(&key->tun_key, 0, sizeof(key->tun_key));
1030	}
1031
1032	key->phy.priority = skb->priority;
1033	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1034	key->phy.skb_mark = skb->mark;
1035	key->ovs_flow_hash = 0;
1036	res = key_extract_mac_proto(skb);
1037	if (res < 0)
1038		return res;
1039	key->mac_proto = res;
1040
1041#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1042	if (tc_skb_ext_tc_enabled()) {
1043		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1044		key->recirc_id = tc_ext && !tc_ext->act_miss ?
1045				 tc_ext->chain : 0;
1046		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1047		post_ct = tc_ext ? tc_ext->post_ct : false;
1048		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1049		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1050		zone = post_ct ? tc_ext->zone : 0;
1051	} else {
1052		key->recirc_id = 0;
1053	}
1054#else
1055	key->recirc_id = 0;
1056#endif
1057
1058	err = key_extract(skb, key);
1059	if (!err) {
1060		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
1061		if (post_ct) {
1062			if (!skb_get_nfct(skb)) {
1063				key->ct_zone = zone;
1064			} else {
1065				if (!post_ct_dnat)
1066					key->ct_state &= ~OVS_CS_F_DST_NAT;
1067				if (!post_ct_snat)
1068					key->ct_state &= ~OVS_CS_F_SRC_NAT;
1069			}
1070		}
1071	}
1072	return err;
1073}
1074
1075int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1076				   struct sk_buff *skb,
1077				   struct sw_flow_key *key, bool log)
1078{
1079	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1080	u64 attrs = 0;
1081	int err;
1082
1083	err = parse_flow_nlattrs(attr, a, &attrs, log);
1084	if (err)
1085		return -EINVAL;
1086
1087	/* Extract metadata from netlink attributes. */
1088	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1089	if (err)
1090		return err;
1091
1092	/* key_extract assumes that skb->protocol is set-up for
1093	 * layer 3 packets which is the case for other callers,
1094	 * in particular packets received from the network stack.
1095	 * Here the correct value can be set from the metadata
1096	 * extracted above.
1097	 * For L2 packet key eth type would be zero. skb protocol
1098	 * would be set to correct value later during key-extact.
1099	 */
1100
1101	skb->protocol = key->eth.type;
1102	err = key_extract(skb, key);
1103	if (err)
1104		return err;
1105
1106	/* Check that we have conntrack original direction tuple metadata only
1107	 * for packets for which it makes sense.  Otherwise the key may be
1108	 * corrupted due to overlapping key fields.
1109	 */
1110	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1111	    key->eth.type != htons(ETH_P_IP))
1112		return -EINVAL;
1113	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1114	    (key->eth.type != htons(ETH_P_IPV6) ||
1115	     sw_flow_key_is_nd(key)))
1116		return -EINVAL;
1117
1118	return 0;
1119}
1120