1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/skbuff.h>
9#include <linux/in.h>
10#include <linux/ip.h>
11#include <linux/openvswitch.h>
12#include <linux/sctp.h>
13#include <linux/tcp.h>
14#include <linux/udp.h>
15#include <linux/in6.h>
16#include <linux/if_arp.h>
17#include <linux/if_vlan.h>
18
19#include <net/dst.h>
20#include <net/gso.h>
21#include <net/ip.h>
22#include <net/ipv6.h>
23#include <net/ip6_fib.h>
24#include <net/checksum.h>
25#include <net/dsfield.h>
26#include <net/mpls.h>
27#include <net/sctp/checksum.h>
28
29#include "datapath.h"
30#include "drop.h"
31#include "flow.h"
32#include "conntrack.h"
33#include "vport.h"
34#include "flow_netlink.h"
35#include "openvswitch_trace.h"
36
37struct deferred_action {
38	struct sk_buff *skb;
39	const struct nlattr *actions;
40	int actions_len;
41
42	/* Store pkt_key clone when creating deferred action. */
43	struct sw_flow_key pkt_key;
44};
45
46#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47struct ovs_frag_data {
48	unsigned long dst;
49	struct vport *vport;
50	struct ovs_skb_cb cb;
51	__be16 inner_protocol;
52	u16 network_offset;	/* valid only for MPLS */
53	u16 vlan_tci;
54	__be16 vlan_proto;
55	unsigned int l2_len;
56	u8 mac_proto;
57	u8 l2_data[MAX_L2_LEN];
58};
59
60static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61
62#define DEFERRED_ACTION_FIFO_SIZE 10
63#define OVS_RECURSION_LIMIT 5
64#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65struct action_fifo {
66	int head;
67	int tail;
68	/* Deferred action fifo queue storage. */
69	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70};
71
72struct action_flow_keys {
73	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74};
75
76static struct action_fifo __percpu *action_fifos;
77static struct action_flow_keys __percpu *flow_keys;
78static DEFINE_PER_CPU(int, exec_actions_level);
79
80/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81 * space. Return NULL if out of key spaces.
82 */
83static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84{
85	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86	int level = this_cpu_read(exec_actions_level);
87	struct sw_flow_key *key = NULL;
88
89	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90		key = &keys->key[level - 1];
91		*key = *key_;
92	}
93
94	return key;
95}
96
97static void action_fifo_init(struct action_fifo *fifo)
98{
99	fifo->head = 0;
100	fifo->tail = 0;
101}
102
103static bool action_fifo_is_empty(const struct action_fifo *fifo)
104{
105	return (fifo->head == fifo->tail);
106}
107
108static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109{
110	if (action_fifo_is_empty(fifo))
111		return NULL;
112
113	return &fifo->fifo[fifo->tail++];
114}
115
116static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117{
118	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119		return NULL;
120
121	return &fifo->fifo[fifo->head++];
122}
123
124/* Return true if fifo is not full */
125static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126				    const struct sw_flow_key *key,
127				    const struct nlattr *actions,
128				    const int actions_len)
129{
130	struct action_fifo *fifo;
131	struct deferred_action *da;
132
133	fifo = this_cpu_ptr(action_fifos);
134	da = action_fifo_put(fifo);
135	if (da) {
136		da->skb = skb;
137		da->actions = actions;
138		da->actions_len = actions_len;
139		da->pkt_key = *key;
140	}
141
142	return da;
143}
144
145static void invalidate_flow_key(struct sw_flow_key *key)
146{
147	key->mac_proto |= SW_FLOW_KEY_INVALID;
148}
149
150static bool is_flow_key_valid(const struct sw_flow_key *key)
151{
152	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153}
154
155static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156			 struct sw_flow_key *key,
157			 u32 recirc_id,
158			 const struct nlattr *actions, int len,
159			 bool last, bool clone_flow_key);
160
161static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162			      struct sw_flow_key *key,
163			      const struct nlattr *attr, int len);
164
165static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167{
168	int err;
169
170	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171	if (err)
172		return err;
173
174	if (!mac_len)
175		key->mac_proto = MAC_PROTO_NONE;
176
177	invalidate_flow_key(key);
178	return 0;
179}
180
181static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182		    const __be16 ethertype)
183{
184	int err;
185
186	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188	if (err)
189		return err;
190
191	if (ethertype == htons(ETH_P_TEB))
192		key->mac_proto = MAC_PROTO_ETHERNET;
193
194	invalidate_flow_key(key);
195	return 0;
196}
197
198static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199		    const __be32 *mpls_lse, const __be32 *mask)
200{
201	struct mpls_shim_hdr *stack;
202	__be32 lse;
203	int err;
204
205	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206		return -ENOMEM;
207
208	stack = mpls_hdr(skb);
209	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210	err = skb_mpls_update_lse(skb, lse);
211	if (err)
212		return err;
213
214	flow_key->mpls.lse[0] = lse;
215	return 0;
216}
217
218static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219{
220	int err;
221
222	err = skb_vlan_pop(skb);
223	if (skb_vlan_tag_present(skb)) {
224		invalidate_flow_key(key);
225	} else {
226		key->eth.vlan.tci = 0;
227		key->eth.vlan.tpid = 0;
228	}
229	return err;
230}
231
232static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233		     const struct ovs_action_push_vlan *vlan)
234{
235	if (skb_vlan_tag_present(skb)) {
236		invalidate_flow_key(key);
237	} else {
238		key->eth.vlan.tci = vlan->vlan_tci;
239		key->eth.vlan.tpid = vlan->vlan_tpid;
240	}
241	return skb_vlan_push(skb, vlan->vlan_tpid,
242			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243}
244
245/* 'src' is already properly masked. */
246static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247{
248	u16 *dst = (u16 *)dst_;
249	const u16 *src = (const u16 *)src_;
250	const u16 *mask = (const u16 *)mask_;
251
252	OVS_SET_MASKED(dst[0], src[0], mask[0]);
253	OVS_SET_MASKED(dst[1], src[1], mask[1]);
254	OVS_SET_MASKED(dst[2], src[2], mask[2]);
255}
256
257static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258			const struct ovs_key_ethernet *key,
259			const struct ovs_key_ethernet *mask)
260{
261	int err;
262
263	err = skb_ensure_writable(skb, ETH_HLEN);
264	if (unlikely(err))
265		return err;
266
267	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268
269	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270			       mask->eth_src);
271	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272			       mask->eth_dst);
273
274	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278	return 0;
279}
280
281/* pop_eth does not support VLAN packets as this action is never called
282 * for them.
283 */
284static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285{
286	int err;
287
288	err = skb_eth_pop(skb);
289	if (err)
290		return err;
291
292	/* safe right before invalidate_flow_key */
293	key->mac_proto = MAC_PROTO_NONE;
294	invalidate_flow_key(key);
295	return 0;
296}
297
298static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299		    const struct ovs_action_push_eth *ethh)
300{
301	int err;
302
303	err = skb_eth_push(skb, ethh->addresses.eth_dst,
304			   ethh->addresses.eth_src);
305	if (err)
306		return err;
307
308	/* safe right before invalidate_flow_key */
309	key->mac_proto = MAC_PROTO_ETHERNET;
310	invalidate_flow_key(key);
311	return 0;
312}
313
314static noinline_for_stack int push_nsh(struct sk_buff *skb,
315				       struct sw_flow_key *key,
316				       const struct nlattr *a)
317{
318	u8 buffer[NSH_HDR_MAX_LEN];
319	struct nshhdr *nh = (struct nshhdr *)buffer;
320	int err;
321
322	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
323	if (err)
324		return err;
325
326	err = nsh_push(skb, nh);
327	if (err)
328		return err;
329
330	/* safe right before invalidate_flow_key */
331	key->mac_proto = MAC_PROTO_NONE;
332	invalidate_flow_key(key);
333	return 0;
334}
335
336static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
337{
338	int err;
339
340	err = nsh_pop(skb);
341	if (err)
342		return err;
343
344	/* safe right before invalidate_flow_key */
345	if (skb->protocol == htons(ETH_P_TEB))
346		key->mac_proto = MAC_PROTO_ETHERNET;
347	else
348		key->mac_proto = MAC_PROTO_NONE;
349	invalidate_flow_key(key);
350	return 0;
351}
352
353static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
354				  __be32 addr, __be32 new_addr)
355{
356	int transport_len = skb->len - skb_transport_offset(skb);
357
358	if (nh->frag_off & htons(IP_OFFSET))
359		return;
360
361	if (nh->protocol == IPPROTO_TCP) {
362		if (likely(transport_len >= sizeof(struct tcphdr)))
363			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
364						 addr, new_addr, true);
365	} else if (nh->protocol == IPPROTO_UDP) {
366		if (likely(transport_len >= sizeof(struct udphdr))) {
367			struct udphdr *uh = udp_hdr(skb);
368
369			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
370				inet_proto_csum_replace4(&uh->check, skb,
371							 addr, new_addr, true);
372				if (!uh->check)
373					uh->check = CSUM_MANGLED_0;
374			}
375		}
376	}
377}
378
379static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
380			__be32 *addr, __be32 new_addr)
381{
382	update_ip_l4_checksum(skb, nh, *addr, new_addr);
383	csum_replace4(&nh->check, *addr, new_addr);
384	skb_clear_hash(skb);
385	ovs_ct_clear(skb, NULL);
386	*addr = new_addr;
387}
388
389static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
390				 __be32 addr[4], const __be32 new_addr[4])
391{
392	int transport_len = skb->len - skb_transport_offset(skb);
393
394	if (l4_proto == NEXTHDR_TCP) {
395		if (likely(transport_len >= sizeof(struct tcphdr)))
396			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
397						  addr, new_addr, true);
398	} else if (l4_proto == NEXTHDR_UDP) {
399		if (likely(transport_len >= sizeof(struct udphdr))) {
400			struct udphdr *uh = udp_hdr(skb);
401
402			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
403				inet_proto_csum_replace16(&uh->check, skb,
404							  addr, new_addr, true);
405				if (!uh->check)
406					uh->check = CSUM_MANGLED_0;
407			}
408		}
409	} else if (l4_proto == NEXTHDR_ICMP) {
410		if (likely(transport_len >= sizeof(struct icmp6hdr)))
411			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
412						  skb, addr, new_addr, true);
413	}
414}
415
416static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
417			   const __be32 mask[4], __be32 masked[4])
418{
419	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
420	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
421	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
422	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
423}
424
425static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
426			  __be32 addr[4], const __be32 new_addr[4],
427			  bool recalculate_csum)
428{
429	if (recalculate_csum)
430		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
431
432	skb_clear_hash(skb);
433	ovs_ct_clear(skb, NULL);
434	memcpy(addr, new_addr, sizeof(__be32[4]));
435}
436
437static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
438{
439	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
440
441	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
442
443	if (skb->ip_summed == CHECKSUM_COMPLETE)
444		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
445			     (__force __wsum)(ipv6_tclass << 12));
446
447	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
448}
449
450static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
451{
452	u32 ofl;
453
454	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
455	fl = OVS_MASKED(ofl, fl, mask);
456
457	/* Bits 21-24 are always unmasked, so this retains their values. */
458	nh->flow_lbl[0] = (u8)(fl >> 16);
459	nh->flow_lbl[1] = (u8)(fl >> 8);
460	nh->flow_lbl[2] = (u8)fl;
461
462	if (skb->ip_summed == CHECKSUM_COMPLETE)
463		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
464}
465
466static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
467{
468	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
469
470	if (skb->ip_summed == CHECKSUM_COMPLETE)
471		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
472			     (__force __wsum)(new_ttl << 8));
473	nh->hop_limit = new_ttl;
474}
475
476static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
477		       u8 mask)
478{
479	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
480
481	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
482	nh->ttl = new_ttl;
483}
484
485static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
486		    const struct ovs_key_ipv4 *key,
487		    const struct ovs_key_ipv4 *mask)
488{
489	struct iphdr *nh;
490	__be32 new_addr;
491	int err;
492
493	err = skb_ensure_writable(skb, skb_network_offset(skb) +
494				  sizeof(struct iphdr));
495	if (unlikely(err))
496		return err;
497
498	nh = ip_hdr(skb);
499
500	/* Setting an IP addresses is typically only a side effect of
501	 * matching on them in the current userspace implementation, so it
502	 * makes sense to check if the value actually changed.
503	 */
504	if (mask->ipv4_src) {
505		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
506
507		if (unlikely(new_addr != nh->saddr)) {
508			set_ip_addr(skb, nh, &nh->saddr, new_addr);
509			flow_key->ipv4.addr.src = new_addr;
510		}
511	}
512	if (mask->ipv4_dst) {
513		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
514
515		if (unlikely(new_addr != nh->daddr)) {
516			set_ip_addr(skb, nh, &nh->daddr, new_addr);
517			flow_key->ipv4.addr.dst = new_addr;
518		}
519	}
520	if (mask->ipv4_tos) {
521		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
522		flow_key->ip.tos = nh->tos;
523	}
524	if (mask->ipv4_ttl) {
525		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
526		flow_key->ip.ttl = nh->ttl;
527	}
528
529	return 0;
530}
531
532static bool is_ipv6_mask_nonzero(const __be32 addr[4])
533{
534	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
535}
536
537static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
538		    const struct ovs_key_ipv6 *key,
539		    const struct ovs_key_ipv6 *mask)
540{
541	struct ipv6hdr *nh;
542	int err;
543
544	err = skb_ensure_writable(skb, skb_network_offset(skb) +
545				  sizeof(struct ipv6hdr));
546	if (unlikely(err))
547		return err;
548
549	nh = ipv6_hdr(skb);
550
551	/* Setting an IP addresses is typically only a side effect of
552	 * matching on them in the current userspace implementation, so it
553	 * makes sense to check if the value actually changed.
554	 */
555	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
556		__be32 *saddr = (__be32 *)&nh->saddr;
557		__be32 masked[4];
558
559		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
560
561		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
562			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
563				      true);
564			memcpy(&flow_key->ipv6.addr.src, masked,
565			       sizeof(flow_key->ipv6.addr.src));
566		}
567	}
568	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
569		unsigned int offset = 0;
570		int flags = IP6_FH_F_SKIP_RH;
571		bool recalc_csum = true;
572		__be32 *daddr = (__be32 *)&nh->daddr;
573		__be32 masked[4];
574
575		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
576
577		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
578			if (ipv6_ext_hdr(nh->nexthdr))
579				recalc_csum = (ipv6_find_hdr(skb, &offset,
580							     NEXTHDR_ROUTING,
581							     NULL, &flags)
582					       != NEXTHDR_ROUTING);
583
584			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
585				      recalc_csum);
586			memcpy(&flow_key->ipv6.addr.dst, masked,
587			       sizeof(flow_key->ipv6.addr.dst));
588		}
589	}
590	if (mask->ipv6_tclass) {
591		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
592		flow_key->ip.tos = ipv6_get_dsfield(nh);
593	}
594	if (mask->ipv6_label) {
595		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
596			    ntohl(mask->ipv6_label));
597		flow_key->ipv6.label =
598		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
599	}
600	if (mask->ipv6_hlimit) {
601		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
602		flow_key->ip.ttl = nh->hop_limit;
603	}
604	return 0;
605}
606
607static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
608		   const struct nlattr *a)
609{
610	struct nshhdr *nh;
611	size_t length;
612	int err;
613	u8 flags;
614	u8 ttl;
615	int i;
616
617	struct ovs_key_nsh key;
618	struct ovs_key_nsh mask;
619
620	err = nsh_key_from_nlattr(a, &key, &mask);
621	if (err)
622		return err;
623
624	/* Make sure the NSH base header is there */
625	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
626		return -ENOMEM;
627
628	nh = nsh_hdr(skb);
629	length = nsh_hdr_len(nh);
630
631	/* Make sure the whole NSH header is there */
632	err = skb_ensure_writable(skb, skb_network_offset(skb) +
633				       length);
634	if (unlikely(err))
635		return err;
636
637	nh = nsh_hdr(skb);
638	skb_postpull_rcsum(skb, nh, length);
639	flags = nsh_get_flags(nh);
640	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
641	flow_key->nsh.base.flags = flags;
642	ttl = nsh_get_ttl(nh);
643	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
644	flow_key->nsh.base.ttl = ttl;
645	nsh_set_flags_and_ttl(nh, flags, ttl);
646	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
647				  mask.base.path_hdr);
648	flow_key->nsh.base.path_hdr = nh->path_hdr;
649	switch (nh->mdtype) {
650	case NSH_M_TYPE1:
651		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
652			nh->md1.context[i] =
653			    OVS_MASKED(nh->md1.context[i], key.context[i],
654				       mask.context[i]);
655		}
656		memcpy(flow_key->nsh.context, nh->md1.context,
657		       sizeof(nh->md1.context));
658		break;
659	case NSH_M_TYPE2:
660		memset(flow_key->nsh.context, 0,
661		       sizeof(flow_key->nsh.context));
662		break;
663	default:
664		return -EINVAL;
665	}
666	skb_postpush_rcsum(skb, nh, length);
667	return 0;
668}
669
670/* Must follow skb_ensure_writable() since that can move the skb data. */
671static void set_tp_port(struct sk_buff *skb, __be16 *port,
672			__be16 new_port, __sum16 *check)
673{
674	ovs_ct_clear(skb, NULL);
675	inet_proto_csum_replace2(check, skb, *port, new_port, false);
676	*port = new_port;
677}
678
679static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680		   const struct ovs_key_udp *key,
681		   const struct ovs_key_udp *mask)
682{
683	struct udphdr *uh;
684	__be16 src, dst;
685	int err;
686
687	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688				  sizeof(struct udphdr));
689	if (unlikely(err))
690		return err;
691
692	uh = udp_hdr(skb);
693	/* Either of the masks is non-zero, so do not bother checking them. */
694	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
695	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
696
697	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
698		if (likely(src != uh->source)) {
699			set_tp_port(skb, &uh->source, src, &uh->check);
700			flow_key->tp.src = src;
701		}
702		if (likely(dst != uh->dest)) {
703			set_tp_port(skb, &uh->dest, dst, &uh->check);
704			flow_key->tp.dst = dst;
705		}
706
707		if (unlikely(!uh->check))
708			uh->check = CSUM_MANGLED_0;
709	} else {
710		uh->source = src;
711		uh->dest = dst;
712		flow_key->tp.src = src;
713		flow_key->tp.dst = dst;
714		ovs_ct_clear(skb, NULL);
715	}
716
717	skb_clear_hash(skb);
718
719	return 0;
720}
721
722static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
723		   const struct ovs_key_tcp *key,
724		   const struct ovs_key_tcp *mask)
725{
726	struct tcphdr *th;
727	__be16 src, dst;
728	int err;
729
730	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
731				  sizeof(struct tcphdr));
732	if (unlikely(err))
733		return err;
734
735	th = tcp_hdr(skb);
736	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
737	if (likely(src != th->source)) {
738		set_tp_port(skb, &th->source, src, &th->check);
739		flow_key->tp.src = src;
740	}
741	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
742	if (likely(dst != th->dest)) {
743		set_tp_port(skb, &th->dest, dst, &th->check);
744		flow_key->tp.dst = dst;
745	}
746	skb_clear_hash(skb);
747
748	return 0;
749}
750
751static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752		    const struct ovs_key_sctp *key,
753		    const struct ovs_key_sctp *mask)
754{
755	unsigned int sctphoff = skb_transport_offset(skb);
756	struct sctphdr *sh;
757	__le32 old_correct_csum, new_csum, old_csum;
758	int err;
759
760	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
761	if (unlikely(err))
762		return err;
763
764	sh = sctp_hdr(skb);
765	old_csum = sh->checksum;
766	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
767
768	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
769	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
770
771	new_csum = sctp_compute_cksum(skb, sctphoff);
772
773	/* Carry any checksum errors through. */
774	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
775
776	skb_clear_hash(skb);
777	ovs_ct_clear(skb, NULL);
778
779	flow_key->tp.src = sh->source;
780	flow_key->tp.dst = sh->dest;
781
782	return 0;
783}
784
785static int ovs_vport_output(struct net *net, struct sock *sk,
786			    struct sk_buff *skb)
787{
788	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
789	struct vport *vport = data->vport;
790
791	if (skb_cow_head(skb, data->l2_len) < 0) {
792		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
793		return -ENOMEM;
794	}
795
796	__skb_dst_copy(skb, data->dst);
797	*OVS_CB(skb) = data->cb;
798	skb->inner_protocol = data->inner_protocol;
799	if (data->vlan_tci & VLAN_CFI_MASK)
800		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
801	else
802		__vlan_hwaccel_clear_tag(skb);
803
804	/* Reconstruct the MAC header.  */
805	skb_push(skb, data->l2_len);
806	memcpy(skb->data, &data->l2_data, data->l2_len);
807	skb_postpush_rcsum(skb, skb->data, data->l2_len);
808	skb_reset_mac_header(skb);
809
810	if (eth_p_mpls(skb->protocol)) {
811		skb->inner_network_header = skb->network_header;
812		skb_set_network_header(skb, data->network_offset);
813		skb_reset_mac_len(skb);
814	}
815
816	ovs_vport_send(vport, skb, data->mac_proto);
817	return 0;
818}
819
820static unsigned int
821ovs_dst_get_mtu(const struct dst_entry *dst)
822{
823	return dst->dev->mtu;
824}
825
826static struct dst_ops ovs_dst_ops = {
827	.family = AF_UNSPEC,
828	.mtu = ovs_dst_get_mtu,
829};
830
831/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
832 * ovs_vport_output(), which is called once per fragmented packet.
833 */
834static void prepare_frag(struct vport *vport, struct sk_buff *skb,
835			 u16 orig_network_offset, u8 mac_proto)
836{
837	unsigned int hlen = skb_network_offset(skb);
838	struct ovs_frag_data *data;
839
840	data = this_cpu_ptr(&ovs_frag_data_storage);
841	data->dst = skb->_skb_refdst;
842	data->vport = vport;
843	data->cb = *OVS_CB(skb);
844	data->inner_protocol = skb->inner_protocol;
845	data->network_offset = orig_network_offset;
846	if (skb_vlan_tag_present(skb))
847		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
848	else
849		data->vlan_tci = 0;
850	data->vlan_proto = skb->vlan_proto;
851	data->mac_proto = mac_proto;
852	data->l2_len = hlen;
853	memcpy(&data->l2_data, skb->data, hlen);
854
855	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
856	skb_pull(skb, hlen);
857}
858
859static void ovs_fragment(struct net *net, struct vport *vport,
860			 struct sk_buff *skb, u16 mru,
861			 struct sw_flow_key *key)
862{
863	enum ovs_drop_reason reason;
864	u16 orig_network_offset = 0;
865
866	if (eth_p_mpls(skb->protocol)) {
867		orig_network_offset = skb_network_offset(skb);
868		skb->network_header = skb->inner_network_header;
869	}
870
871	if (skb_network_offset(skb) > MAX_L2_LEN) {
872		OVS_NLERR(1, "L2 header too long to fragment");
873		reason = OVS_DROP_FRAG_L2_TOO_LONG;
874		goto err;
875	}
876
877	if (key->eth.type == htons(ETH_P_IP)) {
878		struct rtable ovs_rt = { 0 };
879		unsigned long orig_dst;
880
881		prepare_frag(vport, skb, orig_network_offset,
882			     ovs_key_mac_proto(key));
883		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
884			 DST_OBSOLETE_NONE, DST_NOCOUNT);
885		ovs_rt.dst.dev = vport->dev;
886
887		orig_dst = skb->_skb_refdst;
888		skb_dst_set_noref(skb, &ovs_rt.dst);
889		IPCB(skb)->frag_max_size = mru;
890
891		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
892		refdst_drop(orig_dst);
893	} else if (key->eth.type == htons(ETH_P_IPV6)) {
894		unsigned long orig_dst;
895		struct rt6_info ovs_rt;
896
897		prepare_frag(vport, skb, orig_network_offset,
898			     ovs_key_mac_proto(key));
899		memset(&ovs_rt, 0, sizeof(ovs_rt));
900		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
901			 DST_OBSOLETE_NONE, DST_NOCOUNT);
902		ovs_rt.dst.dev = vport->dev;
903
904		orig_dst = skb->_skb_refdst;
905		skb_dst_set_noref(skb, &ovs_rt.dst);
906		IP6CB(skb)->frag_max_size = mru;
907
908		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
909		refdst_drop(orig_dst);
910	} else {
911		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
912			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
913			  vport->dev->mtu);
914		reason = OVS_DROP_FRAG_INVALID_PROTO;
915		goto err;
916	}
917
918	return;
919err:
920	ovs_kfree_skb_reason(skb, reason);
921}
922
923static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
924		      struct sw_flow_key *key)
925{
926	struct vport *vport = ovs_vport_rcu(dp, out_port);
927
928	if (likely(vport && netif_carrier_ok(vport->dev))) {
929		u16 mru = OVS_CB(skb)->mru;
930		u32 cutlen = OVS_CB(skb)->cutlen;
931
932		if (unlikely(cutlen > 0)) {
933			if (skb->len - cutlen > ovs_mac_header_len(key))
934				pskb_trim(skb, skb->len - cutlen);
935			else
936				pskb_trim(skb, ovs_mac_header_len(key));
937		}
938
939		if (likely(!mru ||
940		           (skb->len <= mru + vport->dev->hard_header_len))) {
941			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
942		} else if (mru <= vport->dev->mtu) {
943			struct net *net = read_pnet(&dp->net);
944
945			ovs_fragment(net, vport, skb, mru, key);
946		} else {
947			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
948		}
949	} else {
950		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
951	}
952}
953
954static int output_userspace(struct datapath *dp, struct sk_buff *skb,
955			    struct sw_flow_key *key, const struct nlattr *attr,
956			    const struct nlattr *actions, int actions_len,
957			    uint32_t cutlen)
958{
959	struct dp_upcall_info upcall;
960	const struct nlattr *a;
961	int rem;
962
963	memset(&upcall, 0, sizeof(upcall));
964	upcall.cmd = OVS_PACKET_CMD_ACTION;
965	upcall.mru = OVS_CB(skb)->mru;
966
967	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
968	     a = nla_next(a, &rem)) {
969		switch (nla_type(a)) {
970		case OVS_USERSPACE_ATTR_USERDATA:
971			upcall.userdata = a;
972			break;
973
974		case OVS_USERSPACE_ATTR_PID:
975			if (dp->user_features &
976			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
977				upcall.portid =
978				  ovs_dp_get_upcall_portid(dp,
979							   smp_processor_id());
980			else
981				upcall.portid = nla_get_u32(a);
982			break;
983
984		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
985			/* Get out tunnel info. */
986			struct vport *vport;
987
988			vport = ovs_vport_rcu(dp, nla_get_u32(a));
989			if (vport) {
990				int err;
991
992				err = dev_fill_metadata_dst(vport->dev, skb);
993				if (!err)
994					upcall.egress_tun_info = skb_tunnel_info(skb);
995			}
996
997			break;
998		}
999
1000		case OVS_USERSPACE_ATTR_ACTIONS: {
1001			/* Include actions. */
1002			upcall.actions = actions;
1003			upcall.actions_len = actions_len;
1004			break;
1005		}
1006
1007		} /* End of switch. */
1008	}
1009
1010	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1011}
1012
1013static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1014				     struct sw_flow_key *key,
1015				     const struct nlattr *attr)
1016{
1017	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1018	struct nlattr *actions = nla_data(attr);
1019
1020	if (nla_len(actions))
1021		return clone_execute(dp, skb, key, 0, nla_data(actions),
1022				     nla_len(actions), true, false);
1023
1024	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1025	return 0;
1026}
1027
1028/* When 'last' is true, sample() should always consume the 'skb'.
1029 * Otherwise, sample() should keep 'skb' intact regardless what
1030 * actions are executed within sample().
1031 */
1032static int sample(struct datapath *dp, struct sk_buff *skb,
1033		  struct sw_flow_key *key, const struct nlattr *attr,
1034		  bool last)
1035{
1036	struct nlattr *actions;
1037	struct nlattr *sample_arg;
1038	int rem = nla_len(attr);
1039	const struct sample_arg *arg;
1040	bool clone_flow_key;
1041
1042	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1043	sample_arg = nla_data(attr);
1044	arg = nla_data(sample_arg);
1045	actions = nla_next(sample_arg, &rem);
1046
1047	if ((arg->probability != U32_MAX) &&
1048	    (!arg->probability || get_random_u32() > arg->probability)) {
1049		if (last)
1050			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1051		return 0;
1052	}
1053
1054	clone_flow_key = !arg->exec;
1055	return clone_execute(dp, skb, key, 0, actions, rem, last,
1056			     clone_flow_key);
1057}
1058
1059/* When 'last' is true, clone() should always consume the 'skb'.
1060 * Otherwise, clone() should keep 'skb' intact regardless what
1061 * actions are executed within clone().
1062 */
1063static int clone(struct datapath *dp, struct sk_buff *skb,
1064		 struct sw_flow_key *key, const struct nlattr *attr,
1065		 bool last)
1066{
1067	struct nlattr *actions;
1068	struct nlattr *clone_arg;
1069	int rem = nla_len(attr);
1070	bool dont_clone_flow_key;
1071
1072	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1073	clone_arg = nla_data(attr);
1074	dont_clone_flow_key = nla_get_u32(clone_arg);
1075	actions = nla_next(clone_arg, &rem);
1076
1077	return clone_execute(dp, skb, key, 0, actions, rem, last,
1078			     !dont_clone_flow_key);
1079}
1080
1081static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1082			 const struct nlattr *attr)
1083{
1084	struct ovs_action_hash *hash_act = nla_data(attr);
1085	u32 hash = 0;
1086
1087	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1088		/* OVS_HASH_ALG_L4 hasing type. */
1089		hash = skb_get_hash(skb);
1090	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1091		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1092		 * extend past an encapsulated header.
1093		 */
1094		hash = __skb_get_hash_symmetric(skb);
1095	}
1096
1097	hash = jhash_1word(hash, hash_act->hash_basis);
1098	if (!hash)
1099		hash = 0x1;
1100
1101	key->ovs_flow_hash = hash;
1102}
1103
1104static int execute_set_action(struct sk_buff *skb,
1105			      struct sw_flow_key *flow_key,
1106			      const struct nlattr *a)
1107{
1108	/* Only tunnel set execution is supported without a mask. */
1109	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1110		struct ovs_tunnel_info *tun = nla_data(a);
1111
1112		skb_dst_drop(skb);
1113		dst_hold((struct dst_entry *)tun->tun_dst);
1114		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1115		return 0;
1116	}
1117
1118	return -EINVAL;
1119}
1120
1121/* Mask is at the midpoint of the data. */
1122#define get_mask(a, type) ((const type)nla_data(a) + 1)
1123
1124static int execute_masked_set_action(struct sk_buff *skb,
1125				     struct sw_flow_key *flow_key,
1126				     const struct nlattr *a)
1127{
1128	int err = 0;
1129
1130	switch (nla_type(a)) {
1131	case OVS_KEY_ATTR_PRIORITY:
1132		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1133			       *get_mask(a, u32 *));
1134		flow_key->phy.priority = skb->priority;
1135		break;
1136
1137	case OVS_KEY_ATTR_SKB_MARK:
1138		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1139		flow_key->phy.skb_mark = skb->mark;
1140		break;
1141
1142	case OVS_KEY_ATTR_TUNNEL_INFO:
1143		/* Masked data not supported for tunnel. */
1144		err = -EINVAL;
1145		break;
1146
1147	case OVS_KEY_ATTR_ETHERNET:
1148		err = set_eth_addr(skb, flow_key, nla_data(a),
1149				   get_mask(a, struct ovs_key_ethernet *));
1150		break;
1151
1152	case OVS_KEY_ATTR_NSH:
1153		err = set_nsh(skb, flow_key, a);
1154		break;
1155
1156	case OVS_KEY_ATTR_IPV4:
1157		err = set_ipv4(skb, flow_key, nla_data(a),
1158			       get_mask(a, struct ovs_key_ipv4 *));
1159		break;
1160
1161	case OVS_KEY_ATTR_IPV6:
1162		err = set_ipv6(skb, flow_key, nla_data(a),
1163			       get_mask(a, struct ovs_key_ipv6 *));
1164		break;
1165
1166	case OVS_KEY_ATTR_TCP:
1167		err = set_tcp(skb, flow_key, nla_data(a),
1168			      get_mask(a, struct ovs_key_tcp *));
1169		break;
1170
1171	case OVS_KEY_ATTR_UDP:
1172		err = set_udp(skb, flow_key, nla_data(a),
1173			      get_mask(a, struct ovs_key_udp *));
1174		break;
1175
1176	case OVS_KEY_ATTR_SCTP:
1177		err = set_sctp(skb, flow_key, nla_data(a),
1178			       get_mask(a, struct ovs_key_sctp *));
1179		break;
1180
1181	case OVS_KEY_ATTR_MPLS:
1182		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1183								    __be32 *));
1184		break;
1185
1186	case OVS_KEY_ATTR_CT_STATE:
1187	case OVS_KEY_ATTR_CT_ZONE:
1188	case OVS_KEY_ATTR_CT_MARK:
1189	case OVS_KEY_ATTR_CT_LABELS:
1190	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1191	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1192		err = -EINVAL;
1193		break;
1194	}
1195
1196	return err;
1197}
1198
1199static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1200			  struct sw_flow_key *key,
1201			  const struct nlattr *a, bool last)
1202{
1203	u32 recirc_id;
1204
1205	if (!is_flow_key_valid(key)) {
1206		int err;
1207
1208		err = ovs_flow_key_update(skb, key);
1209		if (err)
1210			return err;
1211	}
1212	BUG_ON(!is_flow_key_valid(key));
1213
1214	recirc_id = nla_get_u32(a);
1215	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1216}
1217
1218static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1219				 struct sw_flow_key *key,
1220				 const struct nlattr *attr, bool last)
1221{
1222	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1223	const struct nlattr *actions, *cpl_arg;
1224	int len, max_len, rem = nla_len(attr);
1225	const struct check_pkt_len_arg *arg;
1226	bool clone_flow_key;
1227
1228	/* The first netlink attribute in 'attr' is always
1229	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1230	 */
1231	cpl_arg = nla_data(attr);
1232	arg = nla_data(cpl_arg);
1233
1234	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1235	max_len = arg->pkt_len;
1236
1237	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1238	    len <= max_len) {
1239		/* Second netlink attribute in 'attr' is always
1240		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1241		 */
1242		actions = nla_next(cpl_arg, &rem);
1243		clone_flow_key = !arg->exec_for_lesser_equal;
1244	} else {
1245		/* Third netlink attribute in 'attr' is always
1246		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1247		 */
1248		actions = nla_next(cpl_arg, &rem);
1249		actions = nla_next(actions, &rem);
1250		clone_flow_key = !arg->exec_for_greater;
1251	}
1252
1253	return clone_execute(dp, skb, key, 0, nla_data(actions),
1254			     nla_len(actions), last, clone_flow_key);
1255}
1256
1257static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1258{
1259	int err;
1260
1261	if (skb->protocol == htons(ETH_P_IPV6)) {
1262		struct ipv6hdr *nh;
1263
1264		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1265					  sizeof(*nh));
1266		if (unlikely(err))
1267			return err;
1268
1269		nh = ipv6_hdr(skb);
1270
1271		if (nh->hop_limit <= 1)
1272			return -EHOSTUNREACH;
1273
1274		key->ip.ttl = --nh->hop_limit;
1275	} else if (skb->protocol == htons(ETH_P_IP)) {
1276		struct iphdr *nh;
1277		u8 old_ttl;
1278
1279		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1280					  sizeof(*nh));
1281		if (unlikely(err))
1282			return err;
1283
1284		nh = ip_hdr(skb);
1285		if (nh->ttl <= 1)
1286			return -EHOSTUNREACH;
1287
1288		old_ttl = nh->ttl--;
1289		csum_replace2(&nh->check, htons(old_ttl << 8),
1290			      htons(nh->ttl << 8));
1291		key->ip.ttl = nh->ttl;
1292	}
1293	return 0;
1294}
1295
1296/* Execute a list of actions against 'skb'. */
1297static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1298			      struct sw_flow_key *key,
1299			      const struct nlattr *attr, int len)
1300{
1301	const struct nlattr *a;
1302	int rem;
1303
1304	for (a = attr, rem = len; rem > 0;
1305	     a = nla_next(a, &rem)) {
1306		int err = 0;
1307
1308		if (trace_ovs_do_execute_action_enabled())
1309			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1310
1311		/* Actions that rightfully have to consume the skb should do it
1312		 * and return directly.
1313		 */
1314		switch (nla_type(a)) {
1315		case OVS_ACTION_ATTR_OUTPUT: {
1316			int port = nla_get_u32(a);
1317			struct sk_buff *clone;
1318
1319			/* Every output action needs a separate clone
1320			 * of 'skb', In case the output action is the
1321			 * last action, cloning can be avoided.
1322			 */
1323			if (nla_is_last(a, rem)) {
1324				do_output(dp, skb, port, key);
1325				/* 'skb' has been used for output.
1326				 */
1327				return 0;
1328			}
1329
1330			clone = skb_clone(skb, GFP_ATOMIC);
1331			if (clone)
1332				do_output(dp, clone, port, key);
1333			OVS_CB(skb)->cutlen = 0;
1334			break;
1335		}
1336
1337		case OVS_ACTION_ATTR_TRUNC: {
1338			struct ovs_action_trunc *trunc = nla_data(a);
1339
1340			if (skb->len > trunc->max_len)
1341				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1342			break;
1343		}
1344
1345		case OVS_ACTION_ATTR_USERSPACE:
1346			output_userspace(dp, skb, key, a, attr,
1347						     len, OVS_CB(skb)->cutlen);
1348			OVS_CB(skb)->cutlen = 0;
1349			if (nla_is_last(a, rem)) {
1350				consume_skb(skb);
1351				return 0;
1352			}
1353			break;
1354
1355		case OVS_ACTION_ATTR_HASH:
1356			execute_hash(skb, key, a);
1357			break;
1358
1359		case OVS_ACTION_ATTR_PUSH_MPLS: {
1360			struct ovs_action_push_mpls *mpls = nla_data(a);
1361
1362			err = push_mpls(skb, key, mpls->mpls_lse,
1363					mpls->mpls_ethertype, skb->mac_len);
1364			break;
1365		}
1366		case OVS_ACTION_ATTR_ADD_MPLS: {
1367			struct ovs_action_add_mpls *mpls = nla_data(a);
1368			__u16 mac_len = 0;
1369
1370			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1371				mac_len = skb->mac_len;
1372
1373			err = push_mpls(skb, key, mpls->mpls_lse,
1374					mpls->mpls_ethertype, mac_len);
1375			break;
1376		}
1377		case OVS_ACTION_ATTR_POP_MPLS:
1378			err = pop_mpls(skb, key, nla_get_be16(a));
1379			break;
1380
1381		case OVS_ACTION_ATTR_PUSH_VLAN:
1382			err = push_vlan(skb, key, nla_data(a));
1383			break;
1384
1385		case OVS_ACTION_ATTR_POP_VLAN:
1386			err = pop_vlan(skb, key);
1387			break;
1388
1389		case OVS_ACTION_ATTR_RECIRC: {
1390			bool last = nla_is_last(a, rem);
1391
1392			err = execute_recirc(dp, skb, key, a, last);
1393			if (last) {
1394				/* If this is the last action, the skb has
1395				 * been consumed or freed.
1396				 * Return immediately.
1397				 */
1398				return err;
1399			}
1400			break;
1401		}
1402
1403		case OVS_ACTION_ATTR_SET:
1404			err = execute_set_action(skb, key, nla_data(a));
1405			break;
1406
1407		case OVS_ACTION_ATTR_SET_MASKED:
1408		case OVS_ACTION_ATTR_SET_TO_MASKED:
1409			err = execute_masked_set_action(skb, key, nla_data(a));
1410			break;
1411
1412		case OVS_ACTION_ATTR_SAMPLE: {
1413			bool last = nla_is_last(a, rem);
1414
1415			err = sample(dp, skb, key, a, last);
1416			if (last)
1417				return err;
1418
1419			break;
1420		}
1421
1422		case OVS_ACTION_ATTR_CT:
1423			if (!is_flow_key_valid(key)) {
1424				err = ovs_flow_key_update(skb, key);
1425				if (err)
1426					return err;
1427			}
1428
1429			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1430					     nla_data(a));
1431
1432			/* Hide stolen IP fragments from user space. */
1433			if (err)
1434				return err == -EINPROGRESS ? 0 : err;
1435			break;
1436
1437		case OVS_ACTION_ATTR_CT_CLEAR:
1438			err = ovs_ct_clear(skb, key);
1439			break;
1440
1441		case OVS_ACTION_ATTR_PUSH_ETH:
1442			err = push_eth(skb, key, nla_data(a));
1443			break;
1444
1445		case OVS_ACTION_ATTR_POP_ETH:
1446			err = pop_eth(skb, key);
1447			break;
1448
1449		case OVS_ACTION_ATTR_PUSH_NSH:
1450			err = push_nsh(skb, key, nla_data(a));
1451			break;
1452
1453		case OVS_ACTION_ATTR_POP_NSH:
1454			err = pop_nsh(skb, key);
1455			break;
1456
1457		case OVS_ACTION_ATTR_METER:
1458			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1459				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1460				return 0;
1461			}
1462			break;
1463
1464		case OVS_ACTION_ATTR_CLONE: {
1465			bool last = nla_is_last(a, rem);
1466
1467			err = clone(dp, skb, key, a, last);
1468			if (last)
1469				return err;
1470
1471			break;
1472		}
1473
1474		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1475			bool last = nla_is_last(a, rem);
1476
1477			err = execute_check_pkt_len(dp, skb, key, a, last);
1478			if (last)
1479				return err;
1480
1481			break;
1482		}
1483
1484		case OVS_ACTION_ATTR_DEC_TTL:
1485			err = execute_dec_ttl(skb, key);
1486			if (err == -EHOSTUNREACH)
1487				return dec_ttl_exception_handler(dp, skb,
1488								 key, a);
1489			break;
1490
1491		case OVS_ACTION_ATTR_DROP: {
1492			enum ovs_drop_reason reason = nla_get_u32(a)
1493				? OVS_DROP_EXPLICIT_WITH_ERROR
1494				: OVS_DROP_EXPLICIT;
1495
1496			ovs_kfree_skb_reason(skb, reason);
1497			return 0;
1498		}
1499		}
1500
1501		if (unlikely(err)) {
1502			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1503			return err;
1504		}
1505	}
1506
1507	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1508	return 0;
1509}
1510
1511/* Execute the actions on the clone of the packet. The effect of the
1512 * execution does not affect the original 'skb' nor the original 'key'.
1513 *
1514 * The execution may be deferred in case the actions can not be executed
1515 * immediately.
1516 */
1517static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1518			 struct sw_flow_key *key, u32 recirc_id,
1519			 const struct nlattr *actions, int len,
1520			 bool last, bool clone_flow_key)
1521{
1522	struct deferred_action *da;
1523	struct sw_flow_key *clone;
1524
1525	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1526	if (!skb) {
1527		/* Out of memory, skip this action.
1528		 */
1529		return 0;
1530	}
1531
1532	/* When clone_flow_key is false, the 'key' will not be change
1533	 * by the actions, then the 'key' can be used directly.
1534	 * Otherwise, try to clone key from the next recursion level of
1535	 * 'flow_keys'. If clone is successful, execute the actions
1536	 * without deferring.
1537	 */
1538	clone = clone_flow_key ? clone_key(key) : key;
1539	if (clone) {
1540		int err = 0;
1541
1542		if (actions) { /* Sample action */
1543			if (clone_flow_key)
1544				__this_cpu_inc(exec_actions_level);
1545
1546			err = do_execute_actions(dp, skb, clone,
1547						 actions, len);
1548
1549			if (clone_flow_key)
1550				__this_cpu_dec(exec_actions_level);
1551		} else { /* Recirc action */
1552			clone->recirc_id = recirc_id;
1553			ovs_dp_process_packet(skb, clone);
1554		}
1555		return err;
1556	}
1557
1558	/* Out of 'flow_keys' space. Defer actions */
1559	da = add_deferred_actions(skb, key, actions, len);
1560	if (da) {
1561		if (!actions) { /* Recirc action */
1562			key = &da->pkt_key;
1563			key->recirc_id = recirc_id;
1564		}
1565	} else {
1566		/* Out of per CPU action FIFO space. Drop the 'skb' and
1567		 * log an error.
1568		 */
1569		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1570
1571		if (net_ratelimit()) {
1572			if (actions) { /* Sample action */
1573				pr_warn("%s: deferred action limit reached, drop sample action\n",
1574					ovs_dp_name(dp));
1575			} else {  /* Recirc action */
1576				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1577					ovs_dp_name(dp), recirc_id);
1578			}
1579		}
1580	}
1581	return 0;
1582}
1583
1584static void process_deferred_actions(struct datapath *dp)
1585{
1586	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1587
1588	/* Do not touch the FIFO in case there is no deferred actions. */
1589	if (action_fifo_is_empty(fifo))
1590		return;
1591
1592	/* Finishing executing all deferred actions. */
1593	do {
1594		struct deferred_action *da = action_fifo_get(fifo);
1595		struct sk_buff *skb = da->skb;
1596		struct sw_flow_key *key = &da->pkt_key;
1597		const struct nlattr *actions = da->actions;
1598		int actions_len = da->actions_len;
1599
1600		if (actions)
1601			do_execute_actions(dp, skb, key, actions, actions_len);
1602		else
1603			ovs_dp_process_packet(skb, key);
1604	} while (!action_fifo_is_empty(fifo));
1605
1606	/* Reset FIFO for the next packet.  */
1607	action_fifo_init(fifo);
1608}
1609
1610/* Execute a list of actions against 'skb'. */
1611int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1612			const struct sw_flow_actions *acts,
1613			struct sw_flow_key *key)
1614{
1615	int err, level;
1616
1617	level = __this_cpu_inc_return(exec_actions_level);
1618	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1619		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1620				     ovs_dp_name(dp));
1621		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1622		err = -ENETDOWN;
1623		goto out;
1624	}
1625
1626	OVS_CB(skb)->acts_origlen = acts->orig_len;
1627	err = do_execute_actions(dp, skb, key,
1628				 acts->actions, acts->actions_len);
1629
1630	if (level == 1)
1631		process_deferred_actions(dp);
1632
1633out:
1634	__this_cpu_dec(exec_actions_level);
1635	return err;
1636}
1637
1638int action_fifos_init(void)
1639{
1640	action_fifos = alloc_percpu(struct action_fifo);
1641	if (!action_fifos)
1642		return -ENOMEM;
1643
1644	flow_keys = alloc_percpu(struct action_flow_keys);
1645	if (!flow_keys) {
1646		free_percpu(action_fifos);
1647		return -ENOMEM;
1648	}
1649
1650	return 0;
1651}
1652
1653void action_fifos_exit(void)
1654{
1655	free_percpu(action_fifos);
1656	free_percpu(flow_keys);
1657}
1658