1// SPDX-License-Identifier: GPL-2.0-only
2/* Connection state tracking for netfilter.  This is separated from,
3   but required by, the NAT layer; it can also be used by an iptables
4   extension. */
5
6/* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/types.h>
15#include <linux/netfilter.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/skbuff.h>
19#include <linux/proc_fs.h>
20#include <linux/vmalloc.h>
21#include <linux/stddef.h>
22#include <linux/slab.h>
23#include <linux/random.h>
24#include <linux/siphash.h>
25#include <linux/err.h>
26#include <linux/percpu.h>
27#include <linux/moduleparam.h>
28#include <linux/notifier.h>
29#include <linux/kernel.h>
30#include <linux/netdevice.h>
31#include <linux/socket.h>
32#include <linux/mm.h>
33#include <linux/nsproxy.h>
34#include <linux/rculist_nulls.h>
35
36#include <net/netfilter/nf_conntrack.h>
37#include <net/netfilter/nf_conntrack_bpf.h>
38#include <net/netfilter/nf_conntrack_l4proto.h>
39#include <net/netfilter/nf_conntrack_expect.h>
40#include <net/netfilter/nf_conntrack_helper.h>
41#include <net/netfilter/nf_conntrack_core.h>
42#include <net/netfilter/nf_conntrack_extend.h>
43#include <net/netfilter/nf_conntrack_acct.h>
44#include <net/netfilter/nf_conntrack_ecache.h>
45#include <net/netfilter/nf_conntrack_zones.h>
46#include <net/netfilter/nf_conntrack_timestamp.h>
47#include <net/netfilter/nf_conntrack_timeout.h>
48#include <net/netfilter/nf_conntrack_labels.h>
49#include <net/netfilter/nf_conntrack_synproxy.h>
50#include <net/netfilter/nf_nat.h>
51#include <net/netfilter/nf_nat_helper.h>
52#include <net/netns/hash.h>
53#include <net/ip.h>
54
55#include "nf_internals.h"
56
57__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66struct conntrack_gc_work {
67	struct delayed_work	dwork;
68	u32			next_bucket;
69	u32			avg_timeout;
70	u32			count;
71	u32			start_time;
72	bool			exiting;
73	bool			early_drop;
74};
75
76static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78static __read_mostly bool nf_conntrack_locks_all;
79
80/* serialize hash resizes and nf_ct_iterate_cleanup */
81static DEFINE_MUTEX(nf_conntrack_mutex);
82
83#define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
84#define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
85
86/* clamp timeouts to this value (TCP unacked) */
87#define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
88
89/* Initial bias pretending we have 100 entries at the upper bound so we don't
90 * wakeup often just because we have three entries with a 1s timeout while still
91 * allowing non-idle machines to wakeup more often when needed.
92 */
93#define GC_SCAN_INITIAL_COUNT	100
94#define GC_SCAN_INTERVAL_INIT	GC_SCAN_INTERVAL_MAX
95
96#define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
97#define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
98
99#define MIN_CHAINLEN	50u
100#define MAX_CHAINLEN	(80u - MIN_CHAINLEN)
101
102static struct conntrack_gc_work conntrack_gc_work;
103
104void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105{
106	/* 1) Acquire the lock */
107	spin_lock(lock);
108
109	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111	 */
112	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113		return;
114
115	/* fast path failed, unlock */
116	spin_unlock(lock);
117
118	/* Slow path 1) get global lock */
119	spin_lock(&nf_conntrack_locks_all_lock);
120
121	/* Slow path 2) get the lock we want */
122	spin_lock(lock);
123
124	/* Slow path 3) release the global lock */
125	spin_unlock(&nf_conntrack_locks_all_lock);
126}
127EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
129static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130{
131	h1 %= CONNTRACK_LOCKS;
132	h2 %= CONNTRACK_LOCKS;
133	spin_unlock(&nf_conntrack_locks[h1]);
134	if (h1 != h2)
135		spin_unlock(&nf_conntrack_locks[h2]);
136}
137
138/* return true if we need to recompute hashes (in case hash table was resized) */
139static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140				     unsigned int h2, unsigned int sequence)
141{
142	h1 %= CONNTRACK_LOCKS;
143	h2 %= CONNTRACK_LOCKS;
144	if (h1 <= h2) {
145		nf_conntrack_lock(&nf_conntrack_locks[h1]);
146		if (h1 != h2)
147			spin_lock_nested(&nf_conntrack_locks[h2],
148					 SINGLE_DEPTH_NESTING);
149	} else {
150		nf_conntrack_lock(&nf_conntrack_locks[h2]);
151		spin_lock_nested(&nf_conntrack_locks[h1],
152				 SINGLE_DEPTH_NESTING);
153	}
154	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155		nf_conntrack_double_unlock(h1, h2);
156		return true;
157	}
158	return false;
159}
160
161static void nf_conntrack_all_lock(void)
162	__acquires(&nf_conntrack_locks_all_lock)
163{
164	int i;
165
166	spin_lock(&nf_conntrack_locks_all_lock);
167
168	/* For nf_contrack_locks_all, only the latest time when another
169	 * CPU will see an update is controlled, by the "release" of the
170	 * spin_lock below.
171	 * The earliest time is not controlled, an thus KCSAN could detect
172	 * a race when nf_conntract_lock() reads the variable.
173	 * WRITE_ONCE() is used to ensure the compiler will not
174	 * optimize the write.
175	 */
176	WRITE_ONCE(nf_conntrack_locks_all, true);
177
178	for (i = 0; i < CONNTRACK_LOCKS; i++) {
179		spin_lock(&nf_conntrack_locks[i]);
180
181		/* This spin_unlock provides the "release" to ensure that
182		 * nf_conntrack_locks_all==true is visible to everyone that
183		 * acquired spin_lock(&nf_conntrack_locks[]).
184		 */
185		spin_unlock(&nf_conntrack_locks[i]);
186	}
187}
188
189static void nf_conntrack_all_unlock(void)
190	__releases(&nf_conntrack_locks_all_lock)
191{
192	/* All prior stores must be complete before we clear
193	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194	 * might observe the false value but not the entire
195	 * critical section.
196	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197	 */
198	smp_store_release(&nf_conntrack_locks_all, false);
199	spin_unlock(&nf_conntrack_locks_all_lock);
200}
201
202unsigned int nf_conntrack_htable_size __read_mostly;
203EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205unsigned int nf_conntrack_max __read_mostly;
206EXPORT_SYMBOL_GPL(nf_conntrack_max);
207seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
210static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211			      unsigned int zoneid,
212			      const struct net *net)
213{
214	siphash_key_t key;
215
216	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217
218	key = nf_conntrack_hash_rnd;
219
220	key.key[0] ^= zoneid;
221	key.key[1] ^= net_hash_mix(net);
222
223	return siphash((void *)tuple,
224			offsetofend(struct nf_conntrack_tuple, dst.__nfct_hash_offsetend),
225			&key);
226}
227
228static u32 scale_hash(u32 hash)
229{
230	return reciprocal_scale(hash, nf_conntrack_htable_size);
231}
232
233static u32 __hash_conntrack(const struct net *net,
234			    const struct nf_conntrack_tuple *tuple,
235			    unsigned int zoneid,
236			    unsigned int size)
237{
238	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
239}
240
241static u32 hash_conntrack(const struct net *net,
242			  const struct nf_conntrack_tuple *tuple,
243			  unsigned int zoneid)
244{
245	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
246}
247
248static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
249				  unsigned int dataoff,
250				  struct nf_conntrack_tuple *tuple)
251{	struct {
252		__be16 sport;
253		__be16 dport;
254	} _inet_hdr, *inet_hdr;
255
256	/* Actually only need first 4 bytes to get ports. */
257	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
258	if (!inet_hdr)
259		return false;
260
261	tuple->src.u.udp.port = inet_hdr->sport;
262	tuple->dst.u.udp.port = inet_hdr->dport;
263	return true;
264}
265
266static bool
267nf_ct_get_tuple(const struct sk_buff *skb,
268		unsigned int nhoff,
269		unsigned int dataoff,
270		u_int16_t l3num,
271		u_int8_t protonum,
272		struct net *net,
273		struct nf_conntrack_tuple *tuple)
274{
275	unsigned int size;
276	const __be32 *ap;
277	__be32 _addrs[8];
278
279	memset(tuple, 0, sizeof(*tuple));
280
281	tuple->src.l3num = l3num;
282	switch (l3num) {
283	case NFPROTO_IPV4:
284		nhoff += offsetof(struct iphdr, saddr);
285		size = 2 * sizeof(__be32);
286		break;
287	case NFPROTO_IPV6:
288		nhoff += offsetof(struct ipv6hdr, saddr);
289		size = sizeof(_addrs);
290		break;
291	default:
292		return true;
293	}
294
295	ap = skb_header_pointer(skb, nhoff, size, _addrs);
296	if (!ap)
297		return false;
298
299	switch (l3num) {
300	case NFPROTO_IPV4:
301		tuple->src.u3.ip = ap[0];
302		tuple->dst.u3.ip = ap[1];
303		break;
304	case NFPROTO_IPV6:
305		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
306		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
307		break;
308	}
309
310	tuple->dst.protonum = protonum;
311	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
312
313	switch (protonum) {
314#if IS_ENABLED(CONFIG_IPV6)
315	case IPPROTO_ICMPV6:
316		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
317#endif
318	case IPPROTO_ICMP:
319		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
320#ifdef CONFIG_NF_CT_PROTO_GRE
321	case IPPROTO_GRE:
322		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
323#endif
324	case IPPROTO_TCP:
325	case IPPROTO_UDP:
326#ifdef CONFIG_NF_CT_PROTO_UDPLITE
327	case IPPROTO_UDPLITE:
328#endif
329#ifdef CONFIG_NF_CT_PROTO_SCTP
330	case IPPROTO_SCTP:
331#endif
332#ifdef CONFIG_NF_CT_PROTO_DCCP
333	case IPPROTO_DCCP:
334#endif
335		/* fallthrough */
336		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337	default:
338		break;
339	}
340
341	return true;
342}
343
344static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
345			    u_int8_t *protonum)
346{
347	int dataoff = -1;
348	const struct iphdr *iph;
349	struct iphdr _iph;
350
351	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
352	if (!iph)
353		return -1;
354
355	/* Conntrack defragments packets, we might still see fragments
356	 * inside ICMP packets though.
357	 */
358	if (iph->frag_off & htons(IP_OFFSET))
359		return -1;
360
361	dataoff = nhoff + (iph->ihl << 2);
362	*protonum = iph->protocol;
363
364	/* Check bogus IP headers */
365	if (dataoff > skb->len) {
366		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
367			 nhoff, iph->ihl << 2, skb->len);
368		return -1;
369	}
370	return dataoff;
371}
372
373#if IS_ENABLED(CONFIG_IPV6)
374static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
375			    u8 *protonum)
376{
377	int protoff = -1;
378	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
379	__be16 frag_off;
380	u8 nexthdr;
381
382	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
383			  &nexthdr, sizeof(nexthdr)) != 0) {
384		pr_debug("can't get nexthdr\n");
385		return -1;
386	}
387	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
388	/*
389	 * (protoff == skb->len) means the packet has not data, just
390	 * IPv6 and possibly extensions headers, but it is tracked anyway
391	 */
392	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
393		pr_debug("can't find proto in pkt\n");
394		return -1;
395	}
396
397	*protonum = nexthdr;
398	return protoff;
399}
400#endif
401
402static int get_l4proto(const struct sk_buff *skb,
403		       unsigned int nhoff, u8 pf, u8 *l4num)
404{
405	switch (pf) {
406	case NFPROTO_IPV4:
407		return ipv4_get_l4proto(skb, nhoff, l4num);
408#if IS_ENABLED(CONFIG_IPV6)
409	case NFPROTO_IPV6:
410		return ipv6_get_l4proto(skb, nhoff, l4num);
411#endif
412	default:
413		*l4num = 0;
414		break;
415	}
416	return -1;
417}
418
419bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
420		       u_int16_t l3num,
421		       struct net *net, struct nf_conntrack_tuple *tuple)
422{
423	u8 protonum;
424	int protoff;
425
426	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
427	if (protoff <= 0)
428		return false;
429
430	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
431}
432EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
433
434bool
435nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
436		   const struct nf_conntrack_tuple *orig)
437{
438	memset(inverse, 0, sizeof(*inverse));
439
440	inverse->src.l3num = orig->src.l3num;
441
442	switch (orig->src.l3num) {
443	case NFPROTO_IPV4:
444		inverse->src.u3.ip = orig->dst.u3.ip;
445		inverse->dst.u3.ip = orig->src.u3.ip;
446		break;
447	case NFPROTO_IPV6:
448		inverse->src.u3.in6 = orig->dst.u3.in6;
449		inverse->dst.u3.in6 = orig->src.u3.in6;
450		break;
451	default:
452		break;
453	}
454
455	inverse->dst.dir = !orig->dst.dir;
456
457	inverse->dst.protonum = orig->dst.protonum;
458
459	switch (orig->dst.protonum) {
460	case IPPROTO_ICMP:
461		return nf_conntrack_invert_icmp_tuple(inverse, orig);
462#if IS_ENABLED(CONFIG_IPV6)
463	case IPPROTO_ICMPV6:
464		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
465#endif
466	}
467
468	inverse->src.u.all = orig->dst.u.all;
469	inverse->dst.u.all = orig->src.u.all;
470	return true;
471}
472EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
473
474/* Generate a almost-unique pseudo-id for a given conntrack.
475 *
476 * intentionally doesn't re-use any of the seeds used for hash
477 * table location, we assume id gets exposed to userspace.
478 *
479 * Following nf_conn items do not change throughout lifetime
480 * of the nf_conn:
481 *
482 * 1. nf_conn address
483 * 2. nf_conn->master address (normally NULL)
484 * 3. the associated net namespace
485 * 4. the original direction tuple
486 */
487u32 nf_ct_get_id(const struct nf_conn *ct)
488{
489	static siphash_aligned_key_t ct_id_seed;
490	unsigned long a, b, c, d;
491
492	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
493
494	a = (unsigned long)ct;
495	b = (unsigned long)ct->master;
496	c = (unsigned long)nf_ct_net(ct);
497	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
498				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
499				   &ct_id_seed);
500#ifdef CONFIG_64BIT
501	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
502#else
503	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
504#endif
505}
506EXPORT_SYMBOL_GPL(nf_ct_get_id);
507
508static void
509clean_from_lists(struct nf_conn *ct)
510{
511	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
512	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
513
514	/* Destroy all pending expectations */
515	nf_ct_remove_expectations(ct);
516}
517
518#define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
519
520/* Released via nf_ct_destroy() */
521struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
522				 const struct nf_conntrack_zone *zone,
523				 gfp_t flags)
524{
525	struct nf_conn *tmpl, *p;
526
527	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
528		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
529		if (!tmpl)
530			return NULL;
531
532		p = tmpl;
533		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
534		if (tmpl != p) {
535			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
536			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
537		}
538	} else {
539		tmpl = kzalloc(sizeof(*tmpl), flags);
540		if (!tmpl)
541			return NULL;
542	}
543
544	tmpl->status = IPS_TEMPLATE;
545	write_pnet(&tmpl->ct_net, net);
546	nf_ct_zone_add(tmpl, zone);
547	refcount_set(&tmpl->ct_general.use, 1);
548
549	return tmpl;
550}
551EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
552
553void nf_ct_tmpl_free(struct nf_conn *tmpl)
554{
555	kfree(tmpl->ext);
556
557	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
558		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
559	else
560		kfree(tmpl);
561}
562EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
563
564static void destroy_gre_conntrack(struct nf_conn *ct)
565{
566#ifdef CONFIG_NF_CT_PROTO_GRE
567	struct nf_conn *master = ct->master;
568
569	if (master)
570		nf_ct_gre_keymap_destroy(master);
571#endif
572}
573
574void nf_ct_destroy(struct nf_conntrack *nfct)
575{
576	struct nf_conn *ct = (struct nf_conn *)nfct;
577
578	WARN_ON(refcount_read(&nfct->use) != 0);
579
580	if (unlikely(nf_ct_is_template(ct))) {
581		nf_ct_tmpl_free(ct);
582		return;
583	}
584
585	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
586		destroy_gre_conntrack(ct);
587
588	/* Expectations will have been removed in clean_from_lists,
589	 * except TFTP can create an expectation on the first packet,
590	 * before connection is in the list, so we need to clean here,
591	 * too.
592	 */
593	nf_ct_remove_expectations(ct);
594
595	if (ct->master)
596		nf_ct_put(ct->master);
597
598	nf_conntrack_free(ct);
599}
600EXPORT_SYMBOL(nf_ct_destroy);
601
602static void __nf_ct_delete_from_lists(struct nf_conn *ct)
603{
604	struct net *net = nf_ct_net(ct);
605	unsigned int hash, reply_hash;
606	unsigned int sequence;
607
608	do {
609		sequence = read_seqcount_begin(&nf_conntrack_generation);
610		hash = hash_conntrack(net,
611				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
612				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
613		reply_hash = hash_conntrack(net,
614					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
615					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
616	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
617
618	clean_from_lists(ct);
619	nf_conntrack_double_unlock(hash, reply_hash);
620}
621
622static void nf_ct_delete_from_lists(struct nf_conn *ct)
623{
624	nf_ct_helper_destroy(ct);
625	local_bh_disable();
626
627	__nf_ct_delete_from_lists(ct);
628
629	local_bh_enable();
630}
631
632static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
633{
634#ifdef CONFIG_NF_CONNTRACK_EVENTS
635	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
636
637	spin_lock(&cnet->ecache.dying_lock);
638	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
639				 &cnet->ecache.dying_list);
640	spin_unlock(&cnet->ecache.dying_lock);
641#endif
642}
643
644bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
645{
646	struct nf_conn_tstamp *tstamp;
647	struct net *net;
648
649	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
650		return false;
651
652	tstamp = nf_conn_tstamp_find(ct);
653	if (tstamp) {
654		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
655
656		tstamp->stop = ktime_get_real_ns();
657		if (timeout < 0)
658			tstamp->stop -= jiffies_to_nsecs(-timeout);
659	}
660
661	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
662				    portid, report) < 0) {
663		/* destroy event was not delivered. nf_ct_put will
664		 * be done by event cache worker on redelivery.
665		 */
666		nf_ct_helper_destroy(ct);
667		local_bh_disable();
668		__nf_ct_delete_from_lists(ct);
669		nf_ct_add_to_ecache_list(ct);
670		local_bh_enable();
671
672		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
673		return false;
674	}
675
676	net = nf_ct_net(ct);
677	if (nf_conntrack_ecache_dwork_pending(net))
678		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
679	nf_ct_delete_from_lists(ct);
680	nf_ct_put(ct);
681	return true;
682}
683EXPORT_SYMBOL_GPL(nf_ct_delete);
684
685static inline bool
686nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
687		const struct nf_conntrack_tuple *tuple,
688		const struct nf_conntrack_zone *zone,
689		const struct net *net)
690{
691	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
692
693	/* A conntrack can be recreated with the equal tuple,
694	 * so we need to check that the conntrack is confirmed
695	 */
696	return nf_ct_tuple_equal(tuple, &h->tuple) &&
697	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
698	       nf_ct_is_confirmed(ct) &&
699	       net_eq(net, nf_ct_net(ct));
700}
701
702static inline bool
703nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
704{
705	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
706				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
707	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
708				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
709	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
710	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
711	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
712}
713
714/* caller must hold rcu readlock and none of the nf_conntrack_locks */
715static void nf_ct_gc_expired(struct nf_conn *ct)
716{
717	if (!refcount_inc_not_zero(&ct->ct_general.use))
718		return;
719
720	/* load ->status after refcount increase */
721	smp_acquire__after_ctrl_dep();
722
723	if (nf_ct_should_gc(ct))
724		nf_ct_kill(ct);
725
726	nf_ct_put(ct);
727}
728
729/*
730 * Warning :
731 * - Caller must take a reference on returned object
732 *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733 */
734static struct nf_conntrack_tuple_hash *
735____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736		      const struct nf_conntrack_tuple *tuple, u32 hash)
737{
738	struct nf_conntrack_tuple_hash *h;
739	struct hlist_nulls_head *ct_hash;
740	struct hlist_nulls_node *n;
741	unsigned int bucket, hsize;
742
743begin:
744	nf_conntrack_get_ht(&ct_hash, &hsize);
745	bucket = reciprocal_scale(hash, hsize);
746
747	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748		struct nf_conn *ct;
749
750		ct = nf_ct_tuplehash_to_ctrack(h);
751		if (nf_ct_is_expired(ct)) {
752			nf_ct_gc_expired(ct);
753			continue;
754		}
755
756		if (nf_ct_key_equal(h, tuple, zone, net))
757			return h;
758	}
759	/*
760	 * if the nulls value we got at the end of this lookup is
761	 * not the expected one, we must restart lookup.
762	 * We probably met an item that was moved to another chain.
763	 */
764	if (get_nulls_value(n) != bucket) {
765		NF_CT_STAT_INC_ATOMIC(net, search_restart);
766		goto begin;
767	}
768
769	return NULL;
770}
771
772/* Find a connection corresponding to a tuple. */
773static struct nf_conntrack_tuple_hash *
774__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775			const struct nf_conntrack_tuple *tuple, u32 hash)
776{
777	struct nf_conntrack_tuple_hash *h;
778	struct nf_conn *ct;
779
780	h = ____nf_conntrack_find(net, zone, tuple, hash);
781	if (h) {
782		/* We have a candidate that matches the tuple we're interested
783		 * in, try to obtain a reference and re-check tuple
784		 */
785		ct = nf_ct_tuplehash_to_ctrack(h);
786		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
787			/* re-check key after refcount */
788			smp_acquire__after_ctrl_dep();
789
790			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
791				return h;
792
793			/* TYPESAFE_BY_RCU recycled the candidate */
794			nf_ct_put(ct);
795		}
796
797		h = NULL;
798	}
799
800	return h;
801}
802
803struct nf_conntrack_tuple_hash *
804nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
805		      const struct nf_conntrack_tuple *tuple)
806{
807	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
808	struct nf_conntrack_tuple_hash *thash;
809
810	rcu_read_lock();
811
812	thash = __nf_conntrack_find_get(net, zone, tuple,
813					hash_conntrack_raw(tuple, zone_id, net));
814
815	if (thash)
816		goto out_unlock;
817
818	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
819	if (rid != zone_id)
820		thash = __nf_conntrack_find_get(net, zone, tuple,
821						hash_conntrack_raw(tuple, rid, net));
822
823out_unlock:
824	rcu_read_unlock();
825	return thash;
826}
827EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
828
829static void __nf_conntrack_hash_insert(struct nf_conn *ct,
830				       unsigned int hash,
831				       unsigned int reply_hash)
832{
833	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
834			   &nf_conntrack_hash[hash]);
835	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
836			   &nf_conntrack_hash[reply_hash]);
837}
838
839static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
840{
841	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
842	 * may contain stale pointers to e.g. helper that has been removed.
843	 *
844	 * The helper can't clear this because the nf_conn object isn't in
845	 * any hash and synchronize_rcu() isn't enough because associated skb
846	 * might sit in a queue.
847	 */
848	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
849}
850
851static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
852{
853	if (!ext)
854		return true;
855
856	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
857		return false;
858
859	/* inserted into conntrack table, nf_ct_iterate_cleanup()
860	 * will find it.  Disable nf_ct_ext_find() id check.
861	 */
862	WRITE_ONCE(ext->gen_id, 0);
863	return true;
864}
865
866int
867nf_conntrack_hash_check_insert(struct nf_conn *ct)
868{
869	const struct nf_conntrack_zone *zone;
870	struct net *net = nf_ct_net(ct);
871	unsigned int hash, reply_hash;
872	struct nf_conntrack_tuple_hash *h;
873	struct hlist_nulls_node *n;
874	unsigned int max_chainlen;
875	unsigned int chainlen = 0;
876	unsigned int sequence;
877	int err = -EEXIST;
878
879	zone = nf_ct_zone(ct);
880
881	if (!nf_ct_ext_valid_pre(ct->ext))
882		return -EAGAIN;
883
884	local_bh_disable();
885	do {
886		sequence = read_seqcount_begin(&nf_conntrack_generation);
887		hash = hash_conntrack(net,
888				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
889				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
890		reply_hash = hash_conntrack(net,
891					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
892					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
893	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
894
895	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
896
897	/* See if there's one in the list already, including reverse */
898	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
899		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
900				    zone, net))
901			goto out;
902
903		if (chainlen++ > max_chainlen)
904			goto chaintoolong;
905	}
906
907	chainlen = 0;
908
909	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
910		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
911				    zone, net))
912			goto out;
913		if (chainlen++ > max_chainlen)
914			goto chaintoolong;
915	}
916
917	/* If genid has changed, we can't insert anymore because ct
918	 * extensions could have stale pointers and nf_ct_iterate_destroy
919	 * might have completed its table scan already.
920	 *
921	 * Increment of the ext genid right after this check is fine:
922	 * nf_ct_iterate_destroy blocks until locks are released.
923	 */
924	if (!nf_ct_ext_valid_post(ct->ext)) {
925		err = -EAGAIN;
926		goto out;
927	}
928
929	smp_wmb();
930	/* The caller holds a reference to this object */
931	refcount_set(&ct->ct_general.use, 2);
932	__nf_conntrack_hash_insert(ct, hash, reply_hash);
933	nf_conntrack_double_unlock(hash, reply_hash);
934	NF_CT_STAT_INC(net, insert);
935	local_bh_enable();
936
937	return 0;
938chaintoolong:
939	NF_CT_STAT_INC(net, chaintoolong);
940	err = -ENOSPC;
941out:
942	nf_conntrack_double_unlock(hash, reply_hash);
943	local_bh_enable();
944	return err;
945}
946EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
947
948void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
949		    unsigned int bytes)
950{
951	struct nf_conn_acct *acct;
952
953	acct = nf_conn_acct_find(ct);
954	if (acct) {
955		struct nf_conn_counter *counter = acct->counter;
956
957		atomic64_add(packets, &counter[dir].packets);
958		atomic64_add(bytes, &counter[dir].bytes);
959	}
960}
961EXPORT_SYMBOL_GPL(nf_ct_acct_add);
962
963static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
964			     const struct nf_conn *loser_ct)
965{
966	struct nf_conn_acct *acct;
967
968	acct = nf_conn_acct_find(loser_ct);
969	if (acct) {
970		struct nf_conn_counter *counter = acct->counter;
971		unsigned int bytes;
972
973		/* u32 should be fine since we must have seen one packet. */
974		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
975		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
976	}
977}
978
979static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
980{
981	struct nf_conn_tstamp *tstamp;
982
983	refcount_inc(&ct->ct_general.use);
984
985	/* set conntrack timestamp, if enabled. */
986	tstamp = nf_conn_tstamp_find(ct);
987	if (tstamp)
988		tstamp->start = ktime_get_real_ns();
989}
990
991/* caller must hold locks to prevent concurrent changes */
992static int __nf_ct_resolve_clash(struct sk_buff *skb,
993				 struct nf_conntrack_tuple_hash *h)
994{
995	/* This is the conntrack entry already in hashes that won race. */
996	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
997	enum ip_conntrack_info ctinfo;
998	struct nf_conn *loser_ct;
999
1000	loser_ct = nf_ct_get(skb, &ctinfo);
1001
1002	if (nf_ct_is_dying(ct))
1003		return NF_DROP;
1004
1005	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1006	    nf_ct_match(ct, loser_ct)) {
1007		struct net *net = nf_ct_net(ct);
1008
1009		nf_conntrack_get(&ct->ct_general);
1010
1011		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1012		nf_ct_put(loser_ct);
1013		nf_ct_set(skb, ct, ctinfo);
1014
1015		NF_CT_STAT_INC(net, clash_resolve);
1016		return NF_ACCEPT;
1017	}
1018
1019	return NF_DROP;
1020}
1021
1022/**
1023 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1024 *
1025 * @skb: skb that causes the collision
1026 * @repl_idx: hash slot for reply direction
1027 *
1028 * Called when origin or reply direction had a clash.
1029 * The skb can be handled without packet drop provided the reply direction
1030 * is unique or there the existing entry has the identical tuple in both
1031 * directions.
1032 *
1033 * Caller must hold conntrack table locks to prevent concurrent updates.
1034 *
1035 * Returns NF_DROP if the clash could not be handled.
1036 */
1037static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1038{
1039	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1040	const struct nf_conntrack_zone *zone;
1041	struct nf_conntrack_tuple_hash *h;
1042	struct hlist_nulls_node *n;
1043	struct net *net;
1044
1045	zone = nf_ct_zone(loser_ct);
1046	net = nf_ct_net(loser_ct);
1047
1048	/* Reply direction must never result in a clash, unless both origin
1049	 * and reply tuples are identical.
1050	 */
1051	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1052		if (nf_ct_key_equal(h,
1053				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1054				    zone, net))
1055			return __nf_ct_resolve_clash(skb, h);
1056	}
1057
1058	/* We want the clashing entry to go away real soon: 1 second timeout. */
1059	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1060
1061	/* IPS_NAT_CLASH removes the entry automatically on the first
1062	 * reply.  Also prevents UDP tracker from moving the entry to
1063	 * ASSURED state, i.e. the entry can always be evicted under
1064	 * pressure.
1065	 */
1066	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1067
1068	__nf_conntrack_insert_prepare(loser_ct);
1069
1070	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1071	 * already in the table.  This also hides the clashing entry from
1072	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1073	 */
1074	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1075
1076	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1077				 &nf_conntrack_hash[repl_idx]);
1078
1079	NF_CT_STAT_INC(net, clash_resolve);
1080	return NF_ACCEPT;
1081}
1082
1083/**
1084 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1085 *
1086 * @skb: skb that causes the clash
1087 * @h: tuplehash of the clashing entry already in table
1088 * @reply_hash: hash slot for reply direction
1089 *
1090 * A conntrack entry can be inserted to the connection tracking table
1091 * if there is no existing entry with an identical tuple.
1092 *
1093 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1094 * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1095 * will find the already-existing entry.
1096 *
1097 * The major problem with such packet drop is the extra delay added by
1098 * the packet loss -- it will take some time for a retransmit to occur
1099 * (or the sender to time out when waiting for a reply).
1100 *
1101 * This function attempts to handle the situation without packet drop.
1102 *
1103 * If @skb has no NAT transformation or if the colliding entries are
1104 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1105 * and @skb is associated with the conntrack entry already in the table.
1106 *
1107 * Failing that, the new, unconfirmed conntrack is still added to the table
1108 * provided that the collision only occurs in the ORIGINAL direction.
1109 * The new entry will be added only in the non-clashing REPLY direction,
1110 * so packets in the ORIGINAL direction will continue to match the existing
1111 * entry.  The new entry will also have a fixed timeout so it expires --
1112 * due to the collision, it will only see reply traffic.
1113 *
1114 * Returns NF_DROP if the clash could not be resolved.
1115 */
1116static __cold noinline int
1117nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1118		    u32 reply_hash)
1119{
1120	/* This is the conntrack entry already in hashes that won race. */
1121	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1122	const struct nf_conntrack_l4proto *l4proto;
1123	enum ip_conntrack_info ctinfo;
1124	struct nf_conn *loser_ct;
1125	struct net *net;
1126	int ret;
1127
1128	loser_ct = nf_ct_get(skb, &ctinfo);
1129	net = nf_ct_net(loser_ct);
1130
1131	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1132	if (!l4proto->allow_clash)
1133		goto drop;
1134
1135	ret = __nf_ct_resolve_clash(skb, h);
1136	if (ret == NF_ACCEPT)
1137		return ret;
1138
1139	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1140	if (ret == NF_ACCEPT)
1141		return ret;
1142
1143drop:
1144	NF_CT_STAT_INC(net, drop);
1145	NF_CT_STAT_INC(net, insert_failed);
1146	return NF_DROP;
1147}
1148
1149/* Confirm a connection given skb; places it in hash table */
1150int
1151__nf_conntrack_confirm(struct sk_buff *skb)
1152{
1153	unsigned int chainlen = 0, sequence, max_chainlen;
1154	const struct nf_conntrack_zone *zone;
1155	unsigned int hash, reply_hash;
1156	struct nf_conntrack_tuple_hash *h;
1157	struct nf_conn *ct;
1158	struct nf_conn_help *help;
1159	struct hlist_nulls_node *n;
1160	enum ip_conntrack_info ctinfo;
1161	struct net *net;
1162	int ret = NF_DROP;
1163
1164	ct = nf_ct_get(skb, &ctinfo);
1165	net = nf_ct_net(ct);
1166
1167	/* ipt_REJECT uses nf_conntrack_attach to attach related
1168	   ICMP/TCP RST packets in other direction.  Actual packet
1169	   which created connection will be IP_CT_NEW or for an
1170	   expected connection, IP_CT_RELATED. */
1171	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1172		return NF_ACCEPT;
1173
1174	zone = nf_ct_zone(ct);
1175	local_bh_disable();
1176
1177	do {
1178		sequence = read_seqcount_begin(&nf_conntrack_generation);
1179		/* reuse the hash saved before */
1180		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1181		hash = scale_hash(hash);
1182		reply_hash = hash_conntrack(net,
1183					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1184					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1185	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1186
1187	/* We're not in hash table, and we refuse to set up related
1188	 * connections for unconfirmed conns.  But packet copies and
1189	 * REJECT will give spurious warnings here.
1190	 */
1191
1192	/* Another skb with the same unconfirmed conntrack may
1193	 * win the race. This may happen for bridge(br_flood)
1194	 * or broadcast/multicast packets do skb_clone with
1195	 * unconfirmed conntrack.
1196	 */
1197	if (unlikely(nf_ct_is_confirmed(ct))) {
1198		WARN_ON_ONCE(1);
1199		nf_conntrack_double_unlock(hash, reply_hash);
1200		local_bh_enable();
1201		return NF_DROP;
1202	}
1203
1204	if (!nf_ct_ext_valid_pre(ct->ext)) {
1205		NF_CT_STAT_INC(net, insert_failed);
1206		goto dying;
1207	}
1208
1209	/* We have to check the DYING flag after unlink to prevent
1210	 * a race against nf_ct_get_next_corpse() possibly called from
1211	 * user context, else we insert an already 'dead' hash, blocking
1212	 * further use of that particular connection -JM.
1213	 */
1214	ct->status |= IPS_CONFIRMED;
1215
1216	if (unlikely(nf_ct_is_dying(ct))) {
1217		NF_CT_STAT_INC(net, insert_failed);
1218		goto dying;
1219	}
1220
1221	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1222	/* See if there's one in the list already, including reverse:
1223	   NAT could have grabbed it without realizing, since we're
1224	   not in the hash.  If there is, we lost race. */
1225	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1226		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1227				    zone, net))
1228			goto out;
1229		if (chainlen++ > max_chainlen)
1230			goto chaintoolong;
1231	}
1232
1233	chainlen = 0;
1234	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1235		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1236				    zone, net))
1237			goto out;
1238		if (chainlen++ > max_chainlen) {
1239chaintoolong:
1240			NF_CT_STAT_INC(net, chaintoolong);
1241			NF_CT_STAT_INC(net, insert_failed);
1242			ret = NF_DROP;
1243			goto dying;
1244		}
1245	}
1246
1247	/* Timer relative to confirmation time, not original
1248	   setting time, otherwise we'd get timer wrap in
1249	   weird delay cases. */
1250	ct->timeout += nfct_time_stamp;
1251
1252	__nf_conntrack_insert_prepare(ct);
1253
1254	/* Since the lookup is lockless, hash insertion must be done after
1255	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1256	 * guarantee that no other CPU can find the conntrack before the above
1257	 * stores are visible.
1258	 */
1259	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1260	nf_conntrack_double_unlock(hash, reply_hash);
1261	local_bh_enable();
1262
1263	/* ext area is still valid (rcu read lock is held,
1264	 * but will go out of scope soon, we need to remove
1265	 * this conntrack again.
1266	 */
1267	if (!nf_ct_ext_valid_post(ct->ext)) {
1268		nf_ct_kill(ct);
1269		NF_CT_STAT_INC_ATOMIC(net, drop);
1270		return NF_DROP;
1271	}
1272
1273	help = nfct_help(ct);
1274	if (help && help->helper)
1275		nf_conntrack_event_cache(IPCT_HELPER, ct);
1276
1277	nf_conntrack_event_cache(master_ct(ct) ?
1278				 IPCT_RELATED : IPCT_NEW, ct);
1279	return NF_ACCEPT;
1280
1281out:
1282	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1283dying:
1284	nf_conntrack_double_unlock(hash, reply_hash);
1285	local_bh_enable();
1286	return ret;
1287}
1288EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1289
1290/* Returns true if a connection corresponds to the tuple (required
1291   for NAT). */
1292int
1293nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1294			 const struct nf_conn *ignored_conntrack)
1295{
1296	struct net *net = nf_ct_net(ignored_conntrack);
1297	const struct nf_conntrack_zone *zone;
1298	struct nf_conntrack_tuple_hash *h;
1299	struct hlist_nulls_head *ct_hash;
1300	unsigned int hash, hsize;
1301	struct hlist_nulls_node *n;
1302	struct nf_conn *ct;
1303
1304	zone = nf_ct_zone(ignored_conntrack);
1305
1306	rcu_read_lock();
1307 begin:
1308	nf_conntrack_get_ht(&ct_hash, &hsize);
1309	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1310
1311	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1312		ct = nf_ct_tuplehash_to_ctrack(h);
1313
1314		if (ct == ignored_conntrack)
1315			continue;
1316
1317		if (nf_ct_is_expired(ct)) {
1318			nf_ct_gc_expired(ct);
1319			continue;
1320		}
1321
1322		if (nf_ct_key_equal(h, tuple, zone, net)) {
1323			/* Tuple is taken already, so caller will need to find
1324			 * a new source port to use.
1325			 *
1326			 * Only exception:
1327			 * If the *original tuples* are identical, then both
1328			 * conntracks refer to the same flow.
1329			 * This is a rare situation, it can occur e.g. when
1330			 * more than one UDP packet is sent from same socket
1331			 * in different threads.
1332			 *
1333			 * Let nf_ct_resolve_clash() deal with this later.
1334			 */
1335			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1336					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1337					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1338				continue;
1339
1340			NF_CT_STAT_INC_ATOMIC(net, found);
1341			rcu_read_unlock();
1342			return 1;
1343		}
1344	}
1345
1346	if (get_nulls_value(n) != hash) {
1347		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1348		goto begin;
1349	}
1350
1351	rcu_read_unlock();
1352
1353	return 0;
1354}
1355EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1356
1357#define NF_CT_EVICTION_RANGE	8
1358
1359/* There's a small race here where we may free a just-assured
1360   connection.  Too bad: we're in trouble anyway. */
1361static unsigned int early_drop_list(struct net *net,
1362				    struct hlist_nulls_head *head)
1363{
1364	struct nf_conntrack_tuple_hash *h;
1365	struct hlist_nulls_node *n;
1366	unsigned int drops = 0;
1367	struct nf_conn *tmp;
1368
1369	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1370		tmp = nf_ct_tuplehash_to_ctrack(h);
1371
1372		if (nf_ct_is_expired(tmp)) {
1373			nf_ct_gc_expired(tmp);
1374			continue;
1375		}
1376
1377		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1378		    !net_eq(nf_ct_net(tmp), net) ||
1379		    nf_ct_is_dying(tmp))
1380			continue;
1381
1382		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1383			continue;
1384
1385		/* load ->ct_net and ->status after refcount increase */
1386		smp_acquire__after_ctrl_dep();
1387
1388		/* kill only if still in same netns -- might have moved due to
1389		 * SLAB_TYPESAFE_BY_RCU rules.
1390		 *
1391		 * We steal the timer reference.  If that fails timer has
1392		 * already fired or someone else deleted it. Just drop ref
1393		 * and move to next entry.
1394		 */
1395		if (net_eq(nf_ct_net(tmp), net) &&
1396		    nf_ct_is_confirmed(tmp) &&
1397		    nf_ct_delete(tmp, 0, 0))
1398			drops++;
1399
1400		nf_ct_put(tmp);
1401	}
1402
1403	return drops;
1404}
1405
1406static noinline int early_drop(struct net *net, unsigned int hash)
1407{
1408	unsigned int i, bucket;
1409
1410	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1411		struct hlist_nulls_head *ct_hash;
1412		unsigned int hsize, drops;
1413
1414		rcu_read_lock();
1415		nf_conntrack_get_ht(&ct_hash, &hsize);
1416		if (!i)
1417			bucket = reciprocal_scale(hash, hsize);
1418		else
1419			bucket = (bucket + 1) % hsize;
1420
1421		drops = early_drop_list(net, &ct_hash[bucket]);
1422		rcu_read_unlock();
1423
1424		if (drops) {
1425			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1426			return true;
1427		}
1428	}
1429
1430	return false;
1431}
1432
1433static bool gc_worker_skip_ct(const struct nf_conn *ct)
1434{
1435	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1436}
1437
1438static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1439{
1440	const struct nf_conntrack_l4proto *l4proto;
1441	u8 protonum = nf_ct_protonum(ct);
1442
1443	if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1444		return false;
1445	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1446		return true;
1447
1448	l4proto = nf_ct_l4proto_find(protonum);
1449	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1450		return true;
1451
1452	return false;
1453}
1454
1455static void gc_worker(struct work_struct *work)
1456{
1457	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1458	u32 end_time, start_time = nfct_time_stamp;
1459	struct conntrack_gc_work *gc_work;
1460	unsigned int expired_count = 0;
1461	unsigned long next_run;
1462	s32 delta_time;
1463	long count;
1464
1465	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1466
1467	i = gc_work->next_bucket;
1468	if (gc_work->early_drop)
1469		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1470
1471	if (i == 0) {
1472		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1473		gc_work->count = GC_SCAN_INITIAL_COUNT;
1474		gc_work->start_time = start_time;
1475	}
1476
1477	next_run = gc_work->avg_timeout;
1478	count = gc_work->count;
1479
1480	end_time = start_time + GC_SCAN_MAX_DURATION;
1481
1482	do {
1483		struct nf_conntrack_tuple_hash *h;
1484		struct hlist_nulls_head *ct_hash;
1485		struct hlist_nulls_node *n;
1486		struct nf_conn *tmp;
1487
1488		rcu_read_lock();
1489
1490		nf_conntrack_get_ht(&ct_hash, &hashsz);
1491		if (i >= hashsz) {
1492			rcu_read_unlock();
1493			break;
1494		}
1495
1496		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1497			struct nf_conntrack_net *cnet;
1498			struct net *net;
1499			long expires;
1500
1501			tmp = nf_ct_tuplehash_to_ctrack(h);
1502
1503			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1504				nf_ct_offload_timeout(tmp);
1505				if (!nf_conntrack_max95)
1506					continue;
1507			}
1508
1509			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1510				rcu_read_unlock();
1511
1512				gc_work->next_bucket = i;
1513				gc_work->avg_timeout = next_run;
1514				gc_work->count = count;
1515
1516				delta_time = nfct_time_stamp - gc_work->start_time;
1517
1518				/* re-sched immediately if total cycle time is exceeded */
1519				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1520				goto early_exit;
1521			}
1522
1523			if (nf_ct_is_expired(tmp)) {
1524				nf_ct_gc_expired(tmp);
1525				expired_count++;
1526				continue;
1527			}
1528
1529			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1530			expires = (expires - (long)next_run) / ++count;
1531			next_run += expires;
1532
1533			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1534				continue;
1535
1536			net = nf_ct_net(tmp);
1537			cnet = nf_ct_pernet(net);
1538			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1539				continue;
1540
1541			/* need to take reference to avoid possible races */
1542			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1543				continue;
1544
1545			/* load ->status after refcount increase */
1546			smp_acquire__after_ctrl_dep();
1547
1548			if (gc_worker_skip_ct(tmp)) {
1549				nf_ct_put(tmp);
1550				continue;
1551			}
1552
1553			if (gc_worker_can_early_drop(tmp)) {
1554				nf_ct_kill(tmp);
1555				expired_count++;
1556			}
1557
1558			nf_ct_put(tmp);
1559		}
1560
1561		/* could check get_nulls_value() here and restart if ct
1562		 * was moved to another chain.  But given gc is best-effort
1563		 * we will just continue with next hash slot.
1564		 */
1565		rcu_read_unlock();
1566		cond_resched();
1567		i++;
1568
1569		delta_time = nfct_time_stamp - end_time;
1570		if (delta_time > 0 && i < hashsz) {
1571			gc_work->avg_timeout = next_run;
1572			gc_work->count = count;
1573			gc_work->next_bucket = i;
1574			next_run = 0;
1575			goto early_exit;
1576		}
1577	} while (i < hashsz);
1578
1579	gc_work->next_bucket = 0;
1580
1581	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1582
1583	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1584	if (next_run > (unsigned long)delta_time)
1585		next_run -= delta_time;
1586	else
1587		next_run = 1;
1588
1589early_exit:
1590	if (gc_work->exiting)
1591		return;
1592
1593	if (next_run)
1594		gc_work->early_drop = false;
1595
1596	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1597}
1598
1599static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1600{
1601	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1602	gc_work->exiting = false;
1603}
1604
1605static struct nf_conn *
1606__nf_conntrack_alloc(struct net *net,
1607		     const struct nf_conntrack_zone *zone,
1608		     const struct nf_conntrack_tuple *orig,
1609		     const struct nf_conntrack_tuple *repl,
1610		     gfp_t gfp, u32 hash)
1611{
1612	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1613	unsigned int ct_count;
1614	struct nf_conn *ct;
1615
1616	/* We don't want any race condition at early drop stage */
1617	ct_count = atomic_inc_return(&cnet->count);
1618
1619	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1620		if (!early_drop(net, hash)) {
1621			if (!conntrack_gc_work.early_drop)
1622				conntrack_gc_work.early_drop = true;
1623			atomic_dec(&cnet->count);
1624			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1625			return ERR_PTR(-ENOMEM);
1626		}
1627	}
1628
1629	/*
1630	 * Do not use kmem_cache_zalloc(), as this cache uses
1631	 * SLAB_TYPESAFE_BY_RCU.
1632	 */
1633	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1634	if (ct == NULL)
1635		goto out;
1636
1637	spin_lock_init(&ct->lock);
1638	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1639	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1640	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1641	/* save hash for reusing when confirming */
1642	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1643	ct->status = 0;
1644	WRITE_ONCE(ct->timeout, 0);
1645	write_pnet(&ct->ct_net, net);
1646	memset_after(ct, 0, __nfct_init_offset);
1647
1648	nf_ct_zone_add(ct, zone);
1649
1650	/* Because we use RCU lookups, we set ct_general.use to zero before
1651	 * this is inserted in any list.
1652	 */
1653	refcount_set(&ct->ct_general.use, 0);
1654	return ct;
1655out:
1656	atomic_dec(&cnet->count);
1657	return ERR_PTR(-ENOMEM);
1658}
1659
1660struct nf_conn *nf_conntrack_alloc(struct net *net,
1661				   const struct nf_conntrack_zone *zone,
1662				   const struct nf_conntrack_tuple *orig,
1663				   const struct nf_conntrack_tuple *repl,
1664				   gfp_t gfp)
1665{
1666	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1667}
1668EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1669
1670void nf_conntrack_free(struct nf_conn *ct)
1671{
1672	struct net *net = nf_ct_net(ct);
1673	struct nf_conntrack_net *cnet;
1674
1675	/* A freed object has refcnt == 0, that's
1676	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1677	 */
1678	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1679
1680	if (ct->status & IPS_SRC_NAT_DONE) {
1681		const struct nf_nat_hook *nat_hook;
1682
1683		rcu_read_lock();
1684		nat_hook = rcu_dereference(nf_nat_hook);
1685		if (nat_hook)
1686			nat_hook->remove_nat_bysrc(ct);
1687		rcu_read_unlock();
1688	}
1689
1690	kfree(ct->ext);
1691	kmem_cache_free(nf_conntrack_cachep, ct);
1692	cnet = nf_ct_pernet(net);
1693
1694	smp_mb__before_atomic();
1695	atomic_dec(&cnet->count);
1696}
1697EXPORT_SYMBOL_GPL(nf_conntrack_free);
1698
1699
1700/* Allocate a new conntrack: we return -ENOMEM if classification
1701   failed due to stress.  Otherwise it really is unclassifiable. */
1702static noinline struct nf_conntrack_tuple_hash *
1703init_conntrack(struct net *net, struct nf_conn *tmpl,
1704	       const struct nf_conntrack_tuple *tuple,
1705	       struct sk_buff *skb,
1706	       unsigned int dataoff, u32 hash)
1707{
1708	struct nf_conn *ct;
1709	struct nf_conn_help *help;
1710	struct nf_conntrack_tuple repl_tuple;
1711#ifdef CONFIG_NF_CONNTRACK_EVENTS
1712	struct nf_conntrack_ecache *ecache;
1713#endif
1714	struct nf_conntrack_expect *exp = NULL;
1715	const struct nf_conntrack_zone *zone;
1716	struct nf_conn_timeout *timeout_ext;
1717	struct nf_conntrack_zone tmp;
1718	struct nf_conntrack_net *cnet;
1719
1720	if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1721		return NULL;
1722
1723	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1724	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1725				  hash);
1726	if (IS_ERR(ct))
1727		return (struct nf_conntrack_tuple_hash *)ct;
1728
1729	if (!nf_ct_add_synproxy(ct, tmpl)) {
1730		nf_conntrack_free(ct);
1731		return ERR_PTR(-ENOMEM);
1732	}
1733
1734	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1735
1736	if (timeout_ext)
1737		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1738				      GFP_ATOMIC);
1739
1740	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1741	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1742	nf_ct_labels_ext_add(ct);
1743
1744#ifdef CONFIG_NF_CONNTRACK_EVENTS
1745	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1746
1747	if ((ecache || net->ct.sysctl_events) &&
1748	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1749				  ecache ? ecache->expmask : 0,
1750				  GFP_ATOMIC)) {
1751		nf_conntrack_free(ct);
1752		return ERR_PTR(-ENOMEM);
1753	}
1754#endif
1755
1756	cnet = nf_ct_pernet(net);
1757	if (cnet->expect_count) {
1758		spin_lock_bh(&nf_conntrack_expect_lock);
1759		exp = nf_ct_find_expectation(net, zone, tuple, !tmpl || nf_ct_is_confirmed(tmpl));
1760		if (exp) {
1761			/* Welcome, Mr. Bond.  We've been expecting you... */
1762			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1763			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1764			ct->master = exp->master;
1765			if (exp->helper) {
1766				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1767				if (help)
1768					rcu_assign_pointer(help->helper, exp->helper);
1769			}
1770
1771#ifdef CONFIG_NF_CONNTRACK_MARK
1772			ct->mark = READ_ONCE(exp->master->mark);
1773#endif
1774#ifdef CONFIG_NF_CONNTRACK_SECMARK
1775			ct->secmark = exp->master->secmark;
1776#endif
1777			NF_CT_STAT_INC(net, expect_new);
1778		}
1779		spin_unlock_bh(&nf_conntrack_expect_lock);
1780	}
1781	if (!exp && tmpl)
1782		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1783
1784	/* Other CPU might have obtained a pointer to this object before it was
1785	 * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1786	 *
1787	 * After refcount_set(1) it will succeed; ensure that zeroing of
1788	 * ct->status and the correct ct->net pointer are visible; else other
1789	 * core might observe CONFIRMED bit which means the entry is valid and
1790	 * in the hash table, but its not (anymore).
1791	 */
1792	smp_wmb();
1793
1794	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1795	refcount_set(&ct->ct_general.use, 1);
1796
1797	if (exp) {
1798		if (exp->expectfn)
1799			exp->expectfn(ct, exp);
1800		nf_ct_expect_put(exp);
1801	}
1802
1803	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1804}
1805
1806/* On success, returns 0, sets skb->_nfct | ctinfo */
1807static int
1808resolve_normal_ct(struct nf_conn *tmpl,
1809		  struct sk_buff *skb,
1810		  unsigned int dataoff,
1811		  u_int8_t protonum,
1812		  const struct nf_hook_state *state)
1813{
1814	const struct nf_conntrack_zone *zone;
1815	struct nf_conntrack_tuple tuple;
1816	struct nf_conntrack_tuple_hash *h;
1817	enum ip_conntrack_info ctinfo;
1818	struct nf_conntrack_zone tmp;
1819	u32 hash, zone_id, rid;
1820	struct nf_conn *ct;
1821
1822	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1823			     dataoff, state->pf, protonum, state->net,
1824			     &tuple))
1825		return 0;
1826
1827	/* look for tuple match */
1828	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1829
1830	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1831	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1832	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1833
1834	if (!h) {
1835		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1836		if (zone_id != rid) {
1837			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1838
1839			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1840		}
1841	}
1842
1843	if (!h) {
1844		h = init_conntrack(state->net, tmpl, &tuple,
1845				   skb, dataoff, hash);
1846		if (!h)
1847			return 0;
1848		if (IS_ERR(h))
1849			return PTR_ERR(h);
1850	}
1851	ct = nf_ct_tuplehash_to_ctrack(h);
1852
1853	/* It exists; we have (non-exclusive) reference. */
1854	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1855		ctinfo = IP_CT_ESTABLISHED_REPLY;
1856	} else {
1857		unsigned long status = READ_ONCE(ct->status);
1858
1859		/* Once we've had two way comms, always ESTABLISHED. */
1860		if (likely(status & IPS_SEEN_REPLY))
1861			ctinfo = IP_CT_ESTABLISHED;
1862		else if (status & IPS_EXPECTED)
1863			ctinfo = IP_CT_RELATED;
1864		else
1865			ctinfo = IP_CT_NEW;
1866	}
1867	nf_ct_set(skb, ct, ctinfo);
1868	return 0;
1869}
1870
1871/*
1872 * icmp packets need special treatment to handle error messages that are
1873 * related to a connection.
1874 *
1875 * Callers need to check if skb has a conntrack assigned when this
1876 * helper returns; in such case skb belongs to an already known connection.
1877 */
1878static unsigned int __cold
1879nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1880			 struct sk_buff *skb,
1881			 unsigned int dataoff,
1882			 u8 protonum,
1883			 const struct nf_hook_state *state)
1884{
1885	int ret;
1886
1887	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1888		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1889#if IS_ENABLED(CONFIG_IPV6)
1890	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1891		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1892#endif
1893	else
1894		return NF_ACCEPT;
1895
1896	if (ret <= 0)
1897		NF_CT_STAT_INC_ATOMIC(state->net, error);
1898
1899	return ret;
1900}
1901
1902static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1903			  enum ip_conntrack_info ctinfo)
1904{
1905	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1906
1907	if (!timeout)
1908		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1909
1910	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1911	return NF_ACCEPT;
1912}
1913
1914/* Returns verdict for packet, or -1 for invalid. */
1915static int nf_conntrack_handle_packet(struct nf_conn *ct,
1916				      struct sk_buff *skb,
1917				      unsigned int dataoff,
1918				      enum ip_conntrack_info ctinfo,
1919				      const struct nf_hook_state *state)
1920{
1921	switch (nf_ct_protonum(ct)) {
1922	case IPPROTO_TCP:
1923		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1924					       ctinfo, state);
1925	case IPPROTO_UDP:
1926		return nf_conntrack_udp_packet(ct, skb, dataoff,
1927					       ctinfo, state);
1928	case IPPROTO_ICMP:
1929		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1930#if IS_ENABLED(CONFIG_IPV6)
1931	case IPPROTO_ICMPV6:
1932		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1933#endif
1934#ifdef CONFIG_NF_CT_PROTO_UDPLITE
1935	case IPPROTO_UDPLITE:
1936		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1937						   ctinfo, state);
1938#endif
1939#ifdef CONFIG_NF_CT_PROTO_SCTP
1940	case IPPROTO_SCTP:
1941		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1942						ctinfo, state);
1943#endif
1944#ifdef CONFIG_NF_CT_PROTO_DCCP
1945	case IPPROTO_DCCP:
1946		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1947						ctinfo, state);
1948#endif
1949#ifdef CONFIG_NF_CT_PROTO_GRE
1950	case IPPROTO_GRE:
1951		return nf_conntrack_gre_packet(ct, skb, dataoff,
1952					       ctinfo, state);
1953#endif
1954	}
1955
1956	return generic_packet(ct, skb, ctinfo);
1957}
1958
1959unsigned int
1960nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1961{
1962	enum ip_conntrack_info ctinfo;
1963	struct nf_conn *ct, *tmpl;
1964	u_int8_t protonum;
1965	int dataoff, ret;
1966
1967	tmpl = nf_ct_get(skb, &ctinfo);
1968	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1969		/* Previously seen (loopback or untracked)?  Ignore. */
1970		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1971		     ctinfo == IP_CT_UNTRACKED)
1972			return NF_ACCEPT;
1973		skb->_nfct = 0;
1974	}
1975
1976	/* rcu_read_lock()ed by nf_hook_thresh */
1977	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1978	if (dataoff <= 0) {
1979		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1980		ret = NF_ACCEPT;
1981		goto out;
1982	}
1983
1984	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1985		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1986					       protonum, state);
1987		if (ret <= 0) {
1988			ret = -ret;
1989			goto out;
1990		}
1991		/* ICMP[v6] protocol trackers may assign one conntrack. */
1992		if (skb->_nfct)
1993			goto out;
1994	}
1995repeat:
1996	ret = resolve_normal_ct(tmpl, skb, dataoff,
1997				protonum, state);
1998	if (ret < 0) {
1999		/* Too stressed to deal. */
2000		NF_CT_STAT_INC_ATOMIC(state->net, drop);
2001		ret = NF_DROP;
2002		goto out;
2003	}
2004
2005	ct = nf_ct_get(skb, &ctinfo);
2006	if (!ct) {
2007		/* Not valid part of a connection */
2008		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2009		ret = NF_ACCEPT;
2010		goto out;
2011	}
2012
2013	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2014	if (ret <= 0) {
2015		/* Invalid: inverse of the return code tells
2016		 * the netfilter core what to do */
2017		nf_ct_put(ct);
2018		skb->_nfct = 0;
2019		/* Special case: TCP tracker reports an attempt to reopen a
2020		 * closed/aborted connection. We have to go back and create a
2021		 * fresh conntrack.
2022		 */
2023		if (ret == -NF_REPEAT)
2024			goto repeat;
2025
2026		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2027		if (ret == -NF_DROP)
2028			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2029
2030		ret = -ret;
2031		goto out;
2032	}
2033
2034	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2035	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2036		nf_conntrack_event_cache(IPCT_REPLY, ct);
2037out:
2038	if (tmpl)
2039		nf_ct_put(tmpl);
2040
2041	return ret;
2042}
2043EXPORT_SYMBOL_GPL(nf_conntrack_in);
2044
2045/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2046void __nf_ct_refresh_acct(struct nf_conn *ct,
2047			  enum ip_conntrack_info ctinfo,
2048			  const struct sk_buff *skb,
2049			  u32 extra_jiffies,
2050			  bool do_acct)
2051{
2052	/* Only update if this is not a fixed timeout */
2053	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2054		goto acct;
2055
2056	/* If not in hash table, timer will not be active yet */
2057	if (nf_ct_is_confirmed(ct))
2058		extra_jiffies += nfct_time_stamp;
2059
2060	if (READ_ONCE(ct->timeout) != extra_jiffies)
2061		WRITE_ONCE(ct->timeout, extra_jiffies);
2062acct:
2063	if (do_acct)
2064		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2065}
2066EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2067
2068bool nf_ct_kill_acct(struct nf_conn *ct,
2069		     enum ip_conntrack_info ctinfo,
2070		     const struct sk_buff *skb)
2071{
2072	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2073
2074	return nf_ct_delete(ct, 0, 0);
2075}
2076EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2077
2078#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2079
2080#include <linux/netfilter/nfnetlink.h>
2081#include <linux/netfilter/nfnetlink_conntrack.h>
2082#include <linux/mutex.h>
2083
2084/* Generic function for tcp/udp/sctp/dccp and alike. */
2085int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2086			       const struct nf_conntrack_tuple *tuple)
2087{
2088	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2089	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2090		goto nla_put_failure;
2091	return 0;
2092
2093nla_put_failure:
2094	return -1;
2095}
2096EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2097
2098const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2099	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2100	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2101};
2102EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2103
2104int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2105			       struct nf_conntrack_tuple *t,
2106			       u_int32_t flags)
2107{
2108	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2109		if (!tb[CTA_PROTO_SRC_PORT])
2110			return -EINVAL;
2111
2112		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2113	}
2114
2115	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2116		if (!tb[CTA_PROTO_DST_PORT])
2117			return -EINVAL;
2118
2119		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2120	}
2121
2122	return 0;
2123}
2124EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2125
2126unsigned int nf_ct_port_nlattr_tuple_size(void)
2127{
2128	static unsigned int size __read_mostly;
2129
2130	if (!size)
2131		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2132
2133	return size;
2134}
2135EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2136#endif
2137
2138/* Used by ipt_REJECT and ip6t_REJECT. */
2139static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2140{
2141	struct nf_conn *ct;
2142	enum ip_conntrack_info ctinfo;
2143
2144	/* This ICMP is in reverse direction to the packet which caused it */
2145	ct = nf_ct_get(skb, &ctinfo);
2146	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2147		ctinfo = IP_CT_RELATED_REPLY;
2148	else
2149		ctinfo = IP_CT_RELATED;
2150
2151	/* Attach to new skbuff, and increment count */
2152	nf_ct_set(nskb, ct, ctinfo);
2153	nf_conntrack_get(skb_nfct(nskb));
2154}
2155
2156static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2157				 struct nf_conn *ct,
2158				 enum ip_conntrack_info ctinfo)
2159{
2160	const struct nf_nat_hook *nat_hook;
2161	struct nf_conntrack_tuple_hash *h;
2162	struct nf_conntrack_tuple tuple;
2163	unsigned int status;
2164	int dataoff;
2165	u16 l3num;
2166	u8 l4num;
2167
2168	l3num = nf_ct_l3num(ct);
2169
2170	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2171	if (dataoff <= 0)
2172		return NF_DROP;
2173
2174	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2175			     l4num, net, &tuple))
2176		return NF_DROP;
2177
2178	if (ct->status & IPS_SRC_NAT) {
2179		memcpy(tuple.src.u3.all,
2180		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2181		       sizeof(tuple.src.u3.all));
2182		tuple.src.u.all =
2183			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2184	}
2185
2186	if (ct->status & IPS_DST_NAT) {
2187		memcpy(tuple.dst.u3.all,
2188		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2189		       sizeof(tuple.dst.u3.all));
2190		tuple.dst.u.all =
2191			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2192	}
2193
2194	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2195	if (!h)
2196		return NF_ACCEPT;
2197
2198	/* Store status bits of the conntrack that is clashing to re-do NAT
2199	 * mangling according to what it has been done already to this packet.
2200	 */
2201	status = ct->status;
2202
2203	nf_ct_put(ct);
2204	ct = nf_ct_tuplehash_to_ctrack(h);
2205	nf_ct_set(skb, ct, ctinfo);
2206
2207	nat_hook = rcu_dereference(nf_nat_hook);
2208	if (!nat_hook)
2209		return NF_ACCEPT;
2210
2211	if (status & IPS_SRC_NAT) {
2212		unsigned int verdict = nat_hook->manip_pkt(skb, ct,
2213							   NF_NAT_MANIP_SRC,
2214							   IP_CT_DIR_ORIGINAL);
2215		if (verdict != NF_ACCEPT)
2216			return verdict;
2217	}
2218
2219	if (status & IPS_DST_NAT) {
2220		unsigned int verdict = nat_hook->manip_pkt(skb, ct,
2221							   NF_NAT_MANIP_DST,
2222							   IP_CT_DIR_ORIGINAL);
2223		if (verdict != NF_ACCEPT)
2224			return verdict;
2225	}
2226
2227	return NF_ACCEPT;
2228}
2229
2230/* This packet is coming from userspace via nf_queue, complete the packet
2231 * processing after the helper invocation in nf_confirm().
2232 */
2233static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2234			       enum ip_conntrack_info ctinfo)
2235{
2236	const struct nf_conntrack_helper *helper;
2237	const struct nf_conn_help *help;
2238	int protoff;
2239
2240	help = nfct_help(ct);
2241	if (!help)
2242		return NF_ACCEPT;
2243
2244	helper = rcu_dereference(help->helper);
2245	if (!helper)
2246		return NF_ACCEPT;
2247
2248	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2249		return NF_ACCEPT;
2250
2251	switch (nf_ct_l3num(ct)) {
2252	case NFPROTO_IPV4:
2253		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2254		break;
2255#if IS_ENABLED(CONFIG_IPV6)
2256	case NFPROTO_IPV6: {
2257		__be16 frag_off;
2258		u8 pnum;
2259
2260		pnum = ipv6_hdr(skb)->nexthdr;
2261		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2262					   &frag_off);
2263		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2264			return NF_ACCEPT;
2265		break;
2266	}
2267#endif
2268	default:
2269		return NF_ACCEPT;
2270	}
2271
2272	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2273	    !nf_is_loopback_packet(skb)) {
2274		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2275			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2276			return NF_DROP;
2277		}
2278	}
2279
2280	/* We've seen it coming out the other side: confirm it */
2281	return nf_conntrack_confirm(skb);
2282}
2283
2284static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2285{
2286	enum ip_conntrack_info ctinfo;
2287	struct nf_conn *ct;
2288
2289	ct = nf_ct_get(skb, &ctinfo);
2290	if (!ct)
2291		return NF_ACCEPT;
2292
2293	if (!nf_ct_is_confirmed(ct)) {
2294		int ret = __nf_conntrack_update(net, skb, ct, ctinfo);
2295
2296		if (ret != NF_ACCEPT)
2297			return ret;
2298
2299		ct = nf_ct_get(skb, &ctinfo);
2300		if (!ct)
2301			return NF_ACCEPT;
2302	}
2303
2304	return nf_confirm_cthelper(skb, ct, ctinfo);
2305}
2306
2307static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2308				       const struct sk_buff *skb)
2309{
2310	const struct nf_conntrack_tuple *src_tuple;
2311	const struct nf_conntrack_tuple_hash *hash;
2312	struct nf_conntrack_tuple srctuple;
2313	enum ip_conntrack_info ctinfo;
2314	struct nf_conn *ct;
2315
2316	ct = nf_ct_get(skb, &ctinfo);
2317	if (ct) {
2318		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2319		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2320		return true;
2321	}
2322
2323	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2324			       NFPROTO_IPV4, dev_net(skb->dev),
2325			       &srctuple))
2326		return false;
2327
2328	hash = nf_conntrack_find_get(dev_net(skb->dev),
2329				     &nf_ct_zone_dflt,
2330				     &srctuple);
2331	if (!hash)
2332		return false;
2333
2334	ct = nf_ct_tuplehash_to_ctrack(hash);
2335	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2336	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2337	nf_ct_put(ct);
2338
2339	return true;
2340}
2341
2342/* Bring out ya dead! */
2343static struct nf_conn *
2344get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2345		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2346{
2347	struct nf_conntrack_tuple_hash *h;
2348	struct nf_conn *ct;
2349	struct hlist_nulls_node *n;
2350	spinlock_t *lockp;
2351
2352	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2353		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2354
2355		if (hlist_nulls_empty(hslot))
2356			continue;
2357
2358		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2359		local_bh_disable();
2360		nf_conntrack_lock(lockp);
2361		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2362			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2363				continue;
2364			/* All nf_conn objects are added to hash table twice, one
2365			 * for original direction tuple, once for the reply tuple.
2366			 *
2367			 * Exception: In the IPS_NAT_CLASH case, only the reply
2368			 * tuple is added (the original tuple already existed for
2369			 * a different object).
2370			 *
2371			 * We only need to call the iterator once for each
2372			 * conntrack, so we just use the 'reply' direction
2373			 * tuple while iterating.
2374			 */
2375			ct = nf_ct_tuplehash_to_ctrack(h);
2376
2377			if (iter_data->net &&
2378			    !net_eq(iter_data->net, nf_ct_net(ct)))
2379				continue;
2380
2381			if (iter(ct, iter_data->data))
2382				goto found;
2383		}
2384		spin_unlock(lockp);
2385		local_bh_enable();
2386		cond_resched();
2387	}
2388
2389	return NULL;
2390found:
2391	refcount_inc(&ct->ct_general.use);
2392	spin_unlock(lockp);
2393	local_bh_enable();
2394	return ct;
2395}
2396
2397static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2398				  const struct nf_ct_iter_data *iter_data)
2399{
2400	unsigned int bucket = 0;
2401	struct nf_conn *ct;
2402
2403	might_sleep();
2404
2405	mutex_lock(&nf_conntrack_mutex);
2406	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2407		/* Time to push up daises... */
2408
2409		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2410		nf_ct_put(ct);
2411		cond_resched();
2412	}
2413	mutex_unlock(&nf_conntrack_mutex);
2414}
2415
2416void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2417			       const struct nf_ct_iter_data *iter_data)
2418{
2419	struct net *net = iter_data->net;
2420	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2421
2422	might_sleep();
2423
2424	if (atomic_read(&cnet->count) == 0)
2425		return;
2426
2427	nf_ct_iterate_cleanup(iter, iter_data);
2428}
2429EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2430
2431/**
2432 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2433 * @iter: callback to invoke for each conntrack
2434 * @data: data to pass to @iter
2435 *
2436 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2437 * unconfirmed list as dying (so they will not be inserted into
2438 * main table).
2439 *
2440 * Can only be called in module exit path.
2441 */
2442void
2443nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2444{
2445	struct nf_ct_iter_data iter_data = {};
2446	struct net *net;
2447
2448	down_read(&net_rwsem);
2449	for_each_net(net) {
2450		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2451
2452		if (atomic_read(&cnet->count) == 0)
2453			continue;
2454		nf_queue_nf_hook_drop(net);
2455	}
2456	up_read(&net_rwsem);
2457
2458	/* Need to wait for netns cleanup worker to finish, if its
2459	 * running -- it might have deleted a net namespace from
2460	 * the global list, so hook drop above might not have
2461	 * affected all namespaces.
2462	 */
2463	net_ns_barrier();
2464
2465	/* a skb w. unconfirmed conntrack could have been reinjected just
2466	 * before we called nf_queue_nf_hook_drop().
2467	 *
2468	 * This makes sure its inserted into conntrack table.
2469	 */
2470	synchronize_net();
2471
2472	nf_ct_ext_bump_genid();
2473	iter_data.data = data;
2474	nf_ct_iterate_cleanup(iter, &iter_data);
2475
2476	/* Another cpu might be in a rcu read section with
2477	 * rcu protected pointer cleared in iter callback
2478	 * or hidden via nf_ct_ext_bump_genid() above.
2479	 *
2480	 * Wait until those are done.
2481	 */
2482	synchronize_rcu();
2483}
2484EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2485
2486static int kill_all(struct nf_conn *i, void *data)
2487{
2488	return 1;
2489}
2490
2491void nf_conntrack_cleanup_start(void)
2492{
2493	cleanup_nf_conntrack_bpf();
2494	conntrack_gc_work.exiting = true;
2495}
2496
2497void nf_conntrack_cleanup_end(void)
2498{
2499	RCU_INIT_POINTER(nf_ct_hook, NULL);
2500	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2501	kvfree(nf_conntrack_hash);
2502
2503	nf_conntrack_proto_fini();
2504	nf_conntrack_helper_fini();
2505	nf_conntrack_expect_fini();
2506
2507	kmem_cache_destroy(nf_conntrack_cachep);
2508}
2509
2510/*
2511 * Mishearing the voices in his head, our hero wonders how he's
2512 * supposed to kill the mall.
2513 */
2514void nf_conntrack_cleanup_net(struct net *net)
2515{
2516	LIST_HEAD(single);
2517
2518	list_add(&net->exit_list, &single);
2519	nf_conntrack_cleanup_net_list(&single);
2520}
2521
2522void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2523{
2524	struct nf_ct_iter_data iter_data = {};
2525	struct net *net;
2526	int busy;
2527
2528	/*
2529	 * This makes sure all current packets have passed through
2530	 *  netfilter framework.  Roll on, two-stage module
2531	 *  delete...
2532	 */
2533	synchronize_rcu_expedited();
2534i_see_dead_people:
2535	busy = 0;
2536	list_for_each_entry(net, net_exit_list, exit_list) {
2537		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2538
2539		iter_data.net = net;
2540		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2541		if (atomic_read(&cnet->count) != 0)
2542			busy = 1;
2543	}
2544	if (busy) {
2545		schedule();
2546		goto i_see_dead_people;
2547	}
2548
2549	list_for_each_entry(net, net_exit_list, exit_list) {
2550		nf_conntrack_ecache_pernet_fini(net);
2551		nf_conntrack_expect_pernet_fini(net);
2552		free_percpu(net->ct.stat);
2553	}
2554}
2555
2556void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2557{
2558	struct hlist_nulls_head *hash;
2559	unsigned int nr_slots, i;
2560
2561	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2562		return NULL;
2563
2564	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2565	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2566
2567	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2568
2569	if (hash && nulls)
2570		for (i = 0; i < nr_slots; i++)
2571			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2572
2573	return hash;
2574}
2575EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2576
2577int nf_conntrack_hash_resize(unsigned int hashsize)
2578{
2579	int i, bucket;
2580	unsigned int old_size;
2581	struct hlist_nulls_head *hash, *old_hash;
2582	struct nf_conntrack_tuple_hash *h;
2583	struct nf_conn *ct;
2584
2585	if (!hashsize)
2586		return -EINVAL;
2587
2588	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2589	if (!hash)
2590		return -ENOMEM;
2591
2592	mutex_lock(&nf_conntrack_mutex);
2593	old_size = nf_conntrack_htable_size;
2594	if (old_size == hashsize) {
2595		mutex_unlock(&nf_conntrack_mutex);
2596		kvfree(hash);
2597		return 0;
2598	}
2599
2600	local_bh_disable();
2601	nf_conntrack_all_lock();
2602	write_seqcount_begin(&nf_conntrack_generation);
2603
2604	/* Lookups in the old hash might happen in parallel, which means we
2605	 * might get false negatives during connection lookup. New connections
2606	 * created because of a false negative won't make it into the hash
2607	 * though since that required taking the locks.
2608	 */
2609
2610	for (i = 0; i < nf_conntrack_htable_size; i++) {
2611		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2612			unsigned int zone_id;
2613
2614			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2615					      struct nf_conntrack_tuple_hash, hnnode);
2616			ct = nf_ct_tuplehash_to_ctrack(h);
2617			hlist_nulls_del_rcu(&h->hnnode);
2618
2619			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2620			bucket = __hash_conntrack(nf_ct_net(ct),
2621						  &h->tuple, zone_id, hashsize);
2622			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2623		}
2624	}
2625	old_hash = nf_conntrack_hash;
2626
2627	nf_conntrack_hash = hash;
2628	nf_conntrack_htable_size = hashsize;
2629
2630	write_seqcount_end(&nf_conntrack_generation);
2631	nf_conntrack_all_unlock();
2632	local_bh_enable();
2633
2634	mutex_unlock(&nf_conntrack_mutex);
2635
2636	synchronize_net();
2637	kvfree(old_hash);
2638	return 0;
2639}
2640
2641int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2642{
2643	unsigned int hashsize;
2644	int rc;
2645
2646	if (current->nsproxy->net_ns != &init_net)
2647		return -EOPNOTSUPP;
2648
2649	/* On boot, we can set this without any fancy locking. */
2650	if (!nf_conntrack_hash)
2651		return param_set_uint(val, kp);
2652
2653	rc = kstrtouint(val, 0, &hashsize);
2654	if (rc)
2655		return rc;
2656
2657	return nf_conntrack_hash_resize(hashsize);
2658}
2659
2660int nf_conntrack_init_start(void)
2661{
2662	unsigned long nr_pages = totalram_pages();
2663	int max_factor = 8;
2664	int ret = -ENOMEM;
2665	int i;
2666
2667	seqcount_spinlock_init(&nf_conntrack_generation,
2668			       &nf_conntrack_locks_all_lock);
2669
2670	for (i = 0; i < CONNTRACK_LOCKS; i++)
2671		spin_lock_init(&nf_conntrack_locks[i]);
2672
2673	if (!nf_conntrack_htable_size) {
2674		nf_conntrack_htable_size
2675			= (((nr_pages << PAGE_SHIFT) / 16384)
2676			   / sizeof(struct hlist_head));
2677		if (BITS_PER_LONG >= 64 &&
2678		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2679			nf_conntrack_htable_size = 262144;
2680		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2681			nf_conntrack_htable_size = 65536;
2682
2683		if (nf_conntrack_htable_size < 1024)
2684			nf_conntrack_htable_size = 1024;
2685		/* Use a max. factor of one by default to keep the average
2686		 * hash chain length at 2 entries.  Each entry has to be added
2687		 * twice (once for original direction, once for reply).
2688		 * When a table size is given we use the old value of 8 to
2689		 * avoid implicit reduction of the max entries setting.
2690		 */
2691		max_factor = 1;
2692	}
2693
2694	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2695	if (!nf_conntrack_hash)
2696		return -ENOMEM;
2697
2698	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2699
2700	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2701						sizeof(struct nf_conn),
2702						NFCT_INFOMASK + 1,
2703						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2704	if (!nf_conntrack_cachep)
2705		goto err_cachep;
2706
2707	ret = nf_conntrack_expect_init();
2708	if (ret < 0)
2709		goto err_expect;
2710
2711	ret = nf_conntrack_helper_init();
2712	if (ret < 0)
2713		goto err_helper;
2714
2715	ret = nf_conntrack_proto_init();
2716	if (ret < 0)
2717		goto err_proto;
2718
2719	conntrack_gc_work_init(&conntrack_gc_work);
2720	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2721
2722	ret = register_nf_conntrack_bpf();
2723	if (ret < 0)
2724		goto err_kfunc;
2725
2726	return 0;
2727
2728err_kfunc:
2729	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2730	nf_conntrack_proto_fini();
2731err_proto:
2732	nf_conntrack_helper_fini();
2733err_helper:
2734	nf_conntrack_expect_fini();
2735err_expect:
2736	kmem_cache_destroy(nf_conntrack_cachep);
2737err_cachep:
2738	kvfree(nf_conntrack_hash);
2739	return ret;
2740}
2741
2742static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2743{
2744	struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2745
2746	switch (nf_ct_protonum(ct)) {
2747	case IPPROTO_TCP:
2748		nf_conntrack_tcp_set_closing(ct);
2749		break;
2750	}
2751}
2752
2753static const struct nf_ct_hook nf_conntrack_hook = {
2754	.update		= nf_conntrack_update,
2755	.destroy	= nf_ct_destroy,
2756	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2757	.attach		= nf_conntrack_attach,
2758	.set_closing	= nf_conntrack_set_closing,
2759	.confirm	= __nf_conntrack_confirm,
2760};
2761
2762void nf_conntrack_init_end(void)
2763{
2764	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2765}
2766
2767/*
2768 * We need to use special "null" values, not used in hash table
2769 */
2770#define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2771
2772int nf_conntrack_init_net(struct net *net)
2773{
2774	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2775	int ret = -ENOMEM;
2776
2777	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2778	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2779	atomic_set(&cnet->count, 0);
2780
2781	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2782	if (!net->ct.stat)
2783		return ret;
2784
2785	ret = nf_conntrack_expect_pernet_init(net);
2786	if (ret < 0)
2787		goto err_expect;
2788
2789	nf_conntrack_acct_pernet_init(net);
2790	nf_conntrack_tstamp_pernet_init(net);
2791	nf_conntrack_ecache_pernet_init(net);
2792	nf_conntrack_proto_pernet_init(net);
2793
2794	return 0;
2795
2796err_expect:
2797	free_percpu(net->ct.stat);
2798	return ret;
2799}
2800
2801/* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2802
2803int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2804{
2805	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2806		return -EPERM;
2807
2808	__nf_ct_set_timeout(ct, timeout);
2809
2810	if (test_bit(IPS_DYING_BIT, &ct->status))
2811		return -ETIME;
2812
2813	return 0;
2814}
2815EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2816
2817void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2818{
2819	unsigned int bit;
2820
2821	/* Ignore these unchangable bits */
2822	on &= ~IPS_UNCHANGEABLE_MASK;
2823	off &= ~IPS_UNCHANGEABLE_MASK;
2824
2825	for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2826		if (on & (1 << bit))
2827			set_bit(bit, &ct->status);
2828		else if (off & (1 << bit))
2829			clear_bit(bit, &ct->status);
2830	}
2831}
2832EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2833
2834int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2835{
2836	unsigned long d;
2837
2838	d = ct->status ^ status;
2839
2840	if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2841		/* unchangeable */
2842		return -EBUSY;
2843
2844	if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2845		/* SEEN_REPLY bit can only be set */
2846		return -EBUSY;
2847
2848	if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2849		/* ASSURED bit can only be set */
2850		return -EBUSY;
2851
2852	__nf_ct_change_status(ct, status, 0);
2853	return 0;
2854}
2855EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2856