1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24 *				:	Fragmentation on mtu decrease
25 *				:	Segment collapse on retransmit
26 *				:	AF independence
27 *
28 *		Linus Torvalds	:	send_delayed_ack
29 *		David S. Miller	:	Charge memory using the right skb
30 *					during syn/ack processing.
31 *		David S. Miller :	Output engine completely rewritten.
32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33 *		Cacophonix Gaul :	draft-minshall-nagle-01
34 *		J Hadi Salim	:	ECN support
35 *
36 */
37
38#define pr_fmt(fmt) "TCP: " fmt
39
40#include <net/tcp.h>
41#include <net/mptcp.h>
42
43#include <linux/compiler.h>
44#include <linux/gfp.h>
45#include <linux/module.h>
46#include <linux/static_key.h>
47
48#include <trace/events/tcp.h>
49
50/* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
53void tcp_mstamp_refresh(struct tcp_sock *tp)
54{
55	u64 val = tcp_clock_ns();
56
57	tp->tcp_clock_cache = val;
58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59}
60
61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62			   int push_one, gfp_t gfp);
63
64/* Account for new data that has been sent to the network. */
65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66{
67	struct inet_connection_sock *icsk = inet_csk(sk);
68	struct tcp_sock *tp = tcp_sk(sk);
69	unsigned int prior_packets = tp->packets_out;
70
71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73	__skb_unlink(skb, &sk->sk_write_queue);
74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76	if (tp->highest_sack == NULL)
77		tp->highest_sack = skb;
78
79	tp->packets_out += tcp_skb_pcount(skb);
80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81		tcp_rearm_rto(sk);
82
83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84		      tcp_skb_pcount(skb));
85	tcp_check_space(sk);
86}
87
88/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
95static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96{
97	const struct tcp_sock *tp = tcp_sk(sk);
98
99	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100	    (tp->rx_opt.wscale_ok &&
101	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102		return tp->snd_nxt;
103	else
104		return tcp_wnd_end(tp);
105}
106
107/* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 *    attached devices, because some buggy hosts are confused by
114 *    large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 *    This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 *    probably even Jumbo".
120 */
121static __u16 tcp_advertise_mss(struct sock *sk)
122{
123	struct tcp_sock *tp = tcp_sk(sk);
124	const struct dst_entry *dst = __sk_dst_get(sk);
125	int mss = tp->advmss;
126
127	if (dst) {
128		unsigned int metric = dst_metric_advmss(dst);
129
130		if (metric < mss) {
131			mss = metric;
132			tp->advmss = mss;
133		}
134	}
135
136	return (__u16)mss;
137}
138
139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142void tcp_cwnd_restart(struct sock *sk, s32 delta)
143{
144	struct tcp_sock *tp = tcp_sk(sk);
145	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146	u32 cwnd = tcp_snd_cwnd(tp);
147
148	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151	restart_cwnd = min(restart_cwnd, cwnd);
152
153	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154		cwnd >>= 1;
155	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156	tp->snd_cwnd_stamp = tcp_jiffies32;
157	tp->snd_cwnd_used = 0;
158}
159
160/* Congestion state accounting after a packet has been sent. */
161static void tcp_event_data_sent(struct tcp_sock *tp,
162				struct sock *sk)
163{
164	struct inet_connection_sock *icsk = inet_csk(sk);
165	const u32 now = tcp_jiffies32;
166
167	if (tcp_packets_in_flight(tp) == 0)
168		tcp_ca_event(sk, CA_EVENT_TX_START);
169
170	tp->lsndtime = now;
171
172	/* If it is a reply for ato after last received
173	 * packet, increase pingpong count.
174	 */
175	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176		inet_csk_inc_pingpong_cnt(sk);
177}
178
179/* Account for an ACK we sent. */
180static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181{
182	struct tcp_sock *tp = tcp_sk(sk);
183
184	if (unlikely(tp->compressed_ack)) {
185		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186			      tp->compressed_ack);
187		tp->compressed_ack = 0;
188		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189			__sock_put(sk);
190	}
191
192	if (unlikely(rcv_nxt != tp->rcv_nxt))
193		return;  /* Special ACK sent by DCTCP to reflect ECN */
194	tcp_dec_quickack_mode(sk);
195	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196}
197
198/* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206			       __u32 *rcv_wnd, __u32 *window_clamp,
207			       int wscale_ok, __u8 *rcv_wscale,
208			       __u32 init_rcv_wnd)
209{
210	unsigned int space = (__space < 0 ? 0 : __space);
211
212	/* If no clamp set the clamp to the max possible scaled window */
213	if (*window_clamp == 0)
214		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215	space = min(*window_clamp, space);
216
217	/* Quantize space offering to a multiple of mss if possible. */
218	if (space > mss)
219		space = rounddown(space, mss);
220
221	/* NOTE: offering an initial window larger than 32767
222	 * will break some buggy TCP stacks. If the admin tells us
223	 * it is likely we could be speaking with such a buggy stack
224	 * we will truncate our initial window offering to 32K-1
225	 * unless the remote has sent us a window scaling option,
226	 * which we interpret as a sign the remote TCP is not
227	 * misinterpreting the window field as a signed quantity.
228	 */
229	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231	else
232		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233
234	if (init_rcv_wnd)
235		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236
237	*rcv_wscale = 0;
238	if (wscale_ok) {
239		/* Set window scaling on max possible window */
240		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242		space = min_t(u32, space, *window_clamp);
243		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244				      0, TCP_MAX_WSCALE);
245	}
246	/* Set the clamp no higher than max representable value */
247	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248}
249EXPORT_SYMBOL(tcp_select_initial_window);
250
251/* Chose a new window to advertise, update state in tcp_sock for the
252 * socket, and return result with RFC1323 scaling applied.  The return
253 * value can be stuffed directly into th->window for an outgoing
254 * frame.
255 */
256static u16 tcp_select_window(struct sock *sk)
257{
258	struct tcp_sock *tp = tcp_sk(sk);
259	struct net *net = sock_net(sk);
260	u32 old_win = tp->rcv_wnd;
261	u32 cur_win, new_win;
262
263	/* Make the window 0 if we failed to queue the data because we
264	 * are out of memory. The window is temporary, so we don't store
265	 * it on the socket.
266	 */
267	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268		return 0;
269
270	cur_win = tcp_receive_window(tp);
271	new_win = __tcp_select_window(sk);
272	if (new_win < cur_win) {
273		/* Danger Will Robinson!
274		 * Don't update rcv_wup/rcv_wnd here or else
275		 * we will not be able to advertise a zero
276		 * window in time.  --DaveM
277		 *
278		 * Relax Will Robinson.
279		 */
280		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281			/* Never shrink the offered window */
282			if (new_win == 0)
283				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285		}
286	}
287
288	tp->rcv_wnd = new_win;
289	tp->rcv_wup = tp->rcv_nxt;
290
291	/* Make sure we do not exceed the maximum possible
292	 * scaled window.
293	 */
294	if (!tp->rx_opt.rcv_wscale &&
295	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296		new_win = min(new_win, MAX_TCP_WINDOW);
297	else
298		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299
300	/* RFC1323 scaling applied */
301	new_win >>= tp->rx_opt.rcv_wscale;
302
303	/* If we advertise zero window, disable fast path. */
304	if (new_win == 0) {
305		tp->pred_flags = 0;
306		if (old_win)
307			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308	} else if (old_win == 0) {
309		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310	}
311
312	return new_win;
313}
314
315/* Packet ECN state for a SYN-ACK */
316static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317{
318	const struct tcp_sock *tp = tcp_sk(sk);
319
320	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321	if (!(tp->ecn_flags & TCP_ECN_OK))
322		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323	else if (tcp_ca_needs_ecn(sk) ||
324		 tcp_bpf_ca_needs_ecn(sk))
325		INET_ECN_xmit(sk);
326}
327
328/* Packet ECN state for a SYN.  */
329static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330{
331	struct tcp_sock *tp = tcp_sk(sk);
332	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335
336	if (!use_ecn) {
337		const struct dst_entry *dst = __sk_dst_get(sk);
338
339		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340			use_ecn = true;
341	}
342
343	tp->ecn_flags = 0;
344
345	if (use_ecn) {
346		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347		tp->ecn_flags = TCP_ECN_OK;
348		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349			INET_ECN_xmit(sk);
350	}
351}
352
353static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354{
355	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356		/* tp->ecn_flags are cleared at a later point in time when
357		 * SYN ACK is ultimatively being received.
358		 */
359		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360}
361
362static void
363tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364{
365	if (inet_rsk(req)->ecn_ok)
366		th->ece = 1;
367}
368
369/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370 * be sent.
371 */
372static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373			 struct tcphdr *th, int tcp_header_len)
374{
375	struct tcp_sock *tp = tcp_sk(sk);
376
377	if (tp->ecn_flags & TCP_ECN_OK) {
378		/* Not-retransmitted data segment: set ECT and inject CWR. */
379		if (skb->len != tcp_header_len &&
380		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381			INET_ECN_xmit(sk);
382			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384				th->cwr = 1;
385				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386			}
387		} else if (!tcp_ca_needs_ecn(sk)) {
388			/* ACK or retransmitted segment: clear ECT|CE */
389			INET_ECN_dontxmit(sk);
390		}
391		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392			th->ece = 1;
393	}
394}
395
396/* Constructs common control bits of non-data skb. If SYN/FIN is present,
397 * auto increment end seqno.
398 */
399static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400{
401	skb->ip_summed = CHECKSUM_PARTIAL;
402
403	TCP_SKB_CB(skb)->tcp_flags = flags;
404
405	tcp_skb_pcount_set(skb, 1);
406
407	TCP_SKB_CB(skb)->seq = seq;
408	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409		seq++;
410	TCP_SKB_CB(skb)->end_seq = seq;
411}
412
413static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414{
415	return tp->snd_una != tp->snd_up;
416}
417
418#define OPTION_SACK_ADVERTISE	BIT(0)
419#define OPTION_TS		BIT(1)
420#define OPTION_MD5		BIT(2)
421#define OPTION_WSCALE		BIT(3)
422#define OPTION_FAST_OPEN_COOKIE	BIT(8)
423#define OPTION_SMC		BIT(9)
424#define OPTION_MPTCP		BIT(10)
425#define OPTION_AO		BIT(11)
426
427static void smc_options_write(__be32 *ptr, u16 *options)
428{
429#if IS_ENABLED(CONFIG_SMC)
430	if (static_branch_unlikely(&tcp_have_smc)) {
431		if (unlikely(OPTION_SMC & *options)) {
432			*ptr++ = htonl((TCPOPT_NOP  << 24) |
433				       (TCPOPT_NOP  << 16) |
434				       (TCPOPT_EXP <<  8) |
435				       (TCPOLEN_EXP_SMC_BASE));
436			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
437		}
438	}
439#endif
440}
441
442struct tcp_out_options {
443	u16 options;		/* bit field of OPTION_* */
444	u16 mss;		/* 0 to disable */
445	u8 ws;			/* window scale, 0 to disable */
446	u8 num_sack_blocks;	/* number of SACK blocks to include */
447	u8 hash_size;		/* bytes in hash_location */
448	u8 bpf_opt_len;		/* length of BPF hdr option */
449	__u8 *hash_location;	/* temporary pointer, overloaded */
450	__u32 tsval, tsecr;	/* need to include OPTION_TS */
451	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
452	struct mptcp_out_options mptcp;
453};
454
455static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456				struct tcp_sock *tp,
457				struct tcp_out_options *opts)
458{
459#if IS_ENABLED(CONFIG_MPTCP)
460	if (unlikely(OPTION_MPTCP & opts->options))
461		mptcp_write_options(th, ptr, tp, &opts->mptcp);
462#endif
463}
464
465#ifdef CONFIG_CGROUP_BPF
466static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467					enum tcp_synack_type synack_type)
468{
469	if (unlikely(!skb))
470		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471
472	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474
475	return 0;
476}
477
478/* req, syn_skb and synack_type are used when writing synack */
479static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480				  struct request_sock *req,
481				  struct sk_buff *syn_skb,
482				  enum tcp_synack_type synack_type,
483				  struct tcp_out_options *opts,
484				  unsigned int *remaining)
485{
486	struct bpf_sock_ops_kern sock_ops;
487	int err;
488
489	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491	    !*remaining)
492		return;
493
494	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495
496	/* init sock_ops */
497	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498
499	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500
501	if (req) {
502		/* The listen "sk" cannot be passed here because
503		 * it is not locked.  It would not make too much
504		 * sense to do bpf_setsockopt(listen_sk) based
505		 * on individual connection request also.
506		 *
507		 * Thus, "req" is passed here and the cgroup-bpf-progs
508		 * of the listen "sk" will be run.
509		 *
510		 * "req" is also used here for fastopen even the "sk" here is
511		 * a fullsock "child" sk.  It is to keep the behavior
512		 * consistent between fastopen and non-fastopen on
513		 * the bpf programming side.
514		 */
515		sock_ops.sk = (struct sock *)req;
516		sock_ops.syn_skb = syn_skb;
517	} else {
518		sock_owned_by_me(sk);
519
520		sock_ops.is_fullsock = 1;
521		sock_ops.sk = sk;
522	}
523
524	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525	sock_ops.remaining_opt_len = *remaining;
526	/* tcp_current_mss() does not pass a skb */
527	if (skb)
528		bpf_skops_init_skb(&sock_ops, skb, 0);
529
530	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531
532	if (err || sock_ops.remaining_opt_len == *remaining)
533		return;
534
535	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536	/* round up to 4 bytes */
537	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538
539	*remaining -= opts->bpf_opt_len;
540}
541
542static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543				    struct request_sock *req,
544				    struct sk_buff *syn_skb,
545				    enum tcp_synack_type synack_type,
546				    struct tcp_out_options *opts)
547{
548	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549	struct bpf_sock_ops_kern sock_ops;
550	int err;
551
552	if (likely(!max_opt_len))
553		return;
554
555	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556
557	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558
559	if (req) {
560		sock_ops.sk = (struct sock *)req;
561		sock_ops.syn_skb = syn_skb;
562	} else {
563		sock_owned_by_me(sk);
564
565		sock_ops.is_fullsock = 1;
566		sock_ops.sk = sk;
567	}
568
569	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570	sock_ops.remaining_opt_len = max_opt_len;
571	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
573
574	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575
576	if (err)
577		nr_written = 0;
578	else
579		nr_written = max_opt_len - sock_ops.remaining_opt_len;
580
581	if (nr_written < max_opt_len)
582		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583		       max_opt_len - nr_written);
584}
585#else
586static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587				  struct request_sock *req,
588				  struct sk_buff *syn_skb,
589				  enum tcp_synack_type synack_type,
590				  struct tcp_out_options *opts,
591				  unsigned int *remaining)
592{
593}
594
595static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596				    struct request_sock *req,
597				    struct sk_buff *syn_skb,
598				    enum tcp_synack_type synack_type,
599				    struct tcp_out_options *opts)
600{
601}
602#endif
603
604static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
605				      const struct tcp_request_sock *tcprsk,
606				      struct tcp_out_options *opts,
607				      struct tcp_key *key, __be32 *ptr)
608{
609#ifdef CONFIG_TCP_AO
610	u8 maclen = tcp_ao_maclen(key->ao_key);
611
612	if (tcprsk) {
613		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
614
615		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
616			       (tcprsk->ao_keyid << 8) |
617			       (tcprsk->ao_rcv_next));
618	} else {
619		struct tcp_ao_key *rnext_key;
620		struct tcp_ao_info *ao_info;
621
622		ao_info = rcu_dereference_check(tp->ao_info,
623			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
624		rnext_key = READ_ONCE(ao_info->rnext_key);
625		if (WARN_ON_ONCE(!rnext_key))
626			return ptr;
627		*ptr++ = htonl((TCPOPT_AO << 24) |
628			       (tcp_ao_len(key->ao_key) << 16) |
629			       (key->ao_key->sndid << 8) |
630			       (rnext_key->rcvid));
631	}
632	opts->hash_location = (__u8 *)ptr;
633	ptr += maclen / sizeof(*ptr);
634	if (unlikely(maclen % sizeof(*ptr))) {
635		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
636		ptr++;
637	}
638#endif
639	return ptr;
640}
641
642/* Write previously computed TCP options to the packet.
643 *
644 * Beware: Something in the Internet is very sensitive to the ordering of
645 * TCP options, we learned this through the hard way, so be careful here.
646 * Luckily we can at least blame others for their non-compliance but from
647 * inter-operability perspective it seems that we're somewhat stuck with
648 * the ordering which we have been using if we want to keep working with
649 * those broken things (not that it currently hurts anybody as there isn't
650 * particular reason why the ordering would need to be changed).
651 *
652 * At least SACK_PERM as the first option is known to lead to a disaster
653 * (but it may well be that other scenarios fail similarly).
654 */
655static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
656			      const struct tcp_request_sock *tcprsk,
657			      struct tcp_out_options *opts,
658			      struct tcp_key *key)
659{
660	__be32 *ptr = (__be32 *)(th + 1);
661	u16 options = opts->options;	/* mungable copy */
662
663	if (tcp_key_is_md5(key)) {
664		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
665			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
666		/* overload cookie hash location */
667		opts->hash_location = (__u8 *)ptr;
668		ptr += 4;
669	} else if (tcp_key_is_ao(key)) {
670		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
671	}
672	if (unlikely(opts->mss)) {
673		*ptr++ = htonl((TCPOPT_MSS << 24) |
674			       (TCPOLEN_MSS << 16) |
675			       opts->mss);
676	}
677
678	if (likely(OPTION_TS & options)) {
679		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
680			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
681				       (TCPOLEN_SACK_PERM << 16) |
682				       (TCPOPT_TIMESTAMP << 8) |
683				       TCPOLEN_TIMESTAMP);
684			options &= ~OPTION_SACK_ADVERTISE;
685		} else {
686			*ptr++ = htonl((TCPOPT_NOP << 24) |
687				       (TCPOPT_NOP << 16) |
688				       (TCPOPT_TIMESTAMP << 8) |
689				       TCPOLEN_TIMESTAMP);
690		}
691		*ptr++ = htonl(opts->tsval);
692		*ptr++ = htonl(opts->tsecr);
693	}
694
695	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
696		*ptr++ = htonl((TCPOPT_NOP << 24) |
697			       (TCPOPT_NOP << 16) |
698			       (TCPOPT_SACK_PERM << 8) |
699			       TCPOLEN_SACK_PERM);
700	}
701
702	if (unlikely(OPTION_WSCALE & options)) {
703		*ptr++ = htonl((TCPOPT_NOP << 24) |
704			       (TCPOPT_WINDOW << 16) |
705			       (TCPOLEN_WINDOW << 8) |
706			       opts->ws);
707	}
708
709	if (unlikely(opts->num_sack_blocks)) {
710		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
711			tp->duplicate_sack : tp->selective_acks;
712		int this_sack;
713
714		*ptr++ = htonl((TCPOPT_NOP  << 24) |
715			       (TCPOPT_NOP  << 16) |
716			       (TCPOPT_SACK <<  8) |
717			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
718						     TCPOLEN_SACK_PERBLOCK)));
719
720		for (this_sack = 0; this_sack < opts->num_sack_blocks;
721		     ++this_sack) {
722			*ptr++ = htonl(sp[this_sack].start_seq);
723			*ptr++ = htonl(sp[this_sack].end_seq);
724		}
725
726		tp->rx_opt.dsack = 0;
727	}
728
729	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
730		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
731		u8 *p = (u8 *)ptr;
732		u32 len; /* Fast Open option length */
733
734		if (foc->exp) {
735			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
736			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
737				     TCPOPT_FASTOPEN_MAGIC);
738			p += TCPOLEN_EXP_FASTOPEN_BASE;
739		} else {
740			len = TCPOLEN_FASTOPEN_BASE + foc->len;
741			*p++ = TCPOPT_FASTOPEN;
742			*p++ = len;
743		}
744
745		memcpy(p, foc->val, foc->len);
746		if ((len & 3) == 2) {
747			p[foc->len] = TCPOPT_NOP;
748			p[foc->len + 1] = TCPOPT_NOP;
749		}
750		ptr += (len + 3) >> 2;
751	}
752
753	smc_options_write(ptr, &options);
754
755	mptcp_options_write(th, ptr, tp, opts);
756}
757
758static void smc_set_option(const struct tcp_sock *tp,
759			   struct tcp_out_options *opts,
760			   unsigned int *remaining)
761{
762#if IS_ENABLED(CONFIG_SMC)
763	if (static_branch_unlikely(&tcp_have_smc)) {
764		if (tp->syn_smc) {
765			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
766				opts->options |= OPTION_SMC;
767				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
768			}
769		}
770	}
771#endif
772}
773
774static void smc_set_option_cond(const struct tcp_sock *tp,
775				const struct inet_request_sock *ireq,
776				struct tcp_out_options *opts,
777				unsigned int *remaining)
778{
779#if IS_ENABLED(CONFIG_SMC)
780	if (static_branch_unlikely(&tcp_have_smc)) {
781		if (tp->syn_smc && ireq->smc_ok) {
782			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
783				opts->options |= OPTION_SMC;
784				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
785			}
786		}
787	}
788#endif
789}
790
791static void mptcp_set_option_cond(const struct request_sock *req,
792				  struct tcp_out_options *opts,
793				  unsigned int *remaining)
794{
795	if (rsk_is_mptcp(req)) {
796		unsigned int size;
797
798		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
799			if (*remaining >= size) {
800				opts->options |= OPTION_MPTCP;
801				*remaining -= size;
802			}
803		}
804	}
805}
806
807/* Compute TCP options for SYN packets. This is not the final
808 * network wire format yet.
809 */
810static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
811				struct tcp_out_options *opts,
812				struct tcp_key *key)
813{
814	struct tcp_sock *tp = tcp_sk(sk);
815	unsigned int remaining = MAX_TCP_OPTION_SPACE;
816	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
817	bool timestamps;
818
819	/* Better than switch (key.type) as it has static branches */
820	if (tcp_key_is_md5(key)) {
821		timestamps = false;
822		opts->options |= OPTION_MD5;
823		remaining -= TCPOLEN_MD5SIG_ALIGNED;
824	} else {
825		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
826		if (tcp_key_is_ao(key)) {
827			opts->options |= OPTION_AO;
828			remaining -= tcp_ao_len_aligned(key->ao_key);
829		}
830	}
831
832	/* We always get an MSS option.  The option bytes which will be seen in
833	 * normal data packets should timestamps be used, must be in the MSS
834	 * advertised.  But we subtract them from tp->mss_cache so that
835	 * calculations in tcp_sendmsg are simpler etc.  So account for this
836	 * fact here if necessary.  If we don't do this correctly, as a
837	 * receiver we won't recognize data packets as being full sized when we
838	 * should, and thus we won't abide by the delayed ACK rules correctly.
839	 * SACKs don't matter, we never delay an ACK when we have any of those
840	 * going out.  */
841	opts->mss = tcp_advertise_mss(sk);
842	remaining -= TCPOLEN_MSS_ALIGNED;
843
844	if (likely(timestamps)) {
845		opts->options |= OPTION_TS;
846		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
847		opts->tsecr = tp->rx_opt.ts_recent;
848		remaining -= TCPOLEN_TSTAMP_ALIGNED;
849	}
850	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
851		opts->ws = tp->rx_opt.rcv_wscale;
852		opts->options |= OPTION_WSCALE;
853		remaining -= TCPOLEN_WSCALE_ALIGNED;
854	}
855	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
856		opts->options |= OPTION_SACK_ADVERTISE;
857		if (unlikely(!(OPTION_TS & opts->options)))
858			remaining -= TCPOLEN_SACKPERM_ALIGNED;
859	}
860
861	if (fastopen && fastopen->cookie.len >= 0) {
862		u32 need = fastopen->cookie.len;
863
864		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
865					       TCPOLEN_FASTOPEN_BASE;
866		need = (need + 3) & ~3U;  /* Align to 32 bits */
867		if (remaining >= need) {
868			opts->options |= OPTION_FAST_OPEN_COOKIE;
869			opts->fastopen_cookie = &fastopen->cookie;
870			remaining -= need;
871			tp->syn_fastopen = 1;
872			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
873		}
874	}
875
876	smc_set_option(tp, opts, &remaining);
877
878	if (sk_is_mptcp(sk)) {
879		unsigned int size;
880
881		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
882			opts->options |= OPTION_MPTCP;
883			remaining -= size;
884		}
885	}
886
887	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
888
889	return MAX_TCP_OPTION_SPACE - remaining;
890}
891
892/* Set up TCP options for SYN-ACKs. */
893static unsigned int tcp_synack_options(const struct sock *sk,
894				       struct request_sock *req,
895				       unsigned int mss, struct sk_buff *skb,
896				       struct tcp_out_options *opts,
897				       const struct tcp_key *key,
898				       struct tcp_fastopen_cookie *foc,
899				       enum tcp_synack_type synack_type,
900				       struct sk_buff *syn_skb)
901{
902	struct inet_request_sock *ireq = inet_rsk(req);
903	unsigned int remaining = MAX_TCP_OPTION_SPACE;
904
905	if (tcp_key_is_md5(key)) {
906		opts->options |= OPTION_MD5;
907		remaining -= TCPOLEN_MD5SIG_ALIGNED;
908
909		/* We can't fit any SACK blocks in a packet with MD5 + TS
910		 * options. There was discussion about disabling SACK
911		 * rather than TS in order to fit in better with old,
912		 * buggy kernels, but that was deemed to be unnecessary.
913		 */
914		if (synack_type != TCP_SYNACK_COOKIE)
915			ireq->tstamp_ok &= !ireq->sack_ok;
916	} else if (tcp_key_is_ao(key)) {
917		opts->options |= OPTION_AO;
918		remaining -= tcp_ao_len_aligned(key->ao_key);
919		ireq->tstamp_ok &= !ireq->sack_ok;
920	}
921
922	/* We always send an MSS option. */
923	opts->mss = mss;
924	remaining -= TCPOLEN_MSS_ALIGNED;
925
926	if (likely(ireq->wscale_ok)) {
927		opts->ws = ireq->rcv_wscale;
928		opts->options |= OPTION_WSCALE;
929		remaining -= TCPOLEN_WSCALE_ALIGNED;
930	}
931	if (likely(ireq->tstamp_ok)) {
932		opts->options |= OPTION_TS;
933		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
934			      tcp_rsk(req)->ts_off;
935		opts->tsecr = READ_ONCE(req->ts_recent);
936		remaining -= TCPOLEN_TSTAMP_ALIGNED;
937	}
938	if (likely(ireq->sack_ok)) {
939		opts->options |= OPTION_SACK_ADVERTISE;
940		if (unlikely(!ireq->tstamp_ok))
941			remaining -= TCPOLEN_SACKPERM_ALIGNED;
942	}
943	if (foc != NULL && foc->len >= 0) {
944		u32 need = foc->len;
945
946		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
947				   TCPOLEN_FASTOPEN_BASE;
948		need = (need + 3) & ~3U;  /* Align to 32 bits */
949		if (remaining >= need) {
950			opts->options |= OPTION_FAST_OPEN_COOKIE;
951			opts->fastopen_cookie = foc;
952			remaining -= need;
953		}
954	}
955
956	mptcp_set_option_cond(req, opts, &remaining);
957
958	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
959
960	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
961			      synack_type, opts, &remaining);
962
963	return MAX_TCP_OPTION_SPACE - remaining;
964}
965
966/* Compute TCP options for ESTABLISHED sockets. This is not the
967 * final wire format yet.
968 */
969static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
970					struct tcp_out_options *opts,
971					struct tcp_key *key)
972{
973	struct tcp_sock *tp = tcp_sk(sk);
974	unsigned int size = 0;
975	unsigned int eff_sacks;
976
977	opts->options = 0;
978
979	/* Better than switch (key.type) as it has static branches */
980	if (tcp_key_is_md5(key)) {
981		opts->options |= OPTION_MD5;
982		size += TCPOLEN_MD5SIG_ALIGNED;
983	} else if (tcp_key_is_ao(key)) {
984		opts->options |= OPTION_AO;
985		size += tcp_ao_len_aligned(key->ao_key);
986	}
987
988	if (likely(tp->rx_opt.tstamp_ok)) {
989		opts->options |= OPTION_TS;
990		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
991				tp->tsoffset : 0;
992		opts->tsecr = tp->rx_opt.ts_recent;
993		size += TCPOLEN_TSTAMP_ALIGNED;
994	}
995
996	/* MPTCP options have precedence over SACK for the limited TCP
997	 * option space because a MPTCP connection would be forced to
998	 * fall back to regular TCP if a required multipath option is
999	 * missing. SACK still gets a chance to use whatever space is
1000	 * left.
1001	 */
1002	if (sk_is_mptcp(sk)) {
1003		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1004		unsigned int opt_size = 0;
1005
1006		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1007					      &opts->mptcp)) {
1008			opts->options |= OPTION_MPTCP;
1009			size += opt_size;
1010		}
1011	}
1012
1013	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1014	if (unlikely(eff_sacks)) {
1015		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1016		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1017					 TCPOLEN_SACK_PERBLOCK))
1018			return size;
1019
1020		opts->num_sack_blocks =
1021			min_t(unsigned int, eff_sacks,
1022			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1023			      TCPOLEN_SACK_PERBLOCK);
1024
1025		size += TCPOLEN_SACK_BASE_ALIGNED +
1026			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1027	}
1028
1029	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1030					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1031		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1032
1033		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1034
1035		size = MAX_TCP_OPTION_SPACE - remaining;
1036	}
1037
1038	return size;
1039}
1040
1041
1042/* TCP SMALL QUEUES (TSQ)
1043 *
1044 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1045 * to reduce RTT and bufferbloat.
1046 * We do this using a special skb destructor (tcp_wfree).
1047 *
1048 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1049 * needs to be reallocated in a driver.
1050 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1051 *
1052 * Since transmit from skb destructor is forbidden, we use a tasklet
1053 * to process all sockets that eventually need to send more skbs.
1054 * We use one tasklet per cpu, with its own queue of sockets.
1055 */
1056struct tsq_tasklet {
1057	struct tasklet_struct	tasklet;
1058	struct list_head	head; /* queue of tcp sockets */
1059};
1060static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1061
1062static void tcp_tsq_write(struct sock *sk)
1063{
1064	if ((1 << sk->sk_state) &
1065	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1066	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1067		struct tcp_sock *tp = tcp_sk(sk);
1068
1069		if (tp->lost_out > tp->retrans_out &&
1070		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1071			tcp_mstamp_refresh(tp);
1072			tcp_xmit_retransmit_queue(sk);
1073		}
1074
1075		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1076			       0, GFP_ATOMIC);
1077	}
1078}
1079
1080static void tcp_tsq_handler(struct sock *sk)
1081{
1082	bh_lock_sock(sk);
1083	if (!sock_owned_by_user(sk))
1084		tcp_tsq_write(sk);
1085	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1086		sock_hold(sk);
1087	bh_unlock_sock(sk);
1088}
1089/*
1090 * One tasklet per cpu tries to send more skbs.
1091 * We run in tasklet context but need to disable irqs when
1092 * transferring tsq->head because tcp_wfree() might
1093 * interrupt us (non NAPI drivers)
1094 */
1095static void tcp_tasklet_func(struct tasklet_struct *t)
1096{
1097	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1098	LIST_HEAD(list);
1099	unsigned long flags;
1100	struct list_head *q, *n;
1101	struct tcp_sock *tp;
1102	struct sock *sk;
1103
1104	local_irq_save(flags);
1105	list_splice_init(&tsq->head, &list);
1106	local_irq_restore(flags);
1107
1108	list_for_each_safe(q, n, &list) {
1109		tp = list_entry(q, struct tcp_sock, tsq_node);
1110		list_del(&tp->tsq_node);
1111
1112		sk = (struct sock *)tp;
1113		smp_mb__before_atomic();
1114		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1115
1116		tcp_tsq_handler(sk);
1117		sk_free(sk);
1118	}
1119}
1120
1121#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1122			  TCPF_WRITE_TIMER_DEFERRED |	\
1123			  TCPF_DELACK_TIMER_DEFERRED |	\
1124			  TCPF_MTU_REDUCED_DEFERRED |	\
1125			  TCPF_ACK_DEFERRED)
1126/**
1127 * tcp_release_cb - tcp release_sock() callback
1128 * @sk: socket
1129 *
1130 * called from release_sock() to perform protocol dependent
1131 * actions before socket release.
1132 */
1133void tcp_release_cb(struct sock *sk)
1134{
1135	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1136	unsigned long nflags;
1137
1138	/* perform an atomic operation only if at least one flag is set */
1139	do {
1140		if (!(flags & TCP_DEFERRED_ALL))
1141			return;
1142		nflags = flags & ~TCP_DEFERRED_ALL;
1143	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1144
1145	if (flags & TCPF_TSQ_DEFERRED) {
1146		tcp_tsq_write(sk);
1147		__sock_put(sk);
1148	}
1149
1150	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1151		tcp_write_timer_handler(sk);
1152		__sock_put(sk);
1153	}
1154	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1155		tcp_delack_timer_handler(sk);
1156		__sock_put(sk);
1157	}
1158	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1159		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1160		__sock_put(sk);
1161	}
1162	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1163		tcp_send_ack(sk);
1164}
1165EXPORT_SYMBOL(tcp_release_cb);
1166
1167void __init tcp_tasklet_init(void)
1168{
1169	int i;
1170
1171	for_each_possible_cpu(i) {
1172		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1173
1174		INIT_LIST_HEAD(&tsq->head);
1175		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1176	}
1177}
1178
1179/*
1180 * Write buffer destructor automatically called from kfree_skb.
1181 * We can't xmit new skbs from this context, as we might already
1182 * hold qdisc lock.
1183 */
1184void tcp_wfree(struct sk_buff *skb)
1185{
1186	struct sock *sk = skb->sk;
1187	struct tcp_sock *tp = tcp_sk(sk);
1188	unsigned long flags, nval, oval;
1189	struct tsq_tasklet *tsq;
1190	bool empty;
1191
1192	/* Keep one reference on sk_wmem_alloc.
1193	 * Will be released by sk_free() from here or tcp_tasklet_func()
1194	 */
1195	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1196
1197	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1198	 * Wait until our queues (qdisc + devices) are drained.
1199	 * This gives :
1200	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1201	 * - chance for incoming ACK (processed by another cpu maybe)
1202	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1203	 */
1204	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1205		goto out;
1206
1207	oval = smp_load_acquire(&sk->sk_tsq_flags);
1208	do {
1209		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1210			goto out;
1211
1212		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1213	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1214
1215	/* queue this socket to tasklet queue */
1216	local_irq_save(flags);
1217	tsq = this_cpu_ptr(&tsq_tasklet);
1218	empty = list_empty(&tsq->head);
1219	list_add(&tp->tsq_node, &tsq->head);
1220	if (empty)
1221		tasklet_schedule(&tsq->tasklet);
1222	local_irq_restore(flags);
1223	return;
1224out:
1225	sk_free(sk);
1226}
1227
1228/* Note: Called under soft irq.
1229 * We can call TCP stack right away, unless socket is owned by user.
1230 */
1231enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1232{
1233	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1234	struct sock *sk = (struct sock *)tp;
1235
1236	tcp_tsq_handler(sk);
1237	sock_put(sk);
1238
1239	return HRTIMER_NORESTART;
1240}
1241
1242static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1243				      u64 prior_wstamp)
1244{
1245	struct tcp_sock *tp = tcp_sk(sk);
1246
1247	if (sk->sk_pacing_status != SK_PACING_NONE) {
1248		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1249
1250		/* Original sch_fq does not pace first 10 MSS
1251		 * Note that tp->data_segs_out overflows after 2^32 packets,
1252		 * this is a minor annoyance.
1253		 */
1254		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1255			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1256			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1257
1258			/* take into account OS jitter */
1259			len_ns -= min_t(u64, len_ns / 2, credit);
1260			tp->tcp_wstamp_ns += len_ns;
1261		}
1262	}
1263	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1264}
1265
1266INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1267INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1268INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1269
1270/* This routine actually transmits TCP packets queued in by
1271 * tcp_do_sendmsg().  This is used by both the initial
1272 * transmission and possible later retransmissions.
1273 * All SKB's seen here are completely headerless.  It is our
1274 * job to build the TCP header, and pass the packet down to
1275 * IP so it can do the same plus pass the packet off to the
1276 * device.
1277 *
1278 * We are working here with either a clone of the original
1279 * SKB, or a fresh unique copy made by the retransmit engine.
1280 */
1281static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1282			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1283{
1284	const struct inet_connection_sock *icsk = inet_csk(sk);
1285	struct inet_sock *inet;
1286	struct tcp_sock *tp;
1287	struct tcp_skb_cb *tcb;
1288	struct tcp_out_options opts;
1289	unsigned int tcp_options_size, tcp_header_size;
1290	struct sk_buff *oskb = NULL;
1291	struct tcp_key key;
1292	struct tcphdr *th;
1293	u64 prior_wstamp;
1294	int err;
1295
1296	BUG_ON(!skb || !tcp_skb_pcount(skb));
1297	tp = tcp_sk(sk);
1298	prior_wstamp = tp->tcp_wstamp_ns;
1299	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1300	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1301	if (clone_it) {
1302		oskb = skb;
1303
1304		tcp_skb_tsorted_save(oskb) {
1305			if (unlikely(skb_cloned(oskb)))
1306				skb = pskb_copy(oskb, gfp_mask);
1307			else
1308				skb = skb_clone(oskb, gfp_mask);
1309		} tcp_skb_tsorted_restore(oskb);
1310
1311		if (unlikely(!skb))
1312			return -ENOBUFS;
1313		/* retransmit skbs might have a non zero value in skb->dev
1314		 * because skb->dev is aliased with skb->rbnode.rb_left
1315		 */
1316		skb->dev = NULL;
1317	}
1318
1319	inet = inet_sk(sk);
1320	tcb = TCP_SKB_CB(skb);
1321	memset(&opts, 0, sizeof(opts));
1322
1323	tcp_get_current_key(sk, &key);
1324	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1325		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1326	} else {
1327		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1328		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1329		 * at receiver : This slightly improve GRO performance.
1330		 * Note that we do not force the PSH flag for non GSO packets,
1331		 * because they might be sent under high congestion events,
1332		 * and in this case it is better to delay the delivery of 1-MSS
1333		 * packets and thus the corresponding ACK packet that would
1334		 * release the following packet.
1335		 */
1336		if (tcp_skb_pcount(skb) > 1)
1337			tcb->tcp_flags |= TCPHDR_PSH;
1338	}
1339	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1340
1341	/* We set skb->ooo_okay to one if this packet can select
1342	 * a different TX queue than prior packets of this flow,
1343	 * to avoid self inflicted reorders.
1344	 * The 'other' queue decision is based on current cpu number
1345	 * if XPS is enabled, or sk->sk_txhash otherwise.
1346	 * We can switch to another (and better) queue if:
1347	 * 1) No packet with payload is in qdisc/device queues.
1348	 *    Delays in TX completion can defeat the test
1349	 *    even if packets were already sent.
1350	 * 2) Or rtx queue is empty.
1351	 *    This mitigates above case if ACK packets for
1352	 *    all prior packets were already processed.
1353	 */
1354	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1355			tcp_rtx_queue_empty(sk);
1356
1357	/* If we had to use memory reserve to allocate this skb,
1358	 * this might cause drops if packet is looped back :
1359	 * Other socket might not have SOCK_MEMALLOC.
1360	 * Packets not looped back do not care about pfmemalloc.
1361	 */
1362	skb->pfmemalloc = 0;
1363
1364	skb_push(skb, tcp_header_size);
1365	skb_reset_transport_header(skb);
1366
1367	skb_orphan(skb);
1368	skb->sk = sk;
1369	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1370	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1371
1372	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1373
1374	/* Build TCP header and checksum it. */
1375	th = (struct tcphdr *)skb->data;
1376	th->source		= inet->inet_sport;
1377	th->dest		= inet->inet_dport;
1378	th->seq			= htonl(tcb->seq);
1379	th->ack_seq		= htonl(rcv_nxt);
1380	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1381					tcb->tcp_flags);
1382
1383	th->check		= 0;
1384	th->urg_ptr		= 0;
1385
1386	/* The urg_mode check is necessary during a below snd_una win probe */
1387	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1388		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1389			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1390			th->urg = 1;
1391		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1392			th->urg_ptr = htons(0xFFFF);
1393			th->urg = 1;
1394		}
1395	}
1396
1397	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1398	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1399		th->window      = htons(tcp_select_window(sk));
1400		tcp_ecn_send(sk, skb, th, tcp_header_size);
1401	} else {
1402		/* RFC1323: The window in SYN & SYN/ACK segments
1403		 * is never scaled.
1404		 */
1405		th->window	= htons(min(tp->rcv_wnd, 65535U));
1406	}
1407
1408	tcp_options_write(th, tp, NULL, &opts, &key);
1409
1410	if (tcp_key_is_md5(&key)) {
1411#ifdef CONFIG_TCP_MD5SIG
1412		/* Calculate the MD5 hash, as we have all we need now */
1413		sk_gso_disable(sk);
1414		tp->af_specific->calc_md5_hash(opts.hash_location,
1415					       key.md5_key, sk, skb);
1416#endif
1417	} else if (tcp_key_is_ao(&key)) {
1418		int err;
1419
1420		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1421					  opts.hash_location);
1422		if (err) {
1423			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1424			return -ENOMEM;
1425		}
1426	}
1427
1428	/* BPF prog is the last one writing header option */
1429	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1430
1431	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1432			   tcp_v6_send_check, tcp_v4_send_check,
1433			   sk, skb);
1434
1435	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1436		tcp_event_ack_sent(sk, rcv_nxt);
1437
1438	if (skb->len != tcp_header_size) {
1439		tcp_event_data_sent(tp, sk);
1440		tp->data_segs_out += tcp_skb_pcount(skb);
1441		tp->bytes_sent += skb->len - tcp_header_size;
1442	}
1443
1444	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1445		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1446			      tcp_skb_pcount(skb));
1447
1448	tp->segs_out += tcp_skb_pcount(skb);
1449	skb_set_hash_from_sk(skb, sk);
1450	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1451	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1452	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1453
1454	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1455
1456	/* Cleanup our debris for IP stacks */
1457	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1458			       sizeof(struct inet6_skb_parm)));
1459
1460	tcp_add_tx_delay(skb, tp);
1461
1462	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1463				 inet6_csk_xmit, ip_queue_xmit,
1464				 sk, skb, &inet->cork.fl);
1465
1466	if (unlikely(err > 0)) {
1467		tcp_enter_cwr(sk);
1468		err = net_xmit_eval(err);
1469	}
1470	if (!err && oskb) {
1471		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1472		tcp_rate_skb_sent(sk, oskb);
1473	}
1474	return err;
1475}
1476
1477static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1478			    gfp_t gfp_mask)
1479{
1480	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1481				  tcp_sk(sk)->rcv_nxt);
1482}
1483
1484/* This routine just queues the buffer for sending.
1485 *
1486 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1487 * otherwise socket can stall.
1488 */
1489static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1490{
1491	struct tcp_sock *tp = tcp_sk(sk);
1492
1493	/* Advance write_seq and place onto the write_queue. */
1494	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1495	__skb_header_release(skb);
1496	tcp_add_write_queue_tail(sk, skb);
1497	sk_wmem_queued_add(sk, skb->truesize);
1498	sk_mem_charge(sk, skb->truesize);
1499}
1500
1501/* Initialize TSO segments for a packet. */
1502static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1503{
1504	if (skb->len <= mss_now) {
1505		/* Avoid the costly divide in the normal
1506		 * non-TSO case.
1507		 */
1508		tcp_skb_pcount_set(skb, 1);
1509		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510	} else {
1511		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1512		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1513	}
1514}
1515
1516/* Pcount in the middle of the write queue got changed, we need to do various
1517 * tweaks to fix counters
1518 */
1519static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1520{
1521	struct tcp_sock *tp = tcp_sk(sk);
1522
1523	tp->packets_out -= decr;
1524
1525	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1526		tp->sacked_out -= decr;
1527	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1528		tp->retrans_out -= decr;
1529	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1530		tp->lost_out -= decr;
1531
1532	/* Reno case is special. Sigh... */
1533	if (tcp_is_reno(tp) && decr > 0)
1534		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1535
1536	if (tp->lost_skb_hint &&
1537	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1538	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1539		tp->lost_cnt_hint -= decr;
1540
1541	tcp_verify_left_out(tp);
1542}
1543
1544static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1545{
1546	return TCP_SKB_CB(skb)->txstamp_ack ||
1547		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1548}
1549
1550static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1551{
1552	struct skb_shared_info *shinfo = skb_shinfo(skb);
1553
1554	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1555	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1556		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1557		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1558
1559		shinfo->tx_flags &= ~tsflags;
1560		shinfo2->tx_flags |= tsflags;
1561		swap(shinfo->tskey, shinfo2->tskey);
1562		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1563		TCP_SKB_CB(skb)->txstamp_ack = 0;
1564	}
1565}
1566
1567static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1568{
1569	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1570	TCP_SKB_CB(skb)->eor = 0;
1571}
1572
1573/* Insert buff after skb on the write or rtx queue of sk.  */
1574static void tcp_insert_write_queue_after(struct sk_buff *skb,
1575					 struct sk_buff *buff,
1576					 struct sock *sk,
1577					 enum tcp_queue tcp_queue)
1578{
1579	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1580		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1581	else
1582		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1583}
1584
1585/* Function to create two new TCP segments.  Shrinks the given segment
1586 * to the specified size and appends a new segment with the rest of the
1587 * packet to the list.  This won't be called frequently, I hope.
1588 * Remember, these are still headerless SKBs at this point.
1589 */
1590int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1591		 struct sk_buff *skb, u32 len,
1592		 unsigned int mss_now, gfp_t gfp)
1593{
1594	struct tcp_sock *tp = tcp_sk(sk);
1595	struct sk_buff *buff;
1596	int old_factor;
1597	long limit;
1598	int nlen;
1599	u8 flags;
1600
1601	if (WARN_ON(len > skb->len))
1602		return -EINVAL;
1603
1604	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1605
1606	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1607	 * We need some allowance to not penalize applications setting small
1608	 * SO_SNDBUF values.
1609	 * Also allow first and last skb in retransmit queue to be split.
1610	 */
1611	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1612	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1613		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1614		     skb != tcp_rtx_queue_head(sk) &&
1615		     skb != tcp_rtx_queue_tail(sk))) {
1616		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1617		return -ENOMEM;
1618	}
1619
1620	if (skb_unclone_keeptruesize(skb, gfp))
1621		return -ENOMEM;
1622
1623	/* Get a new skb... force flag on. */
1624	buff = tcp_stream_alloc_skb(sk, gfp, true);
1625	if (!buff)
1626		return -ENOMEM; /* We'll just try again later. */
1627	skb_copy_decrypted(buff, skb);
1628	mptcp_skb_ext_copy(buff, skb);
1629
1630	sk_wmem_queued_add(sk, buff->truesize);
1631	sk_mem_charge(sk, buff->truesize);
1632	nlen = skb->len - len;
1633	buff->truesize += nlen;
1634	skb->truesize -= nlen;
1635
1636	/* Correct the sequence numbers. */
1637	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1638	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1639	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1640
1641	/* PSH and FIN should only be set in the second packet. */
1642	flags = TCP_SKB_CB(skb)->tcp_flags;
1643	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1644	TCP_SKB_CB(buff)->tcp_flags = flags;
1645	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1646	tcp_skb_fragment_eor(skb, buff);
1647
1648	skb_split(skb, buff, len);
1649
1650	skb_set_delivery_time(buff, skb->tstamp, true);
1651	tcp_fragment_tstamp(skb, buff);
1652
1653	old_factor = tcp_skb_pcount(skb);
1654
1655	/* Fix up tso_factor for both original and new SKB.  */
1656	tcp_set_skb_tso_segs(skb, mss_now);
1657	tcp_set_skb_tso_segs(buff, mss_now);
1658
1659	/* Update delivered info for the new segment */
1660	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1661
1662	/* If this packet has been sent out already, we must
1663	 * adjust the various packet counters.
1664	 */
1665	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1666		int diff = old_factor - tcp_skb_pcount(skb) -
1667			tcp_skb_pcount(buff);
1668
1669		if (diff)
1670			tcp_adjust_pcount(sk, skb, diff);
1671	}
1672
1673	/* Link BUFF into the send queue. */
1674	__skb_header_release(buff);
1675	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1676	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1677		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1678
1679	return 0;
1680}
1681
1682/* This is similar to __pskb_pull_tail(). The difference is that pulled
1683 * data is not copied, but immediately discarded.
1684 */
1685static int __pskb_trim_head(struct sk_buff *skb, int len)
1686{
1687	struct skb_shared_info *shinfo;
1688	int i, k, eat;
1689
1690	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1691	eat = len;
1692	k = 0;
1693	shinfo = skb_shinfo(skb);
1694	for (i = 0; i < shinfo->nr_frags; i++) {
1695		int size = skb_frag_size(&shinfo->frags[i]);
1696
1697		if (size <= eat) {
1698			skb_frag_unref(skb, i);
1699			eat -= size;
1700		} else {
1701			shinfo->frags[k] = shinfo->frags[i];
1702			if (eat) {
1703				skb_frag_off_add(&shinfo->frags[k], eat);
1704				skb_frag_size_sub(&shinfo->frags[k], eat);
1705				eat = 0;
1706			}
1707			k++;
1708		}
1709	}
1710	shinfo->nr_frags = k;
1711
1712	skb->data_len -= len;
1713	skb->len = skb->data_len;
1714	return len;
1715}
1716
1717/* Remove acked data from a packet in the transmit queue. */
1718int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1719{
1720	u32 delta_truesize;
1721
1722	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1723		return -ENOMEM;
1724
1725	delta_truesize = __pskb_trim_head(skb, len);
1726
1727	TCP_SKB_CB(skb)->seq += len;
1728
1729	skb->truesize	   -= delta_truesize;
1730	sk_wmem_queued_add(sk, -delta_truesize);
1731	if (!skb_zcopy_pure(skb))
1732		sk_mem_uncharge(sk, delta_truesize);
1733
1734	/* Any change of skb->len requires recalculation of tso factor. */
1735	if (tcp_skb_pcount(skb) > 1)
1736		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1737
1738	return 0;
1739}
1740
1741/* Calculate MSS not accounting any TCP options.  */
1742static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1743{
1744	const struct tcp_sock *tp = tcp_sk(sk);
1745	const struct inet_connection_sock *icsk = inet_csk(sk);
1746	int mss_now;
1747
1748	/* Calculate base mss without TCP options:
1749	   It is MMS_S - sizeof(tcphdr) of rfc1122
1750	 */
1751	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1752
1753	/* Clamp it (mss_clamp does not include tcp options) */
1754	if (mss_now > tp->rx_opt.mss_clamp)
1755		mss_now = tp->rx_opt.mss_clamp;
1756
1757	/* Now subtract optional transport overhead */
1758	mss_now -= icsk->icsk_ext_hdr_len;
1759
1760	/* Then reserve room for full set of TCP options and 8 bytes of data */
1761	mss_now = max(mss_now,
1762		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1763	return mss_now;
1764}
1765
1766/* Calculate MSS. Not accounting for SACKs here.  */
1767int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1768{
1769	/* Subtract TCP options size, not including SACKs */
1770	return __tcp_mtu_to_mss(sk, pmtu) -
1771	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1772}
1773EXPORT_SYMBOL(tcp_mtu_to_mss);
1774
1775/* Inverse of above */
1776int tcp_mss_to_mtu(struct sock *sk, int mss)
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	const struct inet_connection_sock *icsk = inet_csk(sk);
1780
1781	return mss +
1782	      tp->tcp_header_len +
1783	      icsk->icsk_ext_hdr_len +
1784	      icsk->icsk_af_ops->net_header_len;
1785}
1786EXPORT_SYMBOL(tcp_mss_to_mtu);
1787
1788/* MTU probing init per socket */
1789void tcp_mtup_init(struct sock *sk)
1790{
1791	struct tcp_sock *tp = tcp_sk(sk);
1792	struct inet_connection_sock *icsk = inet_csk(sk);
1793	struct net *net = sock_net(sk);
1794
1795	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1796	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1797			       icsk->icsk_af_ops->net_header_len;
1798	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1799	icsk->icsk_mtup.probe_size = 0;
1800	if (icsk->icsk_mtup.enabled)
1801		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1802}
1803EXPORT_SYMBOL(tcp_mtup_init);
1804
1805/* This function synchronize snd mss to current pmtu/exthdr set.
1806
1807   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1808   for TCP options, but includes only bare TCP header.
1809
1810   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1811   It is minimum of user_mss and mss received with SYN.
1812   It also does not include TCP options.
1813
1814   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1815
1816   tp->mss_cache is current effective sending mss, including
1817   all tcp options except for SACKs. It is evaluated,
1818   taking into account current pmtu, but never exceeds
1819   tp->rx_opt.mss_clamp.
1820
1821   NOTE1. rfc1122 clearly states that advertised MSS
1822   DOES NOT include either tcp or ip options.
1823
1824   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1825   are READ ONLY outside this function.		--ANK (980731)
1826 */
1827unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1828{
1829	struct tcp_sock *tp = tcp_sk(sk);
1830	struct inet_connection_sock *icsk = inet_csk(sk);
1831	int mss_now;
1832
1833	if (icsk->icsk_mtup.search_high > pmtu)
1834		icsk->icsk_mtup.search_high = pmtu;
1835
1836	mss_now = tcp_mtu_to_mss(sk, pmtu);
1837	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1838
1839	/* And store cached results */
1840	icsk->icsk_pmtu_cookie = pmtu;
1841	if (icsk->icsk_mtup.enabled)
1842		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1843	tp->mss_cache = mss_now;
1844
1845	return mss_now;
1846}
1847EXPORT_SYMBOL(tcp_sync_mss);
1848
1849/* Compute the current effective MSS, taking SACKs and IP options,
1850 * and even PMTU discovery events into account.
1851 */
1852unsigned int tcp_current_mss(struct sock *sk)
1853{
1854	const struct tcp_sock *tp = tcp_sk(sk);
1855	const struct dst_entry *dst = __sk_dst_get(sk);
1856	u32 mss_now;
1857	unsigned int header_len;
1858	struct tcp_out_options opts;
1859	struct tcp_key key;
1860
1861	mss_now = tp->mss_cache;
1862
1863	if (dst) {
1864		u32 mtu = dst_mtu(dst);
1865		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1866			mss_now = tcp_sync_mss(sk, mtu);
1867	}
1868	tcp_get_current_key(sk, &key);
1869	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1870		     sizeof(struct tcphdr);
1871	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1872	 * some common options. If this is an odd packet (because we have SACK
1873	 * blocks etc) then our calculated header_len will be different, and
1874	 * we have to adjust mss_now correspondingly */
1875	if (header_len != tp->tcp_header_len) {
1876		int delta = (int) header_len - tp->tcp_header_len;
1877		mss_now -= delta;
1878	}
1879
1880	return mss_now;
1881}
1882
1883/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1884 * As additional protections, we do not touch cwnd in retransmission phases,
1885 * and if application hit its sndbuf limit recently.
1886 */
1887static void tcp_cwnd_application_limited(struct sock *sk)
1888{
1889	struct tcp_sock *tp = tcp_sk(sk);
1890
1891	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1892	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1893		/* Limited by application or receiver window. */
1894		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1895		u32 win_used = max(tp->snd_cwnd_used, init_win);
1896		if (win_used < tcp_snd_cwnd(tp)) {
1897			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1898			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1899		}
1900		tp->snd_cwnd_used = 0;
1901	}
1902	tp->snd_cwnd_stamp = tcp_jiffies32;
1903}
1904
1905static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1906{
1907	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	/* Track the strongest available signal of the degree to which the cwnd
1911	 * is fully utilized. If cwnd-limited then remember that fact for the
1912	 * current window. If not cwnd-limited then track the maximum number of
1913	 * outstanding packets in the current window. (If cwnd-limited then we
1914	 * chose to not update tp->max_packets_out to avoid an extra else
1915	 * clause with no functional impact.)
1916	 */
1917	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1918	    is_cwnd_limited ||
1919	    (!tp->is_cwnd_limited &&
1920	     tp->packets_out > tp->max_packets_out)) {
1921		tp->is_cwnd_limited = is_cwnd_limited;
1922		tp->max_packets_out = tp->packets_out;
1923		tp->cwnd_usage_seq = tp->snd_nxt;
1924	}
1925
1926	if (tcp_is_cwnd_limited(sk)) {
1927		/* Network is feed fully. */
1928		tp->snd_cwnd_used = 0;
1929		tp->snd_cwnd_stamp = tcp_jiffies32;
1930	} else {
1931		/* Network starves. */
1932		if (tp->packets_out > tp->snd_cwnd_used)
1933			tp->snd_cwnd_used = tp->packets_out;
1934
1935		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1936		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1937		    !ca_ops->cong_control)
1938			tcp_cwnd_application_limited(sk);
1939
1940		/* The following conditions together indicate the starvation
1941		 * is caused by insufficient sender buffer:
1942		 * 1) just sent some data (see tcp_write_xmit)
1943		 * 2) not cwnd limited (this else condition)
1944		 * 3) no more data to send (tcp_write_queue_empty())
1945		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1946		 */
1947		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1948		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1949		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1950			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1951	}
1952}
1953
1954/* Minshall's variant of the Nagle send check. */
1955static bool tcp_minshall_check(const struct tcp_sock *tp)
1956{
1957	return after(tp->snd_sml, tp->snd_una) &&
1958		!after(tp->snd_sml, tp->snd_nxt);
1959}
1960
1961/* Update snd_sml if this skb is under mss
1962 * Note that a TSO packet might end with a sub-mss segment
1963 * The test is really :
1964 * if ((skb->len % mss) != 0)
1965 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966 * But we can avoid doing the divide again given we already have
1967 *  skb_pcount = skb->len / mss_now
1968 */
1969static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1970				const struct sk_buff *skb)
1971{
1972	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1973		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974}
1975
1976/* Return false, if packet can be sent now without violation Nagle's rules:
1977 * 1. It is full sized. (provided by caller in %partial bool)
1978 * 2. Or it contains FIN. (already checked by caller)
1979 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1980 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1981 *    With Minshall's modification: all sent small packets are ACKed.
1982 */
1983static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1984			    int nonagle)
1985{
1986	return partial &&
1987		((nonagle & TCP_NAGLE_CORK) ||
1988		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1989}
1990
1991/* Return how many segs we'd like on a TSO packet,
1992 * depending on current pacing rate, and how close the peer is.
1993 *
1994 * Rationale is:
1995 * - For close peers, we rather send bigger packets to reduce
1996 *   cpu costs, because occasional losses will be repaired fast.
1997 * - For long distance/rtt flows, we would like to get ACK clocking
1998 *   with 1 ACK per ms.
1999 *
2000 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2001 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2002 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2003 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2004 */
2005static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2006			    int min_tso_segs)
2007{
2008	unsigned long bytes;
2009	u32 r;
2010
2011	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2012
2013	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2014	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2015		bytes += sk->sk_gso_max_size >> r;
2016
2017	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2018
2019	return max_t(u32, bytes / mss_now, min_tso_segs);
2020}
2021
2022/* Return the number of segments we want in the skb we are transmitting.
2023 * See if congestion control module wants to decide; otherwise, autosize.
2024 */
2025static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2026{
2027	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2028	u32 min_tso, tso_segs;
2029
2030	min_tso = ca_ops->min_tso_segs ?
2031			ca_ops->min_tso_segs(sk) :
2032			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2033
2034	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2035	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2036}
2037
2038/* Returns the portion of skb which can be sent right away */
2039static unsigned int tcp_mss_split_point(const struct sock *sk,
2040					const struct sk_buff *skb,
2041					unsigned int mss_now,
2042					unsigned int max_segs,
2043					int nonagle)
2044{
2045	const struct tcp_sock *tp = tcp_sk(sk);
2046	u32 partial, needed, window, max_len;
2047
2048	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2049	max_len = mss_now * max_segs;
2050
2051	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2052		return max_len;
2053
2054	needed = min(skb->len, window);
2055
2056	if (max_len <= needed)
2057		return max_len;
2058
2059	partial = needed % mss_now;
2060	/* If last segment is not a full MSS, check if Nagle rules allow us
2061	 * to include this last segment in this skb.
2062	 * Otherwise, we'll split the skb at last MSS boundary
2063	 */
2064	if (tcp_nagle_check(partial != 0, tp, nonagle))
2065		return needed - partial;
2066
2067	return needed;
2068}
2069
2070/* Can at least one segment of SKB be sent right now, according to the
2071 * congestion window rules?  If so, return how many segments are allowed.
2072 */
2073static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2074					 const struct sk_buff *skb)
2075{
2076	u32 in_flight, cwnd, halfcwnd;
2077
2078	/* Don't be strict about the congestion window for the final FIN.  */
2079	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2080	    tcp_skb_pcount(skb) == 1)
2081		return 1;
2082
2083	in_flight = tcp_packets_in_flight(tp);
2084	cwnd = tcp_snd_cwnd(tp);
2085	if (in_flight >= cwnd)
2086		return 0;
2087
2088	/* For better scheduling, ensure we have at least
2089	 * 2 GSO packets in flight.
2090	 */
2091	halfcwnd = max(cwnd >> 1, 1U);
2092	return min(halfcwnd, cwnd - in_flight);
2093}
2094
2095/* Initialize TSO state of a skb.
2096 * This must be invoked the first time we consider transmitting
2097 * SKB onto the wire.
2098 */
2099static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2100{
2101	int tso_segs = tcp_skb_pcount(skb);
2102
2103	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2104		tcp_set_skb_tso_segs(skb, mss_now);
2105		tso_segs = tcp_skb_pcount(skb);
2106	}
2107	return tso_segs;
2108}
2109
2110
2111/* Return true if the Nagle test allows this packet to be
2112 * sent now.
2113 */
2114static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115				  unsigned int cur_mss, int nonagle)
2116{
2117	/* Nagle rule does not apply to frames, which sit in the middle of the
2118	 * write_queue (they have no chances to get new data).
2119	 *
2120	 * This is implemented in the callers, where they modify the 'nonagle'
2121	 * argument based upon the location of SKB in the send queue.
2122	 */
2123	if (nonagle & TCP_NAGLE_PUSH)
2124		return true;
2125
2126	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128		return true;
2129
2130	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131		return true;
2132
2133	return false;
2134}
2135
2136/* Does at least the first segment of SKB fit into the send window? */
2137static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138			     const struct sk_buff *skb,
2139			     unsigned int cur_mss)
2140{
2141	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142
2143	if (skb->len > cur_mss)
2144		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145
2146	return !after(end_seq, tcp_wnd_end(tp));
2147}
2148
2149/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150 * which is put after SKB on the list.  It is very much like
2151 * tcp_fragment() except that it may make several kinds of assumptions
2152 * in order to speed up the splitting operation.  In particular, we
2153 * know that all the data is in scatter-gather pages, and that the
2154 * packet has never been sent out before (and thus is not cloned).
2155 */
2156static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157			unsigned int mss_now, gfp_t gfp)
2158{
2159	int nlen = skb->len - len;
2160	struct sk_buff *buff;
2161	u8 flags;
2162
2163	/* All of a TSO frame must be composed of paged data.  */
2164	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2165
2166	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167	if (unlikely(!buff))
2168		return -ENOMEM;
2169	skb_copy_decrypted(buff, skb);
2170	mptcp_skb_ext_copy(buff, skb);
2171
2172	sk_wmem_queued_add(sk, buff->truesize);
2173	sk_mem_charge(sk, buff->truesize);
2174	buff->truesize += nlen;
2175	skb->truesize -= nlen;
2176
2177	/* Correct the sequence numbers. */
2178	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181
2182	/* PSH and FIN should only be set in the second packet. */
2183	flags = TCP_SKB_CB(skb)->tcp_flags;
2184	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185	TCP_SKB_CB(buff)->tcp_flags = flags;
2186
2187	tcp_skb_fragment_eor(skb, buff);
2188
2189	skb_split(skb, buff, len);
2190	tcp_fragment_tstamp(skb, buff);
2191
2192	/* Fix up tso_factor for both original and new SKB.  */
2193	tcp_set_skb_tso_segs(skb, mss_now);
2194	tcp_set_skb_tso_segs(buff, mss_now);
2195
2196	/* Link BUFF into the send queue. */
2197	__skb_header_release(buff);
2198	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199
2200	return 0;
2201}
2202
2203/* Try to defer sending, if possible, in order to minimize the amount
2204 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205 *
2206 * This algorithm is from John Heffner.
2207 */
2208static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209				 bool *is_cwnd_limited,
2210				 bool *is_rwnd_limited,
2211				 u32 max_segs)
2212{
2213	const struct inet_connection_sock *icsk = inet_csk(sk);
2214	u32 send_win, cong_win, limit, in_flight;
2215	struct tcp_sock *tp = tcp_sk(sk);
2216	struct sk_buff *head;
2217	int win_divisor;
2218	s64 delta;
2219
2220	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221		goto send_now;
2222
2223	/* Avoid bursty behavior by allowing defer
2224	 * only if the last write was recent (1 ms).
2225	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226	 * packets waiting in a qdisc or device for EDT delivery.
2227	 */
2228	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229	if (delta > 0)
2230		goto send_now;
2231
2232	in_flight = tcp_packets_in_flight(tp);
2233
2234	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236
2237	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238
2239	/* From in_flight test above, we know that cwnd > in_flight.  */
2240	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241
2242	limit = min(send_win, cong_win);
2243
2244	/* If a full-sized TSO skb can be sent, do it. */
2245	if (limit >= max_segs * tp->mss_cache)
2246		goto send_now;
2247
2248	/* Middle in queue won't get any more data, full sendable already? */
2249	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250		goto send_now;
2251
2252	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253	if (win_divisor) {
2254		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255
2256		/* If at least some fraction of a window is available,
2257		 * just use it.
2258		 */
2259		chunk /= win_divisor;
2260		if (limit >= chunk)
2261			goto send_now;
2262	} else {
2263		/* Different approach, try not to defer past a single
2264		 * ACK.  Receiver should ACK every other full sized
2265		 * frame, so if we have space for more than 3 frames
2266		 * then send now.
2267		 */
2268		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269			goto send_now;
2270	}
2271
2272	/* TODO : use tsorted_sent_queue ? */
2273	head = tcp_rtx_queue_head(sk);
2274	if (!head)
2275		goto send_now;
2276	delta = tp->tcp_clock_cache - head->tstamp;
2277	/* If next ACK is likely to come too late (half srtt), do not defer */
2278	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279		goto send_now;
2280
2281	/* Ok, it looks like it is advisable to defer.
2282	 * Three cases are tracked :
2283	 * 1) We are cwnd-limited
2284	 * 2) We are rwnd-limited
2285	 * 3) We are application limited.
2286	 */
2287	if (cong_win < send_win) {
2288		if (cong_win <= skb->len) {
2289			*is_cwnd_limited = true;
2290			return true;
2291		}
2292	} else {
2293		if (send_win <= skb->len) {
2294			*is_rwnd_limited = true;
2295			return true;
2296		}
2297	}
2298
2299	/* If this packet won't get more data, do not wait. */
2300	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301	    TCP_SKB_CB(skb)->eor)
2302		goto send_now;
2303
2304	return true;
2305
2306send_now:
2307	return false;
2308}
2309
2310static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311{
2312	struct inet_connection_sock *icsk = inet_csk(sk);
2313	struct tcp_sock *tp = tcp_sk(sk);
2314	struct net *net = sock_net(sk);
2315	u32 interval;
2316	s32 delta;
2317
2318	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320	if (unlikely(delta >= interval * HZ)) {
2321		int mss = tcp_current_mss(sk);
2322
2323		/* Update current search range */
2324		icsk->icsk_mtup.probe_size = 0;
2325		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326			sizeof(struct tcphdr) +
2327			icsk->icsk_af_ops->net_header_len;
2328		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329
2330		/* Update probe time stamp */
2331		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332	}
2333}
2334
2335static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336{
2337	struct sk_buff *skb, *next;
2338
2339	skb = tcp_send_head(sk);
2340	tcp_for_write_queue_from_safe(skb, next, sk) {
2341		if (len <= skb->len)
2342			break;
2343
2344		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345		    tcp_has_tx_tstamp(skb) ||
2346		    !skb_pure_zcopy_same(skb, next))
2347			return false;
2348
2349		len -= skb->len;
2350	}
2351
2352	return true;
2353}
2354
2355static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356			     int probe_size)
2357{
2358	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359	int i, todo, len = 0, nr_frags = 0;
2360	const struct sk_buff *skb;
2361
2362	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363		return -ENOMEM;
2364
2365	skb_queue_walk(&sk->sk_write_queue, skb) {
2366		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367
2368		if (skb_headlen(skb))
2369			return -EINVAL;
2370
2371		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372			if (len >= probe_size)
2373				goto commit;
2374			todo = min_t(int, skb_frag_size(fragfrom),
2375				     probe_size - len);
2376			len += todo;
2377			if (lastfrag &&
2378			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380						      skb_frag_size(lastfrag)) {
2381				skb_frag_size_add(lastfrag, todo);
2382				continue;
2383			}
2384			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385				return -E2BIG;
2386			skb_frag_page_copy(fragto, fragfrom);
2387			skb_frag_off_copy(fragto, fragfrom);
2388			skb_frag_size_set(fragto, todo);
2389			nr_frags++;
2390			lastfrag = fragto++;
2391		}
2392	}
2393commit:
2394	WARN_ON_ONCE(len != probe_size);
2395	for (i = 0; i < nr_frags; i++)
2396		skb_frag_ref(to, i);
2397
2398	skb_shinfo(to)->nr_frags = nr_frags;
2399	to->truesize += probe_size;
2400	to->len += probe_size;
2401	to->data_len += probe_size;
2402	__skb_header_release(to);
2403	return 0;
2404}
2405
2406/* Create a new MTU probe if we are ready.
2407 * MTU probe is regularly attempting to increase the path MTU by
2408 * deliberately sending larger packets.  This discovers routing
2409 * changes resulting in larger path MTUs.
2410 *
2411 * Returns 0 if we should wait to probe (no cwnd available),
2412 *         1 if a probe was sent,
2413 *         -1 otherwise
2414 */
2415static int tcp_mtu_probe(struct sock *sk)
2416{
2417	struct inet_connection_sock *icsk = inet_csk(sk);
2418	struct tcp_sock *tp = tcp_sk(sk);
2419	struct sk_buff *skb, *nskb, *next;
2420	struct net *net = sock_net(sk);
2421	int probe_size;
2422	int size_needed;
2423	int copy, len;
2424	int mss_now;
2425	int interval;
2426
2427	/* Not currently probing/verifying,
2428	 * not in recovery,
2429	 * have enough cwnd, and
2430	 * not SACKing (the variable headers throw things off)
2431	 */
2432	if (likely(!icsk->icsk_mtup.enabled ||
2433		   icsk->icsk_mtup.probe_size ||
2434		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2435		   tcp_snd_cwnd(tp) < 11 ||
2436		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2437		return -1;
2438
2439	/* Use binary search for probe_size between tcp_mss_base,
2440	 * and current mss_clamp. if (search_high - search_low)
2441	 * smaller than a threshold, backoff from probing.
2442	 */
2443	mss_now = tcp_current_mss(sk);
2444	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2445				    icsk->icsk_mtup.search_low) >> 1);
2446	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2447	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2448	/* When misfortune happens, we are reprobing actively,
2449	 * and then reprobe timer has expired. We stick with current
2450	 * probing process by not resetting search range to its orignal.
2451	 */
2452	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2453	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2454		/* Check whether enough time has elaplased for
2455		 * another round of probing.
2456		 */
2457		tcp_mtu_check_reprobe(sk);
2458		return -1;
2459	}
2460
2461	/* Have enough data in the send queue to probe? */
2462	if (tp->write_seq - tp->snd_nxt < size_needed)
2463		return -1;
2464
2465	if (tp->snd_wnd < size_needed)
2466		return -1;
2467	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2468		return 0;
2469
2470	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2471	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2472		if (!tcp_packets_in_flight(tp))
2473			return -1;
2474		else
2475			return 0;
2476	}
2477
2478	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2479		return -1;
2480
2481	/* We're allowed to probe.  Build it now. */
2482	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2483	if (!nskb)
2484		return -1;
2485
2486	/* build the payload, and be prepared to abort if this fails. */
2487	if (tcp_clone_payload(sk, nskb, probe_size)) {
2488		tcp_skb_tsorted_anchor_cleanup(nskb);
2489		consume_skb(nskb);
2490		return -1;
2491	}
2492	sk_wmem_queued_add(sk, nskb->truesize);
2493	sk_mem_charge(sk, nskb->truesize);
2494
2495	skb = tcp_send_head(sk);
2496	skb_copy_decrypted(nskb, skb);
2497	mptcp_skb_ext_copy(nskb, skb);
2498
2499	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2500	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2501	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2502
2503	tcp_insert_write_queue_before(nskb, skb, sk);
2504	tcp_highest_sack_replace(sk, skb, nskb);
2505
2506	len = 0;
2507	tcp_for_write_queue_from_safe(skb, next, sk) {
2508		copy = min_t(int, skb->len, probe_size - len);
2509
2510		if (skb->len <= copy) {
2511			/* We've eaten all the data from this skb.
2512			 * Throw it away. */
2513			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2514			/* If this is the last SKB we copy and eor is set
2515			 * we need to propagate it to the new skb.
2516			 */
2517			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2518			tcp_skb_collapse_tstamp(nskb, skb);
2519			tcp_unlink_write_queue(skb, sk);
2520			tcp_wmem_free_skb(sk, skb);
2521		} else {
2522			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2523						   ~(TCPHDR_FIN|TCPHDR_PSH);
2524			__pskb_trim_head(skb, copy);
2525			tcp_set_skb_tso_segs(skb, mss_now);
2526			TCP_SKB_CB(skb)->seq += copy;
2527		}
2528
2529		len += copy;
2530
2531		if (len >= probe_size)
2532			break;
2533	}
2534	tcp_init_tso_segs(nskb, nskb->len);
2535
2536	/* We're ready to send.  If this fails, the probe will
2537	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2538	 */
2539	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2540		/* Decrement cwnd here because we are sending
2541		 * effectively two packets. */
2542		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2543		tcp_event_new_data_sent(sk, nskb);
2544
2545		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2546		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2547		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2548
2549		return 1;
2550	}
2551
2552	return -1;
2553}
2554
2555static bool tcp_pacing_check(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (!tcp_needs_internal_pacing(sk))
2560		return false;
2561
2562	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2563		return false;
2564
2565	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2566		hrtimer_start(&tp->pacing_timer,
2567			      ns_to_ktime(tp->tcp_wstamp_ns),
2568			      HRTIMER_MODE_ABS_PINNED_SOFT);
2569		sock_hold(sk);
2570	}
2571	return true;
2572}
2573
2574static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2575{
2576	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2577
2578	/* No skb in the rtx queue. */
2579	if (!node)
2580		return true;
2581
2582	/* Only one skb in rtx queue. */
2583	return !node->rb_left && !node->rb_right;
2584}
2585
2586/* TCP Small Queues :
2587 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2588 * (These limits are doubled for retransmits)
2589 * This allows for :
2590 *  - better RTT estimation and ACK scheduling
2591 *  - faster recovery
2592 *  - high rates
2593 * Alas, some drivers / subsystems require a fair amount
2594 * of queued bytes to ensure line rate.
2595 * One example is wifi aggregation (802.11 AMPDU)
2596 */
2597static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2598				  unsigned int factor)
2599{
2600	unsigned long limit;
2601
2602	limit = max_t(unsigned long,
2603		      2 * skb->truesize,
2604		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2605	if (sk->sk_pacing_status == SK_PACING_NONE)
2606		limit = min_t(unsigned long, limit,
2607			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2608	limit <<= factor;
2609
2610	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2611	    tcp_sk(sk)->tcp_tx_delay) {
2612		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2613				  tcp_sk(sk)->tcp_tx_delay;
2614
2615		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2616		 * approximate our needs assuming an ~100% skb->truesize overhead.
2617		 * USEC_PER_SEC is approximated by 2^20.
2618		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2619		 */
2620		extra_bytes >>= (20 - 1);
2621		limit += extra_bytes;
2622	}
2623	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2624		/* Always send skb if rtx queue is empty or has one skb.
2625		 * No need to wait for TX completion to call us back,
2626		 * after softirq/tasklet schedule.
2627		 * This helps when TX completions are delayed too much.
2628		 */
2629		if (tcp_rtx_queue_empty_or_single_skb(sk))
2630			return false;
2631
2632		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2633		/* It is possible TX completion already happened
2634		 * before we set TSQ_THROTTLED, so we must
2635		 * test again the condition.
2636		 */
2637		smp_mb__after_atomic();
2638		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2639			return true;
2640	}
2641	return false;
2642}
2643
2644static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2645{
2646	const u32 now = tcp_jiffies32;
2647	enum tcp_chrono old = tp->chrono_type;
2648
2649	if (old > TCP_CHRONO_UNSPEC)
2650		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2651	tp->chrono_start = now;
2652	tp->chrono_type = new;
2653}
2654
2655void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2656{
2657	struct tcp_sock *tp = tcp_sk(sk);
2658
2659	/* If there are multiple conditions worthy of tracking in a
2660	 * chronograph then the highest priority enum takes precedence
2661	 * over the other conditions. So that if something "more interesting"
2662	 * starts happening, stop the previous chrono and start a new one.
2663	 */
2664	if (type > tp->chrono_type)
2665		tcp_chrono_set(tp, type);
2666}
2667
2668void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672
2673	/* There are multiple conditions worthy of tracking in a
2674	 * chronograph, so that the highest priority enum takes
2675	 * precedence over the other conditions (see tcp_chrono_start).
2676	 * If a condition stops, we only stop chrono tracking if
2677	 * it's the "most interesting" or current chrono we are
2678	 * tracking and starts busy chrono if we have pending data.
2679	 */
2680	if (tcp_rtx_and_write_queues_empty(sk))
2681		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2682	else if (type == tp->chrono_type)
2683		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2684}
2685
2686/* This routine writes packets to the network.  It advances the
2687 * send_head.  This happens as incoming acks open up the remote
2688 * window for us.
2689 *
2690 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2691 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2692 * account rare use of URG, this is not a big flaw.
2693 *
2694 * Send at most one packet when push_one > 0. Temporarily ignore
2695 * cwnd limit to force at most one packet out when push_one == 2.
2696
2697 * Returns true, if no segments are in flight and we have queued segments,
2698 * but cannot send anything now because of SWS or another problem.
2699 */
2700static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2701			   int push_one, gfp_t gfp)
2702{
2703	struct tcp_sock *tp = tcp_sk(sk);
2704	struct sk_buff *skb;
2705	unsigned int tso_segs, sent_pkts;
2706	int cwnd_quota;
2707	int result;
2708	bool is_cwnd_limited = false, is_rwnd_limited = false;
2709	u32 max_segs;
2710
2711	sent_pkts = 0;
2712
2713	tcp_mstamp_refresh(tp);
2714	if (!push_one) {
2715		/* Do MTU probing. */
2716		result = tcp_mtu_probe(sk);
2717		if (!result) {
2718			return false;
2719		} else if (result > 0) {
2720			sent_pkts = 1;
2721		}
2722	}
2723
2724	max_segs = tcp_tso_segs(sk, mss_now);
2725	while ((skb = tcp_send_head(sk))) {
2726		unsigned int limit;
2727
2728		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2729			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2730			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2731			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2732			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2733			tcp_init_tso_segs(skb, mss_now);
2734			goto repair; /* Skip network transmission */
2735		}
2736
2737		if (tcp_pacing_check(sk))
2738			break;
2739
2740		tso_segs = tcp_init_tso_segs(skb, mss_now);
2741		BUG_ON(!tso_segs);
2742
2743		cwnd_quota = tcp_cwnd_test(tp, skb);
2744		if (!cwnd_quota) {
2745			if (push_one == 2)
2746				/* Force out a loss probe pkt. */
2747				cwnd_quota = 1;
2748			else
2749				break;
2750		}
2751
2752		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2753			is_rwnd_limited = true;
2754			break;
2755		}
2756
2757		if (tso_segs == 1) {
2758			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2759						     (tcp_skb_is_last(sk, skb) ?
2760						      nonagle : TCP_NAGLE_PUSH))))
2761				break;
2762		} else {
2763			if (!push_one &&
2764			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2765						 &is_rwnd_limited, max_segs))
2766				break;
2767		}
2768
2769		limit = mss_now;
2770		if (tso_segs > 1 && !tcp_urg_mode(tp))
2771			limit = tcp_mss_split_point(sk, skb, mss_now,
2772						    min_t(unsigned int,
2773							  cwnd_quota,
2774							  max_segs),
2775						    nonagle);
2776
2777		if (skb->len > limit &&
2778		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2779			break;
2780
2781		if (tcp_small_queue_check(sk, skb, 0))
2782			break;
2783
2784		/* Argh, we hit an empty skb(), presumably a thread
2785		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2786		 * We do not want to send a pure-ack packet and have
2787		 * a strange looking rtx queue with empty packet(s).
2788		 */
2789		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2790			break;
2791
2792		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2793			break;
2794
2795repair:
2796		/* Advance the send_head.  This one is sent out.
2797		 * This call will increment packets_out.
2798		 */
2799		tcp_event_new_data_sent(sk, skb);
2800
2801		tcp_minshall_update(tp, mss_now, skb);
2802		sent_pkts += tcp_skb_pcount(skb);
2803
2804		if (push_one)
2805			break;
2806	}
2807
2808	if (is_rwnd_limited)
2809		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2810	else
2811		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2812
2813	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2814	if (likely(sent_pkts || is_cwnd_limited))
2815		tcp_cwnd_validate(sk, is_cwnd_limited);
2816
2817	if (likely(sent_pkts)) {
2818		if (tcp_in_cwnd_reduction(sk))
2819			tp->prr_out += sent_pkts;
2820
2821		/* Send one loss probe per tail loss episode. */
2822		if (push_one != 2)
2823			tcp_schedule_loss_probe(sk, false);
2824		return false;
2825	}
2826	return !tp->packets_out && !tcp_write_queue_empty(sk);
2827}
2828
2829bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2830{
2831	struct inet_connection_sock *icsk = inet_csk(sk);
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	u32 timeout, timeout_us, rto_delta_us;
2834	int early_retrans;
2835
2836	/* Don't do any loss probe on a Fast Open connection before 3WHS
2837	 * finishes.
2838	 */
2839	if (rcu_access_pointer(tp->fastopen_rsk))
2840		return false;
2841
2842	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2843	/* Schedule a loss probe in 2*RTT for SACK capable connections
2844	 * not in loss recovery, that are either limited by cwnd or application.
2845	 */
2846	if ((early_retrans != 3 && early_retrans != 4) ||
2847	    !tp->packets_out || !tcp_is_sack(tp) ||
2848	    (icsk->icsk_ca_state != TCP_CA_Open &&
2849	     icsk->icsk_ca_state != TCP_CA_CWR))
2850		return false;
2851
2852	/* Probe timeout is 2*rtt. Add minimum RTO to account
2853	 * for delayed ack when there's one outstanding packet. If no RTT
2854	 * sample is available then probe after TCP_TIMEOUT_INIT.
2855	 */
2856	if (tp->srtt_us) {
2857		timeout_us = tp->srtt_us >> 2;
2858		if (tp->packets_out == 1)
2859			timeout_us += tcp_rto_min_us(sk);
2860		else
2861			timeout_us += TCP_TIMEOUT_MIN_US;
2862		timeout = usecs_to_jiffies(timeout_us);
2863	} else {
2864		timeout = TCP_TIMEOUT_INIT;
2865	}
2866
2867	/* If the RTO formula yields an earlier time, then use that time. */
2868	rto_delta_us = advancing_rto ?
2869			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2870			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2871	if (rto_delta_us > 0)
2872		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2873
2874	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2875	return true;
2876}
2877
2878/* Thanks to skb fast clones, we can detect if a prior transmit of
2879 * a packet is still in a qdisc or driver queue.
2880 * In this case, there is very little point doing a retransmit !
2881 */
2882static bool skb_still_in_host_queue(struct sock *sk,
2883				    const struct sk_buff *skb)
2884{
2885	if (unlikely(skb_fclone_busy(sk, skb))) {
2886		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2887		smp_mb__after_atomic();
2888		if (skb_fclone_busy(sk, skb)) {
2889			NET_INC_STATS(sock_net(sk),
2890				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2891			return true;
2892		}
2893	}
2894	return false;
2895}
2896
2897/* When probe timeout (PTO) fires, try send a new segment if possible, else
2898 * retransmit the last segment.
2899 */
2900void tcp_send_loss_probe(struct sock *sk)
2901{
2902	struct tcp_sock *tp = tcp_sk(sk);
2903	struct sk_buff *skb;
2904	int pcount;
2905	int mss = tcp_current_mss(sk);
2906
2907	/* At most one outstanding TLP */
2908	if (tp->tlp_high_seq)
2909		goto rearm_timer;
2910
2911	tp->tlp_retrans = 0;
2912	skb = tcp_send_head(sk);
2913	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2914		pcount = tp->packets_out;
2915		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2916		if (tp->packets_out > pcount)
2917			goto probe_sent;
2918		goto rearm_timer;
2919	}
2920	skb = skb_rb_last(&sk->tcp_rtx_queue);
2921	if (unlikely(!skb)) {
2922		WARN_ONCE(tp->packets_out,
2923			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2924			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2925		inet_csk(sk)->icsk_pending = 0;
2926		return;
2927	}
2928
2929	if (skb_still_in_host_queue(sk, skb))
2930		goto rearm_timer;
2931
2932	pcount = tcp_skb_pcount(skb);
2933	if (WARN_ON(!pcount))
2934		goto rearm_timer;
2935
2936	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2937		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2938					  (pcount - 1) * mss, mss,
2939					  GFP_ATOMIC)))
2940			goto rearm_timer;
2941		skb = skb_rb_next(skb);
2942	}
2943
2944	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2945		goto rearm_timer;
2946
2947	if (__tcp_retransmit_skb(sk, skb, 1))
2948		goto rearm_timer;
2949
2950	tp->tlp_retrans = 1;
2951
2952probe_sent:
2953	/* Record snd_nxt for loss detection. */
2954	tp->tlp_high_seq = tp->snd_nxt;
2955
2956	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2957	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2958	inet_csk(sk)->icsk_pending = 0;
2959rearm_timer:
2960	tcp_rearm_rto(sk);
2961}
2962
2963/* Push out any pending frames which were held back due to
2964 * TCP_CORK or attempt at coalescing tiny packets.
2965 * The socket must be locked by the caller.
2966 */
2967void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2968			       int nonagle)
2969{
2970	/* If we are closed, the bytes will have to remain here.
2971	 * In time closedown will finish, we empty the write queue and
2972	 * all will be happy.
2973	 */
2974	if (unlikely(sk->sk_state == TCP_CLOSE))
2975		return;
2976
2977	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2978			   sk_gfp_mask(sk, GFP_ATOMIC)))
2979		tcp_check_probe_timer(sk);
2980}
2981
2982/* Send _single_ skb sitting at the send head. This function requires
2983 * true push pending frames to setup probe timer etc.
2984 */
2985void tcp_push_one(struct sock *sk, unsigned int mss_now)
2986{
2987	struct sk_buff *skb = tcp_send_head(sk);
2988
2989	BUG_ON(!skb || skb->len < mss_now);
2990
2991	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2992}
2993
2994/* This function returns the amount that we can raise the
2995 * usable window based on the following constraints
2996 *
2997 * 1. The window can never be shrunk once it is offered (RFC 793)
2998 * 2. We limit memory per socket
2999 *
3000 * RFC 1122:
3001 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3002 *  RECV.NEXT + RCV.WIN fixed until:
3003 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3004 *
3005 * i.e. don't raise the right edge of the window until you can raise
3006 * it at least MSS bytes.
3007 *
3008 * Unfortunately, the recommended algorithm breaks header prediction,
3009 * since header prediction assumes th->window stays fixed.
3010 *
3011 * Strictly speaking, keeping th->window fixed violates the receiver
3012 * side SWS prevention criteria. The problem is that under this rule
3013 * a stream of single byte packets will cause the right side of the
3014 * window to always advance by a single byte.
3015 *
3016 * Of course, if the sender implements sender side SWS prevention
3017 * then this will not be a problem.
3018 *
3019 * BSD seems to make the following compromise:
3020 *
3021 *	If the free space is less than the 1/4 of the maximum
3022 *	space available and the free space is less than 1/2 mss,
3023 *	then set the window to 0.
3024 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3025 *	Otherwise, just prevent the window from shrinking
3026 *	and from being larger than the largest representable value.
3027 *
3028 * This prevents incremental opening of the window in the regime
3029 * where TCP is limited by the speed of the reader side taking
3030 * data out of the TCP receive queue. It does nothing about
3031 * those cases where the window is constrained on the sender side
3032 * because the pipeline is full.
3033 *
3034 * BSD also seems to "accidentally" limit itself to windows that are a
3035 * multiple of MSS, at least until the free space gets quite small.
3036 * This would appear to be a side effect of the mbuf implementation.
3037 * Combining these two algorithms results in the observed behavior
3038 * of having a fixed window size at almost all times.
3039 *
3040 * Below we obtain similar behavior by forcing the offered window to
3041 * a multiple of the mss when it is feasible to do so.
3042 *
3043 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3044 * Regular options like TIMESTAMP are taken into account.
3045 */
3046u32 __tcp_select_window(struct sock *sk)
3047{
3048	struct inet_connection_sock *icsk = inet_csk(sk);
3049	struct tcp_sock *tp = tcp_sk(sk);
3050	struct net *net = sock_net(sk);
3051	/* MSS for the peer's data.  Previous versions used mss_clamp
3052	 * here.  I don't know if the value based on our guesses
3053	 * of peer's MSS is better for the performance.  It's more correct
3054	 * but may be worse for the performance because of rcv_mss
3055	 * fluctuations.  --SAW  1998/11/1
3056	 */
3057	int mss = icsk->icsk_ack.rcv_mss;
3058	int free_space = tcp_space(sk);
3059	int allowed_space = tcp_full_space(sk);
3060	int full_space, window;
3061
3062	if (sk_is_mptcp(sk))
3063		mptcp_space(sk, &free_space, &allowed_space);
3064
3065	full_space = min_t(int, tp->window_clamp, allowed_space);
3066
3067	if (unlikely(mss > full_space)) {
3068		mss = full_space;
3069		if (mss <= 0)
3070			return 0;
3071	}
3072
3073	/* Only allow window shrink if the sysctl is enabled and we have
3074	 * a non-zero scaling factor in effect.
3075	 */
3076	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3077		goto shrink_window_allowed;
3078
3079	/* do not allow window to shrink */
3080
3081	if (free_space < (full_space >> 1)) {
3082		icsk->icsk_ack.quick = 0;
3083
3084		if (tcp_under_memory_pressure(sk))
3085			tcp_adjust_rcv_ssthresh(sk);
3086
3087		/* free_space might become our new window, make sure we don't
3088		 * increase it due to wscale.
3089		 */
3090		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3091
3092		/* if free space is less than mss estimate, or is below 1/16th
3093		 * of the maximum allowed, try to move to zero-window, else
3094		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3095		 * new incoming data is dropped due to memory limits.
3096		 * With large window, mss test triggers way too late in order
3097		 * to announce zero window in time before rmem limit kicks in.
3098		 */
3099		if (free_space < (allowed_space >> 4) || free_space < mss)
3100			return 0;
3101	}
3102
3103	if (free_space > tp->rcv_ssthresh)
3104		free_space = tp->rcv_ssthresh;
3105
3106	/* Don't do rounding if we are using window scaling, since the
3107	 * scaled window will not line up with the MSS boundary anyway.
3108	 */
3109	if (tp->rx_opt.rcv_wscale) {
3110		window = free_space;
3111
3112		/* Advertise enough space so that it won't get scaled away.
3113		 * Import case: prevent zero window announcement if
3114		 * 1<<rcv_wscale > mss.
3115		 */
3116		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3117	} else {
3118		window = tp->rcv_wnd;
3119		/* Get the largest window that is a nice multiple of mss.
3120		 * Window clamp already applied above.
3121		 * If our current window offering is within 1 mss of the
3122		 * free space we just keep it. This prevents the divide
3123		 * and multiply from happening most of the time.
3124		 * We also don't do any window rounding when the free space
3125		 * is too small.
3126		 */
3127		if (window <= free_space - mss || window > free_space)
3128			window = rounddown(free_space, mss);
3129		else if (mss == full_space &&
3130			 free_space > window + (full_space >> 1))
3131			window = free_space;
3132	}
3133
3134	return window;
3135
3136shrink_window_allowed:
3137	/* new window should always be an exact multiple of scaling factor */
3138	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3139
3140	if (free_space < (full_space >> 1)) {
3141		icsk->icsk_ack.quick = 0;
3142
3143		if (tcp_under_memory_pressure(sk))
3144			tcp_adjust_rcv_ssthresh(sk);
3145
3146		/* if free space is too low, return a zero window */
3147		if (free_space < (allowed_space >> 4) || free_space < mss ||
3148			free_space < (1 << tp->rx_opt.rcv_wscale))
3149			return 0;
3150	}
3151
3152	if (free_space > tp->rcv_ssthresh) {
3153		free_space = tp->rcv_ssthresh;
3154		/* new window should always be an exact multiple of scaling factor
3155		 *
3156		 * For this case, we ALIGN "up" (increase free_space) because
3157		 * we know free_space is not zero here, it has been reduced from
3158		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3159		 * (unlike sk_rcvbuf).
3160		 */
3161		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3162	}
3163
3164	return free_space;
3165}
3166
3167void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3168			     const struct sk_buff *next_skb)
3169{
3170	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3171		const struct skb_shared_info *next_shinfo =
3172			skb_shinfo(next_skb);
3173		struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3176		shinfo->tskey = next_shinfo->tskey;
3177		TCP_SKB_CB(skb)->txstamp_ack |=
3178			TCP_SKB_CB(next_skb)->txstamp_ack;
3179	}
3180}
3181
3182/* Collapses two adjacent SKB's during retransmission. */
3183static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3184{
3185	struct tcp_sock *tp = tcp_sk(sk);
3186	struct sk_buff *next_skb = skb_rb_next(skb);
3187	int next_skb_size;
3188
3189	next_skb_size = next_skb->len;
3190
3191	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3192
3193	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3194		return false;
3195
3196	tcp_highest_sack_replace(sk, next_skb, skb);
3197
3198	/* Update sequence range on original skb. */
3199	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3200
3201	/* Merge over control information. This moves PSH/FIN etc. over */
3202	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3203
3204	/* All done, get rid of second SKB and account for it so
3205	 * packet counting does not break.
3206	 */
3207	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3208	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3209
3210	/* changed transmit queue under us so clear hints */
3211	tcp_clear_retrans_hints_partial(tp);
3212	if (next_skb == tp->retransmit_skb_hint)
3213		tp->retransmit_skb_hint = skb;
3214
3215	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3216
3217	tcp_skb_collapse_tstamp(skb, next_skb);
3218
3219	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3220	return true;
3221}
3222
3223/* Check if coalescing SKBs is legal. */
3224static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3225{
3226	if (tcp_skb_pcount(skb) > 1)
3227		return false;
3228	if (skb_cloned(skb))
3229		return false;
3230	/* Some heuristics for collapsing over SACK'd could be invented */
3231	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3232		return false;
3233
3234	return true;
3235}
3236
3237/* Collapse packets in the retransmit queue to make to create
3238 * less packets on the wire. This is only done on retransmission.
3239 */
3240static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3241				     int space)
3242{
3243	struct tcp_sock *tp = tcp_sk(sk);
3244	struct sk_buff *skb = to, *tmp;
3245	bool first = true;
3246
3247	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3248		return;
3249	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3250		return;
3251
3252	skb_rbtree_walk_from_safe(skb, tmp) {
3253		if (!tcp_can_collapse(sk, skb))
3254			break;
3255
3256		if (!tcp_skb_can_collapse(to, skb))
3257			break;
3258
3259		space -= skb->len;
3260
3261		if (first) {
3262			first = false;
3263			continue;
3264		}
3265
3266		if (space < 0)
3267			break;
3268
3269		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3270			break;
3271
3272		if (!tcp_collapse_retrans(sk, to))
3273			break;
3274	}
3275}
3276
3277/* This retransmits one SKB.  Policy decisions and retransmit queue
3278 * state updates are done by the caller.  Returns non-zero if an
3279 * error occurred which prevented the send.
3280 */
3281int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3282{
3283	struct inet_connection_sock *icsk = inet_csk(sk);
3284	struct tcp_sock *tp = tcp_sk(sk);
3285	unsigned int cur_mss;
3286	int diff, len, err;
3287	int avail_wnd;
3288
3289	/* Inconclusive MTU probe */
3290	if (icsk->icsk_mtup.probe_size)
3291		icsk->icsk_mtup.probe_size = 0;
3292
3293	if (skb_still_in_host_queue(sk, skb))
3294		return -EBUSY;
3295
3296start:
3297	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3298		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3300			TCP_SKB_CB(skb)->seq++;
3301			goto start;
3302		}
3303		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3304			WARN_ON_ONCE(1);
3305			return -EINVAL;
3306		}
3307		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308			return -ENOMEM;
3309	}
3310
3311	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3312		return -EHOSTUNREACH; /* Routing failure or similar. */
3313
3314	cur_mss = tcp_current_mss(sk);
3315	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3316
3317	/* If receiver has shrunk his window, and skb is out of
3318	 * new window, do not retransmit it. The exception is the
3319	 * case, when window is shrunk to zero. In this case
3320	 * our retransmit of one segment serves as a zero window probe.
3321	 */
3322	if (avail_wnd <= 0) {
3323		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3324			return -EAGAIN;
3325		avail_wnd = cur_mss;
3326	}
3327
3328	len = cur_mss * segs;
3329	if (len > avail_wnd) {
3330		len = rounddown(avail_wnd, cur_mss);
3331		if (!len)
3332			len = avail_wnd;
3333	}
3334	if (skb->len > len) {
3335		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3336				 cur_mss, GFP_ATOMIC))
3337			return -ENOMEM; /* We'll try again later. */
3338	} else {
3339		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3340			return -ENOMEM;
3341
3342		diff = tcp_skb_pcount(skb);
3343		tcp_set_skb_tso_segs(skb, cur_mss);
3344		diff -= tcp_skb_pcount(skb);
3345		if (diff)
3346			tcp_adjust_pcount(sk, skb, diff);
3347		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348		if (skb->len < avail_wnd)
3349			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350	}
3351
3352	/* RFC3168, section 6.1.1.1. ECN fallback */
3353	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354		tcp_ecn_clear_syn(sk, skb);
3355
3356	/* Update global and local TCP statistics. */
3357	segs = tcp_skb_pcount(skb);
3358	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361	tp->total_retrans += segs;
3362	tp->bytes_retrans += skb->len;
3363
3364	/* make sure skb->data is aligned on arches that require it
3365	 * and check if ack-trimming & collapsing extended the headroom
3366	 * beyond what csum_start can cover.
3367	 */
3368	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369		     skb_headroom(skb) >= 0xFFFF)) {
3370		struct sk_buff *nskb;
3371
3372		tcp_skb_tsorted_save(skb) {
3373			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374			if (nskb) {
3375				nskb->dev = NULL;
3376				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377			} else {
3378				err = -ENOBUFS;
3379			}
3380		} tcp_skb_tsorted_restore(skb);
3381
3382		if (!err) {
3383			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384			tcp_rate_skb_sent(sk, skb);
3385		}
3386	} else {
3387		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388	}
3389
3390	/* To avoid taking spuriously low RTT samples based on a timestamp
3391	 * for a transmit that never happened, always mark EVER_RETRANS
3392	 */
3393	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3394
3395	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3396		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3397				  TCP_SKB_CB(skb)->seq, segs, err);
3398
3399	if (likely(!err)) {
3400		trace_tcp_retransmit_skb(sk, skb);
3401	} else if (err != -EBUSY) {
3402		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3403	}
3404	return err;
3405}
3406
3407int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408{
3409	struct tcp_sock *tp = tcp_sk(sk);
3410	int err = __tcp_retransmit_skb(sk, skb, segs);
3411
3412	if (err == 0) {
3413#if FASTRETRANS_DEBUG > 0
3414		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415			net_dbg_ratelimited("retrans_out leaked\n");
3416		}
3417#endif
3418		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419		tp->retrans_out += tcp_skb_pcount(skb);
3420	}
3421
3422	/* Save stamp of the first (attempted) retransmit. */
3423	if (!tp->retrans_stamp)
3424		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425
3426	if (tp->undo_retrans < 0)
3427		tp->undo_retrans = 0;
3428	tp->undo_retrans += tcp_skb_pcount(skb);
3429	return err;
3430}
3431
3432/* This gets called after a retransmit timeout, and the initially
3433 * retransmitted data is acknowledged.  It tries to continue
3434 * resending the rest of the retransmit queue, until either
3435 * we've sent it all or the congestion window limit is reached.
3436 */
3437void tcp_xmit_retransmit_queue(struct sock *sk)
3438{
3439	const struct inet_connection_sock *icsk = inet_csk(sk);
3440	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441	struct tcp_sock *tp = tcp_sk(sk);
3442	bool rearm_timer = false;
3443	u32 max_segs;
3444	int mib_idx;
3445
3446	if (!tp->packets_out)
3447		return;
3448
3449	rtx_head = tcp_rtx_queue_head(sk);
3450	skb = tp->retransmit_skb_hint ?: rtx_head;
3451	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452	skb_rbtree_walk_from(skb) {
3453		__u8 sacked;
3454		int segs;
3455
3456		if (tcp_pacing_check(sk))
3457			break;
3458
3459		/* we could do better than to assign each time */
3460		if (!hole)
3461			tp->retransmit_skb_hint = skb;
3462
3463		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464		if (segs <= 0)
3465			break;
3466		sacked = TCP_SKB_CB(skb)->sacked;
3467		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468		 * we need to make sure not sending too bigs TSO packets
3469		 */
3470		segs = min_t(int, segs, max_segs);
3471
3472		if (tp->retrans_out >= tp->lost_out) {
3473			break;
3474		} else if (!(sacked & TCPCB_LOST)) {
3475			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476				hole = skb;
3477			continue;
3478
3479		} else {
3480			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482			else
3483				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484		}
3485
3486		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487			continue;
3488
3489		if (tcp_small_queue_check(sk, skb, 1))
3490			break;
3491
3492		if (tcp_retransmit_skb(sk, skb, segs))
3493			break;
3494
3495		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496
3497		if (tcp_in_cwnd_reduction(sk))
3498			tp->prr_out += tcp_skb_pcount(skb);
3499
3500		if (skb == rtx_head &&
3501		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502			rearm_timer = true;
3503
3504	}
3505	if (rearm_timer)
3506		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507				     inet_csk(sk)->icsk_rto,
3508				     TCP_RTO_MAX);
3509}
3510
3511/* We allow to exceed memory limits for FIN packets to expedite
3512 * connection tear down and (memory) recovery.
3513 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3514 * or even be forced to close flow without any FIN.
3515 * In general, we want to allow one skb per socket to avoid hangs
3516 * with edge trigger epoll()
3517 */
3518void sk_forced_mem_schedule(struct sock *sk, int size)
3519{
3520	int delta, amt;
3521
3522	delta = size - sk->sk_forward_alloc;
3523	if (delta <= 0)
3524		return;
3525	amt = sk_mem_pages(delta);
3526	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3527	sk_memory_allocated_add(sk, amt);
3528
3529	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3530		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3531					gfp_memcg_charge() | __GFP_NOFAIL);
3532}
3533
3534/* Send a FIN. The caller locks the socket for us.
3535 * We should try to send a FIN packet really hard, but eventually give up.
3536 */
3537void tcp_send_fin(struct sock *sk)
3538{
3539	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3540	struct tcp_sock *tp = tcp_sk(sk);
3541
3542	/* Optimization, tack on the FIN if we have one skb in write queue and
3543	 * this skb was not yet sent, or we are under memory pressure.
3544	 * Note: in the latter case, FIN packet will be sent after a timeout,
3545	 * as TCP stack thinks it has already been transmitted.
3546	 */
3547	tskb = tail;
3548	if (!tskb && tcp_under_memory_pressure(sk))
3549		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3550
3551	if (tskb) {
3552		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3553		TCP_SKB_CB(tskb)->end_seq++;
3554		tp->write_seq++;
3555		if (!tail) {
3556			/* This means tskb was already sent.
3557			 * Pretend we included the FIN on previous transmit.
3558			 * We need to set tp->snd_nxt to the value it would have
3559			 * if FIN had been sent. This is because retransmit path
3560			 * does not change tp->snd_nxt.
3561			 */
3562			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3563			return;
3564		}
3565	} else {
3566		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3567		if (unlikely(!skb))
3568			return;
3569
3570		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3571		skb_reserve(skb, MAX_TCP_HEADER);
3572		sk_forced_mem_schedule(sk, skb->truesize);
3573		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3574		tcp_init_nondata_skb(skb, tp->write_seq,
3575				     TCPHDR_ACK | TCPHDR_FIN);
3576		tcp_queue_skb(sk, skb);
3577	}
3578	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3579}
3580
3581/* We get here when a process closes a file descriptor (either due to
3582 * an explicit close() or as a byproduct of exit()'ing) and there
3583 * was unread data in the receive queue.  This behavior is recommended
3584 * by RFC 2525, section 2.17.  -DaveM
3585 */
3586void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3587{
3588	struct sk_buff *skb;
3589
3590	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3591
3592	/* NOTE: No TCP options attached and we never retransmit this. */
3593	skb = alloc_skb(MAX_TCP_HEADER, priority);
3594	if (!skb) {
3595		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3596		return;
3597	}
3598
3599	/* Reserve space for headers and prepare control bits. */
3600	skb_reserve(skb, MAX_TCP_HEADER);
3601	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3602			     TCPHDR_ACK | TCPHDR_RST);
3603	tcp_mstamp_refresh(tcp_sk(sk));
3604	/* Send it off. */
3605	if (tcp_transmit_skb(sk, skb, 0, priority))
3606		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3607
3608	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3609	 * skb here is different to the troublesome skb, so use NULL
3610	 */
3611	trace_tcp_send_reset(sk, NULL);
3612}
3613
3614/* Send a crossed SYN-ACK during socket establishment.
3615 * WARNING: This routine must only be called when we have already sent
3616 * a SYN packet that crossed the incoming SYN that caused this routine
3617 * to get called. If this assumption fails then the initial rcv_wnd
3618 * and rcv_wscale values will not be correct.
3619 */
3620int tcp_send_synack(struct sock *sk)
3621{
3622	struct sk_buff *skb;
3623
3624	skb = tcp_rtx_queue_head(sk);
3625	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3626		pr_err("%s: wrong queue state\n", __func__);
3627		return -EFAULT;
3628	}
3629	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3630		if (skb_cloned(skb)) {
3631			struct sk_buff *nskb;
3632
3633			tcp_skb_tsorted_save(skb) {
3634				nskb = skb_copy(skb, GFP_ATOMIC);
3635			} tcp_skb_tsorted_restore(skb);
3636			if (!nskb)
3637				return -ENOMEM;
3638			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3639			tcp_highest_sack_replace(sk, skb, nskb);
3640			tcp_rtx_queue_unlink_and_free(skb, sk);
3641			__skb_header_release(nskb);
3642			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3643			sk_wmem_queued_add(sk, nskb->truesize);
3644			sk_mem_charge(sk, nskb->truesize);
3645			skb = nskb;
3646		}
3647
3648		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3649		tcp_ecn_send_synack(sk, skb);
3650	}
3651	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3652}
3653
3654/**
3655 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3656 * @sk: listener socket
3657 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3658 *       should not use it again.
3659 * @req: request_sock pointer
3660 * @foc: cookie for tcp fast open
3661 * @synack_type: Type of synack to prepare
3662 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3663 */
3664struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3665				struct request_sock *req,
3666				struct tcp_fastopen_cookie *foc,
3667				enum tcp_synack_type synack_type,
3668				struct sk_buff *syn_skb)
3669{
3670	struct inet_request_sock *ireq = inet_rsk(req);
3671	const struct tcp_sock *tp = tcp_sk(sk);
3672	struct tcp_out_options opts;
3673	struct tcp_key key = {};
3674	struct sk_buff *skb;
3675	int tcp_header_size;
3676	struct tcphdr *th;
3677	int mss;
3678	u64 now;
3679
3680	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3681	if (unlikely(!skb)) {
3682		dst_release(dst);
3683		return NULL;
3684	}
3685	/* Reserve space for headers. */
3686	skb_reserve(skb, MAX_TCP_HEADER);
3687
3688	switch (synack_type) {
3689	case TCP_SYNACK_NORMAL:
3690		skb_set_owner_w(skb, req_to_sk(req));
3691		break;
3692	case TCP_SYNACK_COOKIE:
3693		/* Under synflood, we do not attach skb to a socket,
3694		 * to avoid false sharing.
3695		 */
3696		break;
3697	case TCP_SYNACK_FASTOPEN:
3698		/* sk is a const pointer, because we want to express multiple
3699		 * cpu might call us concurrently.
3700		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3701		 */
3702		skb_set_owner_w(skb, (struct sock *)sk);
3703		break;
3704	}
3705	skb_dst_set(skb, dst);
3706
3707	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3708
3709	memset(&opts, 0, sizeof(opts));
3710	now = tcp_clock_ns();
3711#ifdef CONFIG_SYN_COOKIES
3712	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3713		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3714				      true);
3715	else
3716#endif
3717	{
3718		skb_set_delivery_time(skb, now, true);
3719		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3720			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3721	}
3722
3723#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3724	rcu_read_lock();
3725#endif
3726	if (tcp_rsk_used_ao(req)) {
3727#ifdef CONFIG_TCP_AO
3728		struct tcp_ao_key *ao_key = NULL;
3729		u8 keyid = tcp_rsk(req)->ao_keyid;
3730
3731		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3732							    keyid, -1);
3733		/* If there is no matching key - avoid sending anything,
3734		 * especially usigned segments. It could try harder and lookup
3735		 * for another peer-matching key, but the peer has requested
3736		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3737		 */
3738		if (unlikely(!ao_key)) {
3739			rcu_read_unlock();
3740			kfree_skb(skb);
3741			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3742					     keyid);
3743			return NULL;
3744		}
3745		key.ao_key = ao_key;
3746		key.type = TCP_KEY_AO;
3747#endif
3748	} else {
3749#ifdef CONFIG_TCP_MD5SIG
3750		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3751					req_to_sk(req));
3752		if (key.md5_key)
3753			key.type = TCP_KEY_MD5;
3754#endif
3755	}
3756	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3757	/* bpf program will be interested in the tcp_flags */
3758	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3759	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3760					     &key, foc, synack_type, syn_skb)
3761					+ sizeof(*th);
3762
3763	skb_push(skb, tcp_header_size);
3764	skb_reset_transport_header(skb);
3765
3766	th = (struct tcphdr *)skb->data;
3767	memset(th, 0, sizeof(struct tcphdr));
3768	th->syn = 1;
3769	th->ack = 1;
3770	tcp_ecn_make_synack(req, th);
3771	th->source = htons(ireq->ir_num);
3772	th->dest = ireq->ir_rmt_port;
3773	skb->mark = ireq->ir_mark;
3774	skb->ip_summed = CHECKSUM_PARTIAL;
3775	th->seq = htonl(tcp_rsk(req)->snt_isn);
3776	/* XXX data is queued and acked as is. No buffer/window check */
3777	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3778
3779	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3780	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3781	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3782	th->doff = (tcp_header_size >> 2);
3783	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3784
3785	/* Okay, we have all we need - do the md5 hash if needed */
3786	if (tcp_key_is_md5(&key)) {
3787#ifdef CONFIG_TCP_MD5SIG
3788		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3789					key.md5_key, req_to_sk(req), skb);
3790#endif
3791	} else if (tcp_key_is_ao(&key)) {
3792#ifdef CONFIG_TCP_AO
3793		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3794					key.ao_key, req, skb,
3795					opts.hash_location - (u8 *)th, 0);
3796#endif
3797	}
3798#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3799	rcu_read_unlock();
3800#endif
3801
3802	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3803				synack_type, &opts);
3804
3805	skb_set_delivery_time(skb, now, true);
3806	tcp_add_tx_delay(skb, tp);
3807
3808	return skb;
3809}
3810EXPORT_SYMBOL(tcp_make_synack);
3811
3812static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3813{
3814	struct inet_connection_sock *icsk = inet_csk(sk);
3815	const struct tcp_congestion_ops *ca;
3816	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3817
3818	if (ca_key == TCP_CA_UNSPEC)
3819		return;
3820
3821	rcu_read_lock();
3822	ca = tcp_ca_find_key(ca_key);
3823	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3824		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3825		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3826		icsk->icsk_ca_ops = ca;
3827	}
3828	rcu_read_unlock();
3829}
3830
3831/* Do all connect socket setups that can be done AF independent. */
3832static void tcp_connect_init(struct sock *sk)
3833{
3834	const struct dst_entry *dst = __sk_dst_get(sk);
3835	struct tcp_sock *tp = tcp_sk(sk);
3836	__u8 rcv_wscale;
3837	u32 rcv_wnd;
3838
3839	/* We'll fix this up when we get a response from the other end.
3840	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3841	 */
3842	tp->tcp_header_len = sizeof(struct tcphdr);
3843	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3844		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3845
3846	tcp_ao_connect_init(sk);
3847
3848	/* If user gave his TCP_MAXSEG, record it to clamp */
3849	if (tp->rx_opt.user_mss)
3850		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3851	tp->max_window = 0;
3852	tcp_mtup_init(sk);
3853	tcp_sync_mss(sk, dst_mtu(dst));
3854
3855	tcp_ca_dst_init(sk, dst);
3856
3857	if (!tp->window_clamp)
3858		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3859	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3860
3861	tcp_initialize_rcv_mss(sk);
3862
3863	/* limit the window selection if the user enforce a smaller rx buffer */
3864	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3865	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3866		tp->window_clamp = tcp_full_space(sk);
3867
3868	rcv_wnd = tcp_rwnd_init_bpf(sk);
3869	if (rcv_wnd == 0)
3870		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3871
3872	tcp_select_initial_window(sk, tcp_full_space(sk),
3873				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3874				  &tp->rcv_wnd,
3875				  &tp->window_clamp,
3876				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3877				  &rcv_wscale,
3878				  rcv_wnd);
3879
3880	tp->rx_opt.rcv_wscale = rcv_wscale;
3881	tp->rcv_ssthresh = tp->rcv_wnd;
3882
3883	WRITE_ONCE(sk->sk_err, 0);
3884	sock_reset_flag(sk, SOCK_DONE);
3885	tp->snd_wnd = 0;
3886	tcp_init_wl(tp, 0);
3887	tcp_write_queue_purge(sk);
3888	tp->snd_una = tp->write_seq;
3889	tp->snd_sml = tp->write_seq;
3890	tp->snd_up = tp->write_seq;
3891	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3892
3893	if (likely(!tp->repair))
3894		tp->rcv_nxt = 0;
3895	else
3896		tp->rcv_tstamp = tcp_jiffies32;
3897	tp->rcv_wup = tp->rcv_nxt;
3898	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3899
3900	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3901	inet_csk(sk)->icsk_retransmits = 0;
3902	tcp_clear_retrans(tp);
3903}
3904
3905static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3906{
3907	struct tcp_sock *tp = tcp_sk(sk);
3908	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3909
3910	tcb->end_seq += skb->len;
3911	__skb_header_release(skb);
3912	sk_wmem_queued_add(sk, skb->truesize);
3913	sk_mem_charge(sk, skb->truesize);
3914	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3915	tp->packets_out += tcp_skb_pcount(skb);
3916}
3917
3918/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3919 * queue a data-only packet after the regular SYN, such that regular SYNs
3920 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3921 * only the SYN sequence, the data are retransmitted in the first ACK.
3922 * If cookie is not cached or other error occurs, falls back to send a
3923 * regular SYN with Fast Open cookie request option.
3924 */
3925static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3926{
3927	struct inet_connection_sock *icsk = inet_csk(sk);
3928	struct tcp_sock *tp = tcp_sk(sk);
3929	struct tcp_fastopen_request *fo = tp->fastopen_req;
3930	struct page_frag *pfrag = sk_page_frag(sk);
3931	struct sk_buff *syn_data;
3932	int space, err = 0;
3933
3934	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3935	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3936		goto fallback;
3937
3938	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3939	 * user-MSS. Reserve maximum option space for middleboxes that add
3940	 * private TCP options. The cost is reduced data space in SYN :(
3941	 */
3942	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3943	/* Sync mss_cache after updating the mss_clamp */
3944	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3945
3946	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3947		MAX_TCP_OPTION_SPACE;
3948
3949	space = min_t(size_t, space, fo->size);
3950
3951	if (space &&
3952	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3953				  pfrag, sk->sk_allocation))
3954		goto fallback;
3955	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3956	if (!syn_data)
3957		goto fallback;
3958	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3959	if (space) {
3960		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3961		space = tcp_wmem_schedule(sk, space);
3962	}
3963	if (space) {
3964		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3965					    space, &fo->data->msg_iter);
3966		if (unlikely(!space)) {
3967			tcp_skb_tsorted_anchor_cleanup(syn_data);
3968			kfree_skb(syn_data);
3969			goto fallback;
3970		}
3971		skb_fill_page_desc(syn_data, 0, pfrag->page,
3972				   pfrag->offset, space);
3973		page_ref_inc(pfrag->page);
3974		pfrag->offset += space;
3975		skb_len_add(syn_data, space);
3976		skb_zcopy_set(syn_data, fo->uarg, NULL);
3977	}
3978	/* No more data pending in inet_wait_for_connect() */
3979	if (space == fo->size)
3980		fo->data = NULL;
3981	fo->copied = space;
3982
3983	tcp_connect_queue_skb(sk, syn_data);
3984	if (syn_data->len)
3985		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3986
3987	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3988
3989	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3990
3991	/* Now full SYN+DATA was cloned and sent (or not),
3992	 * remove the SYN from the original skb (syn_data)
3993	 * we keep in write queue in case of a retransmit, as we
3994	 * also have the SYN packet (with no data) in the same queue.
3995	 */
3996	TCP_SKB_CB(syn_data)->seq++;
3997	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3998	if (!err) {
3999		tp->syn_data = (fo->copied > 0);
4000		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4001		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4002		goto done;
4003	}
4004
4005	/* data was not sent, put it in write_queue */
4006	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4007	tp->packets_out -= tcp_skb_pcount(syn_data);
4008
4009fallback:
4010	/* Send a regular SYN with Fast Open cookie request option */
4011	if (fo->cookie.len > 0)
4012		fo->cookie.len = 0;
4013	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4014	if (err)
4015		tp->syn_fastopen = 0;
4016done:
4017	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4018	return err;
4019}
4020
4021/* Build a SYN and send it off. */
4022int tcp_connect(struct sock *sk)
4023{
4024	struct tcp_sock *tp = tcp_sk(sk);
4025	struct sk_buff *buff;
4026	int err;
4027
4028	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4029
4030#if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4031	/* Has to be checked late, after setting daddr/saddr/ops.
4032	 * Return error if the peer has both a md5 and a tcp-ao key
4033	 * configured as this is ambiguous.
4034	 */
4035	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4036					       lockdep_sock_is_held(sk)))) {
4037		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4038		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4039		struct tcp_ao_info *ao_info;
4040
4041		ao_info = rcu_dereference_check(tp->ao_info,
4042						lockdep_sock_is_held(sk));
4043		if (ao_info) {
4044			/* This is an extra check: tcp_ao_required() in
4045			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4046			 * md5 keys on ao_required socket.
4047			 */
4048			needs_ao |= ao_info->ao_required;
4049			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4050		}
4051		if (needs_md5 && needs_ao)
4052			return -EKEYREJECTED;
4053
4054		/* If we have a matching md5 key and no matching tcp-ao key
4055		 * then free up ao_info if allocated.
4056		 */
4057		if (needs_md5) {
4058			tcp_ao_destroy_sock(sk, false);
4059		} else if (needs_ao) {
4060			tcp_clear_md5_list(sk);
4061			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4062						  lockdep_sock_is_held(sk)));
4063		}
4064	}
4065#endif
4066#ifdef CONFIG_TCP_AO
4067	if (unlikely(rcu_dereference_protected(tp->ao_info,
4068					       lockdep_sock_is_held(sk)))) {
4069		/* Don't allow connecting if ao is configured but no
4070		 * matching key is found.
4071		 */
4072		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4073			return -EKEYREJECTED;
4074	}
4075#endif
4076
4077	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4078		return -EHOSTUNREACH; /* Routing failure or similar. */
4079
4080	tcp_connect_init(sk);
4081
4082	if (unlikely(tp->repair)) {
4083		tcp_finish_connect(sk, NULL);
4084		return 0;
4085	}
4086
4087	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4088	if (unlikely(!buff))
4089		return -ENOBUFS;
4090
4091	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4092	tcp_mstamp_refresh(tp);
4093	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4094	tcp_connect_queue_skb(sk, buff);
4095	tcp_ecn_send_syn(sk, buff);
4096	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4097
4098	/* Send off SYN; include data in Fast Open. */
4099	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4100	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4101	if (err == -ECONNREFUSED)
4102		return err;
4103
4104	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4105	 * in order to make this packet get counted in tcpOutSegs.
4106	 */
4107	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4108	tp->pushed_seq = tp->write_seq;
4109	buff = tcp_send_head(sk);
4110	if (unlikely(buff)) {
4111		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4112		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4113	}
4114	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4115
4116	/* Timer for repeating the SYN until an answer. */
4117	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4118				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4119	return 0;
4120}
4121EXPORT_SYMBOL(tcp_connect);
4122
4123u32 tcp_delack_max(const struct sock *sk)
4124{
4125	const struct dst_entry *dst = __sk_dst_get(sk);
4126	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4127
4128	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4129		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4130		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4131
4132		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4133	}
4134	return delack_max;
4135}
4136
4137/* Send out a delayed ack, the caller does the policy checking
4138 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4139 * for details.
4140 */
4141void tcp_send_delayed_ack(struct sock *sk)
4142{
4143	struct inet_connection_sock *icsk = inet_csk(sk);
4144	int ato = icsk->icsk_ack.ato;
4145	unsigned long timeout;
4146
4147	if (ato > TCP_DELACK_MIN) {
4148		const struct tcp_sock *tp = tcp_sk(sk);
4149		int max_ato = HZ / 2;
4150
4151		if (inet_csk_in_pingpong_mode(sk) ||
4152		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4153			max_ato = TCP_DELACK_MAX;
4154
4155		/* Slow path, intersegment interval is "high". */
4156
4157		/* If some rtt estimate is known, use it to bound delayed ack.
4158		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4159		 * directly.
4160		 */
4161		if (tp->srtt_us) {
4162			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4163					TCP_DELACK_MIN);
4164
4165			if (rtt < max_ato)
4166				max_ato = rtt;
4167		}
4168
4169		ato = min(ato, max_ato);
4170	}
4171
4172	ato = min_t(u32, ato, tcp_delack_max(sk));
4173
4174	/* Stay within the limit we were given */
4175	timeout = jiffies + ato;
4176
4177	/* Use new timeout only if there wasn't a older one earlier. */
4178	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4179		/* If delack timer is about to expire, send ACK now. */
4180		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4181			tcp_send_ack(sk);
4182			return;
4183		}
4184
4185		if (!time_before(timeout, icsk->icsk_ack.timeout))
4186			timeout = icsk->icsk_ack.timeout;
4187	}
4188	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4189	icsk->icsk_ack.timeout = timeout;
4190	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4191}
4192
4193/* This routine sends an ack and also updates the window. */
4194void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4195{
4196	struct sk_buff *buff;
4197
4198	/* If we have been reset, we may not send again. */
4199	if (sk->sk_state == TCP_CLOSE)
4200		return;
4201
4202	/* We are not putting this on the write queue, so
4203	 * tcp_transmit_skb() will set the ownership to this
4204	 * sock.
4205	 */
4206	buff = alloc_skb(MAX_TCP_HEADER,
4207			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4208	if (unlikely(!buff)) {
4209		struct inet_connection_sock *icsk = inet_csk(sk);
4210		unsigned long delay;
4211
4212		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4213		if (delay < TCP_RTO_MAX)
4214			icsk->icsk_ack.retry++;
4215		inet_csk_schedule_ack(sk);
4216		icsk->icsk_ack.ato = TCP_ATO_MIN;
4217		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4218		return;
4219	}
4220
4221	/* Reserve space for headers and prepare control bits. */
4222	skb_reserve(buff, MAX_TCP_HEADER);
4223	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4224
4225	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4226	 * too much.
4227	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4228	 */
4229	skb_set_tcp_pure_ack(buff);
4230
4231	/* Send it off, this clears delayed acks for us. */
4232	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4233}
4234EXPORT_SYMBOL_GPL(__tcp_send_ack);
4235
4236void tcp_send_ack(struct sock *sk)
4237{
4238	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4239}
4240
4241/* This routine sends a packet with an out of date sequence
4242 * number. It assumes the other end will try to ack it.
4243 *
4244 * Question: what should we make while urgent mode?
4245 * 4.4BSD forces sending single byte of data. We cannot send
4246 * out of window data, because we have SND.NXT==SND.MAX...
4247 *
4248 * Current solution: to send TWO zero-length segments in urgent mode:
4249 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4250 * out-of-date with SND.UNA-1 to probe window.
4251 */
4252static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4253{
4254	struct tcp_sock *tp = tcp_sk(sk);
4255	struct sk_buff *skb;
4256
4257	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4258	skb = alloc_skb(MAX_TCP_HEADER,
4259			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4260	if (!skb)
4261		return -1;
4262
4263	/* Reserve space for headers and set control bits. */
4264	skb_reserve(skb, MAX_TCP_HEADER);
4265	/* Use a previous sequence.  This should cause the other
4266	 * end to send an ack.  Don't queue or clone SKB, just
4267	 * send it.
4268	 */
4269	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4270	NET_INC_STATS(sock_net(sk), mib);
4271	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4272}
4273
4274/* Called from setsockopt( ... TCP_REPAIR ) */
4275void tcp_send_window_probe(struct sock *sk)
4276{
4277	if (sk->sk_state == TCP_ESTABLISHED) {
4278		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4279		tcp_mstamp_refresh(tcp_sk(sk));
4280		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4281	}
4282}
4283
4284/* Initiate keepalive or window probe from timer. */
4285int tcp_write_wakeup(struct sock *sk, int mib)
4286{
4287	struct tcp_sock *tp = tcp_sk(sk);
4288	struct sk_buff *skb;
4289
4290	if (sk->sk_state == TCP_CLOSE)
4291		return -1;
4292
4293	skb = tcp_send_head(sk);
4294	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4295		int err;
4296		unsigned int mss = tcp_current_mss(sk);
4297		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4298
4299		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4300			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4301
4302		/* We are probing the opening of a window
4303		 * but the window size is != 0
4304		 * must have been a result SWS avoidance ( sender )
4305		 */
4306		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4307		    skb->len > mss) {
4308			seg_size = min(seg_size, mss);
4309			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4310			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4311					 skb, seg_size, mss, GFP_ATOMIC))
4312				return -1;
4313		} else if (!tcp_skb_pcount(skb))
4314			tcp_set_skb_tso_segs(skb, mss);
4315
4316		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4317		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4318		if (!err)
4319			tcp_event_new_data_sent(sk, skb);
4320		return err;
4321	} else {
4322		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4323			tcp_xmit_probe_skb(sk, 1, mib);
4324		return tcp_xmit_probe_skb(sk, 0, mib);
4325	}
4326}
4327
4328/* A window probe timeout has occurred.  If window is not closed send
4329 * a partial packet else a zero probe.
4330 */
4331void tcp_send_probe0(struct sock *sk)
4332{
4333	struct inet_connection_sock *icsk = inet_csk(sk);
4334	struct tcp_sock *tp = tcp_sk(sk);
4335	struct net *net = sock_net(sk);
4336	unsigned long timeout;
4337	int err;
4338
4339	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4340
4341	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4342		/* Cancel probe timer, if it is not required. */
4343		icsk->icsk_probes_out = 0;
4344		icsk->icsk_backoff = 0;
4345		icsk->icsk_probes_tstamp = 0;
4346		return;
4347	}
4348
4349	icsk->icsk_probes_out++;
4350	if (err <= 0) {
4351		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4352			icsk->icsk_backoff++;
4353		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4354	} else {
4355		/* If packet was not sent due to local congestion,
4356		 * Let senders fight for local resources conservatively.
4357		 */
4358		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4359	}
4360
4361	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4362	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4363}
4364
4365int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4366{
4367	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4368	struct flowi fl;
4369	int res;
4370
4371	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4372	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4373		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4374	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4375				  NULL);
4376	if (!res) {
4377		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4378		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4379		if (unlikely(tcp_passive_fastopen(sk))) {
4380			/* sk has const attribute because listeners are lockless.
4381			 * However in this case, we are dealing with a passive fastopen
4382			 * socket thus we can change total_retrans value.
4383			 */
4384			tcp_sk_rw(sk)->total_retrans++;
4385		}
4386		trace_tcp_retransmit_synack(sk, req);
4387	}
4388	return res;
4389}
4390EXPORT_SYMBOL(tcp_rtx_synack);
4391